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ABSTRACT

Active learning (AL) aims to select the most useful data samples from an unla-
beled data pool and annotate them to expand the labeled dataset under a limited
budget. Especially, uncertainty-based methods choose the most uncertain sam-
ples, which are known to be effective in improving model performance. How-
ever, AL literature often overlooks training dynamics (TD), defined as the ever-
changing model behavior during optimization via stochastic gradient descent,
even though other areas of literature have empirically shown that TD provides
important clues for measuring the sample uncertainty. In this paper, we propose a
novel AL method, Training Dynamics for Active Learning (TiDAL), which lever-
ages the TD to quantify uncertainties of unlabeled data. Since tracking the TD of
all the large-scale unlabeled data is impractical, TiDAL utilizes an additional pre-
diction module that learns the TD of labeled data. To further justify the design of
TiDAL, we provide theoretical and empirical evidence to argue the usefulness of
leveraging TD for AL. Experimental results show that our TiDAL achieves better
or comparable performance on both balanced and imbalanced benchmark datasets
compared to state-of-the-art AL methods, which estimate data uncertainty using
only static information after model training.

1 INTRODUCTION

“There is a tide in the affairs of men. Which taken at the flood, leads on to fortune.” — Shakespeare

Active learning (AL) (Atlas et al., 1990; Lewis & Gale, 1994) aims to solve the real-world problem
of selecting the most useful data samples from large-scale unlabeled data pools and annotating them
to expand labeled data under a limited budget. Since the current deep neural networks are often data-
hungry, AL has increasingly gained attention in recent years. Existing AL methods can be divided
into two mainstream categories: diversity-based and uncertainty-based methods. Diversity-based
methods (Sener & Savarese, 2018; Gissin & Shalev-Shwartz, 2019) focus on constructing a subset
that follows the target data distribution. Uncertainty-based methods (Gal et al., 2017; Beluch et al.,
2018; Yoo & Kweon, 2019) choose the most uncertain samples, which are known to be effective in
improving model performance. Hence, the most critical question for the latter becomes, “How can
we quantify the data uncertainty?”

In this paper, we leverage training dynamics (TD) to quantify data uncertainty. TD is defined as
the ever-changing model behavior on each data sample during optimization via stochastic gradient
descent. Recent studies (Chang et al., 2017; Samuli & Timo, 2017; Toneva et al., 2018; Swayamdipta
et al., 2020) have provided empirical evidence that TD provides important clues for measuring the
contribution of each data sample to model performance improvement. Inspired by these studies, we
hypothesize that the data uncertainty of unlabeled data can be estimated with TD. However, most
uncertainty-based methods quantify data uncertainty based on static information (e.g., loss (Yoo &
Kweon, 2019) or predicted probability (Sinha et al., 2019)) from a fully-trained model “snapshot,”
neglecting the valuable information generated during training.

Despite its huge potential, TD is not yet actively explored in the domain of AL due to the following
two critical challenges: (1) AL assumes a massive unlabeled data pool, thus tracking their TD is
infeasible. Previous studies track TD only for the training data every epoch as it can be recorded
easily during model optimization. On the other hand, AL targets a large number of unlabeled data,
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Figure 1: Our proposed TiDAL. TD of training samples x may differ even if they converge to the
same final predicted probability p(y|x) (Upper row). Hence, we are motivated to utilize the readily
available rich information generated during training, i.e., leveraging TD. We estimate TD of large-
scale unlabeled data using a prediction module instead of tracking the actual TD of all the unlabeled
samples to avoid the computational overhead (Lower row).

where tracking their TD requires an impractical amount of computation (e.g., inference all the un-
labeled samples every training epoch). (2) Some of the existing TD methods (Pleiss et al., 2020;
Swayamdipta et al., 2020; Park & Caragea, 2022) require true labels for measuring the contribution
of each data sample (e.g., easy-to-learn or hard-to-learn). However, AL methods need to infer the
uncertainty of each sample without the true labels to select samples worth labeling.

Therefore, we propose TiDAL (Training Dynamics for Active Learning), a novel AL method that
efficiently estimates the uncertainty of unlabeled data by leveraging their TD. We avoid tracking the
TD of large-scale unlabeled data every epoch by predicting the TD with a TD prediction module.
The module is trained to learn the TD of labeled data, which is readily available during model op-
timization. During the data selection phase, we predict the TD of unlabeled data with the trained
module to quantify their uncertainties. The module efficiently obtains TD, which avoids inferring
all the unlabeled samples every epoch. Furthermore, we quantify uncertainties of unlabeled samples
by carefully incorporating TD into common uncertainty estimators, such as entropy and margin,
without using the true labels. The design of TD prediction module is influenced by several previous
methods that use additional modules to predict target model outputs and their statistics (e.g., loss
prediction (Yoo & Kweon, 2019) or confidence prediction (Corbière et al., 2019)). The major dif-
ference is that TiDAL leverages TD, whereas the others rely only on the model snapshot captured
after the model is fully trained. Our motivation and proposed method are illustrated in Figure 1.

We further support the above method by providing theoretical and empirical evidence that TD
is more effective in separating uncertain and certain data than static information from a model
snapshot captured after fully-trained. Moreover, experimental results demonstrate that our TiDAL
achieves better or comparable performance to existing AL methods on both balanced and imbal-
anced datasets. Additional analyses show that our prediction module successfully predicts TD, and
the predicted TD is useful in estimating uncertainties of unlabeled data.

Contributions of our study: (1) We bridge the concept of training dynamics and active learn-
ing with the theoretical and experimental evidence that training dynamics is effective in estimating
data uncertainty. (2) We propose a new method that estimates uncertainties of unlabeled data by
leveraging their training dynamics which are efficiently predicted by the prediction module. (3)
Our proposed method achieves better or comparable performance on both balanced and imbalanced
benchmark datasets compared to existing active learning methods.

2 METHOD

In this section, we describe our novel AL method, TiDAL. After summarizing the preliminaries, we
define TD with the corresponding TD-aware uncertainty estimators. Then, we provide a motivating
observation and theoretical justification on using TD for AL. Finally, we describe the TD prediction
module that efficiently produces the estimated TD of unlabeled data, which is jointly trained with
the target classifier.
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2.1 PRELIMINARIES

Uncertainty-based active learning. In this work, we focus on uncertainty-based AL for multi-
class classification problems. Let p = [p(1|x), p(2|x), · · · , p(C|x)]T ∈ RC as the predicted
probabilities of the given sample x for C classes by the classifier f , where we denote the true label
of x as y. D and Du denote a labeled dataset and an unlabeled data pool, respectively. The general
cycle of uncertainty-based AL is in two steps: (1) train the target classifier f on the labeled dataset
D and (2) select top-k uncertain data samples from the unlabeled data pool Du. Selected samples
are then given to the human annotators to expand the labeled dataset D, cycling back to the first step.

Data uncertainty. Even though there are several ways to quantify data uncertainty, we adopt the
two most common and straightforward: entropy (Shannon, 1948) and margin (Roth & Small, 2006).
We employ both entropy and margin, with and without taking TD into account, to demonstrate the
effectiveness of utilizing TD information generated during training. We first define the TD-free
estimators in this section, and introduce their TD-aware variants in §2.2.

TD-free entropy H is defined as follows:

H(p) = −
∑C

c=1
p(c|x) log p(c|x), (1)

where the sample x is from the unlabeled data pool Du. Entropy only concentrates on the level of
the model’s confidence on the given sample x and gets bigger when the prediction across the classes
becomes uniform (i.e., uncertain).

TD-free margin M measures the difference between the true and the maximum probability. How-
ever, ŷ is used as a substitute for the true label y, which is not accessible for the unlabeled samples:

M(p) = p(ŷ|x)−max
c ̸=ŷ

p(c|x), (2)

where ŷ denote the predicted label by f , defined as ŷ = argmaxc p(c|x). Both entropy and margin
are computed with the predicted probabilities p of the fully trained classifier f , only taking the
snapshot of f into account.

2.2 DEFINITION OF TRAINING DYNAMICS

Our TiDAL targets to leverage TD of unlabeled data to estimate their uncertainties. TD can be de-
fined as any model behavior during optimization. For example, Pleiss et al. (2020) utilize the area un-
der the margin between logit values of the target class and the other largest class, and Swayamdipta
et al. (2020) utilize the variance of the predicted probabilities generated at each epoch. In this work,
we define the TD p̄(t) as the area under the predicted probabilities of each data sample x obtained
during the t time steps of optimizing the target classifier f as follows:

p̄(t) = [p̄(t)(1|x), p̄(t)(2|x), · · · , p̄(t)(C|x)]T =
∑

τ
p(τ)∆τ ≃

∑t

i=1
p(i)/t, (3)

where p(i) = [p(i)(1|x), p(i)(2|x), · · · , p(i)(C|x)]T is the predicted probabilities of a target
classifier f at the i-th time step. ∆τ is the unit time step to normalize the predicted probabilities.
For simplicity, we record p(i) every epoch and choose ∆τ = 1/t, namely, averaging the predicted
probabilities during t epochs (Swayamdipta et al., 2020; Song et al., 2019). The TD p̄(t) takes all
the predicted probabilities during model optimization into account; hence it encapsulates the overall
tendency of the model during t epochs of optimization, avoiding being biased towards a snapshot of
p(t) in the final epoch t.

Training Dynamics-Aware Uncertainty Estimation. We believe that data uncertainty could be
captured from TD, and it is effective in distinguishing uncertain samples from certain samples. To
this end, we introduce two uncertainty estimation strategies to quantify data uncertainty with TD that
do not use the true labels. Our strategies are simple variants of entropy and margin (§2.1), replacing
the predictions p of the trained target classifier f with TD p̄ of Equation 3.

TD-aware entropy H̄ is defined by swapping p with p̄:

H̄(p̄) = −
∑C

c=1
p̄(c|x) log p̄(c|x). (4)
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Entropy H̄ is maximized when p̄ is uniform, i.e., the sample is uncertain for the target classifier.

TD-aware margin M̄ is also similarly defined:

M̄(p̄) = p̄(ŷ|x)−max
c ̸=ŷ

p̄(c|x). (5)

The smaller the margin, the more uncertain the sample becomes. There are several possible variants
of M̄ depending on the definition of ŷ. We conduct experiments to compare M̄ with its variants.
The experimental details and results are provided in Appendix C.4.

2.3 IS TRAINING DYNAMICS USEFUL FOR QUANTIFYING UNCERTAINTY?

In this section, we provide empirical and theoretical evidence to support our claim: TD is more
effective in separating uncertain data from certain data than static information, where we define the
latter as the model snapshot captured at the end of model training.

2.3.1 MOTIVATING OBSERVATION

Settings. We emphasize that it is nontrivial to directly measure sample-wise difficulty, inhibiting
the quantitative analysis of data uncertainty. To avoid this, we borrow the theoretical and empirical
results of long-tailed visual recognition (Liu et al., 2019; Cao et al., 2019; Hong et al., 2021): it is
hard for the deep neural network-based model to train with fewer samples. Hence, we regard major
and minor class samples to contain many certain and uncertain samples for the model, respectively.
We train the target classifier f on the long-tailed dataset during T epochs to observe the TD-free
and TD-aware entropy (H , H̄) and margin (M , M̄ ) scores of the training data. More details and
discussions are described in Appendix B.
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Figure 2: Score distribution after long-tailed training.

Results. Figure 2 shows the distribution
of TD-aware (x-axis) and TD-free (y-axis)
scores. We can observe that TD-aware
entropy and margin scores (H̄, M̄ ) suc-
cessfully separate the major and the mi-
nor class samples, whereas TD-free scores
(H,M ) fail to do so. We conclude that
compared to model snapshots, TD is more
helpful in separating uncertain samples
from certain samples.

2.3.2 THEORETICAL EVIDENCE

Theorem 1. (Informal) Under the LE-SDE framework (Zhang et al., 2021b), with the assumption of
sample-level local elasticity (He & Su, 2019), certain samples and uncertain samples reveal different
TD; especially, certain samples converge quickly than uncertain samples.

The above theorem discusses different model behaviors depending on the easiness of the sample.
We assume that, compared to the uncertain sample, the certain sample has the same class samples
nearby, following the level set estimation (Jiang et al., 2018a) and nearest neighbor (Papernot &
McDaniel, 2018) literature. We suspect that, due to the local elasticity of deep nets, samples close
by have a bigger impact on the certain sample, hence changing its predicted probability more rapidly.
As the certain sample is quicker to converge, its TD is larger than that of the hard sample.

Theorem 2. (Informal) TD-aware estimators such as Entropy (Equation 4) and Margin (Equation
5) successfully capture the difference of TD between easy and hard samples even for the case where
it cannot be distinguished via the predicted probabilities of the model snapshot.

The above theorem discusses the validity of the TD-aware estimators on whether they can success-
fully differentiate between two samples of different TD but with the same final prediction. With
Theorem 1, one can conclude that the TD-aware estimators are effective in capturing the sample
uncertainty. Due to the space constraints, we provide the details of the above results in Appendix A.
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2.4 TRAINING DYNAMICS PREDICTION MODULE

As described in §1, it is not computationally feasible to track TD for the large-scale unlabeled data as
it requires model inference on all the unlabeled data every training epoch. Thus, we use the TD pre-
diction module m to efficiently predict the TD of unlabeled data at the t-th epoch. The TD prediction
module produces the C-dimensional predictions p̃(t)

m = [p̃
(t)
m (1|x), p̃

(t)
m (2|x), · · · , p̃

(t)
m (C|x)]T ∈

[0, 1]C estimating the actual TD p̄(t) of the given sample x in Equation 3. At the data selection
phase, we use the predicted TD p̃

(T )
m instead of the actual TD p̄(T ) in Equation 4 & 5 to estimate the

TD-aware uncertainty of the unlabeled sample x at the final epoch T .

One can offer several ways to design the module m, but we adopt the architecture of the loss pre-
diction module (Yoo & Kweon, 2019) except for the last layer. We use fully-connected layer with
softmax activation to output the TD predictions p̃

(t)
m . Similar to the loss prediction module, we

extract several hidden feature maps of the target classifier f to feed the TD prediction module m.
Refer to Yoo & Kweon (2019) for architecture details.

2.5 TRAINING OBJECTIVES

To train the target classifier f at the t-th epoch, we use the cross-entropy loss function Ltarget on the
predicted probability p(t) and a one-hot encoded vector y ∈ {0, 1}C of the true label y:

Ltarget = LCE(p
(t),y) = − log p(t)(y|x). (6)

Meanwhile, the TD prediction module m learns the TD of a given sample x by minimizing the
Kullback–Leibler (KL) divergence between the predicted TD p̃

(t)
m and the actual TD p̄(t):

Lmodule = LKL(p̄
(t)||p̃(t)

m ) =
∑C

c=1
p̄(t)(c|x) log

(
p̄(t)(c|x)

/
p̃(t)m (c|x)

)
. (7)

The final objective function of our proposed method is defined as follows:

L = Ltarget + λLmodule (8)

where λ is a balancing factor to control the effect of Lmodule during model training.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. To assess the performance of our proposed method and baseline methods, we conduct
experiments on the following five datasets: CIFAR10/100 (Krizhevsky et al., 2009), FashionM-
NIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), and iNaturalist2018 (Van Horn et al., 2018).
Since CIFAR and FashionMNIST are both balanced, we further modify them to simulate the data
imbalance in the real world, following the previous long-tail visual recognition studies (Cao et al.,
2019; Liu et al., 2019; Zhou et al., 2020a; Hong et al., 2021). The imbalance ratio is defined as
Nmax/Nmin where N is the number of samples in each class. We make two variants with data im-
balance ratios 10 and 100 for each dataset. Unlike the above, SVHN and iNaturalist18 are already
imbalanced. Especially, iNaturalist2018 is commonly chosen to demonstrate how methods work in
imbalanced real-world settings. The dataset statistics are summarized in Appendix C.

Baselines. For a fair comparison, we compare our TiDAL with the following baselines which train a
target classifier with only labeled data. Random sampling: a simple baseline that randomly selects
data samples from the unlabeled dataset. Entropy sampling (Shannon, 1948): an uncertainty-based
method that selects data samples based on the maximum entropy. BALD (Gal et al., 2017): an
uncertainty-based method that selects data samples based on the mutual information between the
model prediction and the posterior. CoreSet (Sener & Savarese, 2018): a diversity-based method
that selects representative data samples covering all data through a minimum radius. LLoss (Yoo
& Kweon, 2019): an uncertainty-based method that learns to estimate the errors of the predictions
(loss) made by the learner and select data samples based on the predicted loss. CAL (Zhang & Plank,
2021): recent work on using TD, gathering samplewise TD information on whether the classifier was
consistently correct or not during training. CAL splits the samples into two classes by applying a
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Figure 3: Averaged relative accuracy improvement curves and their 95% confidence interval
(shaded) of AL methods over the number of labeled samples on balanced datasets. TiDAL (H̄)
and TiDAL (M̄ ) denote the performance of TiDAL when with TD-aware entropy H̄ and margin M̄
as the data uncertainty estimation strategy, respectively.

heuristic threshold to the TD information to train a binary classifier that outputs uncertainty score. To
verify the effectiveness of TiDAL, we further compare it with the two semi-supervised AL methods,
VAAL (Sinha et al., 2019) and TA-VAAL (Kim et al., 2021) in §C.3. Note that these methods
further utilize unlabeled data for training the selection module, thus it is a rather unfair comparison
for our TiDAL.

Active learning setting. We follow the same setting from Beluch et al. (2018); Yoo & Kweon
(2019) for the detailed AL settings. For the initial step, we randomly select initial samples to be
annotated from the unlabeled dataset, where we use them to train the initial target classifier. Then,
we obtain a random subset from the unlabeled data pool Du to choose the top-k samples based on
the criterion of each method, where those samples will be annotated. We repeat the above cycle,
training a classifier from scratch from the continuously expanding labeled set.

Implementation details. For a fair comparison, we use the same backbone network ResNet-18
(He et al., 2016) except for iNaturalist2018, where we use ResNet-50 (He et al., 2016) pretrained
on ImageNet (Deng et al., 2009). All models are trained with SGD optimizer with momentum 0.9,
weight decay 5 · 10−4, and learning rate (LR) decay of 0.1. For CIFAR10/100 and SVHN, we train
the model for 200 epochs with an initial LR of 0.1 and decay at epoch 160. For FashionMNIST,
100 epochs with an initial LR of 0.1 and decay at epoch 80. For iNaturalist2018, 50 epochs with an
initial LR of 0.01 and decay at epoch 40. For CIFAR10/100, SVHN and FashionMNIST, we set the
batch size and the unlabeled subset size to be 128 and 104, respectively. For iNaturalist2018, which
is much larger than other datasets, we set the batch size and the unlabeled subset size to 256 and
106, respectively. To compare with other state-of-the-art baselines, we show the average accuracy
and 95% confidence interval with three trials.

3.2 RESULTS ON BALANCED DATASETS

We first evaluate our TiDAL against the state-of-the-art methods on various balanced datasets: CI-
FAR10, CIFAR100, and FashionMNIST. Figure 3 and 10 shows the performance improvement rel-
ative to that of Random sampling, which is the most naive baseline. For CIFAR10, the two variants
of TiDAL outperform all the baselines at all AL cycles. Similarly, TiDAL shows better performance
than the baselines except for LLoss, which shows better improvement at only around 6k than TiDAL
(M̄ ) on CIFAR100. CAL that uses training dynamics underperforms other baselines. It seems that
CAL is very sensitive for threshold according to dataset. Nonetheless, our TiDAL achieves better
final performance than all the baselines, including LLoss and CAL. For FashionMNIST, TiDAL also
shows a large performance gap compared to other baselines up to 7k labeled samples.

3.3 RESULTS ON IMBALANCED DATASETS

Synthetically imbalanced datasets. Similar to the above, Figure 4, 9, and 11 shows the perfor-
mance improvements on the synthetically imbalanced datasets with the two imbalance ratios, 10
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Figure 4: Averaged relative accuracy improvement curves and their 95% confidence interval
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on the IR of 100, consult the Appendix.
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Figure 5: Averaged relative accuracy improvement curves and its 95% confidence interval (shaded)
of AL methods over the number of labeled samples on real-world imbalanced datasets: iNatural-
ist2018 and SVHN. For SVHN, LLoss shows a substantial improvement of 20.02% ± 6.77% at the
initial phase (1k), but we clip the plot to show the performance afterward more clearly.

and 100. Except for the CIFAR10 with the imbalance ratio of 100, our methods show superb per-
formance across all the imbalanced settings. TiDAL performs especially well with a small variance
in imbalanced CIFAR100, where the number of classes is the largest. In imbalanced FashionM-
NIST, the performance quickly rises till 2.5k labeled images and then saturates. This implies that
FashionMNIST is easier than other datasets, and needs to focus more on the early steps of training
to compare with other models. TiDAL also shows overall better performance on FashionMNIST,
especially in early steps.

Real-world imbalanced datasets. Figure 5 and 10 shows evaluation results on real-world im-
balanced datasets. For iNaturalist2018, which is the large-scale long-tailed classification dataset,
TiDAL shows outstanding performance compared to other methods. For SVHN, TiDAL shows the
best improvements with low variance as the number of labeled images increases except for the initial
stage. LLoss shows outstanding performance only in the initial stage, where we presume that the
loss prediction module of LLoss acts as a regularizer during model optimization.

3.4 ANALYSIS ON TD PREDICTION MODULE

Effectiveness of TD prediction module. In order to see the effectiveness of using the predicted TD
p̃m, we conduct an ablation test that compares the performance between when using and not using
the TD prediction module m. Figure 6 show the results on balanced CIFAR10 and CIFAR100.
We observe that H̄(p̃m) and M̄(p̃m) using the predicted TD p̃m to estimate the data uncertainty
significantly outperform the methods H(p) and M(p) that use only the final predicted probabilities
p of the target classifier f , showing better performance in the whole training cycle. Even M(p)
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Figure 6: Ablation test results. H̄(p̃m) and M̄(p̃m) use
the predicted TD p̃m of the prediction module m. In con-
trast, H(p) and M(p) use the predicted probability of the
model snapshot p.
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shows temporary improvement in earlier steps on CIFAR100, H̄(p̃m) and M̄(p̃m) maintain stable
improvement, eventually winning over M(p). This indicates that the predicted TD p̃m of the TD
prediction module m produces better data uncertainty estimation than the predicted probability p of
the target classifier f .

Predictive performance of the TD prediction module. We verify whether the TD prediction
module m accurately predicts the actual TD p̄. Its prediction performance is crucial as we use
the predicted TD p̃m of the module m to quantify uncertainties of unlabeled data. Using the KL
divergence LKL, we analyze that the predicted TD p̃m converges to the actual TD p̄ at the data
selection phase. We calculate LKL(p̄

(T )||p̃(t)
m ) and compare it with LKL(p̄

(T )||p(t)) which is set
as a baseline computed with the actual TD p̄ and the predicted probabilities p (snapshot) of the
target classifier f . In this analysis, we use the balanced CIFAR10 where the sample-wise averaged
KL divergence scores are computed on the test set. Figure 7 shows that the final predicted TD
successfully approximates the actual TD, while the predicted probability is highly different from the
actual TD. We conclude that the TD prediction module m can produce the TD efficiently, leading
to performance improvement, and the predicted TD acts as a better approximation of the actual TD
than the predicted probability of a model snapshot captured at each epoch.

3.5 LIMITATION

We found two potential limitations of our TiDAL derived from the fact that it relies on the outputs
of the target classifier to compute the TD. First, TiDAL is designed only for classification tasks, and
thus it cannot be applied to AL targeting other tasks, such as regression (Cohn et al., 1994; Gong
et al., 2022). Second, TiDAL is highly influenced by the performance of the target classifier, espe-
cially when the target classifier wrongly classifies the hard negative samples with a high confidence
during model optimization. These samples can be treated as certain samples (i.e. will not be selected
for annotation) because they have low estimated uncertainties from the predicted TD, even though
the target classifier fails to predict the true label of the samples correctly. As a future work, we
will study extending our TiDAL in the task-agnostic ways with a safeguard combating the wrongly
classified samples.

4 RELATED WORK

4.1 ACTIVE LEARNING

AL methods target to construct a dataset with the most useful samples based on the assumption that
each sample has different importance in model training (Ren et al., 2021). Two mainstream AL
approaches exist for efficiently querying the unlabeled data: pool-based methods (Lewis & Gale,
1994; Yoo & Kweon, 2019; Sinha et al., 2019) use various ways to extract samples from an unlabeled
data pool effectively, and synthesis-based methods (Angluin, 1988; Zhu & Bento, 2017; Tran et al.,
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2019) generate informative samples for the model. Pool-based methods can be roughly divided
based on query strategies: uncertainty-based (Gal et al., 2017; Yoo & Kweon, 2019; Sinha et al.,
2019; Huang et al., 2021) and diversity-based (Sener & Savarese, 2018; Gissin & Shalev-Shwartz,
2019; Parvaneh et al., 2022) methods, where some methods use the hybrid of both (Ash et al., 2019;
Shui et al., 2020; Kim et al., 2021). Uncertainty-based methods focus on finding which samples
would be the most uncertain for the model, whereas diversity-based methods aim to construct a
subset of representative samples of the input distribution. Our proposed method, TiDAL, lies in
uncertainty-based methods. The significant difference between TiDAL and previous uncertainty-
based methods is that TiDAL estimates data uncertainty using TD that contains additional hints
generated during model training. In contrast, the previous methods leverage only static information
(e.g., loss (Yoo & Kweon, 2019; Huang et al., 2021) and predicted probabilities (Gal et al., 2017;
Sinha et al., 2019; Kim et al., 2021)) obtained by a model snapshot at the data selection phase.

4.2 TRAINING DYNAMICS

TD focuses on how deep neural networks are optimized under back-propagation-based stepwise
weight updates. Many studies try to understand how the gradient descent method can effectively
obtain the global minimum by analyzing the loss landscape of neural networks (Kawaguchi, 2016;
Li et al., 2018) or its loss trajectory (Arora et al., 2018). Some also import alternative models that
are more mathematically approachable to analyze, such as neural tangent kernels (Jacot et al., 2018),
deep Gaussian processes (Lee et al., 2018), or stochastic differential equations (Zhang et al., 2021b).
On the other hand, the phenomenological and practical viewpoint of TD also exists. Toneva et al.
(2018) coin the term Forgetting Dynamics to assert that unforgettable samples are often less helpful,
and Chang et al. (2017) show that the model could prefer samples that are often wrongly predicted
throughout model training. TD is also commonly used in noisy label literature to find potential
noisy labels as they tend to fit later on model training (Arazo et al., 2019; Pleiss et al., 2020) or
locate samples that can be relabeled correctly (Song et al., 2019). Furthermore, Zhou et al. (2020b)
calculate the Dynamic Instance Hardness score by monitoring losses of each sample or whether the
prediction gets flipped so that higher scored samples can be prioritized for curriculum learning, and
Jiang et al. (2018b) feed the loss history to the auxiliary neural network to mediate the curriculum for
training. Samuli & Timo (2017) also introduce temporal ensembling for semi-supervised learning,
where the model fits towards averaged probability outputs. Swayamdipta et al. (2020); Park &
Caragea (2022) devise Data Maps to inspect datasets with two TD measures; confidence and its
variability across epochs on the true class prediction. Zhang & Plank (2021) further extend the
Data Maps for AL, whether the target classifier was consistently correct or not during training.
The proposed method splits the labeled samples by applying a heuristic threshold on the level of
consistency to train a binary classifier that is trained to discern uncertain samples. Even though
the work, similar to ours, also utilizes TD, it mainly relies on empirical observations and heuristic
choices to divide the certain and uncertain samples. In this study, we link the concept of TD to
AL with both empirical and theoretical results to estimate the uncertainty of the unlabeled samples,
which is often neglected in previous TD studies.

5 CONCLUSION

We propose a novel active learning method, Training Dynamics for Active Learning (TiDAL), by
linking the concept of training dynamics to active learning. We provide motivating observations and
theoretical evidence for using training dynamics to estimate the uncertainty of unlabeled data. Since
tracking the training dynamics of large-scale unlabeled data is infeasible, TiDAL utilizes a training
dynamics prediction module to efficiently predict the training dynamics of the unlabeled data. Fur-
thermore, we provide two data uncertainty estimation strategies that quantify the data uncertainty by
using the predicted training dynamics of the prediction module. Extensive experiments on multiple
benchmark datasets demonstrate the effectiveness of our method, surpassing the existing state-of-
the-art active learning methods. We further analyze that our training dynamics prediction module
successfully predicts the TD of unlabeled data.

9
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REPRODUCIBILITY STATEMENT

We release the source code https://anonymous.4open.science/r/TiDAL-D1BE for
the main experiments, which all use public datasets that are widely available. We also describe
further experimental details in the Appendix. Finally, while we mention informal descriptions of the
theorems in the manuscript for ease of understanding, we provide thorough descriptions and proofs
in the Appendix.
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A DETAILS ON THE THEORETICAL EVIDENCE

A.1 PROOF OF THEOREM 1

We adopt the setup and assumptions from (Zhang et al., 2021b), with a slight modification of the
assumption that sample-level local elasticity is assumed to affect the training dynamics instead of
class-level local elasticity.

Assume the binary classification problem with two classes k = 1, 2 and class 1 consists of both
certain (easy) and uncertain (hard) samples where class 2 only consists of samples with same cer-
tainty (easiness). Let S1,e, S1,h and S2 denote the easy samples from class 1, hard samples from
class 1, and samples from class 2 respectively, which constitutes the partition of the whole set of
training samples S: S = S1,e ∪ S1,h ∪ S2. Let the corresponding sample sizes be n1,e = |S1,e|,
n1,h = |S1,h|, n2 = |S2| and n = |S| = n1,e + n1,h + n2, respectively.

At each iteration m, a training candidate sample Jm ∈ S is sampled uniformly from the whole
training set S with replacement, having class Lm. Training using this sample Jm via SGD affects
the training dynamics of other samples s ∈ S of class k as:

Xk
s (m) = Xk

s (m− 1) + hEs,Jm
XLm

Jm
(m− 1) +

√
hζks (m− 1), (9)

where X > 0 is the logit of the true label, h > 0 is the step size, ζ ∼ N (0, σ2) denotes the noise
term arises during training, and E ∈ R|S|×|S| refers to the sample-level local elasticity (He & Su,
2019) where each entry Es,s′ measures the strength of the local elasticity of s′ by s. For simplicity,
we assume this local elasticity does not depend on the time step m. Furthermore, assume that that
the sample-level local elasticity only depends on the set S1,e, S1,h and S2 in which each samples are
in.

Let

X̄1,e(t) =

∑
s∈S1,e

X1
s (t)

n1,e
, X̄1,h(t) =

∑
s∈S1,h

X1
s (t)

n1,h
, X̄2(t) =

∑
s∈S2

X2
s (t)

n2
(10)

be the averaged logits for certain samples in class 1, uncertain samples in class 2, and class 2 respec-
tively.

Regarding the strength of local elasticity between “class” of samples, for some constants αe, αh

and β, we set the value of Es,s′ to model sample-level local elasticity for (1) between easy and hard
samples in the class 1 and (2) between classes 1 and 2:

• Es,s′ = αe if (s, s′) ∈ (S1,e × S1,e) ∪ (S2 × S2),
• Es,s′ = αh if (s, s′) ∈ (S1,e × S1,h) ∪ (S1,h × S1,e) ∪ (S1,h × S1,h),
• Es,s′ = β otherwise (either s ∈ S2 or s′ ∈ S2 but not both).

We assume αe > αh > β > 0, meaning that the power exerted by sample-level local elasticity
between easy samples are stronger for the pair of easy samples than for the pair consists of one
or more hard sample. Intuitively, one can interpret the above assumption as easy samples being
clustered with each other (Jiang et al., 2018a; Papernot & McDaniel, 2018), hence having a stronger
influence on each other due to the local elasticity. On the contrary, hard samples are often distant
from other same-class samples. Their influence is often limited, as memorizing is easy for the neural
nets due to their large capacity (Zhang et al., 2021a). Finally, we ignore the influence of other class
samples in this proof for simplicity, as we are only considering the logits of the true label.
Theorem 1. (Formal) Under the settings and notations stated in previous paragraphs, convergence
speed of logit is faster for easy samples than hard samples on average:

dX̄1,e(t)

dt
>

dX̄1,h(t)

dt
. (11)

Proof. Fix a target sample s ∈ S, and execute the dynamics (9) r times since step m. Accumulated
change for feature X becomes

Xk
s (m+ r)−Xk

s (m) = h

r∑
q=1

Ek,Lm+qX
Lm+q

Jm+q
(m+ q − 1) + ϵs,k,r,h, (12)
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where ϵ =
√
h
∑r

q=1 ζ
k
s (m + q − 1) ∼ N (0, σ2rh) is the accumulated noise terms during r

updates. Regarding terms inside the summation, we can divide cases based on which sample Jr
(with corresponding class Lr) is actually selected as training candidate at iteration ν(= m+ q):

Ek,JνX
Lν

Jν
(ν − 1)

= 1Jν∈S1,e
Ek,Jν

X1
Jν
(ν − 1) + 1Jν∈S1,h

Ek,Jν
X1

Jν
(ν − 1) + 1Jν∈S2

Ek,Jν
X2

Jν
(ν − 1), (13)

hence the summand from (12) becomes (omitting time index for X for simplicity)

h

r∑
q=1

(
1Jm+q∈S1,e

Ek,Jm+q
X1

Jm+q
+ 1Jm+q∈S1,h

Ek,Jm+q
X1

Jm+q
+ 1Jm+q∈S2

Ek,Jm+q
X2

Jm+q

)
,

and for sufficiently large r we can approximate the summations as the sample-average dynamics:

h

r∑
q=1

(
1Jm+q∈S1,e

Ek,Jm+q
X1

Jm+q
+ 1Jm+q∈S1,h

Ek,Jm+q
X1

Jm+q
+ 1Jm+q∈S2

Ek,Jm+q
X2

Jm+q

)
≈ hr

(
P (J ∈ S1,e)

∑
s∈S1,e

Ek,sX
1
s

n1,e
+ P (J ∈ S1,h)

∑
s∈S1,h

Ek,sX
1
s

n1,h
+ P (J ∈ S2)

∑
s∈S2

Ek,sX
2
s

n2

)

≈ hr

(
n1,e

n

∑
s∈S1,e

Ek,sX
1
s

n1,e
+

n1,h

n

∑
s∈S1,h

Ek,sX
1
s

n1,h
+

n2

n

∑
s∈S2

Ek,sX
2
s

n2

)
(14)

As the components of E only depends on the subset sample relies, we can rewrite accumulated
dynamics of logits (12) for three cases separately, utilizing the notation of averaged logit (10):

X1,e
s (m+ r)−X1,e

s (m) = hr
(n1,e

n
αeX̄

1,e(m) +
n1,h

n
αhX̄

1,h(m) +
n2

n
βX̄2(m)

)
+ ϵs,k,r,h

X1,h
s (m+ r)−X1,h

s (m) = hr
(n1,e

n
αhX̄

1,e(m) +
n1,h

n
αhX̄

1,h(m) +
n2

n
βX̄2(m)

)
+ ϵs,k,r,h

X2
s (m+ r)−X2

s (m) = hr
(n1,e

n
βX̄1,e(m) +

n1,h

n
βX̄1,h(m) +

n2

n
αeX̄

2(m)
)
+ ϵs,k,r,h,

(15)

with a little bit of abbreviated notation for class 1: X1,e
s = X1

s for easy sample s, and similarly for
hard samples. The differential counterpart of above difference equation is

dX1,e
s (t) =

(n1,e

n
αeX̄

1,e(t) +
n1,h

n
αhX̄

1,h(t) +
n2

n
βX̄2(t)

)
dt+ σdW s(t)

dX1,h
s (t) =

(n1,e

n
αhX̄

1,e(t) +
n1,h

n
αhX̄

1,h(t) +
n2

n
βX̄2(t)

)
dt+ σdW s(t)

dX2
s (t) =

(n1,e

n
βX̄1,e(t) +

n1,h

n
βX̄1,h(t) +

n2

n
αeX̄

2(t)
)
dt+ σdW s(t), (16)

where W s(t) is standard Wiener process per sample. Averaging each differential equations with
respect to each set of samples and ignoring error terms yield a set of simultaneous deterministic
differential equations for averaged logits:

dX̄1,e(t) =
(n1,e

n
αeX̄

1,e(t) +
n1,h

n
αhX̄

1,h(t) +
n2

n
βX̄2(t)

)
dt

dX̄1,h(t) =
(n1,e

n
αhX̄

1,e(t) +
n1,h

n
αhX̄

1,h(t) +
n2

n
βX̄2(t)

)
dt

dX̄2(t) =
(n1,e

n
βX̄1,e(t) +

n1,h

n
βX̄1,h(t) +

n2

n
αeX̄

2(t)
)
dt, (17)

To compare the convergence speed of average logit between certain and uncertain samples in the
same class 1, observe that

dX̄1,e(t)

dt
− dX̄1,h(t)

dt
=

n1,e

n
(αe − αh)X̄

1,e(t) > 0. (18)
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With additional assumptions on the other class logits being the same, one can also conclude that
the estimated probability of the true label will increase steeply during training for the easy samples.
After increasing to some extent, the probability will saturate to one; hence the snapshot model
predictions will contain less useful information than monitoring its training dynamics. However,
future work on extending the above theorem is needed. Starting from the basic idea above that
sample proximity and its amount influence the training dynamics, one can further relax the above
assumptions, such as concentrating on the individuality of each sample or considering the changing
elasticities during training. We hope our work ignites the theoretical research on uncertainty from
the viewpoint of training dynamics.

A.2 PROOF OF THEOREM 2

We aim to show the effectiveness of the proposed estimators, entropy (Equation 1) and margin
(Equation 2), especially in the case where the probabilities converge. After training, it is commonly
observed that the probabilities of the true label of all the samples tend to converge to one, whereas
the speed of the convergence differs (Theorem 1). Hence, we show that the estimators can effectively
discern the differences during training.

For each time step t during training, we have a sequence of predicted probabilities p(t)(y = c|x)
corresponds to t, for each target class c = 1, 2, · · · , C. In our paper, we regard the area under the
predicted probability p̄(T )(y = c|x) of the sample x as the training dynamics (Equation 3), which
is indeed a well-known metric of area under the curve, except that it is normalized properly to have
value between 0 and 1. For convenience, let

s(x) =


s1(x)
s2(x)

...
sC(x)

 =


p̄(T )(y = 1|x)
p̄(T )(y = 2|x)

...
p̄(T )(y = C|x)


be the vector consisting the area under the prediction curve for each class up to final epoch T .
Observe that, by definition, the components in s(x) are nonnegative and sum to 1.

Theorem 2. (Formal) Assume that all target classes have the same area under the prediction curve
except for the true class y. Suppose two training samples (x1, y1), (x2, y2) ∈ D satisfies

a. p(T )(y1|x1)=p(T )(y2|x2) (same predicted probability at the end of training)

b. 1
2 < sy1

(x1) < sy2
(x2) (but different TD, in terms of the area under the curve)

Then, the following inequalities hold:

1. H(s(x1)) > H(s(x2));

2. M(s(x1)) < M(s(x2)).

Proof. By the assumption, for all target classes except the true class y, the area under the prediction
curve is given by

sc(x) =
1− sy(x)

C − 1
, (19)

and the corresponding entropy can be calculated as

H(s(x)) =
C∑

c=1

(−sc(x)log(sc(x)))

= −
{
sy(x)log(sy(x)) + (C − 1) · 1− sy(x)

C − 1
log
(
1− sy(x)

C − 1

)}
,

= −{sy(x)log(sy(x)) + (1− sy(x))log(1− sy(x))}+ (1− sy(x))log(C − 1),

= H2(sy(x)) + (1− sy(x))log(C − 1).

(20)

16



Under review as a conference paper at ICLR 2023

where we used the notation of binary entropy function H2(p) = −plog(p) − (1 − p)log(1 − p),
which is a decreasing function of p for p > 1

2 . Therefore

H(s(x1))−H(s(x2)) =
(
H2(sy1

(x1))−H2(sy2
(x2))

)
+
(
sy2

(x2)− sy1
(x1)

)
log(C − 1) > 0.

The first assumption also gives the simplified formulation for the margin:

M(s(x)) = sy(x)−
1− sy(x)

C − 1
=

C

C − 1
sy(x)−

1

C − 1
, (21)

which results in the second inequality

M(s(x1))−M(s(x2)) =
C

C − 1
(sy1

(x1)− sy2
(x2)) < 0 (22)

While the final predicted probabilities p(T )(y|x) of the training samples tend to converge to 1 for
the true class y, otherwise 0, their TD (in this case s(x) = p̄(T )) may be different depending on the
easiness of the samples. Thus, the degree of the easiness of the samples (i.e. uncertainty) could be
captured from TD p̄, whereas the predictions p from a model snapshot cannot.

B DETAILS ON THE MOTIVATING OBSERVATION
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Figure 8: Training label distribution and accuracy curves for the motivating experiment in §2.3.1.

§ 2.3.1 empirically show that using TD is effective in separating uncertain samples from certain sam-
ples. Before diving into the experimental details, we want to emphasize that it is difficult to control
the level of data difficulty (or uncertainty). First and foremost, human perception of data difficulty
will be highly subjective and potentially different from its model counterpart. This limitation hin-
ders the quantitative analysis, and thus some previous works had to rely on qualitative substitutes or
analyze mislabeled samples which are impossible to control its difficulty (Pleiss et al., 2020; North-
cutt et al., 2021; Toneva et al., 2018). Also, even if we could obtain sample-wise difficulty, it is often
nontrivial to analyze the overall trend during training due to sheer data size.

To avoid the two challenges above, we borrow the settings from studies on long-tail visual recog-
nition (Liu et al., 2019; Bengar et al., 2022). Cao et al. (2019) show that generalization error is
bounded by the inverse square root of the dataset size. Further, many long-tail literature (Liu et al.,
2019; Zhou et al., 2020a; Hong et al., 2021) have also empirically shown that it is hard for the deep
neural network-based model to train with fewer samples, showing lower accuracy. Hence, we con-
sider the major and minor classes as certain and uncertain classes, as the binned classification error
is often used as the definition of confidence (Guo et al., 2017).

We train ResNet-18 (He et al., 2016) on the CIFAR10 dataset (Krizhevsky et al., 2014; Cao et al.,
2019) with an imbalance ratio of 10 for 30 epochs using the Adam optimizer (Kingma & Ba, 2015).
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Figure 9: Averaged relative accuracy improvement curves and their 95% confidence interval
(shaded) of AL methods over the number of labeled samples on synthetically imbalanced datasets.
We use the imbalance ratio (IR) of 100 on CIFAR10, CIFAR100, and FashionMNIST.

Figure 8a shows the label distribution of the training dataset. Similar to Bengar et al. (2022), we
choose classes 0 4 as the major class and the rest as the minor class, randomly removing 90% of the
training samples for the minor class. We reduce the inter-class differences of CIFAR10 by merging
five classes into one, and demonstrate both the overall distribution and samplewise scores in Figure
2. We conclude that TD successfully captures data uncertainties, where its characteristics are more
helpful in separating uncertain samples from certain samples than the information obtained from a
model snapshot. Also, we empirically reaffirm that the major classes being more advantageous than
minor classes in terms of accuracy during model training (Figure 8b, 8c).

Table 1: The details of the training set of datasets.

Dataset # of classes # of samples Imbalance ratio

CIFAR10 10 50k {1, 10, 100}
CIFAR100 100 50k {1, 10, 100}
FashionMNIST 10 60k {1, 10, 100}
SVHN 10 73k 2.98
iNaturalist2018 8k 437k 500

C ADDITIONAL EXPERIMENTS

We conduct additional experiments to further demonstrate the effectiveness of our method, TiDAL.
We provide the detailed implementations in https://anonymous.4open.science/r/
TiDAL-D1BE and the dataset statistics in Table 1. We also supply dataset statistics in Table 1.

C.1 ADDITIONAL RESULTS ON IMBALANCED DATASETS

As previously mentioned in the manuscript, we also supply the experimental results on the imbalance
ratio 100. Except for CIFAR10, our methods show superiority over other state-of-the-art methods.

C.2 ADDITIONAL RESULTS ON ABSOLUTE ACCURACY

We also provide the absolute accuracy plots for the completeness of the evaluation. We can observe
the superiority of our method further on many of the settings.

C.3 ADDITIONAL BASELINES

Figure 12 compares our TiDAL with VAAL Sinha et al. (2019) and TA-VAAL Kim et al. (2021).
Except for the case of CIFAR10 with the imbalance ratio of 100, both TiDAL strategies excel in
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Figure 10: Averaged absolute accuracy improvement curves and its 95% confidence interval
(shaded) of AL methods over the number of labeled samples on balanced and imbalanced datasets.

performance. Note that both VAAL and TA-VAAL use a semi-supervised approach to train the
selection module and further leverage the unlabeled data for training.

C.4 VARIANTS OF TRAINING DYNAMICS-AWARE MARGIN

We introduced two TD-aware strategies: entropy H̄ and margin M̄ , in §2.2. We further demonstrate
various uncertainty estimation strategies as follows:

M̄0(p̃m) = p̃m(ỹ|x)−max
c̸=ỹ

p̃m(c|x), (23)

P̄ (p̃m) = p̃m(ŷ|x), (24)

P̄0(p̃m) = p̃m(ỹ|x), (25)

where ỹ = argmaxc p̃m(c|x) is the class of the maximum module output.

M̂0 is the naive variant of the margin M̂ where it does not utilize the predicted label ŷ of the target
classifier f . It calculates the margin between the biggest and the second biggest outputs of the
module m. P̄ uses the module output on the predicted label ŷ from the target classifier f and P̄0 is
the naive variant of P̄ that uses the maximum output of the module m.

Figure 13 shows the average accuracy of three runs for the entropy H̄ and margin M̄ , where we show
the accuracy of a single run for other strategies. We can observe that the naive variant of the margin
M̄0 generally underperforms compared to the margin M̄ except CIFAR100 with the imbalance ratio
of 100. There seems to be no clear dominance between P̄ and its naive variant P̄0. However, both
P̄ and P̄0 perform moderately well on both CIFAR100 and FashionMNIST despite its simplicity.
Future studies may concentrate on broader query strategies based on various training dynamics and
its module predictions.
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Figure 11: Averaged absolute accuracy improvement curves and their 95% confidence interval
(shaded) of AL methods over the number of labeled samples on synthetically imbalanced datasets.
We use the imbalance ratio (IR) of 10 and 100 on CIFAR10, CIFAR100, and FashionMNIST.
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Figure 12: Averaged relative accuracy improvement curves and their 95% confidence interval
(shaded) of AL methods over the number of labeled samples on balanced and synthetically im-
balanced datasets. We use the imbalance ratio (IR) of 10 and 100 on CIFAR10, CIFAR100, and
FashionMNIST to synthetically imbalance the dataset.
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Figure 13: Averaged relative accuracy improvement curves of different uncertainty estimation strate-
gies over the number of labeled samples on balanced and synthetically imbalanced datasets. We use
the imbalance ratio (IR) of 10 and 100 on CIFAR10, CIFAR100, and FashionMNIST to syntheti-
cally imbalance the dataset.
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