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Abstract
Robotic manipulation systems operating in di-
verse, dynamic environments must exhibit three
critical abilities: multitask interaction, general-
ization to unseen scenarios, and spatial mem-
ory. While significant progress has been made
in robotic manipulation, existing approaches of-
ten fall short in generalization to complex en-
vironmental variations and addressing memory-
dependent tasks. To bridge this gap, we intro-
duce SAM2Act, a multi-view robotic transformer-
based policy that leverages multi-resolution up-
sampling with visual representations from large-
scale foundation model. SAM2Act achieves a
state-of-the-art average success rate of 86.8%
across 18 tasks in the RLBench benchmark,
and demonstrates robust generalization on The
Colosseum benchmark, with only a 4.3% per-
formance gap under diverse environmental per-
turbations. Building on this foundation, we pro-
pose SAM2Act+, a memory-based architecture
inspired by SAM2, which incorporates a memory
bank, an encoder, and an attention mechanism to
enhance spatial memory. To address the need for
evaluating memory-dependent tasks, we introduce
MemoryBench, a novel benchmark designed to
assess spatial memory and action recall in robotic
manipulation. SAM2Act+ achieves an average
success rate of 94.3% on memory-based tasks
in MemoryBench, significantly outperforming
existing approaches and pushing the boundaries
of memory-based robotic systems. Project page:
sam2act.github.io.
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1. Introduction
The world in which we live is diverse and constantly chang-
ing, encompassing a wide variety of objects, scenes, and en-
vironmental conditions. Consider the seemingly simple task
of following a recipe when cooking: we can seamlessly per-
form the action of picking it up and sprinkling it into the pan,
recognize salt even if it comes in different types of container,
and remember whether we have already added salt. Humans
excel in such environments because they can interact with
their surroundings to achieve specific goals, generalize to
unseen scenarios, and retain knowledge from past experi-
ences (Smith & Gasser, 2005). These abilities—multitask
interaction, generalization, and memory—serve as guiding
principles for developing robotic systems capable of operat-
ing in similarly complex environments.

Significant progress has been made in robotic manipulation
through prior work. Early methods, such as the Transporter
Network (Zeng et al., 2021) and CLIPort (Shridhar et al.,
2022), demonstrated effective 2D action-centric manipu-
lation but were limited in their ability to handle spatially
complex tasks. More recent approaches, such as PerAct
(Shridhar et al., 2023) and RVT (Goyal et al., 2023), have
pushed toward 3D-based manipulation. PerAct employs a
multitask transformer that interprets language commands
and predicts keyframe poses, achieving strong results across
a variety of tasks. RVT builds on this foundation by adopt-
ing a 2.5D representation, improving training efficiency and
inference speed. Its successor, RVT-2, further enhances per-
formance with a coarse-to-fine strategy, increasing precision
for high-accuracy tasks. Despite these advances, important
challenges remain, including improving multitask perfor-
mance, enhancing generalization to novel environment con-
figurations, and integrating memory mechanisms for tasks
requiring episodic recall.

We introduce SAM2Act, a multi-view robotics transformer-
based policy that enhances feature representation by inte-
grating multi-resolution upsampling with visual embeddings
from large-scale foundation models. Built on the RVT-2
multi-view transformer, SAM2Act achieves strong multitask
success and generalization. Building on this foundation, we
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Figure 1. SAM2Act is a multi-view, language-conditioned behavior cloning policy trained with fewer demonstrations. Given a language
instruction, it can execute high-precision tasks, such as turning the tiny knob on the lamp. It also generalizes to various environmental
variations, such as changes in lighting conditions. Through further training with our proposed memory architecture, it now evolves into
SAM2Act+, which is now capable of solving tasks that require implicit spatial memory—such as remembering where the robot previously
stored the pliers, as depicted in the above figure.

introduce SAM2Act+, which incorporates a memory-based
architecture inspired by SAM2’s approach. Using a memory
bank, an encoder, and an attention mechanism, SAM2Act+
enables episodic recall to solve spatial memory-dependent
manipulation tasks. We evaluate SAM2Act and SAM2Act+
using MemoryBench, a new benchmark suite that tests
policies’ spatial memory capabilities and the ability to re-
tain and recall past actions. SAM2Act+ achieves an average
success rate of 94.3% across all tasks on MemoryBench,
with an average accuracy of 94.3%, outperforming next high-
est baseline by a huge margin of 39.3%. Furthermore, we
assess the generalization capabilities of SAM2Act on The
Colosseum (Pumacay et al., 2024), a benchmark designed
to test robotic manipulation under various environmental
perturbations. SAM2Act demonstrates robust performance
on The Colosseum with an average decrease of 4.3%
across all perturbations, highlighting its ability to generalize
effectively in diverse and challenging scenarios. Lastly, our
approach outperforms the baseline methods in real-world
evaluations while exhibiting comparable generalization and
spatial memory capabilities.

In summary, this work makes three key contributions. First,
we introduce a novel model formulation that leverages
visual foundation models to solve high-precision, memory-
dependent manipulation tasks. Second, we propose
MemoryBench, a evaluation benchmark for assessing spa-
tial memory in behavior cloning models. Finally, we
present empirical results and insights on the model’s per-
formance across both simulation and real-world tasks.

2. Related Work
2.1. 3D-based Robotic Transformer for Manipulation

2D-based methods (Zhao et al., 2023; Chi et al., 2023; Zeng
et al., 2021; Brohan et al., 2022; Shridhar et al., 2022) are
effective for simple pick-and-place tasks due to fast train-
ing, low hardware requirements, and minimal computational

cost. However, they depend on pretrained image encoders
and fail in tasks requiring high precision, robust spatial inter-
action, or resilience to environmental and camera variations
(Pumacay et al., 2024). Recent work addresses these limi-
tations with 3D perception. Methods like PolarNet (Chen
et al., 2023), M2T2 (Yuan et al., 2023), and Manipulate-
Anything (Duan et al., 2024) reconstruct point clouds, while
C2F-ARM (James & Abbeel, 2022) and PerAct (Shridhar
et al., 2023) use voxel-based 3D representations. Act3D
(Gervet et al., 2023) and ChainedDiffuser (Xian et al., 2023)
adopt multi-scale 3D features. RVT (Goyal et al., 2023)
introduces 2.5D multi-view images for faster training, re-
fined by RVT-2 (Goyal et al., 2024) with a coarse-to-fine
architecture for improved precision. Our work, SAM2Act,
combines RVT-2’s spatial reasoning with enhanced virtual
images from the SAM2 visual encoder, achieving high pre-
cision and generalization across diverse tasks.

2.2. Visual Representations for Robot Learning

Robotics research heavily relies on visual representations
from computer vision to process high-dimensional inputs
and improve policy learning. Visual representations are
integrated into robot learning through pre-training (Majum-
dar et al., 2023; Ma et al., 2022; Nair et al., 2022), co-
training (Laskin et al., 2020a; Yarats et al., 2021; Laskin
et al., 2020b; Shang et al., 2024), or frozen encoders (Shah
& Kumar, 2021; Wang et al., 2022a; Zhang et al., 2024a),
all of which effectively support policy training. These repre-
sentations also enhance invariance, equivariance, and out-
of-distribution generalization (Wang et al., 2022b; Pumacay
et al., 2024; Dasari et al., 2023). SAM-E (Zhang et al.,
2024a) demonstrates the use of a pre-trained SAM en-
coder for robotic manipulation by leveraging image em-
beddings for policy learning. Expanding on this, our ap-
proach employs the SAM2 visual encoder to generate im-
age embeddings for robotic transformers and utilizes its
multi-resolution features to improve convex upsampling for
next-action prediction.
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2.3. Memory in Robotics

Memory is a fundamental component of human cognition,
and equipping generalist robotic agents with episodic and se-
mantic memory is crucial for enabling them to perform com-
plex tasks effectively (Jockel et al., 2008). Early research on
memory in robotics primarily addressed navigation tasks, re-
lying on semantic maps that were often constrained in scope
(Henry et al., 2012; Bowman et al., 2017; Chaplot et al.,
2020). Other work explicitly model the memory and its rep-
resentation for a robot cognitive architecture (Peller-Konrad
et al., 2023). Recent advancements leverage representations
derived from vision-language models (VLMs) and Large
Vision Models (LVMs), utilizing voxel maps or neural fea-
ture fields to encode, store, and retrieve information (Huang
et al., 2024; 2023; Duan et al., 2024; Liu et al., 2024). Alter-
native methods represent semantic memory for manipulation
tasks using Gaussian splats to encode spatial information
(Kerbl et al., 2023; Shorinwa et al., 2024). In contrast, our
approach draws inspiration from the framework of Partially
Observable Markov Decision Processes (POMDPs) (Lauri
et al., 2022), incorporating memory directly into the training
process. By integrating spatial memory from past actions
into the agent’s belief state, we enhance the robustness and
adaptability of learned policies.

3. MemoryBench: A Memory Benchmark for
Robotic Manipulation

We introduce MemoryBench, a benchmark designed to
systematically evaluate the spatial memory capabilities of
robotic manipulation policies. In Section 3.1, we begin by
outlining the logic and rules behind task design. We will
then describe the tasks we have developed in Section 3.2.

3.1. Task Design

Unlike standard RLBench tasks (James et al., 2020), many
of which involve long-horizon scenarios, our tasks are
specifically designed to require spatial memory. Without
such memory, the agent would be forced to rely on random
actions. To create these tasks, we intentionally violate the
Markov assumption, which states that in a Markov Decision
Process (MDP), the next observation depends solely on the
current observation and action:

P
(
ot+1 | o1, a1, . . . , ot, at

)
= P

(
ot+1 | ot, at

)
.

This assumption implies that knowing only ot and at is
sufficient to predict ot+1. However, in our tasks, we de-
sign scenarios where two distinct action histories lead to
the same observation ot, but require different subsequent
actions. This forces the agent to recall which action history
led to ot to perform the correct next action. Furthermore,
we standardized the language instructions to prevent unin-
tentional leakage of spatial information that could aid the

model in memory-based tasks. These principles guided the
development of our spatial memory-based tasks.

3.2. Spatial Memory-based Tasks

MemoryBench extends the RLBench simulator to pro-
vide scripted demonstrations for three spatial mem-
ory tasks: reopen drawer, put block back, and
rearrange block. Each task is designed to evaluate
a specific aspect of spatial memory and adheres to the prin-
ciples outlined in Section 3.1. To introduce complexity,
these tasks include two to four variations and additional
steps—such as pressing a button mid-sequence—that dis-
rupt the Markov property. This forces the agent to rely on
memory rather than solely on immediate observations.

The reopen drawer task evaluates the agent’s ability
to recall 3D spatial information along the z-axis. Initially,
one of three drawers (top, middle, or bottom) is open. The
agent must close the open drawer, press a button on the
table, and then reopen the same drawer. After the button
is pressed, all drawers are closed, and the scene becomes
visually indistinguishable, requiring the agent to use mem-
ory to identify the correct drawer. This task tests the agent’s
ability to recall spatial states over a temporal sequence.
The put block back task tests the agent’s ability to re-
member 2D spatial information on the x-y plane. Four red
patches are placed on a table, with a block initially posi-
tioned on one of them. The agent should move the block to
the center of the patches, press a button, and return the block
to its original position. The agent must rely on its memory
of the block’s initial location to succeed, demonstrating its
capability to encode and retrieve 2D spatial information.

The rearrange block task evaluates the agent’s ability
to perform backward reasoning by recalling and reversing
prior actions. Initially, one block is placed on one of two
red patches, while the other patch remains empty. A second
block is positioned at the center of both patches. The agent
must move the second block to the empty patch, press a but-
ton, and then relocate the first block off its patch. Success-
fully completing this task requires the agent to determine
which block to move without having interacted with the
correct one in previous actions, thereby testing its capacity
for backward spatial memory reasoning. These tasks collec-
tively evaluate both forward and backward spatial reasoning
across 3D (z-axis) and 2D (x-y plane) spaces. By intro-
ducing non-Markovian elements, they emphasize the need
for memory representations to solve complex sequential
decision-making problems (more details in Appendix G).

4. Method
Our method, SAM2Act, enables precise 3D manipulation
with strong generalization across environmental and object-
level variations. Building upon the RVT-2 framework
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Figure 2. Simulation and Real Tasks. We demonstrate the effectiveness of SAM2Act+ in solving memory-based tasks by evaluating it
against baselines on the three benchmark memory tasks (shown at the top). Additionally, we validate our approach using a Franka Panda
robot on four real-world tasks (shown at the bottom), including tests under out-of-distribution perturbations.

(Goyal et al., 2024), SAM2Act introduces key architec-
tural innovations that enhance visual feature representation
and task-specific reasoning. The architecture reconstructs
a point cloud of the scene, renders it from virtual cameras
at orthogonal views, and employs a two-stage multi-view
transformer (coarse-to-fine) to predict action heatmaps. The
coarse branch generates zoom-in heatmaps to localize re-
gions of interest, while the fine branch refines these into pre-
cise action heatmaps. SAM2Act leverages the pre-trained
SAM2 encoder (Ravi et al., 2024) to extract multi-resolution
image embeddings, which are further refined through the
multi-resolution upsampling technique to predict accurate
translation heatmaps with minimal information loss. To
address tasks requiring spatial memory, SAM2Act+ extends
the SAM2Act architecture by incorporating memory-based
components. These include Memory Bank, Memory En-
coder, and Memory Attention, enabling the model to encode
historical actions and condition current observations. This
memory-based policy enhances the agent’s ability to pre-
dict actions based on past contextual information, signifi-
cantly improving performance in tasks that require sequen-
tial decision-making.

In the following sections, we detail the SAM2Act architec-
ture (Section 4.1), including its multi-resolution upsampling
mechanism (Figure 4). We also present the SAM2Act+ ex-
tension, which integrates memory-based components for
solving spatial memory tasks (Section 4.2).

4.1. SAM2Act: Multi-Resolution Upsampling for
Enhanced Visual Feature Representation

A distinctive feature of SAM2Act is the incorporation of
the SAM2Act Module into the manipulation backbone for
training, as illustrated in Figure 4. The coarse and fine
SAM2Act Modules share the same architecture, with the
fine branch generating additional features to predict actions
beyond translation, while the coarse branch focuses exclu-
sively on translation. Point-cloud representations are re-
constructed from raw image inputs, and virtual images are
generated from three viewpoints using virtual cameras. In-
stead of directly inputting these images into the multi-view
transformer, their RGB channels are duplicated and pro-
cessed by the SAM2 (Ravi et al., 2024) image encoder,
which produces object-centric multi-resolution embeddings.
These embeddings, generated at three resolution levels, are
combined with virtual images containing RGB, depth, 3D
translation coordinates, and language instructions before
being fed into the multi-view transformer. Details of how
we adapt the MVT can be found in Appendix A.

To adapt the SAM2 image encoder to our domain, we fine-
tune it using Low-Rank Adaptation (LoRA) (Hu et al.,
2021) with a default rank of 16, which enables domain
adaptation with minimal computational cost while main-
taining model efficiency. Additionally, to fully leverage
the multi-resolution embeddings produced by the SAM2
image encoder, we introduce a multi-resolution upsampling
method. This method uses the embeddings as auxiliary

4



SAM2Act: Integrating Visual Foundation Model with A Memory Architecture for Robotic Manipulation

Figure 3. Overview of the SAM2Act (top) and SAM2Act+ (bottom) architectures. The SAM2Act architecture leverages the SAM2
image encoder to generate prompt-conditioned, multi-resolution embeddings, fine-tuned with LoRA for efficient adaptation to manipulation
tasks. A multi-view transformer aligns spatial coordinates with language instructions, while a cascaded multi-resolution upsampling
mechanism refines feature maps and generates accurate translation heatmaps. SAM2Act+ extends this architecture by incorporating
memory-based components, including the Memory Encoder, Memory Attention, and Memory Bank, into the coarse branch. These
components enable memory-driven reasoning by processing historical heatmaps and integrating prior observations, allowing the agent
to predict actions based on stored contextual information. Observations are reconstructed into point clouds, rendered into three virtual
images, and lifted into 3D translation points, enabling precise spatial reasoning across both architectures.

Figure 4. SAM2Act Module and multi-resolution upsampling mechanism. A cascade of three convex upsamplers processes feature
maps at increasing resolutions, integrating multi-resolution embeddings from the SAM2 image encoder through elementwise addition
and layer normalization. The upsamplers progressively refine features, doubling spatial dimensions at each stage, to generate accurate
translation heatmaps while capturing fine-grained spatial details critical for manipulation tasks.

inputs to enhance the generation of translation heatmaps,
thereby improving spatial precision and overall system per-
formance. The multi-resolution upsampling mechanism,
also detailed in Figure 4, leverages cascaded convex up-
samplers to progressively refine feature maps across resolu-
tions. Let X l ∈ RB×Cl×Hl×W l

denote the feature maps at
stage l and El ∈ RB×Cl×Hl×W l

the corresponding multi-
resolution embedding from SAM2. Also let U(·) denote
the upsampling operator that doubles the spatial dimensions.
The feature maps are updated at each stage as follows:

X l+1 = LayerNorm
(
U(X l) ⊕ El

)
,

where ⊕ represents element-wise addition. The upsampling

operator U is defined as:

U : RB×Cl×Hl×W l

→ RB×(Cl/2)×(2Hl)×(2W l).

At each stage, the output of the upsampler is combined
with the corresponding multi-resolution embedding El from
the SAM2 encoder, ensuring alignment between the multi-
resolution features and the decoder’s spatial refinement pro-
cess. A layer normalization step follows each addition to sta-
bilize training and maintain feature coherence. This results
in direct integration of the embeddings into the translation
heatmap generation process. The cascading structure refines
features across multiple resolutions, capturing fine-grained
spatial details critical for manipulation tasks.
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Algorithm 1 Forward Pass of SAM2Act+ Module
Initialize: Number of steps N , number of views V ,
empty memory bank Q with V separate FIFO queues,
size of memory bank M , input X
for i = 1 to N do

for j = 1 to V do
Get embeddings Eraw from MVT Tmv(Xj)
Retrieve past memoriesMold from Q[j]
Get memory-conditioned embeddings Emem from
Memory Attention Tmem(Eraw,Mold)
Predict translation heatmap H with Upsampling
U(Emem)
Encode new memoryMnew using Memory Encoder
Emem(H, Eraw)
Store new memory Q[j]← Q[j] ∪ {Mnew}
if |Q[j]| = M then
Q[j]← Q[j]2:n

end if
end for

end for

4.2. SAM2Act+: Action Memory Architecture for
Improved Spatial Awareness in Past Observations

To extend the SAM2Act architecture (Section 4.1) with
memory-based capabilities inspired by SAM2, we intro-
duce SAM2Act+, a task-specific variant designed for solv-
ing memory-based tasks. SAM2Act+ integrates the three
core memory components from SAM2—Memory Atten-
tion, Memory Encoder, and Memory Bank—into the coarse
branch of SAM2Act. Originally developed for object track-
ing in SAM2, these components are adapted to align with
the needs of SAM2Act+, enabling the agent to retain prior
actions and observations for sequential decision-making.
In SAM2, the Memory Encoder processes predicted ob-
ject masks, while the Memory Attention module fuses im-
age embeddings with positional information from previous
frames. SAM2Act+ adopts a similar structure: the predicted
heatmaps, which serve as binary indicators of spatial posi-
tions in the image, function analogously to object masks.
This conceptual alignment ensures a seamless integration of
memory mechanisms, allowing the agent to leverage stored
information to predict subsequent actions based on histori-
cal context. A detailed description of the Memory Attention
and Memory Encoder modules can be found in Appendix A.

Architecture. The SAM2Act+ architecture is illustrated in
Figure 3. After pretraining SAM2Act in Stage 1, we freeze
the SAM2 image encoder and the multi-view transformer in
the coarse branch, as these components effectively generate
robust embeddings for multi-view images in manipulation
tasks. We also freeze the entire fine branch, given its proven
ability to predict fine-grained actions accurately. The reason
why we only fine-tune the coarse branch is because it fo-

cuses on generating heatmaps that provide richer contextual
information for recalling past actions. The fine branch, in
contrast, primarily emphasizes small objects or localized
regions, which typically contain less information relevant to
memory-based tasks.

Training. To train SAM2Act+, we fine-tune the coarse
branch by integrating the three memory components (and
train them from scratch) with the multi-resolution up-
sampling module. During fine-tuning, consecutive ac-
tion keyframes are sampled as input, training the multi-
resolution upsampler to predict new translations conditioned
on memory. The memory components function similarly to
their implementation in SAM2 for object tracking, with one
key distinction: the input to the Memory Encoder. Instead
of using image embeddings from the SAM2 image encoder,
we input feature embeddings generated by the multi-view
transformer (not conditioned by memory). This adapta-
tion ensures that memory encoding incorporates multi-view
information while maintaining independence in handling
stored representations. Virtual images are treated indepen-
dently during memory encoding and attention, with each
view’s memory encoded separately. Feature embeddings
from each view are attended to using their corresponding
stored memories, preserving spatial and contextual align-
ment while leveraging fused multi-view information. This
structured approach prevents cross-view interference and
enhances the model’s ability to reason over sequential tasks.
The memory-based forward pass for SAM2Act+ is outlined
in Algorithm 1. By incorporating the memory mechanism,
SAM2Act+ enhances performance in scenarios requiring
long-term reasoning, enabling the agent to make informed
decisions based on historical context.

5. Experiments
We study SAM2Act and SAM2Act+ in both simulated and
real-world environments. Specifically, we are interested in
answering the following questions:

§ 5.2 How does SAM2Act compare with state-of-the-art 3D
manipulation policies?

§ 5.3 Can SAM2Act generalize across object and environ-
mental perturbations?

§ 5.4 Can SAM2Act+ solve spatial memory-based tasks that
other baselines cannot?

§ 5.5 How well does SAM2Act and SAM2Act+ perform on
real-world tasks?

5.1. Experimental Setup

We benchmark SAM2Act in both simulated and real-world
environments. The simulated environments serve as a con-
trolled platform to ensure reproducible and fair comparisons.
The real-world experiments demonstrate the applicability

6



SAM2Act: Integrating Visual Foundation Model with A Memory Architecture for Robotic Manipulation

Table 1. Multi-Task Performance on RLBench. We evaluate 18 RLBench tasks (James et al., 2020), reporting success rates across all
tasks among 3D keyframe-based behavior cloning (BC) policies. We report stats of 4 evaluations for SAM2Act. Our method, SAM2Act,
outperforms all baselines, achieving a significant performance margin of 5.8% over RVT-2 (Goyal et al., 2024), the prior state-of-the-art 3D
keyframe-based BC policy. Against all existing approaches, SAM2Act remains the state-of-the-art. See full comparisons in Appendix C.

Method Avg. Success ↑ Avg. Rank ↓ Close Jar Drag Stick Insert Peg Meat off Grill Open Drawer Place Cups Place Wine Push Buttons

PerAct (Shridhar et al., 2023) 49.4 ± 4.3 4.6 55.2 ± 4.7 89.6 ± 4.1 5.6 ± 4.1 70.4 ± 2.0 88.0 ± 5.7 2.4 ± 3.2 44.8 ± 7.8 92.8 ± 3.0
RVT (Goyal et al., 2023) 62.9 ± 3.7 3.6 52.0 ± 2.5 99.2 ± 1.6 11.2 ± 3.0 88.0 ± 2.5 71.2 ± 6.9 4.0 ± 2.5 91.0 ± 5.2 100.0 ± 0.0
RVT-2 (Goyal et al., 2024) 81.4 ± 3.1 1.9 100.0 ± 0.0 99.0 ± 1.7 40.0 ± 0.0 99.0 ± 1.7 74.0 ± 11.8 38.0 ± 4.5 95.0 ± 3.3 100.0 ± 0.0
SAM-E (Zhang et al., 2024a) 70.6 ± 0.7 2.6 82.4 ± 3.6 100.0 ± 0.0 18.4 ± 4.6 95.2 ± 3.3 95.2 ± 5.2 0.0 ± 0.0 94.4 ± 4.6 100.0 ± 0.0
SAM2Act (Ours) 86.8 ± 0.5 1.8 99.0 ± 2.0 99.0 ± 2.0 84.0 ± 5.7 98.0 ± 2.3 83.0 ± 6.0 47.0 ± 6.0 93.0 ± 3.8 100.0 ± 0.0

Method Put in Cupboard Put in Drawer Put in Safe Screw Bulb Slide Block Sort Shape Stack Blocks Stack Cups Sweep to Dustpan Turn Tap

PerAct (Shridhar et al., 2023) 28.0 ± 4.4 51.2 ± 4.7 84.0 ± 3.6 17.6 ± 2.0 74.0 ± 13.0 16.8 ± 4.7 26.4 ± 3.2 2.4 ± 2.0 52.0 ± 0.0 88.0 ± 4.4
RVT (Goyal et al., 2023) 49.6 ± 3.2 88.0 ± 5.7 91.2 ± 3.0 48.0 ± 5.7 81.6 ± 5.4 36.0 ± 2.5 28.8 ± 3.9 26.4 ± 8.2 72.0 ± 0.0 93.6 ± 4.1
RVT-2 (Goyal et al., 2024) 66.0 ± 4.5 96.0 ± 0.0 96.0 ± 2.8 88.0 ± 4.9 92.0 ± 2.8 35.0 ± 7.1 80.0 ± 2.8 69.0 ± 5.9 100.0 ± 0.0 99.0 ± 1.7
SAM-E (Zhang et al., 2024a) 64.0 ± 2.8 92.0 ± 5.7 95.2 ± 3.3 78.4 ± 3.6 95.2± 1.8 34.4 ± 6.1 26.4 ± 4.6 0.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
SAM2Act (Ours) 75.0 ± 3.8 99.0 ± 2.0 98.0 ± 2.3 89.0 ± 2.0 86.0 ± 4.0 64.0 ± 4.6 76.0 ± 8.6 78.0 ± 4.0 99.0 ± 2.0 96.0 ± 5.7

of the method to real-world settings. Section 5.1 details our
experimental setup and outlines the evaluation methodology.
Training details can be found in Appendix B.

Simulation Setup. All simulated experiments were con-
ducted in the CoppeliaSim environment via PyRep, using a
7-DoF Franka Emika Panda robot in a tabletop setting. Ob-
servations were captured from five RGB-D cameras—front,
left shoulder, right shoulder, overhead and wrist—each at
128 px × 128 px. The robot receives a keyframe specify-
ing translation and quaternion orientation and utilizes an
OMPL-based motion planner to move to the target pose.

Real-robot Setup. We validate SAM2Act in real-world
scenarios using a Franka Emika Panda robot with a Robotiq
2F-85 gripper and a exocentric Intel RealSense D455 depth
sensor (more in Appendix I). We study four manipulation
tasks, aligning three with RVT-2 for comparison and in-
troducing a new memory-based task. We use the software
stack as in (Grotz et al., 2024). For each task, we collect
10–15 demonstrations via kinesthetic teaching and scripted
execution with scene and object variations. As in Figure 2,
we evaluate SAM2Act against RVT-2 for tasks (a)–(c) and
SAM2Act+ for memory task (d). Each task undergoes 10
in-distribution and 10 out-of-distribution trials, including
environmental perturbations, measuring total success.

18 RLBench & MemoryBench Tasks. To evaluate the
general performance of SAM2Act and the memory capabil-
ities of SAM2Act+, we conducted simulation experiments
on two benchmarks: a subset of 18 tasks from RLBench
and MemoryBench. RLBench is a standard multi-task
manipulation benchmark, from which we selected 18 tasks
well-studied in prior work. MemoryBench is a curated set
of three tabletop manipulation tasks in CoppeliaSim that
require the trained policy to have both semantic and spatial
memory of past scenes and actions. In both benchmarks,
each task is defined by a language instruction with 2–60
variations (e.g., handling objects, locations, and colors). We
collected 100 demonstrations per task for training and held
out 25 unseen demonstrations per task for testing. All poli-

cies are evaluated four times to obtain standard deviations.
Tasks details can be found in Appendix F and Appendix G.

3D Baselines. We benchmark SAM2Act and SAM2Act+
against the current state-of-the-art 3D next-best-pose predic-
tion model, RVT-2. RVT-2 is a multi-view robotics trans-
former that leverages a coarse-to-fine approach on the con-
structed point cloud to predict the next best action heatmap.
We also compare with RVT (Goyal et al., 2023), PerAct
(Shridhar et al., 2023), and SAM-E (Zhang et al., 2024a).

5.2. Performances Across 18 RLBench Tasks

Table 1 compares SAM2Act with prior keyframe-based
3D BC methods on the RLBench benchmark. Overall,
SAM2Act achieves an average success rate of 86.8%±0.5,
surpassing the previous best (RVT-2) by 5.4%. A closer
look at individual tasks reveals that SAM2Act ranks first
in 9 out of 18 tasks and remains highly competitive in 7
others, coming within one successful attempt or 4% of the
best performance. These tasks include Close Jar, Drag Stick,
Meat Off Grill, Place Wine, Screw Bulb, Sweep to Dustpan,
and Turn Tap. The largest margin of improvement occurs in
Insert Peg, where SAM2Act exceeds RVT-2 by 44%
(approximately 2.1×), and in Sort Shape, where it out-
performs RVT-2 by 29%. Both tasks require precise ma-
nipulation, underscoring the effectiveness of SAM2Act’s
multi-resolution upsampling strategy. These results estab-
lish SAM2Act as a leading policy for complex 3D tasks,
highlighting its ability to handle high-precision manipula-
tions - an area where prior methods have struggled. Ablation
studies are performed on SAM2Act in Appendix E.

5.3. Semantic Generalization across Tasks

The results evaluated in Section 5.2 were obtained by train-
ing and testing models within the same environment. How-
ever, to truly assess generalization performance, policies
must remain robust against both environmental and object-
level perturbations. We therefore trained SAM2Act and
the baseline methods on 20 tasks from The Colosseum
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Table 2. The Colosseum results. Task-average success rate percentage change for SAM2Act and other baselines across 13 perturbation
factors from The Colosseum, relative to evaluations without perturbations. Results of 3 evaluations are reported for all models. Our
approach, SAM2Act, demonstrates the lowest average percentage change across all perturbations, with a minimal drop of -4.3±3.6%,
highlighting its robustness in handling various environmental and object-level perturbations. The full result table is shown in Appendix D.

Method Average ↑ MO-Color ↑ RO-Color ↑ MO-Texture ↑ RO-Texture ↑ MO-Size ↑ RO-Size ↑
RVT-2 (Goyal et al., 2024) -19.5±2.8 -20.7±1.0 -11.8±0.8 -13.3±4.6 -11.4±3.7 -13.2±3.1 -17.7±0.1
SAM2Act (SAM2→ SAM) -20.7±1.2 -26.1±0.7 -15.7±2.9 -15.0±3.3 -16.5±6.2 -18.7±1.9 -19.8±1.3
SAM2Act (w/o Multi-res Input) -19.1±4.5 -15.5±6.4 -13.5±4.6 -20.4±0.5 -16.6±6.1 -21.3±7.5 -12.6±7.5
SAM2Act (Ours) -4.3±3.6 -1.1±2.5 -0.7±7.2 -3.3±2.4 24.72±6.1 -15.9±5.0 0.9±6.8

Method Light Color ↑ Table Color ↑ Table Texture ↑ Distractor ↑ Background Texture ↑ Camera Pose ↑ All Perturbations ↑
RVT-2 (Goyal et al., 2024) -15.6±1.3 -26.5±4.4 -14.6±4.4 -4.9±5.3 -4.4±4.0 -19.5±2.8 -77.9±1.7
SAM2Act (SAM2→ SAM) -16.3±1.2 -23.5±5.3 -12.3±3.1 0.6±2.9 -5.4±3.2 -20.7±1.2 -79.5±2.5
SAM2Act (w/o Multi-res Input) -7.2±3.6 -18.3±6.1 -17.5±3.3 -4.6±3.5 -5.7±3.5 -19.1±4.5 -73.8 ±2.2
SAM2Act (Ours) 4.5±4.4 1.1±2.5 -3.7±5.2 1.7±1.7 -1.5±2.7 -4.3±3.6 -58.3±4.4

benchmark and tested them under 13 different perturbation
categories over three runs. SAM2Act exhibits the small-
est performance drop compared to the baselines, with an
average decrease of 4.3% (standard deviation of 3.59%). No-
tably, it proves particularly robust to environmental pertur-
bations – such as changes in lighting, table color/texture, the
addition of distractors, and even camera pose – while also
maintaining competitive performance under object-level per-
turbations (see more analysis in Section E.2).

5.4. Performance on MemoryBench

In Table 3, we evaluate SAM2Act+ against SoTA 3D BC
model, RVT-2 on MemoryBench, training all models in
a single-task setting to isolate memory-related challenges
(e.g., opening the wrong drawer rather than unrelated mid-
task failures). This setup ensures that performance differ-
ences stem from memory capabilities. For a random agent,
the expected success rates are determined by the number
of possible choices per task: 33% for reopen drawer
(three drawers), 25% for put block back (four patches),
and 50% for rearrange block (two blocks). However,
variations in task complexity, fixed training data, and imbal-
anced task distributions lead to slight deviations from these
baselines. Our proposed memory-based model, SAM2Act+,
demonstrates a strong understanding of spatial memory,
achieving an average success rate of 94.3% across all tasks.
It outperforms SAM2Act (without memory) by a huge
margin of 39.3% on MemoryBench, highlighting the sig-
nificant impact of explicit memory modeling.

Table 3. Performance on MemoryBench. We report the success
rates for the three spatial memory tasks in MemoryBench. Our
method, SAM2Act+, significantly outperforms all baseline meth-
ods that lack an explicit memory mechanism, achieving an average
improvement of 37.6% across all three tasks. Note that there is an
update with MemoryBench, see more in Appendix H.

Methods / Tasks Avg. Success ↑ (a) Reopen Drawer (b) Put Block Back (c) Rearrange Block

RVT-2 54.0 ± 5.3 60.0 ± 0.0 50.0 ± 2.3 52.0 ± 3.3
SAM2Act (Ours) 55.0 ± 24.3 48.0 ± 0.0 35.0 ± 3.8 82.0 ± 2.3

SAM2Act+ (Ours) 94.3 ± 9.0 84.0 ± 0.0 100.0 ± 0.0 99.0 ± 2.0

5.5. Real-robot Evaluations

Table 4 presents our real-world experiment results, where
our method achieves a 75% task success rate, compared to
43% for RVT-2. SAM2Act significantly outperforms the
baseline in high-precision tasks (60% vs 0%). It excels
in memory-based tasks, such as (d) Push the same
button, which requires recalling the button’s previous
location. Here, SAM2Act achieves 70% success, while RVT-
2, relying on random guessing, scores 40%. We also test
models’ generalization against perturbations like lighting
changes, distractors, and position variations. Additional
details are in the Appendix I, with real-world rollout videos
available on our project website.

Table 4. Real-world results. We compare RVT2 against
SAM2Act for the first three tasks and SAM2Act+ on the last
real-world tasks (indicated with *), evaluating performance both
in-distribution and out-of-distribution during test time.

In-Distribution Out-Distribution

Task RVT-2 SAM2Act RVT-2 SAM2Act

(a) turn on the lamp 0/10 6/10 0/10 6/10
(b) push button sequence 4/10 9/10 1/10 9/10
(c) stack cubes 8/10 8/10 3/10 3/10
(d) push the same button * 4/10 7/10 2/10 6/10

6. Conclusion & Limitation
We introduce SAM2Act, a multi-view, language-
conditioned behavior cloning policy for 6-DoF 3D
manipulation, enabling high-precision manipulations
while generalizing effectively to unseen perturbations.
Building on this foundation, we propose SAM2Act+, a
memory-based multi-view language-conditioned robotic
transformer-based policy that equips the agent with spatial
memory awareness, allowing it to solve spatial memory-
based tasks. While both SAM2Act and SAM2Act+ achieve
SOTA performance across multiple benchmarks, challenges
remain in extending them to dexterous continuous control.
Additionally, SAM2Act+ relies on a fixed memory
window length, which differs from task to task, limiting
its adaptability to tasks of varying length. Despite these
challenges, we believe SAM2Act+ is an important step
towards memory-based generalist manipulation policies.
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A. Model Architecture
We will explain our model architecture in detail, including Multi-View Transformer, Memory Attention, Memory Encoder,
and Memory Bank. The multi-resolution is already explained in Section 4.1.

Multi-View Transformer. The two MVTs used in the coarse and fine branches have the same architecture. Very similar to
the MVT proposed by (Goyal et al., 2023), the input to the transformer consists of a language description of the task, virtual
images of the scene point cloud, and the image embeddings (at the lowest resolution) generated by the SAM2 image encoder.
The text is transformed into token embeddings using the pre-trained CLIP (Radford et al., 2021) model, while the virtual
images are converted into token embeddings through patchify and projection operations. Similarly, the image embeddings
are converted into token embeddings via a projection layer. For each virtual image, tokens corresponding to the same image
are processed through four attention layers. Finally, the processed image tokens, along with the language tokens, are jointly
processed using an additional four attention layers. The resulting image tokens are then used to infer the 3D action.

Memory Attention. Akin to the memory attention in SAM2 (Ravi et al., 2024), the purpose of this module is to condition
the current observation features on both past observation features and predicted actions, specifically translation. Notably,
features from each view are processed independently. We stack four transformer blocks, with the first one taking the
image embedding output of MVT from the current observation as input. Each block applies self-attention, followed by
cross-attention to memories of past observation features and predicted actions, stored in a memory bank (described below),
and ends with a multi-layer perceptron (MLP). For both self- and cross-attention, we use vanilla attention operations,
enabling us to leverage recent advances in efficient attention kernels (Dao, 2023). In addition to sinusoidal absolute
positional embeddings, 2D spatial Rotary Positional Embedding (RoPE) (Su et al., 2021; Heo et al., 2024) are incorporated
in both self-attention and cross-attention layers. We also reduce the dimension size from the original 256 to 128 to align
with the image embedding dimension of the MVT output.

Memory Encoder. The memory encoder constructs memory features by downsampling the output translation heatmap using
a convolutional module and summing it element-wise with the unconditioned observation embedding from the multi-view
transformer (not shown in Figure 3). This is followed by lightweight convolutional layers to integrate the information.
Instead of employing an additional image encoder, our memory encoder reuses the image embeddings produced by the
MVT (not the SAM2 image encoder) and fuses them with the predicted translation information to generate memory features.
This design enables the memory features to leverage rich representations that incorporate language, semantic, and spatial
features from multiple views, making them more suitable for encoding action memories. Originally, this module was
designed to encode an image embedding with multiple object masks within the same frame. However, we do not utilize this
functionality. Instead, we encode one memory per view, where each memory is generated by encoding a single heatmap
with a corresponding image embedding from each view.

Memory Bank. The memory bank preserves past translation predictions associated with previous observations in the video
by maintaining a FIFO queue of up to N recent memories. Each view has its own independent memory bank, as memories
are stored and retrieved separately for different views. These memories are represented as spatial feature maps. Additionally,
in our memory bank, the memory features are projected to a dimension of 64.

B. Training Implementation
All models are trained on 32 NVIDIA H100/A100 GPUs. In some cases, we also train on 16 or 8 NVIDIA H100/A100
GPUs, but we ensure fairness by maintaining the same total batch size across all settings.

B.1. SAM2Act

We use the same way to data and demo augmentation methods and training pipeline as in RVT2 (Goyal et al., 2024) to train
SAM2Act (stage 1). The training hyperparameters are shown in Table 5. We use this set of hyperparameters to train on
RLBench and The Colosseum.

B.2. SAM2Act+

We use a different strategy for sampling a batch of data for training. Previous sampling strategies randomly select a batch of
independent observations, allowing the model to predict the next action based on each observation independently. However,
for SAM2Act+, we aim for the agent to predict the next action based on both the current and past observations. To achieve
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Table 5. Training Hyperparameters of SAM2Act on RLBench and The Colosseum. The batch size stands for total batch size
across all GPUs. For the learning rate, we follow the scaling strategy used in RVT2 (Goyal et al., 2024), where the learning rate is scaled
by the batch size as 1.25e− 5× bs.

Hyperparameters SAM2Act Training

batch size 256
learning rate 3.2e-3

optimizer LAMB
learning rate schedule cosine decay

weight decay 1e-4
warmup steps 2000
training steps 56.25K

training epochs 90
LoRA rank 16

this, we must sample a batch of data that is spatio-temporally consistent. To implement this, we randomly sample n
consecutive observations from a random episode. The forward pass is then performed sequentially from the first to the last
observation. The details of the forward pass are provided in Algorithm 1.

When adopting this new sampling method during training, one immediate effect is a significant reduction in data diversity
per batch. This can be detrimental, especially when dealing with tasks with numerous variations. We attempted to train the
standard SAM2Act model on RLBench tasks using this new sampling method, but the convergence time was excessively
long. To address this, we propose a new training pipeline: first, we pre-train the model using the previous sampling
method, then fine-tune it with the new sampling approach. This strategy effectively mitigates the issue of slow convergence,
significantly reducing training time.

As mentioned in Section 5.4, we train all methods on MemoryBench in a single-task setting. However, finding a training
configuration that optimizes all tasks is challenging. To address this, we use a universal set of hyperparameters for training
but evaluate models across all epochs and select the best-performing one for evaluation. We follow the same approach to
determine the optimal pre-trained weights for SAM2Act before fine-tuning on SAM2Act+. In addition, the window size of
the memory mechanism is also decided to be different for each task in MemoryBench. We keep the batch size the same as
the window size during training, and thus the learning rate will be a bit different as they are related with batch size. The
detailed training hyperparameters are listed in Table 6.

Table 6. Training Hyperparameters of SAM2Act and SAM2Act+ on MemoryBench. Note that the batch size refers to the total
batch size across all GPUs. For SAM2Act+ training on the reopen drawer task, we use a maximum window size of 8, resulting in a
per-GPU batch size of 8 and a total batch size of 256. Similarly, for the other two tasks, where the maximum window size is 10, the total
batch size is 10× 32 = 320 in total. The learning rate follows the same scaling rule mentioned in Table 5.

Hyperparameters SAM2Act Training SAM2Act+ Training

batch size 256 256 (reopen drawer), 320 (other two)
learning rate 3.2e-3 3.2e-3 (reopen drawer), 4e-3 (other two)

optimizer LAMB LAMB
learning rate schedule cosine decay cosine decay

weight decay 1e-4 1e-4
warmup steps 2000 2000
training steps 6.25K 12.5K

training epochs 10 20
LoRA rank 16 16
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C. Full Comparisons for RLBench 18 Tasks
The full comparisons of SAM2Act with existing approaches on RLBench 18 tasks are shown in Table 7.

Table 7. Full Comparisons of Multi-Task Performance on RLBench. We evaluate 18 RLBench tasks (James et al., 2020), reporting
success rates across all tasks among all existing approaches, not limited to 3D keyframe-based behavior cloning (BC) policies. We report
stats of 4 evaluations for SAM2Act. Our method, SAM2Act, outperforms all baselines, achieving a performance margin of 1.9% over
ARP+ (Zhang et al., 2024b), the prior state-of-the-art approach.

Method Avg. Success ↑ Avg. Rank ↓ Close Jar Drag Stick Insert Peg Meat off Grill Open Drawer Place Cups Place Wine Push Buttons

Image-BC (CNN) (Jang et al., 2022) 1.3 12.4 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0
Image-BC (ViT) (Jang et al., 2022) 1.3 12.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C2F-ARM-BC (James et al., 2021) 20.1 11.5 24.0 24.0 4.0 20.0 20.0 0.0 8.0 72.0
HiveFormer (Guhur et al., 2022) 45.3 9.6 52.0 76.0 0.0 100.0 52.0 0.0 80.0 84.0
PolarNet (Chen et al., 2023) 46.4 9.1 36.0 92.0 4.0 100.0 84.0 0.0 40.0 96.0
PerAct (Shridhar et al., 2023) 49.4 ± 4.3 8.9 55.2 ± 4.7 89.6 ± 4.1 5.6 ± 4.1 70.4 ± 2.0 88.0 ± 5.7 2.4 ± 3.2 44.8 ± 7.8 92.8 ± 3.0
Act3D (Gervet et al., 2023) 65.0 6.8 92.0 92.0 27.0 94.0 93.0 3.0 80.0 99.0
RVT (Goyal et al., 2023) 62.9 ± 3.7 6.9 52.0 ± 2.5 99.2 ± 1.6 11.2 ± 3.0 88.0 ± 2.5 71.2 ± 6.9 4.0 ± 2.5 91.0 ± 5.2 100.0 ± 0.0
RVT-2 (Goyal et al., 2024) 81.4 ± 3.1 3.7 100.0 ± 0.0 99.0 ± 1.7 40.0 ± 0.0 99.0 ± 1.7 74.0 ± 11.8 38.0 ± 4.5 95.0 ± 3.3 100.0 ± 0.0
3D Diffuser Actor (Ke et al., 2024) 81.3 3.9 96.0 ± 2.5 100.0 ± 0.0 65.6 ± 4.1 96.8 ± 1.6 89.6 ± 4.1 24.0 ± 7.6 93.6 ± 4.8 98.4 ± 2.0
3D-LOTUS (Garcia et al., 2024) 83.1 3.7 96.0 ± 0.0 100.0 ± 0.0 69.6 ± 3.6 98.4 ± 2.2 85.6 ± 7.3 40.8 ± 12.1 91.2 ± 6.6 100.0 ± 0.0
ARP+ (Zhang et al., 2024b) 84.9 3.2 95.2 99.2 78.4 97.6 92.8 48.8 96.0 100.0
SAM-E (Zhang et al., 2024a) 70.6 ± 0.7 4.8 82.4 ± 3.6 100.0 ± 0.0 18.4 ± 4.6 95.2 ± 3.3 95.2 ± 5.2 0.0 ± 0.0 94.4 ± 4.6 100.0 ± 0.0
SAM2Act (Ours) 86.8 ± 0.5 3.1 99.0 ± 2.0 99.0 ± 2.0 84.0 ± 5.7 98.0 ± 2.3 83.0 ± 6.0 47.0 ± 6.0 93.0 ± 3.8 100.0 ± 0.0

Method Put in Cupboard Put in Drawer Put in Safe Screw Bulb Slide Block Sort Shape Stack Blocks Stack Cups Sweep to Dustpan Turn Tap

Image-BC (CNN) (Jang et al., 2022) 0.0 8.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0
Image-BC (ViT) (Jang et al., 2022) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0
C2F-ARM-BC (James et al., 2021) 0.0 4.0 12.0 8.0 16.0 8.0 0.0 0.0 0.0 68.0
HiveFormer (Guhur et al., 2022) 32.0 68.0 76.0 8.0 64.0 8.0 8.0 0.0 28.0 80.0
PolarNet (Chen et al., 2023) 12.0 32.0 84.0 44.0 56.0 12.0 4.0 8.0 52.0 80.0
PerAct (Shridhar et al., 2023) 28.0 ± 4.4 51.2 ± 4.7 84.0 ± 3.6 17.6 ± 2.0 74.0 ± 13.0 16.8 ± 4.7 26.4 ± 3.2 2.4 ± 2.0 52.0 ± 0.0 88.0 ± 4.4
Act3D (Gervet et al., 2023) 51.0 90.0 95.0 47.0 93.0 8.0 12.0 9.0 92.0 94.0
RVT (Goyal et al., 2023) 49.6 ± 3.2 88.0 ± 5.7 91.2 ± 3.0 48.0 ± 5.7 81.6 ± 5.4 36.0 ± 2.5 28.8 ± 3.9 26.4 ± 8.2 72.0 ± 0.0 93.6 ± 4.1
RVT-2 (Goyal et al., 2024) 66.0 ± 4.5 96.0 ± 0.0 96.0 ± 2.8 88.0 ± 4.9 92.0 ± 2.8 35.0 ± 7.1 80.0 ± 2.8 69.0 ± 5.9 100.0 ± 0.0 99.0 ± 1.7
3D Diffuser Actor (Ke et al., 2024) 85.6 ± 4.1 96.0 ± 3.6 97.6 ± 2.0 82.4 ± 2.0 97.6 ± 3.2 44.0 ± 4.4 68.3 ± 3.3 47.2 ± 8.5 84.0 ± 4.4 99.2 ± 1.6
3D-LOTUS (Garcia et al., 2024) 78.4 ± 4.6 97.6 ± 3.6 95.2 ± 3.4 88.8 ± 3.4 99.2 ± 1.8 34.4 ± 4.6 58.4 ± 8.3 75.2 ± 7.7 96.0 ± 2.8 90.4 ± 4.6
ARP+ (Zhang et al., 2024b) 69.6 98.4 86.4 89.6 92.8 46.4 63.2 80.0 97.6 96.0
SAM-E (Zhang et al., 2024a) 64.0 ± 2.8 92.0 ± 5.7 95.2 ± 3.3 78.4 ± 3.6 95.2 ± 1.8 34.4 ± 6.1 26.4 ± 4.6 0.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
SAM2Act (Ours) 75.0 ± 3.8 99.0 ± 2.0 98.0 ± 2.3 89.0 ± 2.0 86.0 ± 4.0 64.0 ± 4.6 76.0 ± 8.6 78.0 ± 4.0 99.0 ± 2.0 96.0 ± 5.7

D. Full Results for The Colosseum

The full results of SAM2Act on The Colosseum are shown in Table 8.

Table 8. Full Results of SAM2Act for Various Perturbations on The Colosseum. Mean and std of 3 evaluations are reported.
Task Name No Variations All Variations MO Color RO Color MO Texture RO Texture MO Size RO Size Light Color Table Color Table Texture Distractor Background Texture Camera Pose

basketball in hoop 100.0 ± 0.0 30.7 ± 2.3 97.3 ± 2.3 100.0 ± 0.0 97.3 ± 2.3 – 100.0 ± 0.0 86.7 ± 2.3 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 94.7 ± 4.6 100.0 ± 0.0 100.0 ± 0.0
close box 89.3 ± 6.1 61.3 ± 6.1 85.3 ± 6.1 – – – 90.7 ± 6.1 – 90.7 ± 2.3 85.3 ± 2.3 81.3 ± 2.3 93.3 ± 4.6 97.3 ± 4.6 92.0 ± 6.9
close laptop lid 96.0 ± 0.0 60.0 ± 0.0 100.0 ± 0.0 – – – 93.3 ± 11.5 – 94.7 ± 4.6 96.0 ± 0.0 84.0 ± 0.0 93.3 ± 2.3 96.0 ± 0.0 96.0 ± 0.0
empty dishwasher 0.0 ± 0.0 1.3 ± 2.3 0.0 ± 0.0 0.0 ± 0.0 – 0.0 ± 0.0 1.3 ± 2.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
get ice from fridge 93.3 ± 4.6 41.3 ± 2.3 92.0 ± 0.0 93.3 ± 2.3 89.3 ± 2.3 – 84.0 ± 6.9 81.3 ± 2.3 85.3 ± 9.2 98.7 ± 2.3 94.7 ± 2.3 93.3 ± 2.3 89.3 ± 2.3 100.0 ± 0.0
hockey 16.0 ± 4.0 0.0 ± 0.0 30.7 ± 2.3 14.7 ± 2.3 – 9.3 ± 4.6 18.7 ± 4.6 21.3 ± 2.3 29.3 ± 2.3 52.0 ± 6.9 26.7 ± 4.6 6.7 ± 4.6 21.3 ± 2.3 40.0 ± 6.9
meat on grill 98.7 ± 2.3 34.7 ± 2.3 100.0 ± 0.0 100.0 ± 0.0 – – 98.7 ± 2.3 – 62.7 ± 28.9 69.3 ± 9.2 76.0 ± 4.0 100.0 ± 0.0 98.7 ± 2.3 98.7 ± 2.3
move hanger 1.3 ± 2.3 12.0 ± 0.0 32.0 ± 0.0 0.0 ± 0.0 – – – – 49.3 ± 2.3 64.0 ± 0.0 44.0 ± 6.9 36.0 ± 6.9 0.0 ± 0.0 37.3 ± 18.5
wipe desk 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 – 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.3 ± 2.3 0.0 ± 0.0
open drawer 94.7 ± 2.3 70.7 ± 6.1 96.0 ± 0.0 – – – 92.0 ± 0.0 – 88.0 ± 0.0 88.0 ± 0.0 100.0 ± 0.0 85.3 ± 2.3 98.7 ± 2.3 90.7 ± 4.6
slide block to target 12.0 ± 0.0 29.3 ± 11.5 42.7 ± 4.6 – 25.3 ± 4.6 – – – 25.3 ± 4.6 40.0 ± 0.0 90.7 ± 2.3 49.3 ± 9.2 18.7 ± 2.3 24.0 ± 0.0
reach and drag 65.3 ± 14.0 1.3 ± 2.3 54.7 ± 4.6 80.0 ± 10.6 51.7 ± 4.0 69.3 ± 2.3 52.0 ± 27.7 37.3 ± 2.3 76.0 ± 6.9 81.3 ± 12.2 70.7 ± 26.6 65.3 ± 8.3 70.7 ± 16.2 58.7 ± 16.2
put money in safe 74.7 ± 2.3 20.0 ± 4.0 54.7 ± 8.3 52.0 ± 10.6 37.3 ± 2.3 66.7 ± 14.0 69.3 ± 2.3 – 73.3 ± 11.5 69.3 ± 2.3 76.0 ± 20.8 77.3 ± 14.0 50.7 ± 23.4 45.3 ± 18.5
place wine at rack location 98.7 ± 2.3 38.7 ± 4.6 81.3 ± 2.3 85.3 ± 2.3 – 96.0 ± 6.9 90.7 ± 4.6 97.3 ± 4.6 86.7 ± 4.6 88.0 ± 0.0 97.3 ± 4.6 86.7 ± 4.6 92.0 ± 6.9 69.3 ± 39.3
insert onto square peg 88.0 ± 6.9 46.7 ± 39.3 60.0 ± 4.0 98.7 ± 2.3 – 69.3 ± 4.6 58.7 ± 2.3 61.3 ± 6.1 80.0 ± 0.0 82.7 ± 4.6 64.0 ± 4.0 58.7 ± 2.3 90.7 ± 2.3 82.7 ± 2.3
stack cups 89.3 ± 4.6 1.3 ± 2.3 88.0 ± 0.0 – 78.7 ± 2.3 – 53.3 ± 11.5 – 88.0 ± 0.0 61.3 ± 2.3 46.7 ± 2.3 73.3 ± 25.4 81.3 ± 2.3 84.0 ± 0.0
turn oven on 96.0 ± 0.0 72.0 ± 0.0 92.0 ± 6.9 – – – 88.0 ± 0.0 – 89.3 ± 4.6 96.0 ± 0.0 98.7 ± 2.3 96.0 ± 0.0 96.0 ± 0.0 98.7 ± 2.3
straighten rope 78.7 ± 9.2 6.7 ± 2.3 65.3 ± 4.6 – 70.7 ± 4.6 – – – 84.0 ± 0.0 64.0 ± 0.0 61.3 ± 2.3 49.3 ± 2.3 90.7 ± 9.2 76.0 ± 0.0
setup chess 10.7 ± 2.3 0.0 ± 0.0 12.0 ± 0.0 18.7 ± 2.3 16.0 ± 0.0 – 26.7 ± 2.3 – 22.7 ± 2.3 34.7 ± 11.5 20.0 ± 6.9 22.7 ± 4.6 28.0 ± 6.9 26.7 ± 2.3
scoop with spatula 92.0 ± 6.9 10.7 ± 2.3 96.0 ± 6.9 89.3 ± 2.3 88.0 ± 6.9 92.0 ± 6.9 94.7 ± 9.2 78.7 ± 2.3 78.7 ± 4.6 81.3 ± 4.6 76.0 ± 6.9 64.0 ± 6.9 96.0 ± 0.0 94.7 ± 4.6

E. Ablation on SAM2Act
E.1. RLBench

We conduct ablation experiments on the proposed SAM2Act, focusing on two key aspects: the SAM2 image Encoder and
multi-resolution upsampling. We evaluate the model under three different configurations:

(i) Replacing the SAM2 image encoder with the SAM image encoder and removing the multi-resolution upsampling, as the
SAM image encoder does not produce multi-resolution outputs. (ii) Replacing the multi-resolution upsampling with the
original convex upsampling from RVT-2 (Goyal et al., 2024). (iii) Removing SAM2’s multi-resolution image embedding
inputs to the multi-resolution upsampling while keeping the multi-resolution upsampling itself.
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Note that SAM-E (Zhang et al., 2024a) proposed a 3D behavior cloning policy that integrates RVT and the SAM image
encoder, along with an action-sequence policy head. We attempted to extend this method to the more powerful RVT2
backbone for comparison. However, its action-sequence policy proved incompatible with the coarse-to-fine pipeline,
resulting in very slow convergence under SAM-E’s training setup. To ensure a fair comparison, we also extended SAM-E
while keeping its original hyperparameters (notably, a LoRA rank of 4, whereas ours is 16). We trained both versions and
found that SAM-E’s configuration performed better. Therefore, we adopted their configuration and reported the results
accordingly, which also applies to Section 5.3. For all other ablation experiments, the training configuration are kept the
same.

Ablation results on RLBench are presented in Table 9. All variants of SAM2Act exhibit lower performance than the original
version. Removing SAM2’s multi-resolution image embedding inputs results in a 1.1% drop in the average success rate.
Replacing the entire multi-resolution upsampling with the original convex upsampling leads to a 2.6% decrease. Substituting
the SAM2 image encoder with the SAM image encoder (Kirillov et al., 2023) causes a 6.0% drop compared to SAM2Act
and a 3.4% drop compared to SAM2Act with the original convex upsampling, where the only differences are the image
encoder and some training hyperparameters. In the same setting, we further replace the SAM2 image encoder to latest image
encoders, DINOv2 (Oquab et al., 2023) and Depth Anything V2 (Yang et al., 2024), while both of them show a large drop
compared to the original SAM2Act. These results indicate that all of our architectural innovations significantly enhance the
agent’s ability across multiple manipulation tasks.

Table 9. SAM2Act Abaltion Performance on RLBench. We report the success rates for 18 RLBench tasks (James et al., 2020), along
with the average success rate and ranking across all tasks. Table shows that SAM2Act outperforms all of its variations.

Method Avg. Success ↑ Avg. Rank ↓ Close Jar Drag Stick Insert Peg Meat off Grill Open Drawer Place Cups Place Wine Push Buttons

SAM2Act (SAM2→ SAM) 80.8 ± 1.9 3.9 96.0 ± 3.3 94.0 ± 4.0 28.0 ± 8.6 98.0 ± 2.3 72.0 ± 7.3 42.0 ± 6.9 95.0 ± 3.8 100.0 ± 0.0
SAM2Act (SAM2→ Depth Anything V2) 81.1 ± 1.2 3.6 100.0 ± 0.0 98.0 ± 2.3 58.0 ± 6.9 99.0 ± 2.0 81.0 ± 3.8 24.0 ± 8.6 93.0 ± 3.8 96.0 ± 0.0
SAM2Act (SAM2→ DINOv2) 82.2 ± 0.5 3.8 97.0 ± 2.0 98.0 ± 2.3 69.0 ± 3.8 99.0 ± 2.0 80.0 ± 3.3 30.0 ± 7.7 89.0 ± 3.8 96.0 ± 0.0
SAM2Act (Original Upsampling) 84.2 ± 0.9 3.4 100.0 ± 0.0 100.0 ± 0.0 91.0 ± 3.8 99.0 ± 2.0 78.0 ± 9.5 29.0 ± 6.0 88.0 ± 5.7 96.0± 0.0
SAM2Act (w/o Multi-res Input) 85.7 ± 0.3 2.7 99.0 ± 2.0 96.0 ± 0.0 86.0 ± 8.3 98.0 ± 2.3 99.0 ± 2.0 43.0 ±10.5 96.0 ± 0.0 100.0 ± 0.0
SAM2Act 86.8 ± 0.5 2.3 99.0 ± 2.0 99.0 ± 2.0 84.0 ± 5.7 98.0 ± 2.3 83.0 ± 6.0 47.0 ± 6.0 93.0 ± 3.8 100.0 ± 0.0

Method Put in Cupboard Put in Drawer Put in Safe Screw Bulb Slide Block Sort Shape Stack Blocks Stack Cups Sweep to Dustpan Turn Tap

SAM2Act (SAM2→ SAM) 72.0 ± 8.6 94.0 ± 2.3 99.0 ± 2.0 92.0 ± 5.7 97.0 ± 3.8 41.0 ± 3.8 73.0 ± 3.8 71.0 ± 2.0 96.0 ± 3.3 95.0 ± 2.0
SAM2Act (SAM2→ Depth Anything V2) 78.0 ± 2.3 96.0 ± 3.8 95.0 ± 2.0 90.0 ± 2.3 67.0 ± 2.0 45.0 ± 5.0 60.0 ± 3.3 91.0 ± 2.0 100.0 ± 0.0 90.0 ± 4.0
SAM2Act (SAM2→ DINOv2) 80.0 ± 3.3 99.0 ± 2.0 93.0 ± 3.8 89.0 ± 2.0 77.0 ± 2.0 49.0 ± 8.2 69.0 ± 5.0 79.0 ± 6.8 94.0 ± 2.3 92.0 ± 3.3
SAM2Act (Original Upsampling) 69.0 ± 5.0 98.0 ± 2.3 96.0 ± 3.3 84.0 ± 3.3 99.0 ± 2.0 52.0 ± 3.3 71.0 ± 3.8 80.0 ± 3.3 99.0 ± 2.0 87.0 ± 6.0
SAM2Act (w/o Multi-res Input) 72.0 ± 4.6 100.0 ± 0.0 96.0 ± 4.6 87.0 ± 2.0 82.0 ± 5.2 54.0 ± 5.2 74.0 ± 2.3 90.0 ± 6.9 97.0 ± 3.8 92.0 ± 4.6
SAM2Act 75.0 ± 3.8 99.0 ± 2.0 98.0 ± 2.3 89.0 ± 2.0 86.0 ± 4.0 64.0 ± 4.6 76.0 ± 8.6 78.0 ± 4.0 99.0 ± 2.0 96.0 ± 5.7

E.2. The Colosseum

We also conducted the same ablation experiments on The Colosseum generalization benchmark, as shown in Table 2.
The experimental setup remains the same as in Table 9, except that we did not test the variant of SAM2Act with the
original convex upsampling. The results in Table 9 show that removing SAM2’s multi-resolution image embedding inputs
leads to a 14.8% drop in performance, representing a relative decrease of 344.2%. This highlights the effectiveness of
SAM2’s multi-resolution image embeddings in providing robust visual representations, significantly enhancing SAM2Act’s
generalization ability.

F. RLBench Tasks
We follow the multi-task, multi-variation simulated experiment setup of PerAct (Shridhar et al., 2023), RVT (Goyal et al.,
2023), and RVT-2 (Goyal et al., 2024), using 18 RLBench tasks with 249 unique variations in object placement, color, size,
category, count, and shape. A summary of the 18 RLBench tasks is provided in Table 10. For a more detailed description of
each task, please refer to PerAct (Shridhar et al., 2023).

G. MemoryBench Tasks
In the following we provide details of the MemoryBench tasks.

(a) Reopen drawer

Task Description: The robot is instructed remember the drawer slot that was initially opened, and closed it and then press
the button on the table, before finding back the previously opened drawer to re-open it.
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Table 10. The 18 RLBench Tasks for Multi-task Experiment. We report on language template, the average number of extracted
keyframes, the task variations, and the variation type.

Task name Language Template Avg. Keyframes #of Variations Variation Type

put in drawer “put the item in the drawer” 12.0 3 placement
reach and drag “use the stick to drag the cube onto the target” 6.0 20 color
turn tap “turn tap” 2.0 2 placement
slide to target “slide the block to target” 4.7 4 color
open drawer “open the drawer” 3.0 3 placement
put in cupboard “put the in the cupboard” 5.0 9 category
place in shape sorter “put the in the shape sorter” 5.0 5 shape
put money in safe “put the money away in the safe on the shelf” 5.0 3 placement
push buttons “push the button, [then the button]” 3.8 50 color
close jar “close the jar” 6.0 20 color
stack block “stack blocks” 14.6 60 color,count
place cups “place cups on the cup holder” 11.5 3 count
place wine at rack “stack the wine bottle to the of the rack” 5.0 3 placement
screw bulb “screw in the light bulb” 7.0 20 color
sweep to dustpan “sweep dirt to the dustpan” 4.6 2 size
insert peg “put the ring on the spoke” 5.0 20 color
meat off grill “take the off the grill” 5.0 2 category
stack cups “stack the other cups on top of the cup” 10.0 20 color

Success Metric: The task is considered successful once the initial opened drawer has been re-opened.

Objects: A drawer and button.

Variation Number: 3

Keyframes: 8

Language Instructions: ”Close the drawer, then reopened the previously opened drawer while pushing the button in
between.”

(b) Put block back

Task Description: The robot is instructed move the block the centre, then push the button, then move the block back to its
initial position.

Success Metric: The task is considered successful once the initial block has been moved back to its initial pose.

Objects: Four patch, one block and one button.

Variation Number: 4

Keyframes: 11

Language Instructions: ””Put the block to the centre and then back to its initial position while pushing the button in
between.””

(c) Rearrange block

Task Description: The robot is instructed move the block in the centre to the empty patch, and then press the button, and
then move the alternative block to the centre..

Success Metric: The task is considered successful once the alternative block has been moved to the centre.

Objects: Two patch, two blocks and one button.
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Table 11. Properties of the Real-world Tasks. We report on language template, the average number of extracted keyframes, the number
of items that the robot can interact with, the task variations, and the variation type.

Task name Language template # keyframes # items # variations variation type

(a) turn on the lamp “turn on the lamp” 4.5 1 1 placement
(b) push buttons in sequence “push the red button, then the green button” 5 3 1 placement
(c) stack cubes “stack the cube on the cube” 4.0 5 3 category,placement
(d) push the right button “push the button closest to the blue block” 6 3 1 color,placement

Variation Number: 2

Keyframes: 10

Language Instructions: ”Move the block not on the patch to the empty patch, then press the button, then move the block
that has not been moved off the patch.”

H. MemoryBench Update
We updated the reopen drawer task in MemoryBench for the following reasons. During training on the original data,
we observed that the gripper often collided with the drawer handle when closing the drawer. To prevent this, we introduced
an additional waypoint for the closing motion, mirroring the procedure used for opening the drawer. Consequently, we
retrained all policies specifically on this updated task. Furthermore, to standardize the memory window size across all three
tasks, we also retrained SAM2Act+ on this task using a window size of 10, which led to improved performance. All results
are updated to Table 3.

I. Real-world Experiments
In the following we provide details of the real-world setup and tasks. Figure 5 illustrates the real-world setup. Table 11
summarizes the properties of the real-world tasks.

(a) Turn on the lamp

Task Description: The robot is instructed to turn on a lamp by rotating its knob.

Success Metric: The task is considered successful once the lamp has been turned on by rotating the knob.

Objects: A single lamp.

Coordination Challenges: High precision is required to properly rotate the knob.

Language Instructions: ”Turn on the lamp.”

(b) Push buttons in sequence

Task Description: The robot must press the red button first and then the blue button.

Success Metric: The task is considered successful if the buttons are pressed in the specified order: red, then blue. A third
button is present but should remain unpressed.

Objects: Three buttons in front of the robot.

Coordination Challenges: Ensuring the robot presses the correct buttons in sequence without pressing the third button.

Language Instructions: ”Push the red button and then the blue button.”

(c) Stack blocks

Task Description: The robot must place one specified block on top of another specified block.
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Figure 5. Real-world Robot Setup. A Franka Panda robot with a Robotiq Gripper. A RealSense D455 depth sensor captures the scene.

Success Metric: The task is successful if the designated block is stacked on the correct target block.

Objects: Three single-colored blocks.

Coordination Challenges: Precision in picking and placing, plus correct language understanding to identify which block
goes where.

Language Instructions: ”Stack the <item> block on the <item> block.”

(d) Push the same button

Task Description: The robot must first identify and press the button closest to the blue block, then press the same button
again after the block is removed.

Success Metric: The task is successful if the robot presses the correct button twice. Pressing the other button at any point
results in failure.

Objects: Two buttons and one blue block (marking proximity).

Coordination Challenges: After the first button press, the blue block is removed; the robot must remember the button
location to press it again.

Language Instructions: ”Push the button that is closest to the blue block. Press the same button again.”
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