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Figure 1: We introduce a DDPM-based Al image creation approach named DomainStudio for domain-driven
image generation, which preserves subjects provided by prior knowledge and adapts them to the domains (e.g.,
styles) learned from training samples. It tackles a task different from few-shot or subject-driven generation. The
key difference is that the category of subjects in the generated samples is preserved from prior knowledge (e.g.,
pre-trained models) and can be different from the subjects in training samples in domain-driven generation.
DomainStudio is compatible with both unconditional and text-to-image generation and only needs few-shot
training data, extending DDPMs to produce compelling results in various application scenarios as shown above.

ABSTRACT

Denoising diffusion probabilistic models (DDPMs) have been proven capable of
synthesizing high-quality images with remarkable diversity when trained on large
amounts of data. Unfortunately, they are still vulnerable to overfitting when fine-
tuned on extremely limited data. Existing works have explored subject-driven
generation with text-to-image (T2I) models using a few samples. However, there
still lack effective data-efficient methods to synthesize images in specific domains
(e.g., styles), which remains challenging due to ambiguities inherent in natural
language and out-of-distribution effects. This paper introduces a few-shot fine-
tuning approach named DomainStudio to realize domain-driven image generation,
which is defined as retaining the subjects from prior knowledge provided by pre-
trained models and adapting them to the domain extracted from training data,
pursuing high quality and great diversity like prior few-shot generation methods.
We propose to keep the image-level relative distances between adapted samples
and enhance the learning of high-frequency details from both pre-trained models
and training samples. DomainStudio is compatible with both unconditional and
T2I DDPMs. This work makes the first attempt to achieve unconditional DDPM-
based image generation using limited data, achieving better visual effects than
current GAN-based approaches under the same task settings. For T2I generation,
DomainStudio is qualified for synthesizing samples in domains characterized by
few-shot training data. It extends the applicable scenarios of modern large-scale
T2I diffusion models, which are insufficient to be handled with existing few-shot
fine-tuning methods of T2I DDPMs like Textual Inversion and DreamBooth.
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1 INTRODUCTION

Deep generative models (Goodfellow et al., 2014} Karras et al., |2020b; Kingma & Welling, 2013
Ho et al.} 2020) have made significant progress in synthesizing high-quality and diverse images over
past years. DDPMs (Sohl-Dickstein et al., 2015) have become the most prevailing approach amongst
all of them with their outstanding performance and usability under various conditions (Nichol &
Dhariwall 2021} [Li et al., 2023 |[Zhang & Agrawalal, |2023; Rombach et al., [2022)).

Despite the remarkable success, DDPMs are heavily dependent on large-scale training data (Schuh-
mann et al., 2022} Van den Oord et al.l 2016} [Yu et al.l 2015) and vulnerable to overfitting when
trained on limited data (Moon et al., |2022) like other generative models. A series of methods have
been proposed (Wang et al., 2018} |Karras et al., |2020a; Mo et al., 2020; [Wang et al.| [2020; Li
et al., 2020; (Ojha et al., 2021} Zhao et al., 2022bza; [2023) to address such problems for GANs by
transferring knowledge from pre-trained models to target domains. However, they are completely
unconditional and still get limited fidelity influenced by unexpected blurs and deformations.

Existing data-efficient methods based on DDPMs like LoRA (Hu et al.l [2021), Textual Inversion
(Gal et al.} 2022), and DreamBooth (Ruiz et al., 2023) mainly focus on subject-driven generation
which aims to preserve the key features of customized subjects and synthesize novel scenes, poses,
and views. It remains challenging to synthesize samples in specific domains (e.g., styles) even with
powerful large-scale T2I diffusion models (Saharia et al.,|2022; Ramesh et al.,[2022; Rombach et al.,
2022). Firstly, it is difficult to describe domains with text prompts accurately for T2I models due to
the ambiguities in natural language. Besides, even if pre-trained models have captured typical do-
mains owing to the presence of corresponding samples in their training data, they may still produce
biased results influenced by the out-of-distribution effects. For example, there exist different styles
in Van Gogh'’s paintings. Given a text prompt of “Van Gogh style”, T2I models may choose a certain
style randomly or mix some of them, leading to unsatisfactory outputs.

To this end, we introduce DomainStudio to enable domain learning of both unconditional and T2I
DDPMs through few-shot fine-tuning with extremely limited data (e.g., 10 images). We propose
to preserve the subjects from pre-trained source models, adapt them to the domain extracted from
training samples, and define this task as domain-driven generation. It differs from few-shot image
generation (Wang et al., [2018)), which learns subject and domain knowledge from training samples,
and subject-driven generation, which learns customized subjects and ignores domain knowledge.
It is worth noting that “the preserved subjects” in domain-driven generation refer to a category of
subjects including diverse individualities (e.g., a dog, a house) instead of specific subjects learned
in subject-driven generation. We first propose an image-level pairwise similarity loss for DDPMs to
keep the relative distances between adapted samples similar to source samples for the preservation
of subject distributions and greater diversity. Then we design a high-frequency details enhancement
method from two perspectives, including preserving more details provided by source models and
learning more details from limited data for finer quality. As illustrated in Fig. [T} DomainStudio is
qualified for a series of domain-driven tasks. Our main contributions are concluded as follows:

* We propose to synthesize samples in specific domains characterized by few-shot data by preserv-
ing subjects from source models and learning domain knowledge from training samples.

* We design a domain-driven DomainStudio approach compatible with both unconditional and T2I
DDPMs to maintain the distributions of subjects and enhance high-frequency details learning.

* The effectiveness of DomainStudio is demonstrated qualitatively and quantitatively on a series of
few-shot domain-driven tasks. For unconditional generation, DomainStudio achieves better diver-
sity and visual effects than current state-of-the-art GAN-based approaches. For T2I generation,
DomainStudio achieves compelling results in several scenes which existing few-shot fine-tuning
methods of T2I diffusion models cannot handle.

2 RELATED WORK

DDPMs (Sohl-Dickstein et al., 2015) define a forward noising (diffusion) process adding Gaus-
sian noises ¢ to training samples xy and employ a UNet-based neural network €y to approximate
the reverse distribution, which can be trained to predict the added noises or the denoised images.
Ho et al.| (2020) demonstrates that predicting € performs well and achieves high-quality results for
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unconditional image generation using a reweighted loss function:

2
simple = Etzoe [l|€ = oz, )], M

where t and z; represent the diffusion step and corresponding noised image. DDPMs have achieved
competitive unconditional generation results on typical large-scale datasets (Krizhevsky et al.} 2009}
Yu et al} 2015} [Van den Oord et al, 2016)). Besides, classifier guidance is added to realize DDPM-
based conditional image generation (Dhariwal & Nichol, [2021)). Latent diffusion models
[2022) employ pre-trained autoencoders to compress images into the latent space and achieve
high-quality conditional generation using inputs such as text, images, and semantic maps.

T2I Generation Gafni et al., 2022 Jain et al., 2022; Hinz
et all 2020; [Li et al., 2019bza; Qiao et al., [2019ajb; [Ramesh et al., 2021} [Tao et al., [2020; |Zhang
et al., 2018b) has achieved great success based on GANs (Brock et al.| 2019} [Karras et al.,
2020b} 2021)), transformers (Vaswani et al.| [2017), and diffusion models with the
help of image-text representations like CLIP (Radford et all, 2021). Large-scale T2I generative
models including Imagen (Saharia et all, [2022), DALL-E2 (Ramesh et al 2022), and Stable Dif-
fusion (Rombach et al., [2022)) further expand application scenarios and improve generation quality.
Subject-driven fine-tuning methods like Textual Inversion 2022) and DreamBooth
realize the personalization of T2I diffusion models using limited data. Custom Diffusion
(Kumari et al.} [2023) and MixofShow explore multi-concept customization of T2I
diffusion models. These subject-driven methods ignore the learning of domains. Our work makes
up for gaps by tackling the domain-driven task based on DDPMs. Contemporary works
based on MaskGIT (Chang et al.,[2022)) and MUSE (Chang et al.|[2023)) tackle similar tasks
of generating images containing different subjects and learning the style from training samples. Our
approach is compatible with both unconditional and T2I DDPMs for domain-driven generation.

Few-shot Image Generation aims to achieve high-quality generation with great diversity using
limited data. Existing approaches are GAN-based and unconditional. Most works follow TGAN
to adapt GANs pre-trained on large source datasets to target domains. Following
methods can be roughly divided into data augmentation approaches (Tran et al., 2021} [Zhao et al.
2020alb}; [Karras et all, [2020a)), trainable parameters fixing (Noguchi & Harada, 2019; |[Mo et al.
2020; [Wang et al., [2020), and model regularization (Li et al.} 2020} |Ojha et al., 2021} [Zhao et al.
2022b} [Zhu et al.,[2022; Xiao et al},[2022). AdAM (Zhao et al.| 2022a) and RICK (Zhao et al.,[2023)
explore knowledge transfer between source/training datasets with large gaps. The proposed Domain-
Studio follows similar strategies to adapt pre-trained source models to target domains but keeps
subjects in source samples. It is compatible with both unconditional and T2I DDPMs. Suppose
training samples share the same category of subjects with source samples produced by pre-trained
models, the domain-driven DomainStudio shares the same target with few-shot image generation.
Otherwise, DomainStudio preserves subjects in source samples and learns domain knowledge.

High-frequency Components (HFC) in GANs have been proven to bias the generation quality
(Schwarz et al.| 2021). Prior GAN-based methods add skip connections of the HFC in features of
generators (Yang et al.| 2022}, [Wang et all, [2022), employ additional discriminators for HFC
let al} 2022} Huang et al. [2022), and build HFC alignment between features in generators and
discriminators (Wang et al.l [2022) to improve generation quality given limited data. Our approach
maintains the distributions of the relative distances between image-level HFC in source samples and
learns more HFC from limited data, aiming for finer quality in few-shot fine-tuning of DDPMs.

Neural Style Transfer (NST) (Gatys et all 2015} [Ghiasi et al, 2017 [Deng et all, 2022}, [Park &

Kim| 2022} [Tumanyan et al},[2022)) transfers an input image to the style prompted by another image
while maintaining the input contents. NST methods are designed to disentangle content and style

information. Although NST and our work synthesize images in specific styles, they have different
targets and cannot be compared directly. NST is image-level while our approach is model-level and
aims to obtain adapted models synthesizing diverse samples in target domains.

3 METHOD

This section introduces the DomainStudio approach in detail. We propose to preserve the distribu-
tions of subjects during domain adaptation by keeping the image-level relative pairwise distances
between adapted samples similar to source samples (Sec [3.1). Besides, we guide adapted models
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Figure 2: Overview of DomainStudio on unconditional DDPMs. We introduce an image-level pairwise
similarity loss to maintain the diverse distributions of subjects and guide adapted models to learn knowledge
of target domains. We also apply it to high-frequency components for better preservation of high-frequency
details and guide adapted models to learn more high-frequency details from limited data with the reconstruction
loss between high-frequency components extracted from few-shot data and adapted samples.

to learn more high-frequency details from limited training data and source samples (Sec [3.2). Our
approach fixes source DDPMs ¢, as reference for adapted DDPMs €,4,. The pre-trained autoen-
coders (£ + D) and text encoders I" used in T2I generation are fixed as well. Adapted models
are initialized to source models and adapted to target domains. Overviews of DomainStudio for
unconditional and T2I generation are illustrated in Fig. [2]and 3] respectively.

For T2I generation, we define source and adapted samples using text prompts P;,,, and Pi,,.. To
avoid using the prior knowledge of target domains provided by the large T2I model, we employ a
unique identifier [V] to represent target domains. For example, we define the source and adapted
samples with text prompts “a house” and “a [V] house” in Fig. 3] Subjects in source and adapted
samples share the same category but can be different from subjects in training samples. The source
and target text prompts Ps,,, and Py, are encoded by pre-trained text encoder I' to conditioning
VeCtors Cso, and ciqr. The adapted models are guided to learn from training samples with the
reconstruction loss:

Eé?fyfple = Et,zt,ctm.,e”eada(zta t, Ctar) - 6||23 (2)

where z, represents the latent codes z compressed from training samples added with noises.

3.1 SUBIJECT DISTRIBUTIONS PRESERVATION

We design an image-level pairwise similarity loss to maintain the relative pairwise distances between
adapted samples for subject distributions preservation during domain adaptation. To construct N-
way probability distributions for each sample in unconditional image generation, we sample a batch

of noised images {x?}nNzo by randomly adding Gaussian noises to training samples zo ~ (o)
following x; = v/@xo + /T — aze, where @; := [[._ o(1 = Bs) and 3, € (0,1) represents the
variance at diffusion step ¢. Then both source and adapted models are applied to predict the fully
denoised images {5:8}2]:0. We have the prediction of Zg in terms of z; and eg(z¢, t) as follows:

B 1 \/ 1—oy

Lo = ,— o
Cosine similarity is employed to measure the relative dlstances between the predicted images Zg.
The probability distributions for Z, (0 < ¢ < N) in source and adapted models are as follows:

piaet = sfm({sim(@h,,o 7,0} ) wtet = spm{sim(,,0 5,0} ) @
Vi#j Vi#£j

where sim and sfm denote cosine similarity and softmax function, respectively. However, it’s
difficult to build correspondence for T2I generation with fixed noise inputs since the source and

(J,'t, t) (3)
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Figure 3: Overview of DomainStudio on T2I DDPMs. DomainStudio on unconditional DDPMs can be
directly generalized to T2I DDPMs for domain-driven generation since it only uses image-level information for
additional optimization. Prior preservation loss is used to preserve source samples during domain adaptation.

adapted samples have different conditions. We find that keeping similar distributions of relative
pairwise distances for randomly generated source and adapted samples also maintains the distribu-

rny N
! n}n:()
we build probability distributions for source and adapted samples

tions of subjects well for T2I generation. Given batches of noised source latent codes {z;

and target latent codes {21}
as follows:

text,i _ D pr,i D ~pr,j text,i — . D ~1 D ~J 3
Psou Sfm({SZm( ( ada) (Zada }Vi¢j)’ Pada sfm({szm( (Zada)v (Zada))}Vi¢j)’ ( )

where z" and Z,q4, are denoised source and target latent codes produced by adapted models. The
image-level pairwise similarity loss for unconditional and T2I generation are as follows:

n=0"

£ = Bune 3 Drca iy 13527, (®)
text text,i|| text,i
‘szrfq Et 2,21 ,€,€PT Z D pada | siiz l)’ (7)

where D, represents KL-divergence and 2" represents the source latent codes added with noises
€’ Limg prevents adapted samples from being too similar to each other or replicating training data.
It encourages adapted models to keep the distributions of subjects in adapted samples similar to
source samples and learns domain knowledge from training samples for domain-driven generation.

We are inspired by CDC [2021), which builds pairwise similarity loss based on features
in certain layers of the generator in StyleGAN?2 (Karras et al.}[2020b) to preserve cross-domain simi-
larity. DDPMs are trained to predict noises with multiple steps in synthesizing images. It is difficult
to find proper features to represent generated samples. As a result, we directly build image-level
pairwise similarity with the completely denoised samples, which makes our approach compatible
with DDPMs. Besides, our method is designed for domain-driven generation to preserve the basic
distributions of subjects, which take up most parts of the generated samples, instead of building
one-to-one correspondence across domains like CDC. We use various noise inputs for source and
adapted samples in T2I generation but still achieve the preservation of subject categories.

3.2 HIGH-FREQUENCY DETAILS ENHANCEMENT

To begin with, we employ the typical Haar wavelet transformation (Daubechies} [1990) to disentangle
images into multiple frequency components. Haar wavelet transformation decomposes inputs into
the low-frequency component LL and high-frequency components LH, HL, and H H. We define
hf as the sum of all high-frequency components needing enhancement: hf = LH + HL + HH.
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Figure 4: DomainStudio generation samples under several 10-shot unconditional adaptation setups.

We implement high-frequency details enhancement from two perspectives. Firstly, we use the pro-
posed pairwise similarity loss to preserve high-frequency details learned from source samples. The
probability distributions for the high-frequency components of generated samples of source and
adapted models for unconditional and T2I generation are as follows (i # j):

Pt = spm( {sim(h (@) hf @, ol = stm({sim(hf @5, 00 @, ) P, ®)
pfisitt = sym({sim(hf (D)), RF(DEE) ), ©
pfigit = spm({sim(h (D(Zuaa)) hF (D)) })- (10)

Similar to the image-level losses shown in Eq. [6] and [7] the pairwise similarity loss for the high-
frequency components in unconditional and T2I generation are defined as follows:

une _ g, ZDKL fumed || p fune:y, (1n

tea:t,i). (12)

sou

tea:t text,i
‘C ]Et,zt,zfr,e,epT E DKL pf
7

Secondly, we propose high-frequency reconstruction loss to guide adapted models to learn more
high-frequency details from limited training data by minimizing the mean squared error (MSE)
between the high-frequency components in adapted training samples, which can be expressed for
unconditional and T2I generation as follows:

unc ~ 2
hfmse — ]Et,wo,e [||hf(x0ada,) - hf(xO)H] ) (13)
Lifmse = Etao,zi.el B (D(Zada)) — hf (o). (14)
3.3  OVERALL OPTIMIZATION TARGET
The overall optimization target of DomainStudio combines all the methods proposed above to realize

the preservation of subject distributions and high-frequency details enhancement. The loss function
for unconditional and T2I generation are expressed in Eq. [I5]and [I6]respectively:

LU = Lmpie + M1Low + A Lint + As Ly + ALy e (a5)
[lewt — ‘Ciiﬁfple + )\12£p7‘ + )\QEffrfgt + A3 Etext + )\4£2€;ﬂ7286. (16)

We set the weight A1; of the variational lower bound loss L, (Nichol & Dhariwall 2021)) as 0.001
and the weight A1 of the prior preservation loss £, (Ruiz et al., 2023) as 1 (see more details in
Appendix [B). We empirically find A2, A3 ranging between 0.1 and 1.0 and A4 ranging between 0.01
and 0.08 to be effective for most unconditional adaptation setups and Ao, A3 ranging between 100
and 500 and A4 ranging between 0.1 and 1.0 to be effective for most T2I adaptation setups.

4 EXPERIMENTS

We evaluate DomainStudio with a series of domain-driven generation tasks using extremely limited
data (< 10 images). It is compared with directly fine-tuned DDPMs, GAN-based few-shot im-
age generation methods, and few-shot fine-tuning methods of large-scale T2I models on generation
quality and diversity qualitatively and quantitatively. Ablation analysis is discussed in Sec. [4.3]



Under review as a conference paper at ICLR 2024

Fine-tuned
DDPM
Training B
Samples St

(ours)

Figure 5: 10-shot unconditional image generation samples on FFHQ — Sunglasses. All the samples of GAN-
based approaches are synthesized from fixed noise inputs (rows 1-4). Samples of the directly fine-tuned DDPM
and DomainStudio are synthesized from fixed noise inputs as well (rows 5-6). Our approach generates high-
quality results with fewer blurs and artifacts and achieves considerable generation diversity.

10-shot Training Text Prompt: Text Prompt: Text Prompt:

Samples for Domains a [V] house on the mountain a[V] bag a [V] vase with night sky
Training Samples for SubJects Personalized DomainStudio Generated Samples

Text prompt “a [V] vase”

Li 4.8

Figure 6: Given 10-shot training samples to characterize the target domain, DomainStudio can synthesize
samples in target domains with diverse contexts, different categories of subjects or personalized subjects.

Text prompt: “a [V] vase in the [S] style”

Basic Setups We train DDPMs from scratch on FFHQ (Karras et al.|[2020b) and LSUN Church
as source models for unconditional generation. Stable Diffusion (Rombach et al, 2022)
v1.4 is employed as the source model for T2I generation. Several datasets containing less than 10
samples are used as training datasets. More details of implementation are added in Appendix [H]

Baselines Since few prior works realize DDPM-based few-shot image generation uncondition-
ally, we employ several GAN-based baselines sharing similar targets with us on subject-consistent
source/training datasets: CDC (Ojha et al.} [2021)), DCL (Zhao et al. 2022b), AdAM
[20224d), and RICK (Zhao et al., 2023). All the GAN-based methods are implemented based on
StyleGAN2 (Karras et al. [2020b). The StyleGAN2 models and unconditional DDPMs trained on
the large source datasets share similar generation quality and diversity (see more details in Appendix
). Modern few-shot fine-tuning methods Textual Inversion and DreamBooth
etall are used as baselines for T2I generation. Textual Inversion is trained to learn styles.

Evaluation Metrics We follow CDC to employ Intra-LPIPS for diversity evaluation and FID
(Heusel et al., [2017) for quality evaluation. As for T2I generation, we employ CLIP
2021)) to measure the textual alignment with text prompts using CLIP-Text, which is the average
pairwise cosine similarity between the CLIP embeddings of text prompts and generated samples
and evaluates the preservation of subjects. More details of metrics are added in Appendix [C}
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Figure 7: 10-shot T2I generation samples trained on Watercolor dogs. DomainStudio produces samples con-
taining diverse subjects consistent with text prompts and sharing the same style with training data.

dOg ..' .. - .

Textual Inversion DreamBooth DomalnStudlo (ours)

Training Samples

Figure 8: T2I generation samples trained on 6-shot Ink paintings. DomainStudio adapts subjects mentioned in
text prompts to target domains naturally while baselines get unrealistic results due to underfitting or overfitting.

4.1 QUALITATIVE EVALUATION

Unconditional Image Generation As shown in Fig. ] DomainStudio adapts source models to
target domains naturally and produces diverse samples under several 10-shot adaptation setups.
Samples of diverse faces can be found when adapting FFHQ to target domains. The adaptation
from LSUN Church to Landscape drawings retains various church structures. Fig. [5]shows samples
of DomainStudio and baselines on 10-shot FFHQ — Sunglasses. GAN-based baselines generate
some incomplete sunglasses and unnatural blurs and artifacts. Directly fine-tuned DDPM produces
smoother results but lacks details like lighting effects and fine hair structures. In contrast, Domain-
Studio improves generation quality and diversity and achieves more pleasing visual effects.

T2I Generation As illustrated in Fig. [T] and [§| DomainStudio is qualified for domain-driven gen-
eration regardless of whether the category of subjects in training samples is consistent with adapted
samples. For example, given 10-shot Van Gogh houses as training data, we synthesize samples with
text prompts such as “a [V] bag”. Besides, we combine DomainStudio with DreamBooth to realize
domain-driven generation with personalized subjects (see more details in Appendix [G).

Metrics FID () Intra-LPIPS (1)

Datasets Babies | Sunglasses Babies Sunglasses Sketches
CDC 74.39 42.13 0.583 £0.014 | 0.579 £0.018 | 0.454 £0.017
DCL 52.56 38.01 0.579£0.018 | 0.574 +£0.007 | 0.461 +0.021
AdAM 48.43 28.03 0.573 £0.016 | 0.559 £0.017 | 0.424 £ 0.018
RICK 39.39 25.22 0.589 £ 0.010 | 0.591 £0.030 | 0.443 £0.025
Fine-tuned DDPMs 114.95 54.47 0.513 £0.026 | 0.527 £0.024 | 0.473 +0.022
DomainStudio (ours) | 48.92 34.75 0.599 + 0.024 | 0.604 = 0.014 | 0.495 £ 0.024

Table 1: Quantitative results of unconditional few-shot image generation (source datasets: FFHQ). Domain-
Studio achieves better generation diversity than directly fine-tuned DDPMs and prior GAN-based methods.
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DomainStudio is compared with Textual Inversion and DreamBooth in Fig. [7]and [ It’s difficult
for baselines to learn the domain knowledge from few-shot data, especially when the subjects in
adapted samples are different from training samples. For instance, when generating temples and
roses in the watercolor style, baselines tend to combine the subjects in training samples with the
subjects mentioned in text prompts. They lack guidance on what to learn from few-shot data and
what to preserve from source models, resulting in overfitting or underfitting results. DomainStu-
dio successfully adapts the subjects mentioned in text prompts to the domain of training samples,
achieving high-quality and diverse samples. More visualized results are provided in Appendix [M]

4.2 QUANTITATIVE EVALUATION

We provide the quantitative results of Do-

mainStudio on unconditional and T2I gen- Van Gogh Ink painting
eration in Table [l and @ DomainStudio ~ Methods houses volcanoes
achieves a superior improvement of gen-  Textual Inversion 0.259 £ 0.001 | 0.244 +0.001
eration diversity compared with directly =~ DreamBooth 0.262 +0.002 | 0.275 4+ 0.004
fine-tuned DDPMs and Outperforms state- DomainStudio (ours) | 0.276 £ 0.002 | 0.301 + 0.002

of-the-art GAN-based approaches in terms
of Intra-LPIPS. Although DomainStudio
fails to achieve the best FID, it produces
samples in target domains with fewer blurs
and artifacts, resulting in better visual effects, as shown in the qualitative results. For T2I genera-
tion, DomainStudio achieves state-of-the-art CLIP-Text results, indicating its ability to preserve sub-
jects in domain-driven generation and synthesize images consistent with text prompts while adapting
to target domains. More quantitative results and analysis are added in Appendix [D}

Table 2: CLIP-Text (1) results of DomainStudio on T2I tasks.
DomainStudio outperforms baselines on text alignment.

4.3 ABLATION ANALYSIS

We ablate our approach to show
the roles of two parts. Sub-

. . . . . T2I: “a [V] house” Unconditional Metrics
ject distributions preservation ‘
is the basis of DomainStudio, . . . . @ 114.95;0.520 +0.026
without which mode Collapse ) DreamBooth Directly Fine-tuned DDPM )
occurs and leads to blurred E o

. . 33478 0.432 + 0.031
and low-quality results. High- :
fl‘equency details enhancement DomamStudmw/oleg DomamStudm\,Vii)leg .
guides adapted models to gen- @ @ @ @ H n &a h 7177 | 0.572 +0.027
erate more detall.s (e'g" house DomamStudm w/o Lz &L,,fmsg ~ DomainStudio w/o L & Ly fmse
structures and hairstyles). Do- W L
mainStudio combines them to {'; >R 4892059940024
achieve compelling and diverse DomainStudio (ours) DomainStudio (ours) FID (}) Intra-LPIPS (1)

results and better metrics. With-
out these two parts, Domain-
Studio degrades to DreamBooth
and directly fine-tuned models
in T2I and unconditional generation. More detailed ablations are provided in Appendix [E]

Figure 9: Ablation analysis of DomainStudio on T2I (houses in the ink
painting style) and unconditional DDPMs (FFHQ — Babies).

5 CONCLUSION

We propose DomainStudio, a novel approach to realize few-shot and domain-driven image genera-
tion. DomainStudio fills the vacuum of synthesizing samples in specific domains (e.g., styles) with
DDPMs. It is compatible with both unconditional and T2I DDPMs. DomainStudio first introduces
DDPMs to unconditional image generation given limited data. It produces compelling results with
rich details and few blurs, outperforming current state-of-the-art GAN-based methods on visual ef-
fects and generation diversity. DomainStudio also performs better than prior few-shot fine-tuning
methods in T2I domain-driven generation. It is qualified for domain-driven T2I tasks regardless of
the subject gaps between source and training samples. This work takes an essential step toward more
data-efficient DDPMs. The limitations and societal impacts are discussed in Appendix [F
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