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ABSTRACT

Covariance and Hessian matrices have been analyzed separately in the literature
for classification problems. However, integrating these matrices has the potential
to enhance their combined power in improving classification performance. We
present a novel approach that combines the eigenanalysis of a covariance matrix
evaluated on a training set with a Hessian matrix evaluated on a deep learning
model to achieve optimal class separability in binary classification tasks. Our ap-
proach is substantiated by formal proofs that establish its capability to maximize
between-class mean distance and minimize within-class variances. By projecting
data into the combined space of the most relevant eigendirections from both ma-
trices, we achieve optimal class separability as per the linear discriminant analysis
(LDA) criteria. Empirical validation across neural and health datasets consistently
supports our theoretical framework and demonstrates that our method outperforms
established methods. Our method stands out by addressing both LDA criteria,
unlike PCA and the Hessian method, which predominantly emphasize one crite-
rion each. This comprehensive approach captures intricate patterns and relation-
ships, enhancing classification performance. Furthermore, through the utilization
of both LDA criteria, our method outperforms LDA itself by leveraging higher-
dimensional feature spaces, in accordance with Cover’s theorem, which favors
linear separability in higher dimensions. Our method also surpasses kernel-based
methods and manifold learning techniques in performance. Additionally, our ap-
proach sheds light on complex DNN decision-making, rendering them compre-
hensible within a 2D space.

1 INTRODUCTION

Binary classification is a fundamental task in machine learning, where the goal is to assign data
points to one of two classes. The accuracy and effectiveness of binary classifiers depend on their
ability to separate the two classes accurately. However, achieving optimal class separability can be
challenging, especially when dealing with complex and high-dimensional data.

Traditional approaches often rely on analyzing either the covariance matrix (Nagai, 2020; [Minh &
Murinol, 2017} [Serra et al., [2014; Lenc & Vedaldi, [2016; Hoff & Niul 2011; |Kuo & Landgrebel
2002; Lam)|, 2019) or the Hessian matrix (Dawid et al.l 2021} |[Fu et al.l 2020} [Yao et al.l 2019}
Krishnasamy & Paramesran, |2016; Wiesler et al.,2013; Byrd et al.,[2011; [Martens, 2010) separately
to optimize machine learning models. In the field of Evolution Strategies (ESs), a recent work (Shir
& Yehudayoff] 2020) explored the relationship between the covariance matrix and the landscape
Hessian, highlighting the statistical learning capabilities of ESs using isotropic Gaussian mutations
and rank-based selection. While this study provides valuable insights into ESs’ learning behavior, it
does not investigate the practical integration of the two matrices.

When analyzing the covariance matrix, the focus is on capturing the inherent patterns of variability
within the data, allowing for a compact representation that highlights relationships between different
dimensions. On the other hand, the analysis of the Hessian matrix aims to find the direction in which
the classes are best separated, by maximizing the curvature along the discriminative directions.
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However, these separate analyses fail to fully leverage the synergistic effects that can arise from
integrating the information contained in both matrices.

To tackle this challenge, we present a novel approach that combines the eigenanalysis of the co-
variance matrix evaluated on a training set with the Hessian matrix evaluated on a deep learning
model. By integrating these matrices, our method aims to optimize class separability by simultane-
ously maximizing between-class mean distance and minimizing within-class variances, which are
the fundamental criteria of linear discriminant analysis (LDA) (Fisher, 1936} Xanthopoulos et al.,
2013)). By utilizing these criteria, we leverage the foundational principles that have been established
and proven over decades of LDA’s application in various fields like medicine (Sharma et al., 2012;
Sharma & Paliwal, 2008; Moghaddam et al., |2006; [Dudoit et al., |2002; |Chan et al.l [1995)), agri-
culture (Tharwat et al., 2017} |Gaber et al., [2015} |[Rezzi et al., |2005; [Héberger et al.l 2003; |(Chen
et al.,|1998)), and biometrics (Paliwal & Sharmal [2012;|Yuan & Mul [2007; [Park & Parkl |2005; Wang
& Tang, 2004} 'Yu & Yang| [2001}; [Chen et al., 2000; Haeb-Umbach & Ney, [1992). LDA has been
demonstrating the reliability and usefulness of the two criteria as indicators of discriminative power.
Thus, by building upon this well-established foundation, our approach will inherit the strengths
and reliability that have been demonstrated by LDA. This integrated approach holds the promise
of enhancing classification performance beyond conventional methods that treat the two matrices
separately.

2 METHODOLOGY

2.1 APPROACH: COMBINING EIGENANALYSIS OF COVARIANCE AND HESSIAN MATRICES

In this subsection, we describe our novel approach for combining the eigenanalysis of the covariance
matrix and the Hessian matrix to achieve optimal class separability in binary classification tasks.

1. Covariance matrix eigenanalysis: A covariance matrix Cov(6) is a D x D matrix, where
D represents the dimensionality of the predictor attributes. Each element of the covariance
matrix reflects the covariance between the two predictor attributes 6; and 6s:

1
n—1

n
> (61 — 01)(02; — 02)
i=1
where 6, and 6; are the corresponding observations of these predictor attributes for the
i-th data instance, 61 and 6> are the sample means of the predictor attributes #; and 65,
respectively, and n is the number of data instances or observations.
Performing eigenanalysis on the covariance matrix Cov(@), we obtain eigenvalues \; and
corresponding eigenvectors v;. The leading eigenvector v; associated with the largest
eigenvalue A1, as captured in the eigen-equation Cov(0) - vi = A - vy, represents the
principal direction with the highest variance.

Cov(91, 92) =

2. Hessian matrix eigenanalysis: Next, we compute a Hessian matrix evaluated on a deep
learning model trained on the same training set. We employ a deep neural network (DNN)
architecture consisting of four fully connected layers, each followed by a Rectified Linear
Unit (ReLU) activation. The final layer employs a sigmoid activation function to yield a
probability value within the range of O to 1. During training, we utilize the binary cross-
entropy loss function. The binary cross-entropy loss is given by

BCELoss = — Z logpe(c; | i),
i=1
where ¢; is the actual class for data instance x;. The probability pg(c; | z;) is the pre-
dicted probability of instance x; belonging to class c;, as estimated by the DNN model
parameterized by 6.

The Hessian of the loss function is then:

n

- Zlogpg(ci | xz)‘| T Z [vg log po(c; | ffz)} :
i=1

i=1

Hy = V2BCELoss = V3
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Performing eigenanalysis on the Hessian matrix Hg, we obtain eigenvalues A, and corre-
sponding eigenvectors v;. The leading eigenvector v} associated with the largest eigen-
value )}, as captured in the eigen-equation Hg - v; = \| - v/, represents the direction
corresponding to the sharpest curvature.

3. Integration of matrices and projection of data:

To combine the power of covariance and Hessian matrices, we project the data into the
combined space of the most relevant eigendirections. Let U be the matrix containing the
leading eigenvectors from both matrices:

U = [vq, V)] (1)
The 2D projection of the data, denoted as X, is obtained by:

X = X - U )

Here, X is the original data matrix, and X, represents the final output of the proposed
method—a 2D projection capturing both statistical spread and discriminative regions of the
data.

Unlike LDA, which aims to optimize both criteria simultaneously along a single direction
for binary classification, constrained by the limitation that the number of linear discrimi-
nants is at most ¢ — 1 where c is the number of class labels [Ye et al.| (2004), our approach
provides more flexibility and control. By working on two separate directions, we specifi-
cally focus on minimizing the within-class variances in one direction while maximizing the
between-class mean distance in the other direction.

2.2 FORMAL FOUNDATION: MAXIMIZING THE SQUARED BETWEEN-CLASS MEAN DISTANCE
AND MINIMIZING THE WITHIN-CLASS VARIANCE

In this subsection, we establish two theorems along with their respective proof sketches that form
the theoretical basis for our approach. Full proofs for both theorems are available in Appendix [A]

2.2.1 THEOREM 1: MAXIMIZING COVARIANCE FOR MAXIMIZING SQUARED
BETWEEN-CLASS MEAN DISTANCE.

Consider two sets of 1D data points representing two classes, denoted as C'; and C5, each consisting
of n samples. The data in C; and C; follow the same underlying distribution centered around their
respective means, my and my. Here, Cy can be understood as a reflection of C; with the axis of
reflection positioned at the overall mean, denoted as m. Furthermore, the variances of C and Cs,
are equal, denoted as s? = s3 = s2, and the combined data from C; and C5 has a variance of s2.
The between-class mean distance, denoted as d, represents the separation between the means of C

and C5. We establish the following relationship:

d2
2 __
ST aa o )

2
where A = ‘Z—;” signifies a constant between 0 and 1 that reflects the distribution of the original data
when C; and C are considered as projected representations.

Proof sketch:

1. Consider two classes C; and Cy with identical underlying distributions.

2. Simplify the expression for the combined data variance s° to s2, + 1d2.

3. Apply [the Variance Ratio Preservation Theorem for Projection onto a Vector] to relate s2,
and s? through ).

4. Simplify the expression to obtain s? = 4(%:\).

5. Conclude that maximizing s? maximizes d2, fulfilling the theorem’s objective.
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2.2.2 THEOREM 2: MAXIMIZING HESSIAN FOR MINIMIZING WITHIN-CLASS VARIANCE

Let 0 be a parameter of the model, and Hy denote the Hessian of the binary cross-entropy loss func-
tion with respect to . We define the within-class variance as the variance of a posterior distribution
pe(@ | ¢;), which represents the distribution of the parameter 6 given a class ¢;. We denote the
variance of this posterior distribution as aﬁost. We establish the following relationship:

1

Hy = “4)

5 -
Opost

Proof sketch:

1. Consider the parameter 6 and the Hessian Hy of the binary cross-entropy loss function.
Define the within-class variance agos[ as the variance of the posterior distribution py(6 | ¢;).

2. Approximate the Hessian Hy as the Fisher information using the expectation of the squared
gradient of the log-likelihood (Barshan et al.,2020).

3. Assume a known normal likelihood distribution for py(c; | #) with mean p and standard
deviation o. Compute the Fisher information as 0—12

4. Considering a uniform prior distribution p(6) within the plausible range of § and the evi-
dence p(c;) as a known constant, apply Bayes’ formula to derive that o2, = 02,

post
5. Derive Hg = ——.

post

2

6. Conclude that maximizing Hy minimizes op.

achieving the theorem’s objective.

[Theorem T|and [Theorem 2| respectively suggest that maximizing the variance of projected data and
the Hessian effectively maximize squared between-class mean distance and minimize within-class
variances. These theorems provide the theoretical foundation for the eigenanalysis of the covariance
and Hessian matrices, crucial steps in our proposed method for improving class separability based
on the two LDA criteria.

3 COMPLEXITY ANALYSIS

In assessing the computational demands of our proposed method, we employ big O notation to
describe the worst-case time complexity. The overall time complexity of our method encompasses
several tasks, including covariance and Hessian matrix computations (O(N - F2)), eigenanalysis
of these matrices (O(F3)), selection of eigenvectors corresponding to leading eigenvalues (O(1)),
and data projection into the combined space (O(N - F)). Here, N signifies the number of data
points in the training set, while F’ represents the number of features per data point. It is essential to
note that this analysis considers our method’s computational demands under the assumption that a
pre-existing DNN is in place.

Comparatively, the time complexity of LDA is primarily influenced by the calculation of both
within-class and between-class scatter matrices (O(N - F'?)) and subsequent eigenanalysis (O(F?)).
In both methods, the dominant complexity factor is either the matrix computations (O(N - F'2)) when
there are more examples than features or the eigenanalysis step (O(F?)) otherwise.

This analysis reveals that our proposed method exhibits a comparable computational profile to the
method under improvement. Therefore, our approach offers enhanced class separability and inter-
pretability without significantly increasing computational demands, making it a practical choice for
real-world applications.

4 EXPERIMENT

4.1 ASSESSED DIMENSIONALITY REDUCTION TECHNIQUES

In our evaluation, we compare nine distinct dimensionality reduction and data projection techniques,
each offering unique insights: principal component analysis (PCA), kernel PCA (KPCA) (Scholkopf
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et al.l [1997), Hessian, uniform manifold approximation and projection (UMAP) (MclInnes et al.,
2018)), locally linear embedding (LLE) (Roweis & Saul, 2000), linear optimal low-rank projection
(LOL) (Vogelstein et al., |2021)), linear discriminant analysis (LDA), kernel discriminant analysis
(KDA) (Mika et al. [1999), and the proposed approach. PCA involves projection onto the primary
two covariance eigenvectors, i.e., it applies KPCA with a linear kernel. Similarly, LDA employs
KDA with a linear kernel. The Hessian method projects data onto the leading two Hessian eigen-
vectors. Notably, for both KPCA and KDA, the best kernels (linear, polynomial, RBF, sigmoid, or
cosine similarity) and their associated parameters (kernel coefficient or degree) are determined using
grid search tailored to each dataset. The proposed method combines the most relevant eigenvectors
derived from both the covariance and Hessian matrices, as specified by Eqs(T] [2).

4.2 CLASS SEPARABILITY ASSESSMENT VIA LINEAR SVMS

The nine dimensionality reduction methods we assess are designed to transform high-dimensional
data into more manageable 1D or 2D spaces while simultaneously enhancing or preserving class
separability. Linear SVMs enable us to create decision boundaries that are readily visualized in
these 1D or 2D spaces. Thus, we utilize SVMs with a linear kernel to evaluate and visualize the
extent of class separability achieved through the projections.

In addition to the visualization of decision boundaries, we employ a comprehensive set of evalua-
tion metrics to quantify the performance of the dimensionality reduction methods. These metrics
include the F1 score, which measures the balance between precision and recall, the Area Under the
Receiver Operating Characteristic Curve (AUC ROC), which assesses the model’s ability to distin-
guish between positive and negative classes, and Cohen’s kappa, a statistic that gauges the agreement
between the predicted and actual class labels.

4.3 DATASETS

We will conduct our assessment of the nine distinct methods on the following datasets:

Widely recognized benchmark datasets. We evaluate our approach using three widely recog-
nized benchmark datasets for binary classification: the Wisconsin breast cancer dataset (Street et al.}
1993)), the heart disease dataset (Detrano et al.,|1989), and the Pima Indians diabetes dataset (Smith
et al., [1988)). Prior to applying various dimensionality reduction methods, we enact standard data
preprocessing techniques on the original datasets, including handling of missing data, one-hot en-
coding for categorical variables, and data normalization.

Neural spike train dataset. A spike train is a sequence of action potentials (spikes) emitted by a
neuron over time. The neural spike train dataset used in this research consists of recordings from
rat’s neurons during drug application from a multi-electrode array (Tsai et al., [2015; [Heuschkel
et al., 2002). The data, comprising 221 records, represents the final dataset after all preprocessing
steps suggested by (Lazarevich et al.,2023). Each record contains 15 time-series features extracted
using the ‘tsfresh® package (Christ et al.,2018) and 1 class attribute indicating whether the neuron is
non-responsive (0) or responsive (1). Exploratory data analysis revealed an imbalance in the dataset,
with 190 non-responsive neurons (86%) and 31 responsive neurons (14%).

To provide an unbiased assessment of our method’s performance, we conduct extensive experiments
on the datasets with 10-fold cross-validation with the exception of the neural spike train dataset.
Due to the limited number of positive cases in the neural spike train dataset, we performed 5-fold
cross-validation to ensure a reasonable sample size for validation.

4.4 RESULTS

The results depicted in Figure|l| which pertain to the WBCD dataset, along with the corresponding
findings presented in Appendix [B|for the other three datasets, collectively reaffirm the consistency
and robustness of our proposed approach across diverse datasets. The heatmaps shown in Figure[T(b)
and Appendix [Bf consistently demonstrate the reduction in squared between-class mean distance as
more covariance eigenvectors are incorporated, aligning with our established theoretical framework
(Eq(@)). Furthermore, Figure[T[c) and its counterparts in the appendix reveal the ascending order
of within-class variances, in sync with the descending order of the Hessian, supporting our theo-
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Figure 1: Projection of the Wisconsin breast cancer data into different combined spaces of the
covariance and Hessian eigenvectors. (a) Nine selected projection plots, each representing data
projected onto a distinct space created by combining the first three covariance and first three Hessian
eigenvectors. (b) Heatmap showing the squared between-class mean distance for projections onto
varying combinations of covariance and Hessian eigenvectors. The heatmap demonstrates that the
values remain constant vertically across different Hessian eigenvectors, while exhibiting a notice-
able descending order horizontally, aligning with the descending order of the variance. These results
essentially concretize our formal premise, empirically validating the linear relationship described in
Eq(3) between the variance and the squared between-class mean distance. (¢) Heatmap showing the
sum of within-class variances for projections onto different combinations of covariance and Hessian
eigenvectors. The values remain constant horizontally across different covariance eigenvectors but
exhibit a clear ascending order vertically, aligning with the descending order of the Hessian. These
empirical results validate the negative correlation between the Hessian and the within-class variance
described in Eq@) within the framework of our theoretical foundation. (d) Heatmap displaying the
LDA ratio, representing the ratio between the squared between-class mean distances presented in
(b) and the corresponding within-class variances shown in (c). The highest LDA ratio is observed
for the combination of the first Hessian eigenvector with the first covariance eigenvector. Notably,
a general descending pattern is observed both horizontally and vertically across different combi-
nations, indicating that both covariance eigenanalysis (represented along the horizontal direction)
and Hessian eigenanalysis (represented along the vertical direction) equally contribute to the class
separability (represented by the LDA ratio).
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retical foundation (Eq@@)). Furthermore, Figure [T{d) and its counterparts illustrate the LDA ratio,
emphasizing the equal contributions of covariance and Hessian eigenanalyses to class separability.
Importantly, the results also imply that the highest LDA ratio is observed for the combination of
the first Hessian eigenvector with the first covariance eigenvector. This observation underscores the
significance of projecting data onto the combined space of these primary eigenvectors (as outlined
in Egs (1} 2)), forming the core of our proposed method. These consistent empirical results across
multiple datasets not only validate our theoretical premises but also endorse the effectiveness of our
proposed method in optimizing class separability.

The evaluation results in Figure 2] compare the performance of different data projection methods,
including PCA, KPCA, Hessian, UMAP, LLE, LOL, LDA, KDA, and the proposed method, using 5-
or 10-fold cross-validation. It is essential to note that we introduced nonlinearity to the comparative
analysis by utilizing distinct kernels determined through grid search in KPCA and KDA for each
dataset. Notably, our proposed method consistently outperforms all others, securing the highest
scores across all datasets and evaluation metrics. This consistent superiority of our approach implies
its potential as a valuable tool for improving classification performance in various domains, further
highlighting its promise as a robust and effective method for dimensionality reduction and data
projection.

10
0.75

0.50
0.5

0.25

0.0 0.00

Avg-Fl-score  Avg-ROC-AUC Avg-Cohen's-k Avg-Fl-score  Avg-ROC-AUC Avg-Cohen's-K

(@ (b)

Avg-Fl-score  Avg-ROC-AUC Avg-Cohen's-k Avg-Fl-score  Avg-ROC-AUC Avg-Cohen's-k
(9 (d)
mmm PCA BN Hessian W LLE maw LDA Proposed

wm KPCA mmm UMAP B LOL  mm KDA

Figure 2: Performance comparison of data projection methods using cross-validation on four
distinct datasets: (a) WBCD, (b) heart disease, (c) neural spike train, and (d) Pima Indians
diabetes datasets. This figure presents the average F1 score, ROC AUC, and Cohen’s Kappa values
obtained through 5- or 10-fold cross-validation for nine data projection techniques: PCA, KPCA
(cosine similarity for WBCD, polynomial kernel with degree=3 for Heart, linear kernel for Neural,
cosine similarity for Pima), Hessian, UMAP, LLE, LOL, LDA, KDA (cosine similarity for WBCD,
RBF kernel with coefficient=0.01 for Heart, sigmoid kernel with coefficient=2 for Neural, cosine
similarity for Pima), and the proposed method. Notably, the proposed method consistently outper-
forms all other techniques, achieving the highest scores across all evaluation metrics.

5 DISCUSSION

Our work provides a compelling theoretical insight and a powerful, practical method, demonstrating
the strength of simplicity in achieving remarkable results. Firstly, we provide a profound theoretical
insight, revealing a subtle yet powerful relationship between covariance and Hessian matrices. Our
formal proof seamlessly links covariance eigenanalysis with the first LDA criterion while Hessian
eigenanalysis with the second one. This unification under LDA criteria offers a fresh and intuitive
perspective on their interplay. Secondly, capitalizing on this theoretical elegance and simplicity,
we introduce a novel method that consistently outperforms established techniques across diverse
datasets. The unexpected efficacy of our method, rooted in the straightforward relationship between
covariance, Hessian, and LDA, showcases the effectiveness of simplicity in addressing complex
challenges.
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The proposed method outperforms PCA and the Hessian method by comprehensively addressing
both LDA criteria—maximizing between-class mean distance and minimizing within-class vari-
ances. Unlike PCA, which predominantly focuses on the former and lacks the guidance of class
labels, our supervised approach considers both aspects. Despite the computational efficiency associ-
ated with unsupervised dimension reduction methods (Shen et al.|[2014)), our approach demonstrates
the added value of incorporating class labels. This key insight also underlies our outperformance
of KPCA, which, despite operating on non-linearities, remains essentially unsupervised in nature.
While the Hessian method concentrates on minimizing within-class variances, our method optimally
combines the strengths of PCA and the Hessian, effectively identifying feature space directions that
enhance both between-class separation and within-class compactness.

While the proposed method employs the LDA criteria, it surpasses LDA itself in all cases. Figure 3]
visually demonstrates the advantages of the proposed method over LDA. LDA is limited to a one-
dimensional projection for binary classification problems|Ye et al.|(2004), where it seeks to identify
a single direction that simultaneously satisfies the two criteria. Conversely, the proposed method
splits the task of meeting the criteria into two directions. The utilization of higher dimensionality in
the proposed method increases the likelihood of discovering class separability, aligning with Cover’s
theorem (Cover, |1965). KDA, operating on a non-linear mode, outperforms LDA in all cases, yet it
remains fundamentally confined to one dimension, restricting its effectiveness in capturing intricate
class-specific patterns compared to our proposed method.
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Figure 3: Projection and classification results of UMAP, LDA, and the proposed method with
SVM on the Wisconsin breast cancer test data. This figure showcases the test data projected by
three distinct data projection methods, each separated by its corresponding SVM hyperplane trained
using the WBCD training data. This figure highlights the effectiveness of linear SVM in facilitating
class separability visualization and interpretability of the model.

Our method outperforms LOL by leveraging non-linear modes of operation, providing a distinct
advantage in capturing complex patterns beyond the linear capabilities of LOL. UMAP exhibits
good class separability with the widest margin as shown in Figure 3] However, it is important to
note that UMAP is not inherently a classification technique, and thus, it fails to generalize well
to new data. Similar limitations apply to LLE, which, although effective in revealing local data
structures, lacks the inherent capability for classification and generalization.

Figure[3|also underscores the simplicity and interpretability of linear SVMs as basic linear classifiers
in dealing with low-dimensional data. The figure shows clear visualizations of the SVM’s decision
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boundaries and separation achieved through the various dimensionality reduction methods. Notably,
our proposed method combined with linear SVMs offers valuable insights into the decision-making
process within the underlying DNN. Leveraging the transparency and interpretability provided by
SVMs to address the inherent opacity of DNNs, our method bridges the gap between complex DNNs
and comprehensible, highly accurate decision processes within a 2D space.

The proposed method shows promising performance, but it has certain limitations. The applicability
of our approach is based on the premise that a DNN model is already in place. Our method operates
on top of the underlying DNN. Any shortcomings or biases in the DNN’s performance will naturally
reflect in the results obtained from our approach. The limitation of our method lies in its dependence
on the quality and accuracy of the underlying DNN.

An important trajectory for future work involves investigating the extension of our methodology to
accommodate various loss functions beyond binary cross-entropy. The mathematical derivation in
our current work relies on the elegant relationship between binary cross-entropy loss and within-
class variances. Exploring the adaptability of our method to different loss functions will contribute
to a more comprehensive understanding of the method’s versatility, but requires careful scrutiny to
establish analogous connections. Simultaneously, we recognize the need to extend our methodology
from binary to multiclass classification. The binary classification focus in this work stems from
foundational aspects guiding our formal proof, which is designed around binary assumptions to
facilitate a streamlined and elegant derivation process. In particular, the use of binary cross-entropy
as the loss function and the utilization of a linear SVM for evaluation inherently adhere to binary
classification. Moving forward, careful exploration is needed to adapt our approach to multiclass
scenarios to ensure its applicability and effectiveness across a broader range of classification tasks.

6 CONCLUSION

Our paper presents a multifaceted contribution to the realms of binary classification and dimension-
ality reduction. We offer a rigorous formal proof, showcasing how our novel method, grounded
in the eigenanalysis of covariance and Hessian matrices, systematically enhances class separabil-
ity, drawing inspiration from LDA criteria. This theoretical foundation finds strong empirical sup-
port through comprehensive experiments across an array of datasets. In these experiments, our
approach consistently outperforms established techniques, demonstrating its robustness and appli-
cability. Moreover, our approach shares a similar complexity profile with the traditional method,
ensuring its practical utility in real-world scenarios. Additionally, through the integration of our
method with linear SVMs, we improve the explainability of the intricate decision-making processes
inherent to DNNs, addressing their typical lack of transparency and facilitating enhanced model
interpretability.

7 REPRODUCIBILITY STATEMENT

The detailed proofs for the theoretical foundations, emphasizing the maximization of between-class
mean distance and minimization of within-class variance, are provided in Appendix [A] The com-
plete source code for our experiments is accessible through an anonymous Google account at the
following links:

1. WBCD dataset experiment: Link to Colab notebook

2. Heart disease dataset experiment: Link to Colab notebook

3. Neural spike train dataset experiment: Link to Colab notebook

4. Pima Indians diabetes dataset experiment: Link to Colab notebook
These notebooks contain the complete source code, facilitating easy reproduction and comprehen-
sion of our results. Additionally, the datasets used in the experiments are available from the same

Google Drive account, further enhancing the accessibility and reproducibility of our research find-
ings.


https://colab.research.google.com/drive/19Wny8Mvb40mK8KEt33uHjM9HQt-IZYod?usp=sharing
https://colab.research.google.com/drive/1TCo5L7W10OsWNL8oLpjQTBNv4hkft_62?usp=sharing
https://colab.research.google.com/drive/1QFR0KbzteLo-XXAt12xYB3kL3FSv6u6_?usp=sharing
https://colab.research.google.com/drive/1opbwsNihkZRIcaM1AVukR5IqdG41ijmC?usp=sharing
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A FULL PROOFS: MAXIMIZING THE SQUARED BETWEEN-CLASS MEAN
DISTANCE AND MINIMIZING THE WITHIN-CLASS VARIANCE

A.1 PROOF OF THEOREM 1 - MAXIMIZING COVARIANCE FOR MAXIMIZING SQUARED
BETWEEN-CLASS MEAN DISTANCE

To prove that maximizing the variance will maximize the squared between-class mean distance, we
start by considering two sets of 1D data points representing two classes, denoted as C; and C5, each
consisting of n samples. The data in C; and C5 follow the same underlying distribution centered
around their respective means, mj and ms. In other words, Cs can be understood as a reflection of
C1 with the axis of reflection positioned at the overall mean, denoted as m, effectively giving rise to
a shifted configuration. Specifically, the indices for C; range from 1 to n, while the indices for Co
range from n + 1 to 2n.

For any pair of data points z; and x;, where 1 < i < nandn + 1 < j < 2n, the difference
between x; and m; is equal to the difference between z; and my, i.e., z; — m1 = x; — mg. This
relationship ensures that the shifted copies of C; and C'; maintain the same relative distances from
their respective means, preserving the identical distribution in both sets. Furthermore, the variances
of C; and Cs, are equal, denoted as s7 = s3 = s2, and the combined data from C; and C5 has a

variance of s2.

The between-class mean distance, denoted as d, represents the separation between the means of Cy
and C5. We can express the means as m; = m — g and my = m+ g, where m is effectively located
in the middle, equidistant from both m; and ms.

The variance of the combined data is given by:

To simplify the expression, we substitute m = mq + %d and m = mg — %d. This yields:
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The property of the identical distribution in both sets suggests » 7" ., (z; —m2) —
S, (wi —mq) = 0. So, we get:
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Now, considering the data points representing the projected data onto an (Eigen)vector, we can
utilize [the Variance Ratio Preservation Theorem for Projection onto a Vector, which establishes the
relationship between s* and sZ, as follows:

2 _ 2
Sy =A-S

where )\ is a constant between O and 1, determined by the distribution of the original data being
projected.

Substituting this equation into the previous expression, we have:
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1
2 2 2
=A-s°+ —d".
s s

Let’s rearrange the equation by moving 2\ - s2 to the left side:

1
2 2 2
—A-s7=-d".
s 5 1
Combining like terms:

1
1-)\) s =-d>
( )87 =7

To solve for s2, divide both sides by (1 — \):

where r = 1d = m — my = mg — m.

We observe that the sign of 52 and d? will be the same since the denominator 1 — ) is always positive
(as 0 < A\ < 1). Therefore, s? is linearly proportional to d2.

Hence, maximizing the variance (s2) will maximize the squared between-class mean distance (d?)
as desired.

A.2 PROOF OF THEOREM 2 - MAXIMIZING HESSTAN FOR MINIMIZING WITHIN-CLASS
VARIANCE

We aim to prove that maximizing the Hessian will minimize the within-class variance. Let 6 denote
a parameter of the classifier.

We define the within-class variance as the variance of a posterior distribution pg(f | ¢;), which
represents the distribution of the parameter 6 given a class ¢;. We denote the variance of this posterior

. . . 2
distribution as o, ;.

Recall that our Hessian is given by:

Hy = — [V logpg(ci | 0)]

However, according to|Barshan et al.| (2020), we can approximate the Hessian using Fisher informa-
tion:

Hy ~ By, [(Vologps(ci | 0))’]

Assuming that a known normal distribution underlies the likelihood py(c; | 6), i.e.,

where 1 and ¢ are known constants, we can compute the Hessian as follows:
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Now, let us assume that the evidence p(c;) is a known constant p. We also assume that the prior
distribution p(#) follows a uniform distribution within the plausible range of 6, which is bounded by
a known minimum value 6,,;;, and maximum value 6,,,,. Formally:

P (9) W> if emin S o S emax
0 = max — Umin

0, otherwise

Based on Bayes’ formula and the given assumptions, the posterior distribution within the plausible
range of 6 is:

\_ palci | 0)-pe(0)
po(® | e:) = plci)

1 [N < (6 — /«L)Q)
= . X . 7
p(emax - emin) V 2770'2 P 202

This implies that the posterior distribution pg(6 | ¢;) is a normal distribution with mean p and
variance o2

po(0 ] i) ~ N(p, %)

2

Therefore, the within-class variance o,

. of the posterior distribution is equal to o2,

Combining the previous result with the Hessian calculation, we can conclude that:

1 1
Hy=—5=—
o Uposl
Hence, maximizing the Hessian matrix (Hg) will minimize the within-class variances (agost) as de-

sired.

A.3 SUPPORTING THEOREMS
A.3.1 DISTANCE PRESERVATION THEOREM FOR PROJECTION ONTO A VECTOR

In a 2-dimensional space with a first axis and a second axis, consider a set of points located solely on
the first axis, denoted by (z;,0), where x; represents the position of a point along the first axis. Let
v = (v1,v9) be a unit vector, with vy and vy as its components. The projection operation maps each
point (x;,0) to its corresponding scalar projection y; onto the vector v. The Distance Preservation
Theorem states that the projection onto v preserves the ratio of distances between the points on the
first axis.
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Proof: The scalar projection y; of a point (z;,0) onto the vector v is given by:

i70 . ’i70 .
yz:(x ) v _ (@0) Y giv 400 =10
vl 1

This implies that the projection of each point (z;, 0) from the first axis onto the vector v is obtained
by multiplying the coordinate z; by the first component v; of v.

Now, considering the distances between two points (z;,0) and (x;,0) on the first axis and their
corresponding projections y; and y; onto the vector v, we define the distance between (z;,0) and
(x,0) as:

d1 = |.TZ — l‘j|

Similarly, the distance between y; and y; is defined as:

do = |yi — y;l

Substituting the expressions for y; and y; derived earlier, we have:

d2:|$i"U1—J)j"U1|:|Ul|'|l‘i—l‘j

It can be observed that the ratio of the distances is constant:

do  |vi] - |z — a4

= |vy]

di | —

This shows that the ratio of distances between the points on the first axis is preserved in the projection
onto v.

Therefore, the Distance Preservation Theorem for Projection onto a Vector concludes that the projec-
tion operation onto the vector v = (v1, v2) in a 2-dimensional space preserves the ratio of distances
between the points on the first axis.

A.3.2 VARIANCE PRESERVATION THEOREM FOR PROJECTION ONTO A VECTOR

Consider an arbitrary subset of points located on the first axis, denoted by X = {x1,22,..., 25},
with a mean yx and variance 0% . These points are projected onto the vector v = (vq,v2) using the
projection operation defined earlier.

The projected subset of points on v is denoted by Y = {y1,¥a, ..., yn}, where each y; represents
the projection of x; onto v. The variance of Y, denoted as 0%, is a measure of the spread of the
projected points around its mean fy .

The Variance Preservation Theorem states that the ratio of variances between the projected subset Y’
and the original subset X is equal to the square of the first component v; of the projection vector v.

Mathematically, this can be expressed as:

2
Oy _ 2
2 — U
Ox

Proof: The variance of Y can be computed as:

1 n
U% = Z(yi —MY)2
i=1

n—1

Similarly, the variance of X can be computed as:
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n

1
2 _ L 2
% =g L= )

According to|the Distance Preservation Theorem for Projection onto a Vector] the squared distances
between the points on the first axis and their projections can be related as:

(i — py)? = lyi — py > = (Jor] - |25 — px|)® = o7 - (23 — px)?

Substituting this expression into the variance of Y, we have:

ot =

1 < 1
D vt (wi - px)® =07 > (@i —px)? =vi-ox
=1 )

n—1+4%
Therefore, we have shown that:

0% =2 0%
Hence, the ratio of variances between the projected subset Y and the original subset X is given by
v%, as stated in the Variance Preservation Theorem for Projection onto a Vector.

A.3.3 VARIANCE RATIO PRESERVATION THEOREM FOR PROJECTION ONTO A VECTOR

Consider an arbitrary subset of points located on the first axis, denoted by X = {z1,z2,..., 2},
with variances O'g(l and 03(2 for subsets X; and Xo, respectively. These points are projected onto

the vector v = (v1, v2) using the projection operation defined earlier.

The projected subsets of points on v are denoted by Y1 = {y1,%2,...,yn} and Yo =
{21, 22,...,2n}, where each y; and z; represents the projection of x; onto v. The variances of
Y] and Y5, denoted as 032/1 and a%,Q respectively, measure the spread of the projected points around
their respective means.

The Variance Ratio Preservation Theorem states that the ratio of variances between the projected
subsets Y5 and Y] is equal to the ratio of variances between the original subsets X5 and X;.

Mathematically, this can be expressed as:

2 2
O'Y2 . 0'X2
2 T 2
O'YI UXl

Proof: By [the Variance Preservation Theorem for Projection onto a Vector, we know that the
variance of the projected subset Y can be expressed as:

2 _ .2 2
Oy =V; - 0x

Applying this theorem to Y7 and X, we have:

2 2 2

JYl :Ul 'Jxl

Similarly, applying the theorem to Y5 and X5, we have:
2. 2

2 _
UYz_vl'UXQ

Now, we can take the ratio of these variances:
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2 2 2 2

Oy, Vi '0x, OXx,
2 — .2..2 — =2
0y, Ui 0%, Ox,

Therefore, we have shown that the ratio of variances between the projected subsets Y, and Y; is
equal to the ratio of variances between the original subsets X» and X, as required.
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B ADDITIONAL DATASET RESULTS
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Figure 4: Projection of the heart disease data into different combined spaces of the covariance
and Hessian eigenvectors.

20



Under review as a conference paper at ICLR 2024

Covl Cov4

Cov7 Cov10 Covl13

(©

(d)

-4 3 -4 3 -4 3 o
o et 3 ® c
. . . ©
% "._..-:3 et . 6 e i A 3'0_‘§
a ' o ok : ©
= W" ’ m . T 25¢
St Tes -2 0 ]
B E
: * 20w
T 3.k, - Pz a
Y IRREE Y niad, ® 0.3145 | 0.0034 | 0.1093 | 0.0408 S
AR S R 3 15 ¢
IR 5. 4 o @
] DA : . -2 % Q
0 102
= [}
e T S, % y o 3o ﬁ
G| g UL s B v -05¢
iRk - 2 s K 1 o ) 3
LB e g R . * o
v L e -2 W n
Covl Cov7 Covl3 Covl Cov4 Cov7 Cov10 Cov13
(@) (b)
2.4
s T
] 1.0053 q o 0.3128 | 0.0033 | 0.1087 | 0.0406 3.0
L 2.2 ¢
=
T 8 T 25
2 205 @ 0.1821 | 0.0019 | 0.0633 | 0.0236
IS > B
a 202
T 188 T =
] U B 115184 | 0.1422 | 0.0015 | 0.0494 | 0.0184 2
~ 16 ™ 158
6F a
I = I
] 3} 14845 | 0.1390 | 0.0015 | 0.0483 | 0.0180 1.0
= -1.4 ‘6 =
(= o
T £ = -0.5
] 124 ¢ 13872 | 0.1299 | 0.0014 | 0.0452 | 0.0169
=
w w
Covl Cov4 Cov7 Covl0 Covl3

Figure 5: Projection of the neural spike train data into different combined spaces of the covari-
ance and Hessian eigenvectors.
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Figure 6: Projection of the Pima Indians diabetes data into different combined spaces of the
covariance and Hessian eigenvectors. (a) Nine selected projection plots, each representing data
projected onto a distinct space created by combining the first three covariance and first three Hessian
eigenvectors. (b) Heatmap showing the squared between-class mean distance for projections onto
varying combinations of covariance and Hessian eigenvectors. (¢) Heatmap showing the sum of
within-class variances for projections onto different combinations of covariance and Hessian eigen-
vectors. (d) Heatmap displaying the LDA ratio, representing the ratio between the squared between-
class mean distances presented in (b) and the corresponding within-class variances shown in (c).
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