
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Bonsai: Gradient-free Graph Distillation for
Node Classification

Anonymous authors
Paper under double-blind review

Abstract
Graph distillation has emerged as a promising avenue to enable scalable training
of Gnns by compressing the training dataset while preserving essential graph
characteristics. Our study uncovers significant shortcomings in current graph
distillation techniques. First, the majority of the algorithms paradoxically require
training on the full dataset to perform distillation. Second, due to their gradient-
emulating approach, these methods require fresh distillation for any change in
hyper-parameters or Gnn architecture, limiting their flexibility and reusability. To
address these challenges, we present Bonsai, a novel graph distillation method
empowered by the observation that computation trees form the fundamental
processing units of message-passing Gnns. Bonsai distills datasets by encoding
a careful selection of exemplar trees that maximize the representation of all
computation trees in the training set. This unique approach imparts Bonsai
as the first linear-time, model-agnostic graph distillation algorithm for node
classification that outperforms existing baselines across 6 real-world datasets on
accuracy, while being 22 times faster on average. Bonsai is grounded in rigorous
mathematical guarantees on the adopted approximation strategies making it robust
to Gnn architectures, datasets, and parameters.

1 Introduction and Related Works
Graph Neural Networks (Gnns) have shown remarkable success in various predictive tasks on graph
data (Veličković et al., 2018; Kipf & Welling, 2017; Hamilton et al., 2017). However, real world
graphs often contain millions of nodes and edges making the training pipeline slow and computa-
tionally demanding (Hu et al., 2021). This limitation hinders their adoption in resource-constrained
environments (Miao et al., 2021) and applications dealing with massive datasets (Hu et al., 2021).
Graph distillation (also called condensation) has emerged as a promising way to bypass this bottle-
neck (Jin et al., 2021; Liu et al., 2024a;b; Zheng et al., 2023). The objective in graph distillation
is to synthesize a significantly smaller distilled data set that retains the essential information of the
original data. By training Gnns on these distilled datasets, we can achieve comparable performance
while reducing computational overhead and storage costs. This makes Gnns more accessible and
practical for a wider range of applications, including those with limited computational resources and
large-scale datasets. In this work, we study the problem of graph distillation for node classification.

1.1 Existing works and their Limitations

Table 1 presents existing graph distillation algorithms proposed for node classification and their char-
acterization across various dimensions. We omit listing DosCond (Jin et al., 2022), Mirage (Gupta
et al., 2024), and KiDD (Xu et al., 2023) in Table 1 since they are designed for graph classification,
whereas we focus on node classification. While both Mirage and the proposed algorithm Bonsai
share the paradigm of distillation through computation trees, the algorithms are entirely different.
Due to relying on tree isomorphisms, Mirage is limited to graphs where nodes are annotated with
a single discrete label. Hence, it does not work on general purpose graphs where nodes are charac-
terized through feature vectors. For a more detailed discussion on this limitation and how Bonsai
overcomes them, we refer to App. A.1.

Table 1 presents the strengths and limitations of existing distillation methods for node classification.
• Full Gnn training is a pre-requisite: The fundamental requirement of data distillation is that it
should require less computational resources and time than training on the full dataset. However, this
basic premise is violated by majority of the techniques (See Table 1) since they adopt a design where
training the target Gnn on the full trainset is a prerequisite to distillation. These algorithms adopt a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Characterization of existing graph distillation algorithms. Cells shaded in Red indicate the
presence of an undesirable property, while Green represents their absence.

Algorithm Requires training
Gnn on full-dataset

Distills to a fully-
connected graph¹

Model-specific
distillation

GCond (Jin et al., 2021) X X X
Sgdd (Yang et al., 2023) X X X
Sfgc (Zheng et al., 2023) X X X
GC-Sntk (Wang et al., 2024) X 7 7
Exgc (Fang et al., 2024) X X X
Geom (Zhang et al., 2024) X 7 X
Gdem (Liu et al., 2024a) 7 X 7
Gcsr (Liu et al., 2024b) X X X
Bonsai 7 7 7

gradient-dependent optimization framework. They first train a Gnn on the full trainset and extract
gradients of model parameters over epochs (Sfgc and Gcsr require training on the full dataset up to
200 and 100 times, respectively). The distillation process is formulated as an optimization problem
to create a distilled dataset that replicates the gradient trajectory observed in the original training
set. This need for full dataset training for distillation contradicts its fundamental premise, which we
address in our work.

Table 2: We present the number of
edges in the distilled graphs produced by
GCond (Jin et al., 2021) and Gdem (Liu
et al., 2024a) and compare them to the
full dataset. Red cells indicate cases
where the distilled graph have more edges
than the full dataset. The indicated
node ratios are taken from the values
used in GCond. For GCond, we re-
port the number of edges after sparsifi-
cation as reported in their github repos-
itory at https://github.com/ChandlerBang/
GCond/tree/main/saved_ours .

Dataset Distilled Full Dataset
(rn or node ratio) GCond GDEM #edges

Cora (5.2%) 15,074 19,600 10,556
Citeseer (3.6%) 10,996 14,400 9,104
Pubmed (0.3%) 3,557 3,600 88,648
Flickr (1%) 23,556 795,664 899,756
Ogbn-arxiv (0.5%) 15,110 715,716 2,315,598
Reddit (0.2%) 5,756 216,225 23,213,838

• Distilling to a fully-connected graph: In a
message-passing Gnn, the computation cost of each
forward pass is O(|E|), where E denotes the set of
edges. Consequently, the computational effectiveness
of graph distillation is primarily determined by the re-
duction in edge count between the original and dis-
tilled graphs, rather than node count alone. How-
ever, current graph distillation algorithms (see Ta-
ble 1) quantify the condensation ratio based on the
node count. Specifically, given a compression ratio
rn, it synthesizes a weighted, fully-connected dense
adjacency matrix for the distilled graph of the size
|V|
rn

× |V|
rn

, where V denotes the node set. Some of
these algorithms sparsify by removing edges with edge
weights below a certain threshold. This threshold is
chosen by studying the drop in accuracy at various
sparsity levels and choosing a point providing good
accuracy-efficiency trade-off. Consequently, the spar-
sification process itself requires training on the fully
connected initial distilled graph. This design, which is
inconsistent with the computation structure of Gnns,
can lead to a distilled graph with small reduction in edge count and, in some cases, may even result
in a graph with more edges than the original dataset (See Table 2).
• Model-specific distillation: Gradients of model weights are influenced by the specific Gnn
architecture and hyper-parameters (e.g., number of layers, hidden dimensions, etc.). Consequently,
any architectural change, such as switching from a Gcn (Kipf &Welling, 2017) to a Gat (Veličković
et al., 2018), or hyper-parameter adjustments, necessitates a new round of distillation.

1.2 Contributions

To address the limitations outlined in Table 1, we present Bonsai².

• Gradient-free distillation: Instead of replicating the gradient trajectory, Bonsai emulates the
distribution of input data processed by message-passing Gnns. By shifting the computation task
to the pre-learning phase, Bonsai achieves independence from hyper-parameters and model ar-
chitectures as long as it adheres to a message-passing Gnn framework like Gat (Veličković et al.,
2018), Gcn (Kipf & Welling, 2017), GraphSage (Hamilton et al., 2017), Gin (Xu et al., 2019),

¹Some algorithms sparsify the fully-connected graph based on edge weights. But this sparsification process
requires training on the fully connected graph itself to identify the pruning threshold.

²Inspired by the art of Bonsai, which transforms large trees into miniature forms while preserving their
essence, our graph distillation algorithm gracefully prunes redundant computation trees, creating a distilled
graph that is significantly smaller yet maintains comparable performance.

2

https://github.com/ChandlerBang/GCond/tree/main/saved_ours
https://github.com/ChandlerBang/GCond/tree/main/saved_ours

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

etc. Moreover, this addresses a critical limitation of existing graph distillation algorithms that
necessitates training on the entire training dataset.

• Novel algorithm design: Bonsai is empowered by the observation that any message-passing Gnn
decomposes a graph ofn nodes inton rooted computation trees. Furthermore, topologically similar
computation trees generate similar embeddings regardless of the Gnn being used (Xu et al., 2019;
Togninalli et al., 2019). Bonsai exploits this observation to identify a small subset of diverse
computation trees, called exemplars, that are located in dense regions and thereby representative of
the full set. Hence, the induced subgraph spanned by the exemplars forms an effective distilled set.

• Empirical evaluation: We perform rigorous benchmarking incorporating state-of-the-art graph
distillation algorithms on 6 real-world datasets containing up to hundreds of millions of edges.
Our analysis establishes that Bonsai (1) achieves higher prediction accuracy, (2) produces at least
7-times faster distillation times despite being CPU-bound in contrast to GPU-bound distillation
of baselines, and (3) exhibits superior robustness to Gnn architectures and datasets.

2 Problem Formulation and Preliminaries

Definition 1 (Graph). G = (V, E ,X) denotes a graph over a finite, non-empty node set V and edge
set E = {(u, v) | u, v ∈ V}. X ∈ R|V|×|F | denotes node attributes encoded using F -dimensional
feature vectors. We denote the attributes of node v as xv .

Two graphs are identical if they are isomorphic to each other.
Definition 2 (Graph Isomorphism). Graph G1 is isomorphic to graph G2 if there exists a bijective
mapping between their node sets that preserves both edge connectivity and node features. Specif-
ically, G1 is isomorphic to G2 ⇐⇒ ∃f : V1 → V2 such that: (1) f is a bijection, (2) xv =
xf(v), where v ∈ V1, f(v) ∈ V2 and (3) (u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2.
The problem of graph distillation for node classification is defined as follows.
Problem 1 (Graph Distillation). Given train and validation graphs, Gtr and Gval, respectively, and
a memory budget b in bytes, synthesize a graph Gs from Gtr within the budget, while minimizing the
error gap between Gs and Gtr on the validation set, i.e., minimize {|εGs − εGtr |}. εG represents the
node classification error on the validation set when trained on graph G.

2.1 Computation structure of Gnns

Gnns operate through an iterative process of information exchange between nodes. Let xv ∈ R|F |
represent the initial feature vector of node v ∈ V . The propagation mechanism proceeds as follows:

Initialization: Set h0v = xv,∀v ∈ V.
Message creation: In layer `, collect and aggregate messages for each neighbor.

m`
v(u) = Message`(h`−1u ,h`−1v), ∀u ∈ Nv = {u | (u, v) ∈ E}
m`

v = Aggregate`({{m`
v(u) : u ∈ Nv}})

Update embedding: h`v = Update`(h`−1v ,m`
v)

Figure 1: The figure depicts the construction
of computation trees for nodes v1 and v11 in
the sample graph, at depth L = 2. Node col-
ors indicate their labels. Despite being distant
from each other in the graph and embedded
in non-isomorphic L-hop neighborhoods, v1
and v11 have isomorphic computation trees.

Here, Message`, Aggregate`, and Update` may
be predefined operations (e.g., mean pooling) or
learnable neural networks. {{·}} denotes a multiset.
This process repeats for L layers, yielding the final
node representations hLv .

A computation tree describes how information prop-
agates through the graph during the neural network’s
operation (Xu et al., 2019).
Definition 3 (Computation Tree). Given a graph
G = (V, E ,X), a node v ∈ V and the number of
layers L in the Gnn, the computation tree TL

v rooted
at v is constructed as follows:
• Enumerate all paths of length L (including those
with repeated vertices) starting from v.

• Merge these paths into a tree structure where:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) GCN (b) GIN (c) GAT
Figure 2: Pearson correlations between the L2 distances of node pairs in the Gnn embedding space
and the unsupervised embeddings derived from the WL-kernel, computed for pairs with a specific
distance threshold in the WL-space (x-axis).

1. The root is always v, and
2. Two nodes from different paths are merged if: (i) They are at the same depth in their respective

paths, and (ii) All their ancestors in the paths have already been merged.

Fig. 1 illustrates the idea of a computation tree with an example.

Properties of computation trees: We now highlight two key properties of computation trees,
formally established in Xu et al. (2019), that form the core of our algorithm design. These properties
hold regardless of the underlying message-passing Gnn (Gcn, Gat, GraphSage, Gin, etc.).
Property 1 (Sufficiency). In an L-layered Gnn, the computation tree T L

v is sufficient to compute
node embedding hLv , ∀v ∈ V . Hence, given a graph G = (V, E ,X), we may treat it as a (multi)set
of computation trees T = {T L

v | ∀v ∈ V}. Clearly, |T| = |V|.
Property 2 (Equivalence). If T L

v is isomorphic to T L
u , then hLv = hLu . This follows from the property

that the expressive power of a message-passing Gnn is upper bounded by the Weisfeiler-Lehman
test (1-WL) (Xu et al., 2019). This implies that if the L-hop neighborhoods of two nodes are
indistinguishable by 1-WL, then their representations will be the same. The 1-WL test cannot
differentiate between isomorphic computation trees (Shervashidze et al., 2011).

Motivatedwith the above observations, we explore a relaxation of the Equivalence property: do nodes
rooted at topologically similar computation trees generate similar node embeddings? To explore this
hypothesis, we need a method to quantify the distance between computation trees. Given that the
Equivalence property is derived from the 1-WL test, the Weisfeiler-Lehman kernel (Togninalli et al.,
2019) presents itself as the natural choice for this distance metric.
Definition 4 (Weisfeiler-Lehman (WL) Kernel (Togninalli et al., 2019)). Given graph G =
(V, E ,X), WL-kernel constructs unsupervised embeddings over each node in the graph via a
message-passing aggregation. Like in Gnns, the initial embedding a0v in layer 0 is initialized to
xv . Subsequently, the embeddings in any layer ` is defined as:

a`(v) =
1

2

a`−1v +
1

deg(v)
∑

u∈N (v)

w((v, u)) · a`−1u

 (1)

Here,N (v) denotes the neighbors of v, deg(v) = |N (v)| and w((v, u)) = 1 for unweighted graphs.

By emulating the samemessage-passing framework employed byGnns, the unsupervised embedding
aLv jointly encapsulates the topology and node attributes within the computation tree T L

v . Hence, the
distance between two computation trees T L

v and T L
u is defined to be:

d
(
T L
v , T L

v

)
=

∥∥aLv − aLu
∥∥
2

(2)
While we use the L2 norm, one may use other distance functions over vectors as well. The following
corollary follows from the Eq. 2.
Corollary 1. If T L

v is isomorphic to T L
u , then aLv = aLu .

Hypothesis 1 (Relaxed Equivalence). If T L
v ∼ T L

u , then aLv ∼ aLu , and, therefore hLv ∼ hLu irre-
spective of the specific message-passing architecture employed.

To test our hypothesis, in Fig. 2, we examine all node pairs within a specified distance threshold based
on the Weisfeiler-Lehman (WL) kernel. We then analyze the correlation between their unsupervised

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Database of

Computation Trees
Input Graph (Training Set) (Unsupervised) EmbeddingsWeisfeiler

Lehman Kernel

1. …
2. …
3. …
4. …
5. …

Ranked list of

computation trees

Reverse

k-NN

Coverage

maximization

1. Fetch top-ranked (uncovered) computation trees within allocated budget

2. Construct induced subgraph spanned by nodes in included computation trees

Sparsify using Personalized PageRank.

Iterate till convergence

Distilled

Graph

Figure 3: Pipeline of the proposed algorithm for graph distillation

WL-distance and the L2 distance between their Gnn embeddings (Gcn with 2 layers, trained with
cross-entropy loss). The results reveal a compelling trend: as we decrease the distance threshold,
we observe a strengthening correlation between WL-distance and Gnn embedding distance. This
pattern strongly supports our hypothesis, indicating that computation trees that are proximate in the
WL-space also exhibit proximity in the Gnn embedding space.

3 Bonsai: Proposed Methodology
Table 3: Correlation be-
tweenWL-embedding sim-
ilarities and training gradi-
ents.
Dataset Correlation p-value
Cora 0.74 ≈ 0
Citeseer 0.83 ≈ 0
Pubmed 0.38 0.02
Reddit 0.42 ≈ 0

Fig. 3 presents the pipeline of Bonsai, which is founded on the follow-
ing logical progression:
1. Similar computation trees produce similar Gnn embeddings (Hy-

potheses 1).
2. Similar Gnn embeddings generate comparable outputs, resulting in

similar impacts on the loss function and, consequently, on the gra-
dients Table 3 presents empirical data supporting this relationship,
showing statistically significant correlations (p < 0.05) between
WL-embedding similarities and training gradients.

Building on this reasoning, Bonsai aims to identify a set of b exemplar computation trees that opti-
mally represent the full training set¹. These exemplars are selected based on two critical criteria:

• Representativeness: Each exemplar should be similar to a large number of other computation
trees from the input training set, ensuring it captures common structural patterns. We quantify the
representative power of a computation tree using the idea of reverse k nearest neighbors (§ 3.1).
Specifically, if tree T1 is among the k-NN of tree T2 for a small k, this indicates these two trees
are similar in WL-embedding. Hence, we seek to include those trees in the distilled set that reside
in the k-NN of lots of other trees. Consequently, if these trees are selected, their Gnn embeddings
are also likely similar to their k-NN neighbors from the WL space. As a result, they can effectively
approximate the Gnn embeddings of the filtered-out nodes. Since similar Gnn embeddings lead
to similar gradients (Table 3), we minimize the information lost from nodes that are filtered out.

• Diversity: The set of exemplars should be diverse, maximizing the coverage of different structural
patterns present in the original graph (§ 3.2). To achieve this objective, we develop a greedy tree
selection algorithm (Alg. 1), which begins with the reverse k-NN set and iteratively selects the
computation tree that appears in the k-NN sets of the maximum number of currently uncovered
trees. This approach ensures two key properties:
1. It systematically captures trees that are centrally located within the graph’s embedding space.
2. It progressively selects trees that provide maximum coverage of the remaining, yet-unselected

computation trees.

By prioritizing trees with the highest marginal impact on uncovered trees, our method naturally
creates a diverse subset that comprehensively represents the original graph’s structural and com-
putational characteristics. The induced subgraph spanned by these exemplar trees forms the initial

¹We overload the notation for the budget by denoting the number of exemplar trees that fit within the input
budget constraint (Recall Problem. 1) as b.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

distilled set. This initial version undergoes further refinement through an iterative process of edge
sparsification and enrichment to reduce O(|E|) complexity of Gnns.

3.1 Quantifying Representativeness through Reverse k-NN

Utilizing Sufficiency (Property 1), we decompose the input graph G = (V, E ,X) into a set of |V|
computation trees T and then embed them into a feature space using WL-kernel (See Fig. 3). We
now identify representative exemplars by analyzing this space.

The k nearest neighbors of a computation tree T L
v ∈ T, denoted as k-NN(T L

v), are its k nearest
computations trees from T in the WL-kernel space (Def. 4).
Definition 5 (Reverse k-NN and Representative Power). The reverse k-NN of T L

v denotes the set of
trees that contains T L

v in their k-NNs. Formally, Rev-k-NN(T L
v) =

{
T L
u | T L

v ∈ k-NN
(
T L
u

)}
. The

representative power of T L
v is:

Π
(
T L
v

)
=

∣∣Rev-k-NN(T L
v)

∣∣
|T|

(3)

If T L
v ∈ k-NN(T L

u) for a small k, it suggests that hLv ∼ hLu (Hypothesis 1). Consequently, a high
Π
(
T L
v

)
indicates that T L

v frequently appears in the k-NN lists of many other trees and is therefore
positioned in a dense region capturing shared characteristics across many trees. Hence, it serves as
a strong candidate of being an exemplar.
3.1.1 Sampling for Scalable Computation of Reverse k-NN
Computing k-NN for each tree consumes O(n log k) ≈ O(n) time (since k � n), where n = |V|.
Since |T| = n, computing k-NN for all trees consumes O(n2) time. Hence, computing reverse
k-NN for all trees consumes O(n2) time as well, which may be prohibitively expensive for graphs
containing millions of nodes. To address this challenge, we employ a sampling technique that offers
a provable approximation guarantee on accuracy. This is achieved as follows. Let us sample z � n
trees uniformly at random from T, which we denote as S. Now, we compute the k-NN of only trees in
S, which incurs O(zn) computation cost. We next approximate reverse k-NN of all trees in T based
only on S. Specifically, ˜Rev-k-NN

(
T L
v

)
=

{
T L
u ∈ S | T L

v ∈ k-NN
(
T L
u

)}
. The approximated

representative power is therefore:

Π̃
(
T L
v

)
=

∣∣∣ ˜Rev-k-NN(T L
v)

∣∣∣
|S|

(4)

The sample size z balances the trade-off between accuracy and computational efficiency. By applying
Chernoff bounds, we demonstrate in Lemma 1 that z can be precisely determined tomaintain the error
within a specified error threshold θ, with a confidence level of 1− δ.
Lemma 1. Given a desirable error upper bound θ and a confidence interval of 1− δ, if we sample
at least z =

ln
(
2
δ

)
(2+θ)

θ2 trees in S, then for any T L
v ∈ T:

P (
∣∣∣Π̃(T L

v)−Π
(
T L
v

)∣∣∣ ≤ θ) ≥ 1− δ (5)

Proof. For the formal proof, see App. A.2. Lemma 1 induces the following positive implications.
• The number of samples needed is independent of the size of T.
• Because z grows logarithmically with ln(2δ), even a small sample size provides high confidence.
Hence, the computation cost of Rev-k-NN reduces to O(n) since z � n.

3.2 Coverage Maximization

We aim to find the set of exemplar computation trees with the maximum representative power.
Definition 6 (The exemplars). Let the representative power of a set of trees A be denoted by:

Π(A) =

∣∣∣∣∣∣
⋃
∀T L

v ∈A

Rev-k-NN
(
T L
v

)∣∣∣∣∣∣
/

|T| (6)

Then, given the set of computation trees T and the budget b, we seek to identify the subset of compu-
tations trees, termed exemplars, A∗, by maximizing the following objective:

A∗ = max
∀A⊆T,|A|=b

Π(A) (7)

For brevity of discourse, we proceed assuming the true reverse k-NN set.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 The greedy approach
Require: Graph G, budget b, Rev−k−NN

(
T L
v

)
Ensure: solution set A, |A| = b
1: A← ∅
2: while size(A) ≤ b (within budget) do
3: T L

v∗ ← arg maxT L
v ∈T\A{Π(A ∪ {T L

v }) −
Π(A)}

4: A← A ∪ {T L
v∗}

5: Return A

Theorem 1. Maximizing the representative power of ex-
emplars (Eq. 7) is NP-hard.

Proof. App. A.3 presents the formal proof by reducing to
the Set Cover problem (Cormen et al., 2009). �

Fortunately, Eq. 6 ismonotone and submodular, which al-
lows the greedy hill-climbing algorithm (Alg. 1) to ap-
proximate Eq. 7 within a provable error bound.
Theorem 2. The exemplars, Agreedy , selected by Alg. 1 provides an 1 − 1/e approximation, i.e.,
Π(Agreedy) ≥

(
1− 1

e

)
Π(A∗),

Proof. App. A.4 presents the proofs of monotonicity and submodularity of Π(A). For monotonic
and submodular functions, greedy selection provides 1− 1/e approximation (Feige, 1998). �.

Alg. 1 begins with the reverse k-NN set of each computation tree as input. It then iteratively selects
trees based on their marginal cardinality - specifically, choosing the tree that appears in the k-NN
sets of the largest number of yet-uncovered trees (lines 3-4). A tree is considered uncovered if none
of its k-nearest neighbors have been selected for the distilled set. This focus on marginal contribution
naturally promotes diversity. Consider two similar trees, T1 and T2, both with high reverse k-NN
cardinality. Due to the transitivity of distance functions, these trees likely share many of the same
neighbors in their reverse k-NN sets. Consequently, if T1 is selected, T2’s marginal cardinality sig-
nificantly decreases despite its high initial reverse k-NN cardinality, preventing redundant selection
of similar trees.

We further enhance the efficiency of Alg. 1 by exploiting the property of monotonically decreasing
marginal gains in submodular optimization (Leskovec et al., 2007).

Initial distilled graph: The initial distilled graph Gs = (Vs, Es,Xs) is formed by ex-
tracting the induced subgraph spanned by the exemplar computation trees, i.e., Vs ={
u | ∃T L

v ∈ Agreedy, u ∈ NL(v)
}
, Es = {(u, v) | u ∈ Vs, v ∈ Vs} and Xs = {xv) | v ∈ Vs}. Set

NL(v) contains nodes within L hops from v.

Sparsification and Enrichment: In the final step, we seek to sparsify the graph induced by the
exemplar trees. Furthermore, in the additional space created due to sparsfication, we include more
exemplar trees, resulting in further magnification of the representative power. Further details of our
implementation is provided in App. A.5.

3.3 Properties of Bonsai

Complexity analysis: The computation complexity of Bonsai isO(|V|+ |E|) (details in App. A.6).

CPU-bound and Parallelizable: Bonsai does not involve learning any parameters through gradient
descent or its variants. Hence, the entire process is CPU-bound. Furthermore, all steps are embarrass-
ingly parallelizable leading distillation of datasets with hundreds of millions of edges within minutes.

Independence from model-architecture and hyper-parameters: Unlike majority of existing dis-
tillation algorithms that require knowledge of the Gnn architecture and all training hyper-parameters,
Bonsai only requires approximate knowledge of the number of layersL. An approximate knowledge
is sufficient since the influence of far-away neighbors gets squashed (Topping et al., 2022). For the
same reason, Gnns are typically run with L ≤ 3. Hence, we recommend setting L ∼ 2.

4 Experiments

In this section, we benchmark Bonsai and establish:
• Superior Accuracy: Bonsai consistently outperforms existing baselines in terms of accuracy
across various compression factors, datasets, and Gnn architectures.

• Enhanced Efficiency: On average, Bonsai is 350, 22, and 1500 times faster than the state-of-the-
art baselines GCond, Gdem and Gcsr, respectively, in distilling datasets.

• Increased Robustness: Unlike existing methods that require tuning distillation-specific hyper-
parameters for each combination of Gnn architecture, dataset, and compression ratio, Bonsai
achieves superior performance using a single set of parameters across all scenarios.

Our implementation is available at https://anonymous.4open.science/r/bonsai.

7

https://anonymous.4open.science/r/bonsai

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Accuracy achieved by the various baselines on benchmark datasets across various compres-
sion ratios over byte consumption (denoted as Sr(%)), , on the Gcn architecture. The best and the
second-best accuracies in each row are highlighted by dark and lighter shades ofGreen, respectively.
OOT indicates the scenario where the algorithm failed to distill within 5 hours.

Dataset Sr(%) Random Herding GCond GDEM GCSR EXGC GCSNTK GEOM Bonsai Full
0.5 39.90±1.46 45.61±0.01 77.30±0.30 57.49±6.87 74.83±0.75 34.87±0.83 77.85±0.76 33.76±0.96 83.95±0.39

Cora 1 27.75±2.05 52.07±0.00 77.30±0.31 69.32±4.71 77.56±0.74 35.24±0.60 67.52±0.77 33.02±0.92 85.76±0.24 88.56±0.18
3 52.26±1.69 67.60±0.00 81.73±0.48 81.70±3.10 77.20±0.48 35.42±0.77 75.64±0.82 54.80±1.89 86.38±0.22

0.5 33.90±2.16 22.82±0.00 74.17±0.68 70.05±2.40 67.03±0.61 23.42±0.98 69.82±0.68 24.92±0.89 77.00±0.15
CiteSeer 1 44.90±2.32 49.10±0.02 77.62±0.71 72.48±2.13 74.77±0.78 23.67±1.00 69.22±0.71 28.03±0.81 77.03±0.33 78.53±0.15

3 44.50±1.27 67.69±0.01 77.02±0.22 76.20±0.55 77.27±0.28 25.07±0.92 64.26±0.53 33.48±0.83 75.89±0.26

0.5 62.58±0.25 78.29±0.00 80.63±1.20 80.72±0.92 79.43±0.25 45.77±0.73 53.04±1.99 OOT 87.27±0.03
Pubmed 1 79.19±0.09 78.59±0.00 79.92±0.00 80.80±1.07 79.11±0.15 46.24±0.43 62.81±1.32 OOT 87.08±0.04 87.22±0.00

3 82.50±0.09 78.09±0.00 77.00±0.15 81.07±0.90 79.94±0.16 47.62±0.67 67.72±2.01 OOT 87.64±0.09

0.5 44.78±0.00 47.98±0.01 44.06±1.05 46.25±1.02 46.41±0.00 45.47±0.85 31.49±0.75 OOT 48.73±0.27
Flickr 1 44.21±0.03 46.72±0.01 39.88±5.60 46.99±1.38 OOT (5 hrs) 45.97±0.82 42.50±0.99 OOT 49.05±0.17 50.93±0.17

3 46.56±0.01 46.54±0.01 46.04±1.88 47.35±0.98 OOT 48.44±0.65 36.58±0.82 OOT 49.66±0.27

0.5 42.01±0.01 53.37±0.00 52.63±0.63 54.73±0.66 OOT 60.66±1.66 61.55±1.17 OOT 58.49±0.17
Ogbn-arxiv 1 49.27±0.64 54.91±0.00 53.49±0.63 51.45±1.14 OOT 61.73±1.43 62.31±0.88 OOT 58.35±0.09 68.97±0.10

3 51.11±0.19 57.28±0.00 53.01±0.64 53.37±1.04 OOT 62.96±1.33 56.38±0.79 OOT 64.31±0.06

0.5 36.00±4.09 81.72±0.63 38.94±0.79 90.51±0.55 OOT 78.47±0.52 37.15±1.51 OOT 80.33±0.46
Reddit 1 38.55±2.00 83.48±0.83 43.98±0.35 90.63±0.84 OOT 81.69±1.12 38.87±2.00 OOT 85.65±0.08 92.14±0.04

3 44.97±2.97 88.51±0.13 48.78±0.83 85.75±0.80 OOT OOM 47.48±1.98 OOT 88.90±0.07

4.1 Experimental Setup

The specifics of our experimental setup, including hardware and software environment, and
hyper-parameters are detailed in App. B. For the baseline algorithms, we use the code shared by
their respective authors. We conduct each experiment 5 times and report the means and standard
deviations. Across all datasets, we maintain a train-validation-test split ratio of 60 : 20 : 20.

Table 4: Datasets.
Dataset # Nodes # Edges # Classes # Features
Cora (Kipf & Welling, 2017) 2,708 10,556 7 1,433
Citeseer (Kipf & Welling, 2017) 3,327 9,104 6 3,703
Pubmed (Kipf & Welling, 2017) 19,717 88,648 3 500
Flickr (Zeng et al., 2020) 89,250 899,756 7 500
Ogbn-arxiv (Hu et al., 2021) 169,343 2,315,598 40 128
Reddit (Hamilton et al., 2017) 232,965 23,213,838 41 602

Datasets: Table 4 lists the bench-
mark datasets used.

Baselines: We compare Bon-
sai with GCond (Jin et al.,
2021), Gdem (Liu et al., 2024a),
and Gcsr (Liu et al., 2024b),
Exgc (Fang et al., 2024), GC-
Sntk (Wang et al., 2024) and Geom (Zhang et al., 2024). We omit Sfgc (Zheng et al., 2023) and
Sgdd (Yang et al., 2023) since both Gdem and Gcsr have been shown to outperform them. Among
non-neural, baselines, we compare with selecting the induced subgraph spanned by a random selec-
tion of nodes, and Herding (Welling, 2009).
Metrics: Prediction quality is measured through Accuracy on the test set, i.e., the percentage of
correct predictions. Compression ratio is quantified as Sr = size of distilled dataset in bytes

size of full data set in bytes .

4.2 Prediction Accuracy

Table 5 presents the accuracies obtained by Bonsai and the baselines on Gcn. Bonsai achieves
the best accuracy in 12 out of 18 scenarios, with substantial improvements (≥ 5%) over the second-
best performer in several cases. This demonstrates that the unsupervised gradient-agnostic approach
adopted byBonsai does not come at the cost of accuracy. Gdem emerges as the second best perfomer.
Gcsr fails to complete in the two largest datasets of Ogbn-arxiv andReddit, since it trains on the entire
dataset 100 times to distill, which exceeds 5 hours. Geom is even slower since it trains on full train
set 200 times.

4.3 Cross-architecture Generalization

Gdem and Bonsai are both model-agnostic, meaning their distilled datasets are independent of the
downstream Gnn architecture used. In contrast, GCond and Gcsr produce architecture-specific
distillation datasets, requiring separate training for each architecture. This distinction raises two im-
portant questions: First, how well do the distilled datasets generated by Gdem and Bonsai generalize
across different architectures? Second, if we apply the distillation datasets produced by GCond and
Gcsr for Gcn to other architectures, how significantly does it impact performance? We explore these
questions in Table 6.

Consistent with the earlier trend, Bonsai continues to outperform all baselines. We further observe
that the performance gap between Bonsai and the baselines is wider in Gat and Gin compared to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: Accuracies achieved by the various baselines on Gat and Gin.
Dataset % Gnn Random Herding GCond GDEM GCSR Bonsai Full

0.5 Gat 41.44±1.73 33.80±0.07 13.21±1.99 63.91±5.91 15.09±6.19 75.42±1.61
1 Gat 42.73±1.03 46.09±0.86 35.24±0.00 73.49±2.64 37.60±1.34 78.67±0.89 85.70±0.09

Cora 3 Gat 60.22±0.67 56.75±0.45 35.24±0.00 75.28±4.86 36.72±0.81 80.66±0.80

0.5 Gin 49.04±0.50 34.39±1.03 14.13±6.80 63.65±7.11 76.05±0.44 85.42±0.74
1 Gin 50.48±0.85 33.80±2.42 33.91±1.23 75.92±4.24 60.70±4.44 84.80±0.41 86.62±0.28
3 Gin 59.52±0.88 36.35±0.59 31.70±4.97 59.59±7.95 51.62±5.00 85.42±0.53

0.5 Gat 42.76±0.35 36.04±0.46 21.47±0.00 69.86±2.28 21.92±0.76 68.56±0.57
1 Gat 46.19±1.38 52.07±0.11 21.47±0.00 23.87±3.05 21.50±0.06 69.43±0.82 77.48±0.75

CiteSeer 3 Gat 61.65±0.51 65.17±0.00 21.26±0.22 22.90±1.20 21.50±0.06 69.94±1.15

0.5 Gin 44.86±0.43 22.97±0.30 21.47±0.00 67.69±3.28 50.66±1.17 71.80±0.26
1 Gin 47.90±0.65 39.67±0.82 19.49±1.09 67.64±4.45 64.74±1.88 72.16±0.60 75.45±0.23
3 Gin 61.83±0.68 60.48±0.26 18.65±2.56 48.65±8.17 59.95±9.07 70.51±0.54

0.5 Gat 77.73±0.12 75.44±0.02 37.49±4.01 80.06±1.16 38.29±8.13 85.66±0.38
1 Gat 78.85±0.09 76.64±0.02 41.55±3.18 80.75±0.47 40.47±0.00 85.88±0.28 86.33±0.08

PubMed 3 Gat 82.84±0.11 78.48±0.03 37.77±3.61 65.08±9.53 40.27±0.20 85.62±0.36

0.5 Gin 77.45±0.14 48.48±1.33 30.91±4.57 78.78±0.91 36.88±12.06 84.32±0.33
1 Gin 78.43±0.22 62.22±0.13 32.84±6.27 78.72±0.95 33.75±5.58 85.57±0.26 84.66±0.05
3 Gin 80.56±0.17 45.40±0.46 36.11±3.47 81.08±0.99 32.01±6.77 85.66±0.23

0.5 Gat 43.64±0.99 36.50±13.22 40.24±3.20 25.43±10.37 28.03±6.60 48.22±3.60
1 Gat 43.56±1.06 36.34±1.14 40.85±1.08 18.44±9.42 OOT 45.62±1.85 51.42±0.07

Flickr 3 Gat 45.71±1.87 42.70±1.17 41.51±9.81 25.83±11.39 OOT 47.80±2.06

0.5 Gin 42.67±0.83 39.98±7.21 13.65±7.54 14.10±5.68 05.92±1.01 44.97±2.23
1 Gin 42.90±0.76 41.87±4.52 16.65±6.55 19.44±9.68 OOT 44.90±0.88 45.37±0.57
3 Gin 19.63±4.21 43.72±3.26 24.25±14.43 20.97±6.64 OOT 45.04±1.94

Gcn (Table 5). For GCond and Gcsr, this wider gap is not surprising since they are trained on
the gradients of Gcn, which are expected to differ from those of Gin and Gat. Gin uses a Sum-
Pool aggregation, while Gat employs attention to effectively dampen unimportant edges, with a
potentially different eigen spectrum - the property that Gdem attempts to preserve. The approach
of Bonsai, on the other hand, aligns more directly with the computational structure of Gnns. It
focuses on analyzing the input space of computation trees and aims to represent as much of this
space as possible within the given budget.

4.4 Distillation Efficiency

Table. 7 presents the time consumed by Bonsai and other baselines. We note that while Bonsai is
CPU-bound, all other algorithms are GPU-bound. Despite being CPU-bound, Bonsai, on average,
is more than 7-times faster than the fastest baseline Exgc. In addition, all baselines require training
on the full dataset. This algorithm design shows up in the running times where the distillation time
is higher than the full dataset training time, negating the very purpose of graph distillation. More
worryingly, the distillation process of all algorithms, except Bonsai, have higher carbon emissions
than training on the full dataset (See Table 9 in Appendix).
Table 7: Distillation times of various methods in seconds at 0.5%. Distillation times that are higher
than training on the full dataset itself are highlighted in red. The fastest distillation time for each
dataset is highlighted in green.

Dataset GCond Gdem Gcsr Exgc GC-Sntk Geom Bonsai Full
Cora 2738 105 5260 34.87 82 12996 2.76 24.97
Citeseer 2712 167 6636 34.51 124 15763 2.61 24.87
Pubmed 2567 530 1319 114.96 117 OOT 24.84 51.06
Flickr 1935 3405 17445 243.28 612 OOT 118.23 180.08
Ogbn-arxiv 14474 569 OOT 1594.83 12218 OOT 348.24 524.67
Reddit 30112 20098 OOT 6903.47 29211 OOT 1445.00 2425.68

Component-wise analysis: We discuss the individual time consumption by each component ofBon-
sai in App. B.4.1.

4.5 Ablation Study and Impact of Parameters

Fig. 4 presents an ablation study comparing Bonsai against three variants: (i) Bonsai-PPR, which
omits the use of Personalized PageRank, (ii) Bonsai-Rev-k-NN, which substitutes the Rev-k-NN-
based coverage maximization with random exemplar selection, but performs PPR, (iii) and random
that does not do either PPR or Rev-k-NN. Before analyzing the trends, we emphasize an important
distinction between Bonsai-Rev-k-NN and Random. While in Bonsai-Rev-k-NN, we randomly
add computation trees till the distillation budget is exhausted, in Random, we iteratively add random
nodes, till their induced subgraph exhausts the budget. Consequently, Random covers more diverse

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) 0.5% (b) 1% (c) 3%
Figure 4: Ablation study of Bonsai.

nodes with partial local neighborhood information, while Bonsai-Rev-k-NN selects a smaller node
set with complete L-hop topology, enabling precise Gnn embedding computation.

Several important insights emerge from this experiment. Random performs significantly worse than
Bonsai, demonstrating that the distilled graph’s information content substantially exceeds that of an
equally sized subgraph induced by random node selection. This finding, consistent with the trend
observed in Table 5, underscores the effectiveness of Bonsai over random sampling.

Second, removal of either Rev-k-NN or PPR result in significant drops across most datasets, indi-
cating both play important and complementary roles. While Rev-k-NN identifies the exemplars that
are important, PPR sparsifies the graph making space for more exemplars to be added. Interestingly,
the relative impact of these components varies with dataset compression and size. At higher com-
pression rates (such as 0.5%), removing Rev-k-NN leads to higher drop in accuracy across most
datasets. However, this trend reverses as the distilled dataset size increases. Closer examination
reveals that higher-ranked exemplars typically have higher degrees in their L-hop neighborhoods.
When the memory budget is constrained, high-ranked exemplars are often skipped because their
L-hop neighborhoods exceed the available memory. This limitation diminishes as the budget in-
creases. Consequently, at higher budgets, edge density increases, making graph sparsification (via
PPR) increasingly critical. This explains why PPR becomes more important at higher budgets or in
inherently dense graphs like Reddit.

Finally, we discuss the performance comparison of Random with Bonsai-Rev-k-NN. This is an
interesting comparison since both represent two distinct mechanisms of random selection. In most
cases, Bonsai-Rev-k-NN achieves a higher accuracy indicating that obtaining fullL-hop topological
information for a smaller set of nodes leads to better results than partial L-hop information over a
broader set of nodes.

Impact of Parameters: We analyze the impact of sampling size and k on Rev-k-NN in App. B.4.2.

5 Conclusions and Future Works

In this work, we have developed Bonsai, a novel graph distillation method that addresses critical lim-
itations in existing approaches. By leveraging the fundamental role of computation trees in message-
passing Gnns, Bonsai achieves superior performance in node classification tasks across multiple
real-world datasets. Our method stands out as the first linear-time, model-agnostic graph distillation
algorithm, offering significant improvements in both accuracy and computational efficiency. Bon-
sai’s unique approach of encoding exemplar trees that maximize representation of the full training
set’s computation trees has proven to be highly effective. This strategy not only overcomes the para-
doxical requirement of training on full datasets for distillation but also eliminates the need for repeated
distillation when changing hyper-parameters or Gnn architectures. Furthermore, Bonsai achieves
substantial size reduction without resorting to fully-connected, edge-weighted graphs, thereby reduc-
ing computational demands. In contrast to baselines, Bonsai is completely CPU-bound, resulting in
a smaller greenhouse footprint along with reduced computation demands, making it a more environ-
mentally friendly option. These features collectively position Bonsai as a significant advancement
in the field of graph distillation, offering both performance benefits and sustainability advantages.

Limitations and FutureWorks: While existing research on graph distillation has primarily focused
on node and graph classification tasks, Gnns have demonstrated their versatility across a broader
spectrum of applications. In our future work, we aim to expand the scope of graph distillation by
developing task-agnostic data distillation algorithms.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility Statement

To support the reproducibility of our work, we provide several resources in the paper and its
supplementary materials. The source code of our models and algorithms is available at https:
//anonymous.4open.science/r/bonsai, which also includes details of how to train the baseline
models in different settings. All theoretical results and assumptions are detailed in the Ap-
pendix A, ensuring clarity in our claims. Full experimental settings are documented in Ap-
pendix B.

References
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN 0262033844. (Cited on pp. 7
and 15←↩)

Junfeng Fang, Xinglin Li, Yongduo Sui, Yuan Gao, Guibin Zhang, Kun Wang, Xiang Wang, and
Xiangnan He. Exgc: Bridging efficiency and explainability in graph condensation. In Proceed-
ings of the ACM Web Conference 2024, WWW ’24, pp. 721–732, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400701719. doi: 10.1145/3589334.3645551.
URL https://doi.org/10.1145/3589334.3645551. (Cited on pp. 2 and 8←↩)

Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998. (Cited
on p. 7←↩)

Mridul Gupta, Sahil Manchanda, HARIPRASAD KODAMANA, and Sayan Ranu. Mirage: Model-
agnostic graph distillation for graph classification. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=78iGZdqxYY. (Cited
on p. 1←↩)

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp. 1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964. (Cited on pp. 1, 2, and 8←↩)

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc:
A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.
(Cited on pp. 1 and 8←↩)

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensa-
tion for graph neural networks. In International Conference on Learning Representations, 2021.
(Cited on pp. 1, 2, and 8←↩)

Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin.
Condensing graphs via one-step gradient matching. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 720–730, 2022. (Cited on p. 1←↩)

ThomasNKipf andMaxWelling. Semi-supervised classification with graph convolutional networks.
ICLR, 2017. (Cited on pp. 1, 2, and 8←↩)

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019. (Cited on p. 22
←↩)

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie
Glance. Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 420–429, 2007. (Cited
on p. 7←↩)

Yang Liu, Deyu Bo, and Chuan Shi. Graph distillation with eigenbasis matching. In Forty-first
International Conference on Machine Learning, 2024a. URL https://openreview.net/forum?id=
DYN66IJCI9. (Cited on pp. 1, 2, and 8←↩)

11

https://anonymous.4open.science/r/bonsai
https://anonymous.4open.science/r/bonsai
https://doi.org/10.1145/3589334.3645551
https://openreview.net/forum?id=78iGZdqxYY
https://openreview.net/forum?id=DYN66IJCI9
https://openreview.net/forum?id=DYN66IJCI9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhanyu Liu, Chaolv Zeng, and Guanjie Zheng. Graph data condensation via self-expressive graph
structure reconstruction. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’24, pp. 1992–2002, 2024b. (Cited on pp. 1, 2, and 8←↩)

Peter A. Lofgren, Siddhartha Banerjee, Ashish Goel, and C. Seshadhri. Fast-ppr: scaling personal-
ized pagerank estimation for large graphs. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, pp. 1436–1445, 2014. (Cited
on p. 17←↩)

WeiWei Miao, Zeng Zeng, Mingxuan Zhang, Siping Quan, Zhen Zhang, Shihao Li, Li Zhang,
and Qi Sun. Workload prediction in edge computing based on graph neural network. In 2021
IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Com-
puting, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BD-
Cloud/SocialCom/SustainCom), pp. 1663–1666, 2021. doi: 10.1109/ISPA-BDCloud-SocialCom-
SustainCom52081.2021.00223. (Cited on p. 1←↩)

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,
1995. (Cited on p. 14←↩)

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank Citation Rank-
ing: Bringing Order to the Web. Technical report, 1998. (Cited on p. 17←↩)

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and KarstenM. Borg-
wardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12(null):2539–2561, nov 2011.
ISSN 1532-4435. (Cited on p. 4←↩)

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
Wasserstein weisfeiler–lehman graph kernels. In Advances in Neural Information Processing Sys-
tems 32 (NeurIPS), pp. 6436–6446. 2019. (Cited on pp. 3 and 4←↩)

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In ICLR, 2022.
(Cited on p. 7←↩)

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ. (Cited on pp. 1 and 2←↩)

Lin Wang, Wenqi Fan, Jiatong Li, Yao Ma, and Qing Li. Fast graph condensation with
structure-based neural tangent kernel. In Proceedings of the ACM Web Conference 2024,
WWW ’24, pp. 4439–4448, New York, NY, USA, 2024. Association for Computing Machin-
ery. ISBN 9798400701719. doi: 10.1145/3589334.3645694. URL https://doi.org/10.1145/
3589334.3645694. (Cited on pp. 2 and 8←↩)

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 1121–1128, 2009. (Cited on p. 8←↩)

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neu-
ral networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km. (Cited on pp. 2, 3, and 4←↩)

Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao Yang, and Hang-
hang Tong. Kernel ridge regression-based graph dataset distillation. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23, pp. 2850–2861,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701030. doi:
10.1145/3580305.3599398. URL https://doi.org/10.1145/3580305.3599398. (Cited on p. 1←↩)

Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Hao Tang, Yang You, and Jianxin
Li. Does graph distillation see like vision dataset counterpart? In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
VqIWgUVsXc. (Cited on pp. 2 and 8←↩)

12

https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1145/3589334.3645694
https://doi.org/10.1145/3589334.3645694
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1145/3580305.3599398
https://openreview.net/forum?id=VqIWgUVsXc
https://openreview.net/forum?id=VqIWgUVsXc

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
SAINT: Graph sampling based inductive learning method. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS. (Cited on p. 8
←↩)

Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan Liang, Xavier Bresson, Wei Jin,
and Yang You. Navigating complexity: Toward lossless graph condensation via expanding
window matching. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=gE7qZurGH3. (Cited on pp. 2 and 8←↩)

Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui
Pan. Structure-free graph condensation: From large-scale graphs to condensed graph-free data.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=XkcufOcgUc. (Cited on pp. 1, 2, and 8←↩)

13

https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=gE7qZurGH3
https://openreview.net/forum?id=XkcufOcgUc
https://openreview.net/forum?id=XkcufOcgUc

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A Appendix

A.1 Detailed comparison to Mirage

The similarities between Mirage and Bonsai end at their shared goal of analyzing computation trees
for distillation. The fundamental limitation of Mirage lies in relying on tree isomorphisms, which
makes them limited to graphs annotated with only single, discrete node labels (such as atom-types in
chemical compounds). Hence, Mirage does not work on general purpose graphs where nodes are
annotated with high-dimensional feature vectors.

Summary ofMirage: Given a graph database, Mirage identifies all unique computation trees of
a certain depth in the graph database. Two trees are non-unique if they are isomorphic to each other.
Next, each graph is represented as a set of computation trees, on which frequent itemset mining is
performed. Trees in these frequent itemsets form the distilled dataset.

What breaks when applied to our setting? Tree isomorphism does not work when each node is
attributed with high-dimensional feature vectors since treating feature vectors as labels means two
trees are isomorphic if they are topologically identical and the mapped nodes across the graphs are
annotated with identical feature vectors. In Bonsai, we make no such assumption and hence any
algorithm built on tree isomorphism is not feasible.

The algorithm design of Bonsai is entirely different. We make the following novel contributions:

• Reverse k-NN to rank tree importance: Bonsai embeds computation trees into a feature space
using WL-kernel and ranks each tree based on the density in its neighborhood (Reverse k-NN).

• Fast reverse k-NN through sampling: Reverse k-NN is expensive (O(n2)). Bonsai proposes
an efficient sampling strategy with provable guarantees on the sample_size-approximation_error
trade-off.

• Coverage maximization: The core idea is to select a subset of trees that are representative of the
entire set. Hence, we select trees located in dense neighborhoods and diverse from each other. This
ensures that all trees that are not selected in distilled set are likely to have a close neighbor (in the
embedding space) in the distilled set. This is achieved through coverage maximization (§ 3.2).

• Theoretical guarantees: We prove coverage maximization is NP-hard, monotonic and submodu-
lar. Hence, greedy selection provides 1− 1/e approximation guarantee.

• Sparsification: Sparsification of the distilled data set is performed by personalized page rank.

Empirical validation: To further leave no room for ambiguity, we applied Mirage on Cora and
Citeseer, and in both dataset all computation trees were unique leading to no compression.

A.2 Proof. of Theorem 1.

Recall the notation that S ⊆ T denotes the subset of trees from which the representative power of all
trees in T is being estimated. Let |S| = z.

Corresponding to each T L
u ∈ S, let us define an indicator random variable Xv

u denoting whether
T L
v ∈ k-NN(T L

u). Therefore, we have:

Xv =
∑
∀T L

u ∈S

Xv
u = zΠ̃

(
T L
v

)
(8)

Since each tree in S is sampled uniformly at random from T, we have E(Xv) = zΠ
(
T L
v

)
. We

also note that Xv ∼ Binomial(z,Π
(
T L
v

)
). Given any ε ≥ 0, from Chernoff bounds (Motwani &

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Raghavan, 1995), we have:

Upper tail bound:

P
(
Xv ≥ (1 + ε)zΠ

(
T L
v

))
≤ exp

(
− ε2

2 + ε
zΠ

(
T L
v

))
(9)

Lower tail bound:

P
(
Xv ≤ (1− ε)zΠ

(
T L
v

))
≤ exp

(
−ε2

2
zΠ

(
T L
v

))
(10)

Combining the upper and tail bounds, we obtain:

P
(∣∣Xv − zΠ

(
T L
v

)∣∣ ≥ εzΠ
(
T L
v

))
≤ 2 exp

(
− ε2

2 + ε
zΠ

(
T L
v

))
(11)

⇔ P
(∣∣∣zΠ̃(T L

v)− zΠ
(
T L
v

)∣∣∣ ≥ εzΠ
(
T L
v

))
≤ 2 exp

(
− ε2

2 + ε
zΠ

(
T L
v

))
(12)

⇔ P
(∣∣∣Π̃(T L

v)−Π
(
T L
v

)∣∣∣ ≥ εΠ
(
T L
v

))
≤ 2 exp

(
− ε2

2 + ε
zΠ

(
T L
v

))
(13)

Plugging θ from Eq. 5 in Eq. 13, we obtain θ = εΠ
(
T L
v

)
. Hence,

P
(∣∣∣Π̃(T L

v)−Π
(
T L
v

)∣∣∣ ≥ θ
)
≤ 2 exp

−

(
θ

Π(T L
v)

)2

2 + θ
Π(T L

v)

zΠ
(
T L
v

) (14)

≤ 2 exp
(
− θ2

2Π (T L
v) + θ

z

)
(15)

For any T L
v ∈ T, Π

(
T L
v

)
≤ 1. Thus,

P
(∣∣∣Π̃(T L

v)−Π
(
T L
v

)∣∣∣ ≥ θ
)
≤ 2 exp

(
− θ2

2 + θ
z

)
(16)

Now, if we want a confidence interval of 1− δ (as stated in Eq. 5), we have:

δ ≥ 2 exp
(
− θ2

2 + θ
z

)
(17)

⇔ δ

2
≥ exp

(
− θ2

2 + θ
z

)
(18)

⇔ ln
δ

2
≥ − θ2

2 + θ
z (19)

⇔ ln
2

δ
≤ θ2

2 + θ
z (20)

⇔ ln
2

δ
≤ θ2

2 + θ
z (21)

⇔ z ≥
ln
(
2
δ

)
(2 + θ)

θ2
(22)

Hence, if we sample at least ln
(
2
δ

)
(2+θ)

θ2 trees in S, then for any T L
v ∈ T:

Π̃(T L
v) ∈ [Π

(
T L
v

)
− θ,Π

(
T L
v

)
+ θ] with probability at least 1− δ. � (23)

A.3 NP-hardness: Proof of Theorem 1

Proof. To establish NP-hardness of our proposed problem we reduce it to the classical Set Cover
problem (Cormen et al., 2009).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 5: Distribution of PPR scores against node ranks.

Definition 7 (Set Cover). Given a budget b and a collection of subsets S = {S1, · · · , Sm} from
a universe of items U = {u1, · · · , un}, i.e., ∀Si ∈ S, Si ⊆ U , the Set Cover problem seeks to
determine whether there exists a subset S ′ ⊆ S such that |S ′| = b and it covers all items in the
universe, i.e., |

⋃
∀Si∈S′ Si| = U .

We show that given any instance of a Set Cover problem 〈S, U〉, b, it can be mapped to the problem
of maximizing the representative power (Eq. 7).

Given an instance of the Set Cover problem, we construct a database of computation trees T =
TU ∪ TS . For each uj ∈ U , we add a computation tree Tuj ∈ TU . For each Si ∈ S , we add a tree
TSi ∈ TS . If an item uj ∈ Si, then we have Tuj ∈ Rev-k-NN(TSi) (equivalently TSi ∈ k-NN(Tuj)).

With this construction, we can state that there exists a Set Cover of size b if and only if there exists a
solution set A ⊆ T such that Π(A) = |TU |

|T| . �

A.4 Proofs of Monotonicity, Submodularity

Theorem 3 (Monotonicity). ∀A′ ⊇ A, Π(A′)−Π(A) ≥ 0, whereA andA′ are sets of computation
trees.

Proof. Since the denominator in Π(A) is constant, it suffices to prove that the numerator is mono-
tonic. This reduces to establishing that:∣∣∣∣∣∣

⋃
∀T L

v ∈A′

Rev-k-NN
(
T L
v

)∣∣∣∣∣∣ ≥
∣∣∣∣∣∣

⋃
∀T L

v ∈A

Rev-k-NN
(
T L
v

)∣∣∣∣∣∣ (24)

This inequality holds true because the union operation is a monotonic function. As A′ is a superset
of A, the union over A′ will always include at least as many elements as the union over A.

Theorem 4 (Submodularity). ∀A′ ⊇ A, Π(A′ ∪ {T })− Π(A′) ≤ Π(A ∪ {T })− Π(A), where A
and A′ are sets of computation trees and T is a computation tree.

Proof by Contradiction. Let us assume

∃A′ ⊇ A, Π(A′ ∪ {T })−Π(A′) > Π(A ∪ {T })−Π(A) (25)

Eq. 25 implies:

Rev-k-NN(T) \
⋃
∀T ′∈A′

Rev-k-NN (T ′) ⊇ Rev-k-NN(T) \
⋃
∀T ′∈A

Rev-k-NN (T ′) (26)

=⇒ A ⊇ A′, which is a contradiction. �

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5 Sparsification through Personalized PageRank (PPR)

Let VS be the node set in the initial distilled graph, which can be partitioned into two disjoint subsets:
Vroot and Vego, where Vroot = {v | ∃T L

v ∈ A}, the root nodes, that serve as the root node of some
exemplar inAgreedy , and Vego = VS \Vroot, the ego nodes, that are included because they fall within
the L-hop neighborhood of a root node. We propose to employ Personalized PageRank (PPR) (Page
et al., 1998) with teleportation only to root nodes to identify and prune ego nodes with minimal
impact on the root node embeddings. Starting with timestamp t = 0, we proceed as follows:

1. Compute the PPR distribution πt for t ≥ 0 defined by:

πt = (1− β)Aπt−1 + βe (27)

where: π0[i] = 1
|VS | for all i, e[i] = 1

|Vroot| if vi ∈ Vroot, otherwise 0, A is the normalized
adjacency matrix, β is the teleportation probability.

2. Obtain the PPR vector π after convergence where πt = πt−1.
3. Sort the nodes in π by their PPR scores in descending order such that ∀i, π[i− 1] ≥ π[i].
4. Define the knee point iknee as:

iknee = argmax
i

{π[i+ 1] + π[i− 1]− 2 · π[i]} (28)

5. Prune all ego nodes with PPR scores below π[iknee].
6. Use the freed-up space to include additional exemplar trees using Algorithm 1.
7. Repeat steps 1–6 iteratively until iknee ≥ θ, where θ is a threshold setting the minimum number

of nodes to be removed.
The rationale for this pruning process can be outlined as follows. The PPR distribution πt iteratively
updates based on the transition matrix A and teleportation vector e. Given that π0 is initialized
uniformly and e assigns higher probabilities to root nodes, πt converges to a distribution where
nodes more connected to root nodes have higher scores (See Fig. 5 in Appendix). After convergence,
the vector π represents the steady-state probabilities of nodes in the graph. Sorting π by descending
scores ensures that nodes with the highest influence on root nodes are prioritized. The knee point
iknee is identified as the maximum curvature in the sorted PPR scores. This point is where the rate
of change in scores shifts most significantly, indicating a transition between nodes of high and low
influence. Nodes with PPR scores below π[iknee] have minimal impact on root node embeddings
and removing these nodes and edges incident on them effectively sparsifies the graph without
substantial loss of information. Additional exemplar trees can then be incorporated into the available
space using the greedy algorithm as given by Algorithm 1.

A.6 Complexity Analysis

For this analysis, we assume |V| = n and |E| = m. In sync with Fig. 3, the computation structure of
Bonsai can be decomposed into four components.

1. Embed trees into WL-space: This operation requires a pass through each twice, and is identical
to the message-pass structure of a Gnn. Hence, the computation cost is bounded to O(m). A
crucial distinction from a Gnn is that it does not require back-propagation and hence is fully
CPU-bound.

2. Rev-k-NN: As discussed in § 3.1.1, computing Rev-k-NN consumes O(n) time with sampling.
3. Coverage Maximization: Each iteration in Alg. 1, iterates over all nodes (trees) in the graph (T)

that have not yet been added to the set of exemplars. For each node (equivalently, tree rooted
at this node), we compute its marginal gain (line 3 in Alg. 1), which is bounded by the sample
size z, since the cardinality of a Rev-k-NN set is bounded by the number of trees sampled for
Rev-k-NN computation ((§ 3.1.1)). Since z � n, the complexity per iteration isO(zn) ≈ O(n).
The number of iterations is bounded by the size of the distillation budget, which we typically set
to less than 3% of the full dataset and hence has negligible impact on the complexity.

4. PPR: PPR can be computed in linear time (Lofgren et al., 2014). Since the size of the distilled
set is at most the full graph, this bounds the cost of PPT to O(n).

Combining all these components, the cost of Bonsai is bounded by O(n+m).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B Experimental Setup

B.1 Hardware Configuration

All experiments were conducted on a high-performance computing system with the following spec-
ifications:

• CPU: 96 logical cores
• RAM: 512 GB
• GPU: NVIDIA A100-PCIE-40GB

B.2 Software Configuration

The software environment for our experiments was configured as follows:

• Operating System: Linux (Ubuntu 20.04.4 LTS (GNU/Linux 5.4.0-124-generic x86_64)))
• PyTorch Version: 1.13.1+cu117
• CUDA Version: 11.7
• PyTorch Geometric Version: 2.3.1

B.3 Additional Experimental Parameters

• Number of layers in evaluation models: 2 (with Relu in between) for Gcn, Gat, and Gin. The
Mlp used in Gin is a simple linear transform with a bias defined by the following equationWX+b
where X is the input design matrix.

• Value of k in Rev-k-NN: 5
• Hyper-parameters Baselines: We use the config files shared by the authors. We note that the
benchmark datasets are common between our experiments and those used in the baselines.

B.4 Additional Experiments

Table 8: Component-wise analysis of Bonsai’s running times in seconds.

Dataset WL Rev-k-NN Greedy PPR Full

Cora 0.87 0.05 0.01 1.68 2.61
Citeseer 0.97 0.07 0.02 1.71 2.77
Pubmed 8.89 1.39 0.64 13.93 24.85
Reddit 682.80 293.15 275.52 193.99 1445.45

B.4.1 Running time analysis of Bonsai

Fig. 8 presents the time consumed by the various components within Bonsai. We observe that most
of the time is spent in PPR computation, except in Reddit, where Rev-k-NN is a dominant contributor.
This trend can be explained by the high density of Reddit, where the average degree is 100 in contrast
to < 5 in the other networks.

B.4.2 Impact of Parameters on Bonsai

Bonsai has two parameters, both related to the computation of Rev-k-NN. The value of k in Rev-k-
NN and the sample size to accurately approximate the representative power.

Fig. 6a and Fig. 6b present the impact of sample size on accuracy and time, respectively. As expected,
the general trend shows that increasing the sample size leads to higher accuracy and longer running
times. However, we note that the increase in accuracy is minor. This observation is consistent with
Lemma 1, which states that a small sample size is sufficient to achieve a high-quality approximation.

Fig. 6c presents the impact of k on accuracy. While the performance is generally stable against k,
the peak accuracy is typically achieved when k is set to 5.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Impact of sampling size on
Accuracy

(b) Impact of sampling size on
time

(c) Effect of varying k in the
Rev-k-NN in Bonsai.

Figure 6: Impact of k in Rev-k-NN and sampling size for Rev-k-NN approximation on the perfor-
mance of Bonsai.

(a) Cora (b) Citeseer

(c) Pubmed (d) Reddit

Figure 7: Comparing time required to train models on datasets distilled by GCond, Gdem, Bonsai,
and Gcsr at 0.5% of Cora, Citeseer, Pubmed, and Reddit. Note that there is no distilled dataset for
Reddit output by Gcsr due to OOT.

B.5 Additional Training Times

Fig. 7 presents the training times on distilled datasets in Cora, Citeseer, Pubmed, and Reddit at 0.5%
size. Figs. 8 and 9 presents the training times on distilled datasets in Cora, Citeseer, Pubmed, Flickr,
Ogbn-arxiv, and Reddit at 1%, and 3% sizes. Bonsai is faster on all architectures. The gap between
Bonsai and the baselines increase with increase in distilled dataset size. This is more pronounced
in larger datasets like Flickr, Ogbn-arxiv, and Reddit because the number of edges is O(|V |2) for
the baselines and forward pass through Gnns is usually O(|E|). Additionally, the distilled dataset
created by GCond and Gdem for Reddit at 3% size cannot be used to train basic PyTorch Geometric
models for Gat and Gin, resulting in out-of-memory (OOM) errors because the backward pass graph
maintained by PyTorch is larger.

B.6 Carbon Emissions

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Cora (b) Citeseer

(c) Pubmed (d) Flickr

(e) Ogbn-arxiv (f) Reddit

Figure 8: Comparing time required to train models on datasets distilled by GCond, Gdem, Bonsai,
and Gcsr at 1% of Cora, Citeseer, Pubmed, Flickr, Ogbn-arxiv, and Reddit. Note that there is no
distilled dataset for Flickr, Ogbn-arxiv, Reddit output by Gcsr due to OOT.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) Cora (b) Citeseer

(c) Pubmed (d) Flickr

(e) Ogbn-arxiv (f) Reddit

Figure 9: Comparing time required to train models on datasets distilled by GCond, Gdem, Bonsai,
and Gcsr at 3% of Cora, Citeseer, Pubmed, Flickr, Ogbn-arxiv, and Reddit. Note that there is no
distilled dataset for Flickr, Ogbn-arxiv, Reddit output by Gcsr due to OOT; and distilled datasets
produced by GCond and Gdem for Reddit cannot train on standard 2-layered PyTorch Geometric
Gat and Gin due to OOM.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 9: Estimated CO2 emissions from distillation of various methods in seconds at 0.5%. Emis-
sions that are higher than training on the full dataset itself are highlighted in red. The least emission
from distillation for each dataset is highlighted in green. CO2 emissions are computed as 10.8kg per
100 hours for Nvidia A100 GPU and 4.32kg per 100 hours for 10 CPUs of Intel Xeon Gold 6248 (La-
coste et al., 2019).

Dataset GCond Gdem Gcsr Exgc GC-Sntk Geom Bonsai Full
Cora 82.14 3.15 157.80 1.05 2.46 389.88 0.03 0.75
Citeseer 81.36 5.01 199.08 1.03 3.72 472.89 0.03 0.75
Pubmed 77.01 15.90 39.57 3.45 3.51 ≥540.00 0.3 1.53
Flickr 58.05 102.15 523.35 7.30 18.36 ≥540.00 1.42 5.40
Ogbn-arxiv 434.22 17.07 ≥540.00 46.49 366.54 ≥540.00 4.18 15.74
Reddit 903.36 602.94 ≥540.00 207.10 876.33 ≥540.00 17.34 72.77

22

	Introduction and Related Works
	Existing works and their Limitations
	Contributions

	Problem Formulation and Preliminaries
	Computation structure of Gnns

	Bonsai: Proposed Methodology
	Quantifying Representativeness through Reverse k-NN
	Sampling for Scalable Computation of Reverse k-NN

	Coverage Maximization
	Properties of Bonsai

	Experiments
	Experimental Setup
	Prediction Accuracy
	Cross-architecture Generalization
	Distillation Efficiency
	Ablation Study and Impact of Parameters

	Conclusions and Future Works
	Appendix
	Detailed comparison to Mirage
	Proof. of Theorem 1.
	NP-hardness: Proof of Theorem 1
	Proofs of Monotonicity, Submodularity
	Sparsification through Personalized PageRank (PPR)
	Complexity Analysis

	Experimental Setup
	Hardware Configuration
	Software Configuration
	Additional Experimental Parameters
	Additional Experiments
	Running time analysis of Bonsai
	Impact of Parameters on Bonsai

	Additional Training Times
	Carbon Emissions

