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ABSTRACT

Representing tensor-valued functions of tensor arguments is fundamental in many
modeling problems. Tensor functions play a central role in constructing reduced-
order approximations and are particularly useful for nonlinear anisotropic consti-
tutive modeling of physical phenomena, such as fluid turbulence and material de-
formation among others. By imposing equivariance under the orthogonal group,
tensor functions can be finitely and minimally generated by using the isomor-
phism between binary forms and symmetric trace-free tensors. After determining
minimal generators, their coefficients can be learned as functions of the invari-
ants of the tensor arguments by training on data which facilitates generality of the
models. The algebraic nature of the learned models makes them interpretable by
revealing underlying dynamics, and it keeps the models economical as they con-
tain the theoretically minimum required number of terms. Determining minimal
representations of higher-order tensor functions has remained computationally in-
tractable in many cases of interest until now. The current work overcomes this
limitation. Numerically efficient algorithms for generating tensor functions and
reducing them to minimal sets are presented. A few classical tensor function rep-
resentations and an approach to a bottleneck in modeling turbulence are worked
out to showcase the practical applicability of our framework.

1 INTRODUCTION

Tensor function representations are important for building models of tensors using tensors argu-
ments. They are useful for many applications in physics, particularly fluid turbulence (Alfonsi
(2009); Speziale et al. (1991); Speziale (1990)) and continuum mechanics (Olive et al. (2017);
Boehler & Boehler (1987); Boehler (1979)), and also modeling problems dealing with image and
video data as tensors of order 2 and 3 (Vasilescu & Terzopoulos (2002); Shashua & Hazan (2005)).
It is a much more intricate modeling problem than while working with scalars due to the complexity
of the structure imposed by tensor symmetries.

For learning physically meaningful tensor function representations, in addition to maintaining con-
sistent symmetry in index permutations, it is also important to preserve proper rotational or or-
thogonal equivariance, i.e., rotating or reflecting the inputs should also rotate or reflect the outputs
predictably (Zheng (1994)).

T : V→ Tm, where V := Tn1 ⊕ Tn2 ⊕ Tn3 · · · ⊕ Tnk (1)

In this work, a new strategy is presented for building equivariant tensor functions of tensor of the
type shown in Eq. 1. These functions can be modeled as a linear combination of Invariant scalar
coefficients (Cs) and equivariant tensor monomials (Bs) which depend on some tensor arguments
(As) as shown in Eq. 2. The Cs are functions of joint invariants (λi) of As and the tensor mono-
mials are einsum type tensor products of As.

T(A1,A2, · · · ,Ak) =

γ∑
i=1

Ci(λ1, λ2, · · · , λm)Bi(A1,A2, · · · ,Ak) (2)

1
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The model in Eq. 2 is complete if 1) all invariants of V are generated by (functions of) λs and
2) all tensor monomials in V are linear combinations of Bs under scalar coefficient functions of
the joint invariants. Additionally, the model is minimal if removing any tensor monomial or joint
invariant makes the model incomplete. Working with minimal generator sets significantly reduces
the number of terms involved in modeling. In many cases it is not just preferrable, but necessary to
make computations tractable. The goal of the current work is to develop a framework for determin-
ing minimally complete tensor function representations which are equivariant under the SO(3,R)
group, and to establish their applicability in modeling any generic physical tensor in 3 dimensions.
From a modeling perspective, the structure (or the coded versions) of Bi’s and the λi’s can be de-
rived apriori, while the exact coefficients Cis are learned using domain-specific data from T and
(A1,A2, · · · ,Ak). Eq. 2 shows a general model with γ terms. Algebraically, the joint invariants
form an algebra (say, Inv), and for completeness of the model λ1, λ2, . . . , λm should be algebra gen-
erators for Inv. Meanwhile, equivariant tensor monomials form a submodule (say, Cov) of tensors
(in which T exists) over Inv, and (B1,B2, . . . ,Bγ) should be module generators for Cov.

One of the earliest works in this vein is by Robertson (1940), which was widely used for developing
isotropic tensor functions for closure modeling in turbulence. Motivated by some use cases in linear
elasticity theory, other authors derived several minimally complete isotropic tensor function repre-
sentations in Wang (1970); Smith (1971); Zheng (1993a; 1994; 1993b). However, these results were
restricted to tensors of order less than or equal to 2. After significant dormancy, recently Olive &
Auffray (2014) gave a minimal set of isotropic invariants of a symmetric third order tensor. These re-
sults are scalar function representations, but an extension to general tensor function representations
was not made, until now. There has been considerable interest in learning such tensor function rep-
resentations using Equivariant Neural Networks (ENNs) Villar et al. (2021); Gasteiger et al. (2020);
Geiger & Smidt (2022) which have been used successfully in a range of applications (for example,
Jumper et al. (2021); Satorras et al. (2021); Gregory et al. (2024)). We develop a new methodology
for deriving algebraically minimal equivariant functions with more interpretability than black box
ENNs architectures, which could be useful for similar applications.

The workflow for the current work is summarized in Fig. 3. A central idea is to work with binary
forms for deriving the tensor monomials and the invariants, then learn the coefficient functions
using neural networks. This is possible because: 1) every tensor can be irreducibly decomposed into
a direct sum of symmetric trace free (i.e., harmonic) tensors (Zou et al. (2001); Spencer (1970));
and 2) There is an isomorphism (Smith & Bao (1997); Boehler et al. (1994)) between harmonic
tensors and binary forms, by which tensor monomials can be derived in the space of binary forms.
Another advantage of working with binary forms is that the equivariant polynomials in binary forms
naturally form an algebra (and not a module), which can be finitely generated (Gordan (1868);
Hilbert (1993)). Our results thus arise from the invariant theory of binary forms, which is a very
mature field (Hilbert (1993); Olver (1999); Kung & Rota (1984)) and reliable algorithms (Sturmfels
(2008); Bruns et al. (2017); Eisenbud et al. (2001)) for effective computations. Working in the binary
forms space is not only convenient, but we found it essential for making computations tractable.

The rest of the paper is laid out as follows. Some background for invariant theory is introduced in §2.
This will be used in §3 to discuss the overall methodology for deriving minimal tensor monomials
and invariants. A supervised learning problem is discussed with tensor invariants as inputs and the
monomial coefficients as outputs, which will complete the learning framework for general tensor
function representations. In §4, the approach is verified by deriving symmetric tensor function rep-
resentations of one and two symmetric second order tensors, for which we compare against classical
results of Wang (1970). In §5, the fourth order Rapid Pressure Strain Rate (RPSR) correlation tensor
(Pope (2001)), a well-known bottleneck (Kassinos et al. (2001)) in modeling turbulence, is explored
using the current methodology. We present numerical results showing a substantial improvement
over existing modeling approaches.

Contributions of the current work:

1. A new paradigm for learning equivariant tensor functions from tensor tuple inputs to tensor
outputs is developed by first deriving the underlying algebraic structure, and next learning
scalar coefficient functions using neural networks and problem specific data. This paradigm
also enforces tensor trace constraints exactly the the final models.

2. Minimally complete tensor function representations are derived using covariant algebra of
binary forms in an interpretable learning based setting.
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3. Efficient numerical algorithms are developed for generating covariant modules and finding
minimal module generators.

4. Nonlinear RSPR tensor models are built using turbulence structure tensors (Kassinos
(1995)) for the first time and tested on a wide variety of turbulent flow configurations.

2 MATHEMATICAL BACKGROUND AND PREREQUISITES

Groups describe symmetries Olver (1999). We recall that a group G is a set with a binary operation
that is associative, has an identity element, and admits inverses. GL(n,F) = {M ∈ Fn×n} is the
general linear group. Main examples in this work are the matrix groups SO(3,R) = {R ∈ R3×3 :
RR⊤ = RR⊤ = I} and SL(2,C) = {M ∈ C2×2 : det(M) = 1}, where the group operation is
matrix multiplication.

Representations encode how symmetries operate on spaces. A W-representation of G is a finite-
dimensional vector space (real or complex) on which G acts by linear maps. That is, there exists a
group homomorphism ρ : G → GL(W) from G to invertible linear transformations of W. Often
we abbreviate ρ(g)w as g ·w for g ∈ G and w ∈W with ρ being tacitly understood. Key examples
of representations are spaces of tensors, 3-dimensional in each direction, under the action of 3D
rotations. For instance, the space W of 3 × 3 real matrices is a representation of SO(3,R) where
the action is by conjugation: R ·W := RWR⊤ for R ∈ SO(3,R) and W ∈W.
Definition 2.1 (G-equivariant andG-invariant functions1). Let W and V be representations of some
group G. A function B : W→ V is said to be equivariant with respect to G if:

B(g ·W ) = g ·B(W ), ∀ g ∈ G, ∀W ∈W. (3)

Further, let X be any set. A function λ : W→ X is said to be invariant with respect to G if:

λ(g ·W ) = λ(W ), ∀ g ∈ G, ∀W ∈W. (4)

Definition 2.2 (G-covariant module and G-invariant algebra). Let W and V be K-representations
of some group G, where K = R or K = C. Then the covariant module is CovG(W,V) is the
set of all G-equivariant polynomial functions over K from W to V. Further, the invariant algebra
InvG(W) is the set of all G-invariant polynomial functions over K from W to K.

We note that InvG(W) is closed under multiplication and addition, while CovG(W,V) is closed
under addition and scalar multiplication by elements of InvG(W). This makes InvG(W) into an
algebra, and CovG(W,V) into a module over this algebra. We are interested in this paper chiefly
in SO(3,R)-equivariant and -invariant functions between tensor spaces.

A helpful relationship exists between the groups SO(3,R) and SL(2,C). Namely, there is a double
cover (see Appendix D for explicit details):

Ψ : SL(2,C)→ SO(3,C), (5)

where SO(3,C) is the complexification of SO(3,R). Double cover here means that Ψ is a surjective
homomorphism that is 2-to-1. This relationship lets us identify real representations of SO(3,R) with
complex representations of SL(2,C), via W 7→W ⊗R C.
Definition 2.3. Let Sn denote the complex vector space of binary forms of order n. For f ∈ Sn, it
can be written

f(x, y) =

n∑
i=0

(
n

i

)
aix

n−iyi, for (x, y) ∈ C2. (6)

A space of binary forms, V, is defined as follows (where ⊕ denotes direct sum):

V =

s⊕
i=0

Sni , ni ∈ N. (7)

Spaces of binary forms are representations of SL(2,C) under change of variables. A binary form
covariant is an SL(2,C)-equivariant function between two binary form spaces. It can be written as

1The terms functions and maps are used interchangeably.
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a polynomial in x, y and the coefficients of binary forms. Similarly, a binary form invariant is an
SL(2,C)-invariant polynomial function. Gordan (1868) and Hilbert (1993) proved that the algebra
of covariants for a binary form space, Cov(V) := ⊕∞

n=0CovSL(2,C)(V, Sn), is finitely generated.

There is a natural bi-grading in covariant algebra, i.e., each covariant can be graded using two
integers: the order and the degree. The order refers to the sum of powers of x,y and the degree
refers to the sum of powers of coefficients of any term in the binary forms. For a bihomogeneous
binary form, the degree and order on all terms will be the same, hence can be used for uniquely
grading them. For example, f ∈ S4 is an order 4, degree 1 covariant, while f2 is an order 8, degree
2. The order 0 covariants coincide with the invariants (Hilbert (1993)), hence the invariant algebra
is contained in the covariant algebra.

It is known that the space of Sn is an SL(2,C) irreducible representation, which cannot be further
decomposed into direct sum of representations. The SL(2,C) irreducible decomposition of a tensor
product is given by Clebsh-Gordan decomposition (Olive (2017)),

Sn ⊗ Sp
∼=

min(n,p)⊕
r=0

Sn+p−2r, (8)

where
⊕

indicates a direct sum over the binary form spaces. For each 0 ≤ r ≤ min(n, p), up to
nonzero scalar, there is a unique transvectant. Let f ∈ Sm,g ∈ Sn, their transvectant of index r, is
denoted by (f ,g)r, and given as follows where πr denotes SL(2,C)-equivariant projection:

πr : Sm ⊗ Sn → Sm+n−2r, f ⊗ g 7→ (f ,g)r := πr(f ⊗ g). (9)

Lemma 2.1. Olive & Auffray (2014) The transvectant operation of index r between two binary
forms f ∈ Sm and g ∈ Sn is given by

(f ,g)r =
(m− n)!
m!

(n− r)!
n!

r∑
i=0

(−1)i
(
r

i

)
∂rf

∂r−ix∂iy

∂rg

∂ix∂r−iy
. (10)

Remark. Let df , of be the degree and orders of f, then for (f, g)r, the degree is df + dg and its
order is of + og − 2r.

3 TENSOR REPRESENTATION METHODS

Let Tn = (R3)⊗n and let T ∈ Tn be a general order n tensor. Equation 2 shows a general tensor
function representation of T using (A1,A2, · · · ,Ak) where Ai ∈ To(i),

T(A1,A2, · · · ,Ak) =

γ∑
i=1

Ci(λ1, λ2, · · · , λm)Bi(A1,A2, · · · ,Ak).

For completeness of this model, λi’s must generate the invariant algebra InvSO(3,R)(To(1)⊕To(2)⊕
· · · ⊕To(k)) and Bi

′s must generate CovSO(3)(To(1)⊕To(2)⊕ · · · ⊕To(k),Tn) as an module over
the invariant ring. From definition 2.2, it follows that if λi’s and the Bi’s are minimal generators,
then the model T(A1,A2, · · · ,Ak) is minimally complete. Once the model is developed, the
coefficients functions Ci’s must be learned as functions(Robertson (1940)) of the invariant ring
generators (λi’s) using neural networks and domain-specific training data. Here, we first show the
link between general tensors and harmonic tensors. Then we show how to accomplish the three
major steps involved in deriving tensor function representations: 1) Using Harmonic Tensors (§3.1)
to derive the minimal invariant algebra generators (§3.2); 2) Obtaining the minimal covariant module
generators (§3.2); and 3) learning coefficient functions using neural networks (§3.4). Additionally,
§3.3 shows an algorithm to reduce to minimal module generators.

3.1 IRREDUCIBLE DECOMPOSITION INTO HARMONIC TENSORS

The space of harmonic (i.e., symmetric and trace free) tensors Hn ⊂ Tn is an SO(3,R) irreducible
representation. For the space of general order n tensors, Tn, the following theorem holds:

4
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Theorem 3.1. Tn irreducibly decomposes as Hn ⊕Hn−1 + · · · ⊕H0. (Spencer (1970); Zou et al.
(2001))
Corollary 3.1.1. Covariant spaces between general tensor spaces can be expressed in terms of
covariant spaces between harmonic tensor spaces.

Proof. From Theorem 3.1,

CovG

(
k⊕

i=1

To(i),Tn

)
∼= CovG(To(1) ⊕ To(2) ⊕ · · · ⊕ To(k),Tn)

∼= CovG

o(1)⊕
l=0

Hl ⊕
o(2)⊕
l=0

Hl ⊕ · · · ⊕
o(k)⊕
l=0

Hl,

n⊕
i=0

Hi


∼= CovG

 k⊕
j=1

o(j)⊕
l=0

Hl,

n⊕
i=0

Hi

 ∼= n⊕
i=0

CovG

 k⊕
j=1

o(j)⊕
l=0

Hl,Hi

 .

This completes the proof.

For example, the symmetric order 2 tensor space Sym2 ⊂ T2 can be decomposed into:

Sym2 ≃ H2 ⊕H0

CovSL(2,C)(Sym2, Sym2) ≃ CovSL(2,C)(H2 ⊕H0,H2 ⊕H0)

CovSL(2,C)(Sym2, Sym2) ≃ CovSL(2,C)(H2 ⊕H0,H2)⊕CovSL(2,C)(H2 ⊕H0,H0). (11)

To develop complete tensor function representations for CovSO(3,R)(Sym2, Sym2), the invariant
generators of H2 ⊕ H0 and the CovSO(3,R)(H2 ⊕ H0,H2) and CovSO(3,R)(H2 ⊕ H0,H0) are
required. This example is revisited and worked out in §4.1.Corollary 3.1.1 is a useful result which
implies that Inv and Cov for harmonic tensors are sufficient to build tensor function representations
for any general tensor. Below we show that a finite set of generators can be derived.

3.2 HARMONIC TENSORS AND BINARY FORMS

There is an association (Zheng (1994); Boehler et al. (1994)) from real irreducible representations
of SO(3,R) to complex irreducible representations of SL(2,C). Via equation 5, there is an isomor-
phism as SL(2,C) representations:

Hn ⊗ C ∼= S2n. (12)
This link is well known in the field of constitutive modeling and used to derive the isotropic invari-
ants of traceless symmetric order 3 and order 4 tensors (Smith & Bao (1997)) and more recently a
symmetric order 3 tensor Olive & Auffray (2014). It was also used to derive the minimal integrity
basis for the order 4 elasticity tensor (Olive et al. (2017)). We use this link to show two important
results.
Theorem 3.2. Complete SO(3,R) equivariant tensor function representations can be derived from
SL(2,C) covariant modules2 of binary forms.

Proof. Using Eq. 12,

InvSO(3,R)

(
k⊕

i=1

Hni

)
⊗ C ∼= InvSL(2,C)

(
k⊕

i=1

S2ni

)
(13)

In addition to these two invariant rings are isomorphic, we can say that for any orderm, the following
covariant modules are isomorphic:

CovSO(3,R)

(
k⊕

i=1

Hni ,Hm

)
⊗ C ∼= CovSL(2,C)

(
k⊕

i=1

S2ni
, S2m

)
(14)

2The direct finite sum of covariant modules gives the covariant algebra.
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Remark. This concludes theoretical development in the current work and brings about an important
comment. Using Theorem 3.2 and Corollary 3.1.1, the tensor function representations in Eq. 2 can
be built, provided the invariant and covariant generators of binary forms are known:

CovSO(3,R)

(
k⊕

i=1

To(i),Tn

)
∼=

n⊕
i=0

CovSL(2,C)

 k⊕
j=1

o(j)⊕
l=0

S2l, S2i

 . (15)

3.3 EFFECTIVE NUMERICAL COMPUTATIONS

The generators for InvG and CovG of binary forms can be finitely obtained using the Gor-
dan’s Algorithm (Gordan (1868); Olive (2017) which is explained in detail in Appendix E. For
any space of binary forms V :=

⊕k
i=1 S2i, the algorithm gives finite generators for any Sn

covariant module, CovSL(2,C)(V, Sn). It can also be used to generate the invariant algebra as
InvG(V) ≃ CovG(V, S0) . Results for covariant algebra of S6 ⊕ S2, S4 ⊕ S4, S6 ⊕ S4 ⊕ S2 and
several others are computed using Gordan’s algorithm and readily available in literature. We note
that the generators computed by Gordan’s algorithm are in the form of iterated transvectants as de-
fined in equation 10, which facilitates their efficient evaluation. The results can be used to develop
complete SO(3,R) equivariant tensor functions. But these representations will not be minimal,
because Gordan’s algorithm does not provide minimal generators, only complete ones.

Algorithm 1: Identifying the minimal generating set for an R-module
Inputs: Generators of R-Module M, Generators of Ring R
Result: Minimal generating set of R-Module

1 begin
2 Initialize p← 65521 // Some large prime
3 Initialize K ← ZZ/p // Galois (Finite) Field
4 Initialize R← K[c1, c2, . . . , ck, x, y] // Poly Ring with Coefs and Vars
5 Initialize I← {i1, i2, . . . , im} // Ring Generators
6 Initialize F← {f1, f2, . . . , fn} // Module Generators
7 I+ ← {il|degree(il) > 0}
8 m← ideal(I+) // The Irrelevant (maximal) Ideal
9 for ∀fl ∈ F do

10 fml ← fl%m // Viewing M gens as M/mM gens
11 end
12 Fm ← {fm1 , fm2 , . . . , fmn }
13 γ ← Linearly Independent Row Indices (Fm) // Using Gaussian Elimination

14 return F(min) ← {fγ(1), fγ(2), . . . , fγ(s)} // Minimal Gen. Set
15 end

In order to remedy this, the minimal generator subsets of Gordan’s generators for Inv and Cov
must be identified. For reducing generators of Inv to a minimal set, Olive (2017) gives a degree-
per-degree approach using the Hilbert series (Bedratyuk (2010)). As far as the authors are aware,
there are fewer readily implemented methods for identifying minimal generators of a module over a
ring (like Cov over Inv) from a finite generating set. So, the Algorithm 1 is proposed. This uses
the graded version of Nakayama’s Lemma ( Eisenbud (2013)) which expresses module generation in
terms of vector space generation over a field, so that linear algebra can be used for minimal generator
identification. The lemma says that if m is the homogeneous maximal ideal of the graded ring R,
then M/mM is a vector space over the field R/m and {f1, f2, . . .} form a module generating set
for M if and only if the reductions {fm1 , fm2 , . . .} form a vector space spanning set for M/mM
over R/m. Further, since the polynomials in our computations have rational coefficients, the linear
algebra calculations can be done over a finite field by working modulo a prime number. We choose
a few large primes and repeat the computations to ensure that the results are accurate.

The algorithm is as follows. Load the generators of the invariant ring and the covariant module
upto some fixed degree using Gordan’s algorithm. Create the maximal ideal I+ (m) using positively
graded ring elements. View the module generators, f , of M in M/mM by taking the remainder

6
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against m, denoted by f%m. Now, implement reduced row echelon form and identify the linearly
independent entries which correspond to R-linearly independent f ’s; these are the minimal genera-
tors. If the invariant ring is not too large, the f%m step could be computed using a Gröbner basis
(Sturmfels (2008)). If that is too restrictive, the numerical linear algebra algorithm proposed in
Appendix F can be used. These computations were done using Macaulay2 (Eisenbud et al. (2001)).

3.4 LEARNING THE COEFFICIENTS

Figure 1: Schematic of the architecture for learning tensor representations as shown in Eq. 2.
Circles are scalars (H0) and cubes are tensors (Hn). Λ’s are the invariants, Ci’s are scalar functions
of invariants, Bi’s are the tensor monomials, T is the tensor function representation.

The minimal generators of InvG and CovG complete the learning architecture. The minimal gen-
erators will all be iterated polynomial transvectants, which must be converted back into Hn using the
mapping shown in Appendix B. A schematic of the proposed architecture is shown in Fig. 3. The
model has two input layers, the invariant algebra generator, labelled Λi and the covariant module
generators labeled Bi in yellow. The scalar coefficient functions are learned using a hidden layers,
with appropriate size, based on the complexity of the problem. We can visualize the contributions
from each each tensor input towards the modeling opening new possibilites for discovering insights
about the modeling process. The covariant module computations can be reused for every run after
the first time. An example is worked out in §5.

4 COMPUTATIONS AND RESULTS

4.1 MODELING A SYMMETRIC ORDER 2 TENSOR IN TERMS OF A SYMMETRIC ORDER 2
TENSOR

To model A(B), where, A,B ∈ Sym2, following Eq. 11, this problem is split into two sub parts.
The covariant algebra of S4 is well known(Olive (2017)). It is summarized in Table. 2 First minimal
generators of Inv(S4 ⊕ S0) are computed minimally. They are (v,v)4 and (v, (v,v)2)4, which
correspond to tr(B2) and tr(B3) from S4, and S0 corresponds to tr(B). These 3 invariants are inputs
to coefficients and also used to create an R-module. Minimal generators of Cov(S4 ⊕ S0, S4) are
v and the transvectant (v,v2), which correspond to B and B2. Putting all these together,

A(B) ∈ CovSO(3,R)(H2 ⊕H0,H2 ⊕H0) ≃ CovSL(2,C)(S4 ⊕ S0, S4 ⊕ S0)

≃ CovSL(2,C)(S4 ⊕ S0, S4)⊕CovSL(2,C)(S4 ⊕ S0, S0)

A(B) =
(
c1B+ c2B

2
)
+ c3I.

where ci = ci(tr(B), tr(B2), tr(B3)) are to be learned using data from A and B, in most cases using
neural networks. These results can be verified from the results of Smith (1971); Zheng (1993a).

4.2 MODELING A SYMMETRIC ORDER 2 TENSOR USING TWO SYMMETRIC ORDER 2 TENSOR

The previous result is extended in this example. Let, A,B,C ∈ Sym2, then A(B,C) is derived.
Irreducible decomposition shows,

7
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Deg Covs Harmonic Tensors

1 q, p H1a := B, H1b := C

2
(p,q)2

(q,q)2, (p,p)2

H2a := (BC+CA)− 1
3 tr(BC+CB)I

H2b := B2 − 1
3 tr(B2)I, H2c := C2 − 1

3 tr(C2)I

3
(q, (p,p)2)2

(p, (q,q)2)2

H3a := (BC2 +C2B)− 2
3 tr(C2)H1a − 1

3 tr(H2cH1a +H1aH2c)I

H3b := (CB2 +B2C)− 2
3 tr(B2)H1b − 1

3 tr(H2bH1b +H1bH2b)I

4 [(p,q)3]
2

H4 := 6(B2C2 +C2B2) + 10H2
1atr(C2) +

10H2
1btr(B2) + 2tr(C2)tr(B2)I

− 1
3 (6tr(C2B2) + 6tr(B2C2) + 26tr(B2)tr(C2))I

Table 1: Minimal module generators of order 4 covariant polynomials expressed as iterated transvec-
tants and their corresponding expressions as harmonic tensors in H2.

A(B,C) ∈ CovSO(3,R)(2H2 ⊕ 2H0,H2 ⊕H0)

≃ CovSL(2,C)(2S4, S4)⊕CovSL(2,C)(2S4, S0)⊕CovSL(2,C)(2S0, S4)⊕CovSL(2,C)(2S0, S0)

CovSL(2,C)(2S0, S4) will have no terms. The terms from CovSL(2,C)(2S4, S0), and
CovSL(2,C)(2S0, S0) will be reduced to cI in the model, for some coefficient function c. To build
the tensor function representations for CovSL(2,C)(2S4, S4), the order 4 module generators are build
using the non-invariant covariant algebra of S4 ⊕ S4, whose covariant algebra is derived in Olive
(2017) is summarized in Table. 3. By solving a linear Diophantine system for every degree, 43 order
4 module generators were identified. Using Algorithm 1, they are reduced to a linearly independent
minimal set of 8 polynomials. The linearly independent covariant polynomials and the correspond-
ing harmonic tensors are written in Table 1. Using these generators, a model for a symmetric tensor
can be written as,

A(B,C) = c1I+ c2B+ c3C+ c4(BC+CB) + c5B
2 + c6C

2

+c7(BC2 +C2B) + c8(CB2 +B2C) + c9(C
2B2 +B2C2) (16)

These 9 terms are consistent with the terms given by Wang (1970) and also noted in Smith (1970).

5 RESULTS FOR TURBULENCE MODELING

5.1 MODELING THE RAPID PRESSURE STRAIN RATE CORRELATION

Direct numerical simulations of fluid turbulence is prohibitively expensive in complex geometries.
In practice, it is common to simulate by approximately modeling the effects of turbulence. One
particularly difficult aspect to model is the Rapid Pressure Strain Rate (RSPR, Π) tensor plays
a central role in re-distrubuting the turbulence stresses. It has been extensively studied (Launder
et al. (1975); Johansson & Hallbäck (1994); Girimaji (2000)) and it is a well-known bottleneck
in turbulence modeling. The RSPR tensor is defined in Eq. 17 using the mean velocity gradient
Ui,j :=

∂Ui

∂xj
and an order M ∈ T4 tensor.

Πij = 2Un,m(Mimnj +Mjmni) (17)

The mean velocity gradients are generally known apriori and the modeling is only focused on the M
tensor. It is hypothesized that the M tensor depends on three turbulence structure tensorsKassinos
et al. (2001): Reynolds Stress (R ∈ Sym2), Dimensionality (D ∈ Sym2), Stropholysis (Qh ∈ H3).
Physically, R quantifies the anisotropy in the velocity components, D quantified the anisotropy in

8
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the turbulent length scales and Qh quantifies how strongly flow rotation breaks reflectional sym-
metry. Consequently, a model for M(R,D,Qh) is valuable for turbulence modeling. This is first
reformulated as a problem of modeling Mh(Rh,Dh,Qh) where, Rh and Dh are the harmonic
projections of R and D, which are commonly known as Reynolds Stress anisotropy (Rh ∈ H2)
and Dimensionality anisostopy (Dh ∈ H2) in the field turbulence modelingChoi & Lumley (2001).
First, the exact decomposition of M carried out by KassinosKassinos (1995) is noted:

Mijkl =M(ijkl) +
1

8
[4Mijkl − 4Mklij ] +

1

12
[4Mlkij − 4Mkjil − 4Milkj

−Mljki −Miklj −Mkilj ] (18)
M must satisfy some constraints on its traces: Miikl = Dkl,Mklii = Rkl, ϵitsMsptj = Qipj .

These are introduced in Eq. 18 which simplifies to Eq. 19. By modeling the Mh and substituting in
the harmonic decomposition (Eq. 19), trace constraints are satisfied exactly for the model of M.

Mijkl =

[
Mh

ijkl +
1

7

(
δ(ijRkl) + δ(ijDkl)

)
− 1

35
δ(ijδkl)Rii

]
+

1

2

[
ϵzkjQ

h
zil − ϵzilQh

zkj

]
+

1

6
[(δilδjk + δikδlj − 2δijδkl)Rii + 3(δklRij + δklDij) + (δklDij + δijRkl)]

−1

6
[δil(Rkj +Dkj)− δkj(Ril +Dlj)− δik(Rlj +Dlj)− δlj(Rki +Dki)] (19)

M(R,D,Qh) can be modeled using Mh(Rh,Dh,Qh) ∈ Cov(H2⊕H2⊕H3,H4). The difficulty
in modeling M(R,D,Qh) is due to Qh which is in H3. So, historically models were either ad-hoc
(Launder et al. (1975)), only used a subset of tensor dependencies (Johansson & Hallbäck (1994)
built M(R)), or simply linear (Kassinos et al. (2001)). We present a complete M(R,D,Qh) model
(using Mh) non-linear up to degree 2 and 3 for the first time. The explicit models are shown in

Figure 2: Error in the rapid term. Legend: —– Degree 3 model, —– Degree 2 model, —– Linear
Model (Kassinos et al. (2001)), —– LRR Model (Launder et al. (1975)), —– IP Model (Launder
(1989))

Appendix G.2. Computations show that a degree 2 M model can be built using 4 invariants and 6
tensor monomials and a degree 3 term is constructed with 11 Invariants and 27 tensor monomials.
This is the underlying algebraic structure. For these two models, simple MLPs with 2 hidden layers
with 128 neurons were used with input-output layer sizes of (4, 6) and (11, 27) respectively to learn
coefficients for each tensor monomial as a function of the Invariants. In Fig. 2, these new models
are compared against two classical LRR (Launder et al. (1975)) and IP (Launder (1989)), models
and the linear M(R,D,Q∗) model by Kassinos (1995). To learn the scalar coefficient functions for
the representation functions of M tensor, 320 different flow scenarios were simulated using Rapid
Distortion theory (Pope (2001)) and a dataset is curated with M,R,D,Q∗ tensors. A 75:20:5 split
was used for train, validation and testing split, while ensuring that the testing data was the most
anisotropic, which would make modeling most difficult. The results in Fig. 2 shows the error in
modeling the Π tensor using different models. The models we propose give – for the first time – an
error which is lower than 10% in most flow scenarios. They perform an order of magnitude better
than the linear model and almost two orders of magnitude better than the classical models.

9
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6 REPRODUCIBILITY

All theoretical, computational, and numerical results in this paper are readily reproducible by the the
methods described in the paper and/or by using the code included in out supplement. Specifically,
three different cases were considered to showcase the applicability of the current work. In §4.1, and
§4.2 the results were purely algebraic. For the first of these, the results do not require extensive
computations. Following the second remark in the Appendix E, and using the covariant algebra
in Table 2, the covariant module generators can be computed by hand. For the second case, we
follow the same outline but use the covariant algebra in Table 3, but this needs explicitly invocation
the Algorithm 1, because it has 4 invariants and Gröbner basis calculations are not trivial by hand.
Source code is attached in the supplementary files, where this example is worked out end-to-end. In
§5, an extensive numerical example is worked out. The primary result in minimal covariant module
generators and the generators of the invariant algebra, which are summarized in Table 6 and Table 5.
These results require covariant algebra generators of S6 ⊕ S4 ⊕ S4 which is not readily available in
literature. But, S6 and S4⊕S4 are available separately. This can be used to create the joint covariant
algebra by Gordan’s algorithm as described in Appendix E, and then we proceed in the same way as
before to identify the invariant generators and the covariant Module generators of S8, In this case, we
impose limits on the degrees to 2 and 3 to obtain quadratic and cubic models. Then, the covariants
are converted back to tensors using Appendix B and trained using two simple feedforward neural
networks whose descriptions are mentioned in Appendix G.2.
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A LARGE LANGUAGE MODEL USAGE

LLMs were not used to generate or research any parts of this paper.

B TENSOR COVARIANTS

Lemma B.1. Let H1 ∈ Hn(R3) and H2 ∈ Hp(R3) be two harmonic tensors. Let r be the order of
the transvectant, then

{ϕ∗H1, ϕ
∗H2}2r =

1

2r
ϕ∗
(
(H1

(r). H2)
s
0

)
,

{ϕ∗H1, ϕ
∗H2}2r+1 = κ(n, p, r)ϕ∗((tr r(H1 ×H2))0) ,

where,

κ(n, p, r) =
1

22r+1

(n+ p− 1)! (n− r − 1)! (p− r − 1)!

(n+ p− 1− 2r)! (n− 1)! (p− 1)!
.

The tensor contraction is defined as

(T1(r). T2)i1i2...ip−rjr+1jr+1...jq = δip−r+1j1 . . . δipjqT
1
i1i2...ipT

2
j1j2...jq ,

the symmetrization operation is

Ts =
1

n!

∑
σ∈Sn

Tσ(1)σ(2)...σ(n),

and P0 is the harmonic projection of the tensor P. The generalized cross product between two
totally symmetric tensors S1 ∈ Sp(R3) and S2 ∈ Sq(R3) is

S1 × S2 = (S1 × S2)i1...ip+1−1
= (ϵi1jkS

1
ji2···pS

2
kip+1...ip+q−1

)s

Finally, ϕ∗ : Hn(C3)→ S2n is a unique equivariant isomorphism (up to a nonzero scale factor).

C HARMONIC DECOMPOSITION OF ANY TENSOR

From a representation theory perspective, the harmonic decomposition is an irreducible decomposi-
tion. One of the earliest works which showed harmonic decomposition is by Spencer (1970; 1987).
A more refined version is developed by Zou et al. (2001), harmonic decomposition is referred to
as deviatoric decomposition, and a recursive formula is shown which is particularly conducive for
working with computer algebra software. Most works on harmonic decomposition occur in two
steps. First, the tensor is decomposed into its symmetric components, then each symmetric compo-
nent is decomposed into trace-less components. For example, a general order 2 tensor (T ∈ T2) can
be decomposed as,

Tij = δijp+ ϵijkuk + bij

where, p =
1

3
Tkk, uk =

1

2
ϵijkTjk, bij =

1

2
(Tij + Tji)−

1

3
δijTkk. (20)

Here, δij is the kronocker-delta and ϵijk is the alternating tensor. Here, p ∈ H0,u ∈ H1, and b ∈ H2

are irreducible representations. Outside of the complete harmonic decompision, the symmetric and
traceless decompositions have also been studied. The theory of Young tableau (Fulton (1997)) can
help with effective symmetric decomposition. More recently, the result given by Toth & Turyshev
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(2022) can be adapted for the current context to begin with a symmetric tensor and decompose it
into trace-less component. For Q ∈ Symk, an iterative formula can be written as

Q0 = Qi1i2···ik +

⌊k/2⌋∑
p=1

(−1)p k! (n+ 2k − 2(p+ 2))!!

2p p! (k − 2p)! (n+ 2k − 4)!!
δ(i1i2δi3i4 · · · δi2p−1i2p Qi2p+1···ik) ,

where the nth trace is defined as

Qi1i2···ik−2n
= δik+1ik+2

· · · δik−1ikQi1i2···ik .

Here n is the number of dimensions, and k is the order of the tensor Q. Also,

a!! =

{
a(a− 2)(a− 4) · · · 2, if a is even,

a(a− 2)(a− 4) · · · 1, if a is odd,
with 0!! = 1, 1!! = 1.

Using this formula, some common harmonic projection formulae are worked out below, for 3 di-
mensions. Here, Tn ∈ Sn and T0

n ∈ Hn is its corresponding harmonic projection.

T0
2 = Tij −

1

3
δijTmm

T0
4 = Tijkl −

6

7
(δijTmmkl)

s +
3

35
(δijδkl)

sTmmnn

T0
7 = Tijklmnp −

21

13
(δijTqqklmnp)

s +
105

143
(δijδklTqqrrmnp)

s − 105

1287
(δijδklδmnTqqrrttp)

s

D ISOMORPHISM BETWEEN BINARY FORMS AND HARMONIC TENSORS

The isomorphism which links S2n and Hn is crucial for the results established in §3. Let T ∈
Hn[R3] which is an irreducible representation of SO(3, R). It can be complexified with ⊗C to get
Hn[C3], which is an irreducible representation of SO(3,C). The polarization (see Appendix A in
Olive et al. (2017)) map can be used to convert a order n harmonic (or any symmetric) tensor into a
homogeneous polynomial p(x, y, z):

ψ : Hn(C3)→ Cn[C3]. (21)

Here Cn[C3] is the space of homogeneous ternary polynomials (in 3 variables) of order n. This map
is invertible so any polynomial p(x, y, z) can also be mapped to a harmonic tensor3. There is an
isomorphism between the terinary polynomial forms and binary forms which can be written using
the Cartan map:

f(u, v) = p

(
u2 − v2

2
,
u2 + v2

2i
, uv

)
, (22)

where f ∈ S2n. The ternary form (p ∈ Cn[C3]) can be recovered with the map below:

u2n−kvk −→

{
zk(x+ iy)n−k, if 0 ≤ k ≤ n,

z2n−k(−x+ iy)k−n, if n ≤ k ≤ 2n.

This finishes the description of the isomorphism. The implementation of the isomorphism can be
altered based on the application. For a more detailed treatment we refer to the works of Olive et al.
(2017) and Olive et al. (2018).

3Now, if the tensor is symmetric and also trace free, then the laplacian of the corresponding homogeneous
polynomial is zero, hence they are appropriately referred to as harmonic tensors.
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E GORDAN’S ALGORITHM

Gordan’s algorithm is used for generating the covariant algebra of binary forms. It was originally
proposed Gordan (1868) first showed that the covariant algebra is finitely generated (even before
Hilbert). Olive (2017) provides a reformulation of the algorithm using the language of modern
representation and invariant theories. The Gordan’s algorithm has two form. The first form is to
derive Cov(Sn) using Cov(Sk) for k < n. The second form is to derive the covariant algebra of joint
binary forms, i.e., Cov(Sn1

⊕ Sn2
⊕ · · · ⊕ Snk

). The Covariant algebra of simple binary forms is
already derived for several orders. S5, S6 are derived by Gordan (1875), S7 by Dixmier & Lazard
(1985); Bedratyuk (2009), S8 by Draisma (2014); Bedratyuk (2006), S9 and S10 by Lercier & Olive
(2015). Using these equivariant tensor functions using dependencies upto T5 can be computed
following the current work. Results for Cov(S4), as an example, are shown in Table 2, where
v ∈ S4.

Degree / Order 0 4 6

1 v (v, (v,v)2)1

2 (v,v)4 (v,v)2

3 (v, (v,v)2)4

Table 2: Covariant Algebra of S4 (v ∈ S4).

The second form of Gordan’s algorithm uses the Cov(Sn) and Cov(Sm) to derive Cov(Sn⊕Sm). If
fi ∈ Sn,gj ∈ Sm for 1 ≤ i ≤ p, 1 ≤ j ≤ q then let ai, bj be the orders of fi,gj , a new transvectant
can be constructed using α ∈ Np, β ∈ Nq as (fα1

1 fα2
2 · · · f

αp
p ,gβ1

1 gβ2

2 · · ·g
βq
q )r for some r. Gordan’s

algorithm gives a finite set of (α, β, r)s using which the covariant algebra can be generated. They
are obtained as irreducible solutions (cannot be decomposed into sum of non-trivial solutions) of the
linear Diophantine equation:

a1α1 + a2α2 + · · ·+ apαp = u+ r

b1β1 + b2β2 + · · ·+ bqβq = v + r (23)

d/o 0 2 4 6

1 p, q

2
(p,p)4, (q,q)4

(p,q)4
(p,q)3

(p,p)2, (q,q)2
(p,q)2

(p,q)1

3

(p, (p,p)2)4

(q, (q,q)2)4

(p, (q,q)2)4

(q, (p,p)2)4

(p, (q,q)2)3

(q, (p,p)2)3

(p, (q,q)2)2

(q, (p,p)2)2

(p, (p,p)2)1

(q, (q,q)2)1

(p, (q,q)2)1

(q, (p,p)2)1

4 ((p,p)2, (q,q)2)4

((p,p)2, (q,q)2)3

((p, (p,p)2)1,q)4

(p, (q, (q,q)2)1)4

5
(p2, (q, (q,q)2)1)6

((p, (p,p)2)1,q
2)6

Table 3: Covariant Algebra of S4 ⊕ S4 (p,q ∈ S4)

Using this algorithm, the Cov(S6 ⊕ S2), Cov(S4 ⊕ S4), Cov(S6 ⊕ S4), Cov(S6 ⊕ S4 ⊕ S2) are
derived by Olive (2017). Cov(S4 ⊕ S4) is shown in Table 3 for reference, by ordering them degree
and order wise. Here, p ∈ S4,q ∈ S4.
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Remark. Solutions to linear Diophantine equations can become expensive when the number of
variables is large. In the current work, the Gordan’s algorithm and also numerical polynomial re-
mainder algorithm proposed in Appendix F can involve linear Diophantine equations with hundreds
(if not thousands) of variables. In practice, the fastest strategy to obtain solutions is by first creating
a convex cone and computing its lattice points. The algorithms described in the Normaliz (Bruns
et al. (2017)) Package are recommended.

Remark. It should be noted that the Gordan’s algorithm attempts to produce a finite covariant
algebra and not a finite covariant module basis which is what we need. So, after the algebra (for ex-
ample, V) is generated by Gordan’s algorithm, the covariant module generators of CovG(V,Sn)
are generated by multiplying the polynomials in the algebra together with one another such that
they match the order of Sn and some degree. This process can be repeated degree-per-degree to
find covariant generators in each degree. Since, the algebra is finitely generated, after some degree,
new generators will not be identified. This problem of finding all possible combinations of poly-
nomial multiplication for a particular degree and order can also be achieved by solving a linear
Diophantine equation.

F POLYNOMIAL REMAINDER

In Algorithm 15, the operation fi%m involves calculating the polynomial remainder after dividing
by an ideal. This can be significantly expensive. It is convinent to use Gröbner basis calculations.
In Macaulay2, creating an Ideal pre-computes the Gröbner basis. Also, since the ideal m is homo-
geneous, degree limits can be imposed on S-pairs that are used in the basis computations, which
tremendously reduces the expenditure. However, if the maximum degree under consideration is too
high, the calculation of Gröbner basis might be too expensive. So, a numerical linear algebra based
algorithm is desirable to avoid symbolic computations altogether.

Instead of computing the polynomial reminders for every generator and then computing the linearly
independence, the linear independence test can be done in a degree by degree, order by order manner.
An intermediate degree, order (d, o) stage computations would involve the following steps. Let
H(d,o) be the non-minimal module generators who have a degree d, and order o. Let the R linearly
independent module generators identified up to (d, o) be HLI

(<d,<o). By multiplying polynomials in
HLI

(<d,<o) together among themselves and using the generators ofR, the (d, o) piece can be spanned,
by solving an appropriate linear Diophantine equation for the degree and order. The polynomials in
H(d,o) which are linearly among themselves and also linearly independent with this newly spanned
set can be added to HLI

(<d,<o) to complete the calculation for the degree, order (d, o) pair. Next,
the calculation could focus either on (d + 1, o) or (d, o + 1) piece until the module generators are
exhausted.

G MINIMAL ANVARIANT ALGEBRA AND COVARIANT MODULE GENERATORS

G.1 MODELING A SYMMETRIC ORDER 2 TENSOR USING TWO SYMMETRIC ORDER 2
TENSORS

Deg 2H2 2H0

1 tr(B), tr(C)

2 tr(B2), tr(C2), tr(BC+CB)

3 tr(CH2c +H2cC), tr(BH2b +H2bB), tr(CH2b +H2bC), tr(BH2c +H2cB)

4 tr(H2cH2b +H2bH2c)

Table 4: Invariants of 2H2 ⊕ 2H0.
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G.2 NON-LINEAR RAPID PRESSURE STRAIN RATE TENSOR MODELS

To model the Π tensor, the order 4M tensor must be modeled. Eq. 19 shows this requires modeling
a H4 using H2⊕H2⊕H3. This requires identifying the minimal generators of the order 8 covariant
module of S6 ⊕ S4 ⊕ S4. Using the Covariant Algebra of S6 and S4 ⊕ S4 (Olive (2017)), Gordan’s
algorithm can be used to get the module generators of S6 ⊕ S4 ⊕ S4. From those the order 8 and
degree ≤ 3 covariant modules generators are identified and minimized (using Algorithm 1). There
are 4 degree 2 invariants and 7 degree 3 invariants which are shown in Table 6. There are 6 degree
2 and 21 degree 3 minimal covariant generators shown in Table 5, which will be converted to tensor
monomials. The coefficients to these monomials will be learned as scalar functions of invariants,
which will be learned using neural networks. The coefficients of the degree 2 and degree 3 models
are leaned using two neural networks with similar architectures. The networks have two hidden
layers with of 128 neurons and have 18k and 20k parameters respectively. We used AdamW for
regularization and dropout was used for regularization.

d/o 8

2 (f ,p)1, (f ,q)1, (f , f)2, p2, (q,p)0, q2

3

(f , (p,p)2)1, (f , (q,q)2)1, (f , (p,q)2)1, (f , (p,q)1)2, (f , (f ,p)4)0, (f , (f ,q)4)0,

((f , f)2,p)2, ((f , f)2,q)2, ((f , f)4, f)1, (p, (f , f)4)0, (p, (f ,p)3)0, (p, (f ,q)3)0,

(q, (f , f)4)0, (q, (f ,p)3)0, (q, (f ,q)3)0, ((p,p)2,p)0, ((p,p)2,q)0, ((q,q)2,p)0,

((q,q)2,q)0, ((p,q)2,p)0, ((p,q)2,q)0

Table 5: Order 8 Covariant module generators of S6 ⊕ S4 ⊕ S4 up to degree 3. (p,q ∈ S4, f ∈ S6)

d/o 0

2 (f , f)6, (p,p)4, (q,q)4, (p,q)4

3
(p, (p,p)2)4, (q, (q,q)2)4, (p, (q,q)2)4, (q, (p,p)2)4,

(f , (p,q)1)6, ((f , f)4,q)4, ((f , f)4,p)4

Table 6: Invariant ring generators of S6 ⊕ S4 ⊕ S4 up to degree 3. (p,q ∈ S4, f ∈ S6)

H OVERVIEW

The Fig. 3 shows the overall workflow for learning function representations developed in this work.

I EXTENSIONS TO OTHER GROUPS

The following general formula is used in the current work:

T(A1,A2, · · · ,Ak) =

γ∑
i=1

Ci(λ1, λ2, · · · , λm)Bi(A1,A2, · · · ,Ak)

For mappings between any representation of any group G, this ansatz holds. The generators for the
Invariant ring and the Covariant module over that ring are necessary for building functions between
representations of any general group. In this work tensor representations over SO(3) were consid-
ered, and algorithms were developed for identifying generators of Invariants and Covariant modules.
For extension of this work to other representations of different groups, appropriate algorithms for
generators must be identified, which can then be used with Algorithm 1 to build the representation
maps. There is extensive literature for efficient computation of invariant rings and covariant module
generators (Derksen & Kemper (2015); Goodman et al. (2009)).
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Figure 3: Workflow for learning tensor function representations of order n harmonic tensor T using
(Ho1 ⊕ Ho2 ⊕ · · · ). Red blocks work with tensors, and green blocks work with binary forms. ϕ is
the isomorphism between them and ϕ∗ is the inverse map of the isomorphism.

Let V := Tn1 ⊕ Tn2 ⊕ · · ·Tnk be a tensor space. Then the G-equivariant tensor function represen-
tations over T := Tt can be derived as covariant module, CovG(T ) generators over the Invariant
ring InvG(V). This work focused on the G = SO(3,R) extensively, but the results can be extended
to the O(3,R) in a straight forward manner.

I.1 O(3,R)-EQUIVARIANT TENSOR FUNCTIONS

The O(3,R) group contains both reflections and rotations, unlike SO(3,R) which only contains
proper rotation matrices (SO(3) ⊂ O(3)). Since, O(3) is a bigger group, O(3)-equivariance is
more restrictive than SO(3)-equivariance. Once, the SO(3)-equivariant functions are derived using
the Gordan’s algorithm, the following Lemma can be used to filter out the O(3)-equivariant tensor
functions.
Lemma I.1. Let T(A1,A2, · · · ,Ak) be a tensor function of order, o(T) and degree, d(T), then T
is an O(3) equivariant function representation, iff:

o(T) ∼=
n∑

i=1

o(Ai)d(Ai) + d(ϵ) (mod 2) (24)

Where, d(ϵ) is degree (number of copies) of levi-civita tensors in T. In its general form, the expres-
sion takes the following form including the degree of kronocker-deltas, d(δ) as:

o(T) ∼=
n∑

i=1

o(Ai)d(Ai) + o(δ)d(δ) + o(ϵ)d(ϵ) (mod 2)

o(T) ∼=
n∑

i=1

o(Ai)d(Ai) + 2d(δ) + 3d(ϵ) (mod 2)

o(T) ∼=
n∑

i=1

o(Ai)d(Ai) + d(ϵ) (mod 2)

I.2 PERMUTATION EQUIVARIANT TENSOR FUNCTIONS

As noted in Col. 3.1.1 and in Fig. 3, the co-domain is decomposed into harmonic tensor spaces
using harmonic decomposition. Upon plugging in the models of the harmonic components back
into the decomposition the tensor function representations of the desired space are build by keeping
the correct symmetries of the group. So, it is worthwhile to mention that the current methodology in
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this work implicitly imposes equivariance of the permutation group through the harmonic decompo-
sition. Extensions to groups in higher dimensions (> 3) and other general groups are out of scope
for this current work.

J MORE MATHEMATICAL BACKGROUND

Some mathematical background and preliminaries used throughout this work were defined in Sec-
tion. 2. Here, more prerequisites are presented with brief examples.

A ring R is a set accompanied with the addition and multiplication operations such that R is an
abelian group with respect to addition (0 ∈ R, if x ∈ R, then −x ∈ R) and the multiplication is
associative and distributive over addition. If a ring is commutative, xy = yx,∀x, y ∈ R. An example
is the polynomial ring which is commonly encountered this work. The set of all polynomials

f(x) = a0 + a1x+ · · ·+ anx
n

for some n > 0 and ai ∈ R, where x is an indeterminate, form the polynomial ring R[x] with
coefficients in R.

If R is a ring, then an R-module is an abelian group M equipped with a multiplication by elements
of R, such that :

a(x+ y) = ax+ ay

(a+ b)x = ax+ bx

(ab)x = a(bx)

1x = x

for all a, b ∈ R, x, y ∈ M. If u1, u2, . . . un ∈ M are such that all elements of M can be written
as x1u1 + x2u2 + . . . xnun for some xi ∈ R, then u1, u2, . . . un ∈ M is called as the generating
set of M . It is called minimal if removing any ui would disable the generating set from spanning
the entire module. It is called as a basis if the elements are R-linearly independent. It is possible to
have minimal generating sets of different dimensions. For example on Z, both {1} and {2, 3} are
minimal generators. But only {1} is a basis.
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