
On the Convergence of Prior-Guided Zeroth-Order
Optimization Algorithms

Shuyu Cheng, Guoqiang Wu, Jun Zhu∗
Dept. of Comp. Sci. and Tech., BNRist Center, State Key Lab for Intell. Tech. & Sys., Institute for AI,

Tsinghua-Bosch Joint Center for ML, Tsinghua University, Beijing, 100084, China
Pazhou Lab, Guangzhou, 510330, China

chengsy18@mails.tsinghua.edu.cn, guoqiangwu90@gmail.com, dcszj@tsinghua.edu.cn

Abstract

Zeroth-order (ZO) optimization is widely used to handle challenging tasks, such
as query-based black-box adversarial attacks and reinforcement learning. Various
attempts have been made to integrate prior information into the gradient estimation
procedure based on finite differences, with promising empirical results. However,
their convergence properties are not well understood. This paper makes an attempt
to fill up this gap by analyzing the convergence of prior-guided ZO algorithms
under a greedy descent framework with various gradient estimators. We provide
a convergence guarantee for the prior-guided random gradient-free (PRGF) algo-
rithms. Moreover, to further accelerate over greedy descent methods, we present
a new accelerated random search (ARS) algorithm that incorporates prior infor-
mation, together with a convergence analysis. Finally, our theoretical results are
confirmed by experiments on several numerical benchmarks as well as adversarial
attacks. Our code is available at https://github.com/csy530216/pg-zoo.

1 Introduction

Zeroth-order (ZO) optimization [18] provides powerful tools to deal with challenging tasks, such as
query-based black-box adversarial attacks [7, 13], reinforcement learning [22, 17, 9], meta-learning
[1], and hyperparameter tuning [23], where the access to gradient information is either not available or
too costly. ZO methods only assume an oracle access to the function value at any given point, instead
of gradients as in first-order methods. The primary goal is to find a solution with as few queries to the
function value oracle as possible. Recently, various ZO methods have been proposed in two main
categories. One type is to obtain a gradient estimator and plug in some gradient-based methods. [21]
analyzes the convergence of such methods with a random gradient-free (RGF) estimator obtained
via finite difference along a random direction. The other type is directed search, where the update
only depends on comparison between function values at different points. Such methods are robust
against monotone transform of the objective function [24, 10, 3]. However, as they do not directly
utilize function values, their query complexity is often higher than that of finite difference methods.
Therefore, we focus on the first type of methods in this paper. Other methods exist such as CMA-ES
[11] which is potentially better on objective functions with a rugged landscape, but lacks a general
convergence guarantee.

ZO methods are usually less efficient than first-order algorithms, as they typically take O(d) queries
to reach a given precision, where d is the input dimension (see Table 1 in [10]). Specifically, for
the methods in [21], the oracle query count is O(d) times larger than that of their corresponding
schemes using gradients. This inefficiency stems from random search along uniformly distributed
directions. To improve, various attempts have been made to augment random search with (extra)
∗J.Z. is the Corresponding Author. G.W. is now with School of Software, Shandong University.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/csy530216/pg-zoo

prior information. For instance, [14, 19] use a time-dependent prior (i.e., the gradient estimated in the
last iteration), while [16, 8, 4] use surrogate gradients obtained from other sources.2 Among these
methods, [14, 16, 8, 19] propose objective functions to describe the quality of a gradient estimator
for justification or optimizing its hyperparameters; for example, [19] uses a subspace estimator that
maximizes its squared cosine similarity with the true gradient as the objective, and finds a better
descent direction than both the prior direction and the randomly sampled direction. However, all
these methods treat gradient estimation and the optimization algorithm separately, and it remains
unclear whether are these gradient estimators and the corresponding prior-exploiting optimization
methods theoretically sound? and what role does the prior play in accelerating convergence?

In this paper, we attempt to answer these questions by establishing a formal connection between
convergence rates and the quality of gradient estimates. Further, we develop a more efficient ZO
algorithm with prior inspired by a theoretical analysis. First, we present a greedy descent framework of
ZO methods and provide its convergence rate under smooth convex optimization, which is positively
related to the squared cosine similarity between the gradient estimate and true gradient. As shown
by [19] and our results, given some finite-difference queries, the optimal estimator maximizing the
squared cosine similarity is the projection of true gradient on the subspace spanned by those queried
directions. In the case with prior information, a natural such estimator is in the same form as the
one in [19]. We call it PRGF estimator and analyze its convergence rate.3 Our results show that
no matter what the prior is, the convergence rate of PRGF is at least the same as that of the RGF
baseline [21, 15], and it could be significantly improved if given a useful prior.4 Such results shed
light on exploring prior information in ZO optimization to accelerate convergence.

Then, as a concrete example, we apply the analysis to History-PRGF [19], which uses historical
information (i.e., gradient estimate in the last iteration) as the prior. [19] presents an analysis on linear
functions, yet still lacking a convergence rate. We analyze on general L-smooth functions, and find
that when the learning rate is smaller than the optimal value 1/L in smooth optimization, the expected
squared cosine similarity could converge to a larger value, which compensates for the slowdown of
convergence brought by the inappropriate choice of learning rate. We also show that History-PRGF
admits a convergence rate independent of learning rate as long as it is in a fairly wide range.

Finally, to further accelerate greedy descent methods, we present Prior-Guided ARS (PARS), a new
variant of Accelerated Random Search (ARS) [21] to utilize prior information. Technically, PARS
is a non-trivial extension of ARS, as directly replacing the gradient estimator in ARS by the PRGF
estimator would lose the convergence analysis. Thus, we present necessary extensions to ARS, and
show that PARS has a convergence rate no worse than that of ARS and admits potential acceleration
given a good prior. In particular, when the prior is chosen as the historical information, the resulting
History-PARS is robust to learning rate in experiments. To our knowledge, History-PARS is the
first ARS-based method that is empirically robust while retaining the convergence rate as ARS. Our
experiments on numerical benchmarks and adversarial attacks confirm the theoretical results.

2 Setups

Assumptions on the problem class We consider unconstrained optimization, where the objective
function f : Rd → R is convex and L-smooth for L ≥ 0. Optionally, we require f to be τ -strongly
convex for τ > 0. We leave definitions of these concepts to Appendix A.1.

Directional derivative oracle In ZO optimization, we follow the finite difference approach, which
makes more use of the queried function values than direct search and provides better gradient
approximations than alternatives [2]. In particular, we consider the forward difference method:

gµ(v;x) :=
f(x+ µv)− f(x)

µ
≈ ∇f(x)>v, (1)

2Some work [7, 14, 25] restricts the random search to a more effective subspace reflecting the prior knowledge.
But, this eliminates the possibility of convergence to the optimal solution.

3Note that the estimator is different from the P-RGF estimator in [8].
4In this paper, RGF and PRGF could refer to either a gradient estimator or the greedy descent algorithm with

the corresponding estimator, depending on the context.

2

Algorithm 1 Greedy descent framework

Input: L-smooth convex function f ; initialization x0; upper bound L̂ (L̂ ≥ L); iteration number T .
Output: xT as the approximate minimizer of f .

1: for t = 0 to T − 1 do
2: Let vt be a random vector s.t. ‖vt‖ = 1;
3: xt+1 ← xt − 1

L̂
gt, where gt ← ∇f(xt)

>vt · vt;
4: end for
5: return xT .

where v is a vector with unit `2 norm ‖v‖ = 1 and µ is a small positive step. As long as the objective
function is smooth, the error between the finite difference and the directional derivative could be
uniformly bounded, as shown in the following proposition (see Appendix A.2 for its proof).
Proposition 1. If f is L-smooth, then for any (x, v) with ‖v‖ = 1, |gµ(v;x)−∇f(x)>v| ≤ 1

2Lµ.

Thus, in smooth optimization, the error brought by finite differences to the convergence bound can be
analyzed in a principled way, and its impact tends to zero as µ→ 0. We also choose µ as small as possi-
ble in practice. Hence, in the following analysis we directly assume the directional derivative oracle:
suppose that we can obtain∇f(x)>v for any (x, v) in which ‖v‖ = 1 with one query.

3 Greedy descent framework and PRGF algorithm

We now introduce a greedy descent framework in ZO optimization which can be implemented with
various gradient estimators. We first provide a general analysis, followed by a concrete example.

3.1 The greedy descent framework and general analysis

In first-order smooth convex optimization, a sufficient single-step decrease of the objective can
guarantee convergence (see Chapter 3.2 in [5]). Inspired by this fact, we design the update in an
iteration to greedily seek for maximum decrease. Suppose we are currently at x, and want to update
along the direction v. Without loss of generality, assume ‖v‖ = 1 and∇f(x)>v > 0. To choose a
suitable step size η that minimizes f(x− ηv), we note that

f(x− ηv) ≤ f(x)− η∇f(x)>v +
1

2
Lη2 := F (η) (2)

by smoothness of f . For the r.h.s, we have F (η) = f(x)− (∇f(x)>v)2

2L when η = ∇f(x)>v
L , which

minimizes F (η). Thus, choosing such η could lead to a largest guaranteed decrease of f(x−ηv) from
f(x). In practice, the value of L is often unknown, but we can verify that as long as 0 < η ≤ ∇f(x)>v

L ,
then f(x− ηv) ≤ F (η) < f(x), i.e., we can guarantee decrease of the objective (regardless of the
direction of v if∇f(x)>v > 0). Based on the above discussion, we further allow v to be random and
present the greedy descent framework in Algorithm 1.
Remark 1. If vt ∼ U(Sd−1), i.e. vt is uniformly sampled from Sd−1 (the unit sphere in Rd), then
Algorithm 1 is similar to the simple random search in [21] except that vt is sampled from a Gaussian
distribution there.
Remark 2. In general, vt could depend on the history (i.e., the randomness before sampling vt). For
example, vt can be biased towards a vector pt that corresponds to prior information, and pt depends
on the history since it depends on xt or the optimization trajectory.

Theoretically speaking, vt is sampled from the conditional probability distribution Pr(·|Ft−1) where
Ft−1 is a sub σ-algebra modelling the historical information. Ft−1 is important in our theoretical
analysis since it tells how to perform conditional expectation given the history.

We always require that Ft−1 includes all the randomness before iteration t to ensure that Lemma 1
(and thus Theorems 1 and 2) and Theorem 5 hold. For further theoretical analysis of various
implementations of the framework, Ft−1 remains to be specified by possibly also including some
randomness in iteration t (see e.g. Example 2 as an implementation of Algorithm 1).5

5In mathematical language, if Ft−1 includes (and only includes) the randomness brought by random vectors
{x1, x2, . . . , xn}, then Ft−1 is the σ-algebra generated by {x1, x2, . . . , xn}: Ft−1 is the smallest σ-algebra
s.t. xi is Ft−1-measurable for all 1 ≤ i ≤ n.

3

By Remark 2, we introduce Et[·] := E[·|Ft−1] to denote the conditional expectation given the history.
In Algorithm 1, under a suitable choice of Ft−1, Et[·] roughly means only taking expectation w.r.t. vt.
We let v := v/‖v‖ denote the `2 normalization of vector v. We let x∗ denote one of the minimizers of
f (we assume such minimizer exists), and δt := f(xt)− f(x∗). Thanks to the descent property in
Algorithm 1, we have the following lemma on single step progress.

Lemma 1 (Proof in Appendix B.1). Let Ct :=
(
∇f(xt)

>
vt

)2

and L′ := L
1−(1−L

L̂
)2

, then in

Algorithm 1, we have

Et[δt+1] ≤ δt −
Et[Ct]

2L′
‖∇f(xt)‖2. (3)

We note that L′ = L̂/(2−L/L̂), so L̂
2 ≤ L

′ ≤ L̂ and L′ ≥ L.

To obtain a bound on E[δT], one of the classical proofs (see e.g., Theorem 1 in [20]) requires us to take
expectation on both sides of Eq. (3). Allowing the distribution of vt to be dependent on the history
leads to additional technical difficulty: in the r.h.s of Eq. (3), Et[Ct] becomes a random variable that
is not independent of ‖∇f(xt)‖2. Thus, we cannot simplify the term E[Et[Ct]‖∇f(xt)‖2] if we take
expectation.6 By using other techniques, we obtain the following main theorems on convergence rate.
Theorem 1 (Algorithm 1, smooth and convex; proof in Appendix B.1). Let R :=
maxx:f(x)≤f(x0) ‖x− x∗‖ and suppose R <∞. Then, in Algorithm 1, we have

E[δT] ≤
2L′R2

∑T−1
t=0 E

[
1

Et[Ct]

]
T (T + 1)

. (4)

Theorem 2 (Algorithm 1, smooth and strongly convex; proof in Appendix B.1). If f is also τ -strongly
convex, then we have

E

 δT

exp
(
− τ
L′

∑T−1
t=0 Et[Ct]

)
 ≤ δ0. (5)

Remark 3. In our results, the convergence rate depends on Et[Ct] in a more complicated way than
only depending on E[Ct] = E[Et[Ct]]. For concrete cases, one may need to study the concentration
properties of Et[Ct] besides its expectation, as in the proofs of Theorems 3 and 4 when we analyze
History-PRGF, a special implementation in the greedy descent framework.

In the strongly convex case, currently we cannot directly obtain a final bound of E[δT]. However,
the form of Eq. (5) is still useful since it roughly tells us that δT converges as the denominator
exp

(
− τ
L′

∑T−1
t=0 Et[Ct]

)
. For History-PRGF, we will turn this intuition into a rigorous theorem

(Theorem 4) since in that case we can prove that the denominator has a nice concentration property.
Remark 4. If we have a lower bound of Et[Ct], e.g. Et[Ct] ≥ a > 0, then we directly obtain
that E[δT] ≤ 2L′R2

a(T+1) for Theorem 1, and E[δT] ≤ δ0 exp(− τ
L′ aT) for Theorem 2. These could

recover the ideal convergence rate for RGF estimator and the worst-case convergence rate for PRGF
estimator, as explained in Examples 1 and 2.

From Theorems 1 and 2, we see that a larger value of Ct would lead to a better bound. To find a
good choice of vt in Algorithm 1, it becomes natural to discuss the following problem. Suppose in an
iteration in Algorithm 1, we query the directional derivative oracle at xt along q directions {ui}qi=1

(maybe randomly chosen) and obtain the values of {∇f(xt)
>ui}qi=1. We could use this information

to construct a vector vt. What is the vt that maximizes Ct s.t. ‖vt‖ = 1? To answer this question, we
give the following proposition based on Proposition 1 in [19] and additional justification.
Proposition 2 (Optimality of subspace estimator; proof in Appendix B.2). In one iteration of
Algorithm 1, if we have queried {∇f(xt)

>ui}qi=1, then the optimal vt maximizing Ct s.t. ‖vt‖ = 1

should be in the following form: vt = ∇f(xt)A, where A := span{u1, u2, . . . , uq} and ∇f(xt)A
denotes the projection of∇f(xt) onto A.

6It is also the difficulty we faced in our very preliminary attempts of the theoretical analysis when f is not
convex, and we leave its solution or workaround in the non-convex case as future work.

4

Note that in Line 3 of Algorithm 1, we have gt = ∇f(xt)
>∇f(xt)A · ∇f(xt)A = ∇f(xt)A.

Therefore, the gradient estimator gt is equivalent to the projection of the gradient to the subspace A,
which justifies its name of subspace estimator. Next we discuss some special cases of the subspace
estimator. We leave detailed derivation in following examples to Appendix B.3.

Example 1 (RGF). ui ∼ U(Sd−1) for i = 1, 2, . . . , q. Without loss of generality, we assume
they are orthonormal (e.g., via Gram-Schmidt orthogonalization).7 The corresponding estimator
gt =

∑q
i=1∇f(xt)

>ui · ui (vt = gt). When q = 1, the estimator is similar to the random gradient-
free oracle in [21]. With q ≥ 1, it is essentially the same as the stochastic subspace estimator with
columns from Haar-distributed random orthogonal matrix [15] and similar to the orthogonal ES
estimator [9]. In theoretical analysis, we let Ft−1 only include the randomness before iteration t, and

then we can prove that Et[Ct] = q
d . By Theorems 1 and 2, the convergence rate is E[δT] ≤ 2L′R2 d

q

T+1

for smooth convex case, and E[δT] ≤ δ0 exp(− τ
L′

q
dT) for smooth and strongly convex case. The

bound is the same as that in [15]. Since the query complexity in each iteration is proportional to q,
the bound for total query complexity is indeed independent of q.

Example 2 (PRGF). With slight notation abuse, we assume the subspace in Proposition 2 is spanned
by {p1, . . . , pk, u1, . . . , uq}, so each iteration takes q + k queries. Let p1, · · · , pk be k non-zero
vectors corresponding to the prior message (e.g. the historical update, or the gradient of a surrogate
model), and ui ∼ U(Sd−1) for i = 1, 2, . . . , q. We note that intuitively we cannot construct a better
subspace since the only extra information we know is the k priors. In our analysis, we assume k = 1
for convenience, and we change the original notation p1 to pt to explicitly show the dependence of pt
on the history. We note that pt could also depend on extra randomness in iteration t (see e.g. the
specification of pt in Appendix D.1.1). For convenience of theoretical analysis, we require that pt
is determined before sampling {u1, u2, . . . , uq}, and let Ft−1 also include the extra randomness of
pt in iteration t (not including the randomness of {u1, u2, . . . , uq}) besides the randomness before
iteration t. Then pt is always Ft−1-measurable, i.e. determined by the history. Without loss of
generality, we assume {pt, u1, . . . , uq} are orthonormal (e.g., via Gram-Schmidt orthogonalization).
The corresponding estimator gt = ∇f(xt)

>pt · pt +
∑q
i=1∇f(xt)

>ui · ui (vt = gt), which is
similar to the estimator in [19]. By [19] (the expected drift of X2

t in its Theorem 1), we have

Lemma 2 (Proof in Appendix B.3.4). In Algorithm 1 with PRGF estimator, Et[Ct] = Dt + q
d−1 (1−

Dt) where Dt :=
(
∇f(xt)

>
pt

)2

.

Hence Et[Ct] ≥ q
d holds. By Remark 4, PRGF admits a guaranteed convergence rate of RGF and is

potentially better given a good prior (if Dt is large), but it costs an additional query per iteration.
This shows soundness of the PRGF algorithm. For further theoretical analysis, we need to bound Dt.
This could be done when using the historical prior introduced in Section 3.2 (see Lemma 3). Bounding
Dt is usually challenging when a general prior is adopted, but if the prior is an approximate gradient
(such case appears in [16]), it may be possible. We leave related investigation as future work.

3.2 Analysis on the PRGF algorithm with the historical prior

We apply the above analysis to a concrete example of the History-PRGF estimator [19], which
considers the historical prior in the PRGF estimator. In this case, Lemma 1, Theorem 1 and
Theorem 2 will manifest themselves by clearly stating the convergence rate which is robust to the
learning rate.

Specifically, History-PRGF considers the historical prior as follows: we choose pt = gt−1, i.e.,
we let the prior be the direction of the previous gradient estimate.8 This is equivalent to letting
pt = vt−1. Thus, in Algorithm 1, vt = ∇f(xt)A = ∇f(xt)>vt−1 · vt−1 +

∑q
i=1∇f(xt)>ui · ui.

In this form we require {vt−1, u1, . . . , uq} to be orthonormal, so we first determine vt−1, and then

7The computational complexity of Gram-Schmidt orthogonalization over q vectors in Rd is O(q2d). There-
fore, with a moderate value of q (e.g. q ∈ [10, 20] in our experiments), its cost is usually much smaller than that
brought by O(q) function evaluations used to approximate the directional derivatives. We note that when using a
numerical computing framework, for orthogonalization one could also adopt an efficient implementation, by
calling the QR decomposition procedure such as torch.linalg.qr in PyTorch.

8One can also utilize multiple historical priors (e.g. the last k updates with k > 1, as proposed and
experimented in [19]), but here we only analyze the k = 1 case.

5

sample {ui}qi=1 in A⊥, the (d− 1)-dimensional subspace of Rd perpendicular to vt−1, and then do
Gram-Schmidt orthonormalization on {ui}qi=1.

To study the convergence rate, we first study evolution of Ct under a general L-smooth function. This
extends the analysis on linear functions (corresponding to L = 0) in [19]. Under the framework of
Algorithm 1, intuitively, the change of the gradient should be smaller when the objective function is
very smooth (L is small) or the learning rate is small (L̂ is large). Since we care about the cosine
similarity between the gradient and the prior, we prove the following lemma:

Lemma 3 (Proof in Appendix B.4). In History-PRGF (pt = vt−1), we have Dt ≥ (1− L/L̂)
2
Ct−1.

When L̂ = L, i.e., using the optimal learning rate, Lemma 3 does not provide a useful bound, since an
optimal learning rate in smooth optimization could find an approximate minimizer along the update
direction, so the update direction may be useless in next iteration. In this case, the historical prior
does not provide acceleration. Hence, Lemma 3 explains the empirical findings in [19] that past
directions can be less useful when the learning rate is larger. However, in practice we often use a
conservative learning rate, for the following reasons: 1) We usually do not know L, and the cost of
tuning learning rate could be large; 2) Even if L is known, it only provides a global bound, so a fixed
learning rate could be too conservative in the smoother local regions. In scenarios where L̂ is too
conservative (L̂ > L), History-PRGF could bring more acceleration over RGF.

By Lemma 3, we can assume Dt = (1− L/L̂)
2
Ct−1 to obtain a lower bound of quantities about Ct.

Meanwhile, since Dt means quality of the prior, the construction in Example 2 tells us relationship
between Ct and Dt. Then we have full knowledge of the evolution of Ct, and thus Et[Ct]. In
Appendix B.4, we discuss about evolution of E[Ct] and show that E[Ct]→ O(qd

L′

L) if qd ≤
L
L̂
≤ 1.

Therefore, by Lemma 1, assuming Et[Ct] concentrates well around E[Ct] and hence Et[Ct]
L′ ≈

q
dL ,

PRGF could recover the single step progress with optimal learning rate (L̂ = L), since Eq. (3) only
depends on Et[Ct]

L′ which is constant w.r.t. L′ now. While the above discussion is informal, based on
Theorems 1 and 2, we prove following theorems which show that convergence rate of History-PRGF
is robust to choice of learning rate.

Theorem 3 (History-PRGF, smooth and convex; proof in Appendix B.5.1). In the setting of Theorem 1,
assuming d ≥ 4, q

d−1 ≤
L
L̂
≤ 1 and T >

⌈
d
q

⌉
(d·e denotes the ceiling function), we have

E[δT] ≤
(

32

q
+ 2

)
2LdqR

2

T −
⌈
d
q

⌉
+ 1

. (6)

Sketch of the proof. The idea of the proof of Theorem 3 is to show that for the random variable
Et[Ct], its standard deviation

√
Var[Et[Ct]] is small relative to its expectation E[Et[Ct]] = E[Ct].

By Chebyshev’s inequality, we can bound E
[

1
Et[Ct]

]
in Theorem 1 with 1

E[Et[Ct]] = 1
E[Ct]

. In the
actual proof we replace Ct that appears above with a lower bound Et.

Theorem 4 (History-PRGF, smooth and strongly convex; proof in Appendix B.5.3). Under the same
conditions as in Theorem 2, then assuming d ≥ 4, q

d−1 ≤
L
L̂
≤ 1, qd ≤ 0.2Lτ , and T ≥ 5dq , we have

E[δT] ≤ 2 exp
(
−0.1

q

d

τ

L
T
)
δ0. (7)

This result seems somewhat surprising since Theorem 2 does not directly give a bound of E[δT].

Sketch of the proof. The goal is to show that the denominator in the l.h.s of Eq. (5) in Theorem 2,
exp(− τ

L̃

∑T−1
t=0 Et[Ct]), concentrates very well. Indeed, the probability that exp(− τ

L̃

∑T−1
t=0 Et[Ct])

is larger than exp(−0.1 qd
τ
LT) is very small so that its influence can be bounded by another

exp(−0.1 qd
τ
LT)δ0, leading to the coefficient 2 in Eq. (7). In our actual analysis we replace Ct

that appears above with a lower bound Et.

Remark 5. As stated in Example 2, using RGF with the optimal learning rate, we have E[δT] ≤
2L dqR

2

T+1 for smooth and convex case, and E[δT] ≤ exp
(
− qd

τ
LT
)
δ0 for smooth and strongly convex

6

case. Therefore, History-PRGF with a suboptimal learning rate 1
L̂

under the condition q
d−1

1
L ≤

1
L̂
≤

1
L could reach similar convergence rate to RGF with optimal learning rate (up to constant factors),
which indicates that History-PRGF is more robust to learning rate than RGF.
Remark 6. We note that the constants in the bounds are loose and have a large potential to be
improved in future work, and empirically the convergence rate of History-PRGF is often not worse
than RGF using the optimal learning rate (see Fig. 2).

As a sidenote, we discuss how to set q in History-PRGF. The iteration complexity given by Theorems 3
and 4 is proportional to 1

q if we ignore the constants such as 32
q +2 in Eq. (6) by Remark 6. Meanwhile,

we recall that each iteration of PRGF requires q + 1 queries to the directional derivative oracle, so
the total query complexity is roughly proportional to q+1

q . Hence, a very small q (e.g. q = 1) is

suboptimal. On the other hand, Theorems 3 and 4 require 1
L̂
∈
[

q
d−1

1
L ,

1
L

]
, so to enable robustness of

History-PRGF to a wider range of the choice of learning rate, q should not be too large. In summary,
it is desirable to set q to a moderate value.

Note that if we adopt line search in Algorithm 1, then one can adapt the learning rate in a huge
range and reach the convergence guarantee with the optimal learning rate under weak assumptions.
Nevertheless, it is still an intriguing fact that History-PRGF could perform similarly to methods
adapting the learning rate, while its mechanism is very different. Meanwhile, History-PRGF is easier
to be implemented and parallelized compared with methods like line search, since its implementation
is the same as that of the RGF baseline except that it records and uses the historical prior.

4 Extension of ARS framework and PARS algorithm

To further accelerate greedy descent methods, we extend our analysis to a new variant of Accelerated
Random Search (ARS) [21] by incorporating prior information, under the smooth and convex setting.9

By delving into the proof in [21], we present our extension to ARS in Algorithm 2, state its conver-
gence guarantee in Theorem 5 and explain its design in the proof sketch in Appendix C.1.

Algorithm 2 Extended accelerated random search framework10

Input: L-smooth convex function f ; initialization x0; L̂ ≥ L; iteration number T ; γ0 > 0.
Output: xT as the approximate minimizer of f .
1: m0 ← x0;
2: for t = 0 to T − 1 do

3: Find a θt > 0 such that θt ≤
Et
[
(∇f(yt)>vt)

2
]

L̂·Et[‖g2(yt)‖2]
where yt, vt and g2(yt) are defined in following steps:

4: Step 1: yt ← (1 − αt)xt + αtmt, where αt is a positive root of the equation α2
t = θt(1 − αt)γt;

γt+1 ← (1− αt)γt;
5: Step 2: Let vt be a random vector s.t. ‖vt‖ = 1; g1(yt)← ∇f(yt)>vt · vt;
6: Step 3: Let g2(yt) be an unbiased estimator of∇f(yt), i.e., Et[g2(yt)] = ∇f(yt);
7: xt+1 ← yt − 1

L̂
g1(yt), mt+1 ← mt − θt

αt
g2(yt);

8: end for
9: return xT .

Theorem 5 (Proof in Appendix C.1). In Algorithm 2, if θt is Ft−1-measurable (see Appendix C.1
for more explanation), then we have

E

(f(xT)− f(x∗))

(
1 +

√
γ0

2

T−1∑
t=0

√
θt

)2
 ≤ f(x0)− f(x∗) +

γ0

2
‖x0 − x∗‖2. (8)

9The procedure of ARS requires knowledge of the strong convexity parameter τ (τ can be 0), but for clarity
we only discuss the case τ = 0 here (i.e., we do not consider strong convexity), and leave the strongly convex
case to Appendix C.6.

10Keys in this extension are: 1) We require Et[g2(yt)] = ∇f(yt). Thus, g2(yt) could not be the PRGF
estimator as it is biased towards the prior; 2) To accelerate convergence, we need to find an appropriate θt since
it appears in Eq. (8). If we set θt to the value in ARS baseline, then no potential acceleration is guaranteed.

7

Remark 7. If we let g1(yt) be the RGF estimator in Example 1 and let g2(yt) = d/q · g1(yt), we can

show that E[g2(yt)] = ∇f(yt) and θt could be chosen as q2

L̂d2
since

Et
[
(∇f(yt)

>vt)
2
]

L̂·Et[‖g2(yt)‖2]
= q2

L̂d2
. Then

roughly, the convergence rate ∝ q, so the total query complexity is independent of q. When q = 1,
ARS baseline is recovered. For convenience we call the algorithm ARS regardless of the value of q.
Remark 8. If we have a uniform constant lower bound θ > 0 such that ∀t, θt ≥ θ, then we have

E [f(xT)− f(x∗)] ≤
(

1 +

√
γ0

2
T
√
θ

)−2 (
f(x0)− f(x∗) +

γ0

2
‖x0 − x∗‖2

)
. (9)

Next we present Prior-Guided ARS (PARS) by specifying the choice of g1(yt) and g2(yt) in Al-
gorithm 2 when prior information pt ∈ Rd is available. Since we want to maximize the value
of θt, regarding g1(yt) we want to maximize Et

[(
∇f(yt)

>vt
)2]

. By Proposition 2 and Exam-
ple 2, it is natural to let g1(yt) be the PRGF estimator for ∇f(yt). Then by Lemma 2, we have

Et
[(
∇f(yt)

>vt
)2]

= ‖∇f(yt)‖2(Dt + q
d−1 (1−Dt)), where Dt :=

(
∇f(yt)

>
pt

)2

. The remain-
ing problem is to construct g2(yt), an unbiased estimator of ∇f(yt) (Et[g2(yt)] = ∇f(yt)), and
make Et[‖g2(yt)‖2] as small as possible. We leave the construction of g2(yt) in Appendix C.2.
Finally, we calculate the following expression which appears in Line 3 of Algorithm 2 to complete
the description of PARS:

Et
[(
∇f(yt)

>vt
)2]

L̂ · Et[‖g2(yt)‖2]
=

Dt + q
d−1 (1−Dt)

L̂
(
Dt + d−1

q (1−Dt)
) . (10)

Since Dt ≥ 0, the right-hand side is larger than q2/L̂d2 (by Remark 7, this value corresponds to the
value of θt in ARS), so by Remark 8 PARS is guaranteed a convergence rate of ARS.

In implementation of PARS, we note that there remain two problems to solve. The first is that Dt is
not accessible through one oracle query, since Dt = (∇f(yt)

>
pt)

2 =
(
∇f(yt)

>pt/‖∇f(yt)‖
)2

, and
‖∇f(yt)‖ requires estimation. Fortunately, the queries used to construct g1(yt) and g2(yt) can also
be used to estimate Dt. With a moderate value of q, we can prove that considering the error brought
by estimation of Dt, a modified version of PARS is guaranteed to converge with high probability. We
leave related discussion to Appendix C.3. The second is that Line 3 of Algorithm 2 has a subtlety that

yt depends on θt, so we cannot directly determine an optimal θt satisfying θt ≤
Et
[
(∇f(yt)

>vt)
2
]

L̂·Et[‖g2(yt)‖2]
.

Theoretically, we can guess a conservative estimate of θt and verify this inequality, but in practice
we adopt a more aggressive strategy to find an approximate solution of θt. We leave the actual
implementation, named PARS-Impl, in Appendix C.4.

In PARS, if we adopt the historical prior as in Section 3.2, i.e., letting pt be the previous PRGF
gradient estimator g1(yt−1), then we arrive at a novel algorithm named History-PARS. Here, we note
that unlike the case in History-PRGF, it is more difficult to derive the evolution of θt theoretically, so
we currently cannot prove theorems corresponding to Theorem 3. However, History-PARS can be
guaranteed the convergence rate of ARS, which is desirable since if we adopt line search in ARS to
reach robustness against learning rate (e.g. in [24]), currently there is no convergence guarantee. We
present the actual implementation History-PARS-Impl in Appendix C.5 and empirically verify that
History-PARS-Impl is robust to learning rate in Section 5.

5 Experiments

5.1 Numerical benchmarks

We first experiment on several closed-form test functions to support our theoretical claims. We leave
more details of experimental settings to Appendix D.1.

First, we present experimental results when a general useful prior is provided. The prior-guided
methods include PRGF, PARS (refers to PARS-Impl) and PARS-Naive (simply replacing the RGF
estimator in ARS with the PRGF estimator). We adopt the setting in Section 4.1 of [16] in which the

8

0 50 100 150 200

3

2

1

0

RGF
PRGF
ARS
PARS-Naive
PARS

(a) f1

0 20 40 60 80 100
12

10

8

6

4

2

0

RGF
PRGF
ARS
PARS-Naive
PARS

(b) f2

0 100 200 300 400 500
1.2

1.0

0.8

0.6

0.4

0.2

0.0

RGF
PRGF
ARS
PARS-Naive
PARS

(c) f3

Figure 1: Experimental results using biased gradient as the prior (best viewed in color).

prior is a biased version of the true gradient. Our test functions are as follows: 1) f1 is the “worst-case
smooth convex function” used to construct the lower bound complexity of first-order optimization,
as in [21]; 2) f2 is a simple smooth and strongly convex function with a worst-case initialization:
f2(x) = 1

d

∑d
i=1

(
i · (x(i))2

)
, where x(1)

0 = d, x
(i)
0 = 0 for i ≥ 2; and 3) f3 is the Rosenbrock

function (f8 in [12]) which is a well-known non-convex function used to test the performance of
optimization problems. For f1 and f2, we set L̂ to ground truth value L; for f3, we search L̂ for
best performance for each algorithm. We set d = 256 for all test functions and set q such that each
iteration of these algorithms costs 11 queries11 to the directional derivative oracle.12 We plot the
experimental results in Fig. 1, where the horizontal axis represents the number of iterations divided
by bd/11c, and the vertical axis represents log10

f(xcurrent)−f(x∗)
f(x0)−f(x∗) . Methods without using the prior

information are shown with dashed lines. We also plot the 95% confidence interval in the colored
region. The results show that for these functions (which have ill-conditioned Hessians), ARS-based
methods perform better than the methods based on greedy descent. Importantly, the utilization of
the prior could significantly accelerate convergence for both greedy descent and ARS. We note that
the performance of our proposed PARS algorithm is better than PARS-Naive which naively replaces
the gradient estimator in the original ARS with the PRGF estimator, demonstrating the value of our
algorithm design with convergence analysis.

Next, we verify the properties of History-PRGF and History-PARS, i.e., the historical-prior-guided
algorithms. In this part we set d = 500. We first verify that they are robust against learning rate
on f1 and f2, and plot the results in Fig. 2(a)(b).13 In the legend, for example, ‘RGF’ means RGF
using the optimal learning rate (L̂ = L), and ‘RGF-0.02’ means that the learning rate is set to 0.02

times of the optimal one (L̂ = 50L). We note that for PRGF and PARS, q = 10, so q
d = 0.02. From

Fig. 2(a)(b), we see that: 1) when using the optimal learning rate, the performance of prior-guided
algorithms is not worse than that of its corresponding baseline; and 2) the performance of prior-guided
algorithms under the sub-optimal learning rate such that qd ≤

L
L̂
≤ 1 is at least comparable to that of

its corresponding baseline with optimal learning rate. However, for baseline algorithms (RGF and
ARS), the convergence rate significantly degrades if a smaller learning rate is set. In summary, we
verify our claims that History-PRGF and History-PARS are robust to learning rate if q

d ≤
L
L̂
≤ 1.

Moreover, we show that they can provide acceleration over baselines with optimal learning rate on
functions with varying local smoothness. We design a new test function as follows:

f4(x) =

{
1
2r

2, r ≤ 1

r − 1
2 , r > 1

, r =
√
f2(x), where x(1)

0 = 5
√
d, x

(i)
0 = 0 for i ≥ 2. (11)

We note that f4 in regions far away from the origin is more smooth than in the region near the origin,
and the global smoothness parameter is determined by the worst-case situation (the region near the
origin). Therefore, baseline methods using an optimal learning rate could also manifest sub-optimal
performance. Fig. 2(c) shows the results. We can see that when utilizing the historical prior, the
algorithm could show behaviors of adapting to the local smoothness, thus accelerating convergence
when the learning rate is locally too conservative.

11That is, for prior-guided algorithms we set q = 10, and for other algorithms (RGF and ARS) we set q = 11.
12The directional derivative is approximated by finite differences. In PARS, 2 additional queries to the

directional derivative oracle per iteration are required to find θt (see Appendix C.4).
13In Fig. 2, the setting of ARS-based methods are different from that in Fig. 1 as explained in Appendix D.1,

which leads to many differences of the ARS curves between Fig. 1 and Fig. 2.

9

0 100 200 300 400 500

1.50

1.25

1.00

0.75

0.50

0.25

0.00 RGF
RGF-0.04
PRGF
PRGF-0.04
PRGF-0.02

0 50 100 150 200

0.6

0.5

0.4

0.3

0.2

0.1

0.0

RGF
RGF-0.04
PRGF
PRGF-0.04
PRGF-0.02

0 50 100 150 200

0.3

0.2

0.1

0.0

RGF
PRGF

0 100 200 300 400 500

2.5

2.0

1.5

1.0

0.5

0.0 ARS
ARS-0.04
PARS
PARS-0.04
PARS-0.02

(a) f1

0 50 100 150 200

8

6

4

2

0

ARS
ARS-0.04
PARS
PARS-0.04
PARS-0.02

(b) f2

0 50 100 150 200

8

6

4

2

0 ARS
PARS

(c) f4

Figure 2: Experimental results using the historical prior.

5.2 Black-box adversarial attacks

In this section, we perform ZO optimization on real-world problems. We conduct score-based black-
box targeted adversarial attacks on 500 images from MNIST and leave more details of experimental
settings to Appendix D.2. In view of optimization, this corresponds to performing constrained
maximization over {fi}500

i=1 respectively, where fi denotes the loss function to maximize in attacks.
For each image i, we record the number of queries of fi used in optimization until the attack succeeds
(when using the C&W loss function [6], this means fi > 0). For each optimization method, we
report the median query number over these images (smaller is better) in Table 1. The subscript of the
method name indicates the learning rate 1/L̂. For all methods we set q to 20. Since [8] has shown that
using PRGF estimator with transfer-based prior significantly outperforms using RGF estimator in
adversarial attacks, for prior-guided algorithms here we only include the historical prior case.

Table 1: Attack results on MNIST.
METHOD MEDIAN QUERY METHOD MEDIAN QUERY

RGF0.2 777 ARS0.2 735
RGF0.1 1596 ARS0.1 1386
History-PRGF0.2 484 History-PARS0.2 484
History-PRGF0.1 572 History-PARS0.1 550
History-PRGF0.05 704 History-PARS0.05 726

We found that in this task, ARS-based methods perform comparably to RGF-based ones. This could
be because 1) the numbers of iterations until success of attacks are too small to show the advantage of
ARS; 2) currently ARS is not guaranteed to converge faster than RGF under non-convex problems. We
leave more evaluation of ARS-based methods in adversarial attacks and further improvement of their
performance as future work. Experimental results show that History-PRGF is more robust to learning
rate than RGF. However, a small learning rate could still lead to its deteriorated performance due to
non-smoothness of the objective function. The same statement holds for ARS-based algorithms.

6 Conclusion and discussion

In this paper, we present a convergence analysis on existing prior-guided ZO optimization algorithms
including PRGF and History-PRGF. We further propose a novel prior-guided ARS algorithm with
convergence guarantee. Experimental results confirm our theoretical analysis.

Our limitations lie in: 1) we adopt a directional derivative oracle in our analysis, so the error on the
convergence bound brought by finite-difference approximation has not been clearly stated; and 2) our
implementation of PARS in practice requires an approximate solution of θt, and the accuracy and
influence of this approximation is not well studied yet. We leave these as future work. Other future
work includes extension of the theoretical analysis to non-convex cases, and more empirical studies
in various application tasks.

10

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No.
2020AAA0104304), NSFC Projects (Nos. 61620106010, 62061136001, 61621136008, 62076147,
U19B2034, U19A2081, U1811461), Beijing NSF Project (No. JQ19016), Beijing Academy of
Artificial Intelligence (BAAI), Tsinghua-Huawei Joint Research Program, a grant from Tsinghua
Institute for Guo Qiang, Tiangong Institute for Intelligent Computing, and the NVIDIA NVAIL
Program with GPU/DGX Acceleration.

References
[1] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,

Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient descent.
arXiv preprint arXiv:1606.04474, 2016.

[2] Albert S Berahas, Liyuan Cao, Krzysztof Choromanski, and Katya Scheinberg. A theoretical and empirical
comparison of gradient approximations in derivative-free optimization. Foundations of Computational
Mathematics, pages 1–54, 2021.

[3] El Houcine Bergou, Eduard Gorbunov, and Peter Richtarik. Stochastic three points method for uncon-
strained smooth minimization. SIAM Journal on Optimization, 30(4):2726–2749, 2020.

[4] Thomas Brunner, Frederik Diehl, Michael Truong Le, and Alois Knoll. Guessing smart: Biased sampling
for efficient black-box adversarial attacks. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4958–4966, 2019.

[5] Sébastien Bubeck. Convex optimization: Algorithms and complexity. arXiv preprint arXiv:1405.4980,
2014.

[6] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 ieee
symposium on security and privacy (sp), pages 39–57. IEEE, 2017.

[7] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order optimization
based black-box attacks to deep neural networks without training substitute models. In Proceedings of the
10th ACM workshop on artificial intelligence and security, pages 15–26, 2017.

[8] Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Improving black-box adversarial
attacks with a transfer-based prior. arXiv preprint arXiv:1906.06919, 2019.

[9] Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard Turner, and Adrian Weller. Structured
evolution with compact architectures for scalable policy optimization. In International Conference on
Machine Learning, pages 970–978. PMLR, 2018.

[10] Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee, Xingyou Song, and Qiuyi Zhang. Gradientless
descent: High-dimensional zeroth-order optimization. arXiv preprint arXiv:1911.06317, 2019.

[11] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation distributions in evolution
strategies: The covariance matrix adaptation. In Proceedings of IEEE international conference on
evolutionary computation, pages 312–317. IEEE, 1996.

[12] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-parameter black-box optimization
benchmarking 2009: Noiseless functions definitions. PhD thesis, INRIA, 2009.

[13] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with limited
queries and information. In International Conference on Machine Learning, pages 2137–2146. PMLR,
2018.

[14] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions: Black-box adversarial attacks
with bandits and priors. arXiv preprint arXiv:1807.07978, 2018.

[15] David Kozak, Stephen Becker, Alireza Doostan, and Luis Tenorio. A stochastic subspace approach to
gradient-free optimization in high dimensions. Computational Optimization and Applications, 79(2):
339–368, 2021.

[16] Niru Maheswaranathan, Luke Metz, George Tucker, Dami Choi, and Jascha Sohl-Dickstein. Guided
evolutionary strategies: Augmenting random search with surrogate gradients. In International Conference
on Machine Learning, pages 4264–4273. PMLR, 2019.

11

[17] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is
competitive for reinforcement learning. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 1805–1814, 2018.

[18] J Matyas. Random optimization. Automation and Remote control, 26(2):246–253, 1965.

[19] Florian Meier, Asier Mujika, Marcelo Matheus Gauy, and Angelika Steger. Improving gradient estimation
in evolutionary strategies with past descent directions. arXiv preprint arXiv:1910.05268, 2019.

[20] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

[21] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. Founda-
tions of Computational Mathematics, 17(2):527–566, 2017.

[22] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[23] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. arXiv preprint arXiv:1206.2944, 2012.

[24] Sebastian U Stich, Christian L Muller, and Bernd Gartner. Optimization of convex functions with random
pursuit. SIAM Journal on Optimization, 23(2):1284–1309, 2013.

[25] Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-
Ming Cheng. Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
742–749, 2019.

12

