MTBBench: A Multimodal Sequential Clinical
Decision-Making Benchmark in Oncology

Kiril Vasilev'* Alexandre Misrahi2* Eeshaan Jain2*1
Phil Cheng? Petros Liakopoulos® Olivier Michielin?
Michael Moor!? Charlotte Bunne?*

'ETH Ziirich 2EPFL  3HUG

O github.com/bunnelab/MTBBench
v huggingface.co/datasets/EeshaanJain/MTBBench

Abstract

Multimodal Large Language Models (LLMs) hold promise for biomedical reason-
ing, but current benchmarks fail to capture the complexity of real-world clinical
workflows. Existing evaluations primarily assess unimodal, decontextualized
question-answering, overlooking multi-agent decision-making environments such
as Molecular Tumor Boards (MTBs). MTBs bring together diverse experts in
oncology, where diagnostic and prognostic tasks require integrating heterogeneous
data and evolving insights over time. Current benchmarks lack this longitudinal
and multimodal complexity. We introduce MTBBench, an agentic benchmark
simulating MTB-style decision-making through clinically challenging, multimodal,
and longitudinal oncology questions. Ground truth annotations are validated by
clinicians via a co-developed app, ensuring clinical relevance. We benchmark
multiple open and closed-source LLMs and show that, even at scale, they lack
reliability—frequently hallucinating, struggling with reasoning from time-resolved
data, and failing to reconcile conflicting evidence or different modalities. To ad-
dress these limitations, MTBBench goes beyond benchmarking by providing an
agentic framework with foundation model-based tools that enhance multi-modal
and longitudinal reasoning, leading to task-level performance gains of up to 9.0%
and 11.2%, respectively. Overall, MTBBench offers a challenging and realistic
testbed for advancing multimodal LLM reasoning, reliability, and tool-use with a
focus on MTB environments in precision oncology.

1 Introduction

Recent advances in large multi-modal and language models have opened the door to general-purpose
clinical agents capable of reasoning across diverse biomedical tasks (Moor et al., 2023). Vision-
language models can describe pathology images (Lu et al., 2024a; Dai et al., 2025; Lu et al., 2024b),
LLMs can summarize clinical notes (Choudhuri et al., 2025; Yang et al., 2024), and medical agents are
increasingly able to query tools, retrieve knowledge, and even hold multi-turn clinical conversations
(Schmidgall et al., 2024; Wang et al., 2025a). These developments have prompted growing interest
in using agents to support complex workflows (Wang et al., 2024a, 2025b; Gao et al., 2024; Lee
et al., 2024; Yue et al., 2024; Fallahpour et al., 2025) like those seen in molecular tumor boards
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Figure 1: The MTBBench benchmark and agent framework. a. MTBBench simulates molecular tumor
board workflows, presenting agents with longitudinal, multi-modal patient data (H&E, IHC, hematology, and
genomics) along with temporally distributed clinical events. Agents are tasked with integrating this information
to support complex decision-making. b. MTBBench allows benchmarking agents on their ability to reason
across modalities and time in order to accurately tackle clinical questions concerning diagnosis, prognosis, and
biomarker interpretation. Lastly, we introduce an agentic framework that enables querying both external tools
and pretrained foundation models, allowing agents to more effectively reason over complex, multi-modal and
temporally resolved clinical information.

(MTBs) (Tsimberidou et al., 2023), where oncologists, radiologists, pathologists, and geneticists
jointly analyze a patient’s evolving case (Fig. 4).

However, the evaluation of such agents remains underdeveloped. Existing benchmarks typically
frame tasks as static, uni-modal, single-turn question-answering problems, where the model is given
all necessary inputs at once and evaluated on its ability to predict a discrete answer. This setup
diverges sharply from how clinical decisions are made in practice. Real-world oncology reasoning
is interactive, temporal, and multi-modal: physicians accumulate information over time, integrate
findings from multiple data types (e.g., hematoxylin and eosin (H&E) staining, immunohistochemistry
(IHC) staining, radiology, blood values, genomics), and make provisional decisions that are updated
as new evidence emerges (Fig. 1a). To be useful in these settings, Al agents must not only understand
each modality, but also query, contextualize, and reconcile information across modalities and time—
capabilities rarely assessed in current evaluations.

Recent works such as MedAgentBench (Jiang et al., 2025), MediQ (Li et al., 2024), and MedJourney
(Wu et al., 2024) take steps toward interactive or longitudinal evaluation, but typically in limited or
uni-modal contexts (e.g., textual EHRs) (Kweon et al., 2024) (Table 1). Likewise, emerging studies on
multi-modal agents demonstrate strong promise but lack standardized evaluation across longitudinal
patient trajectories (Li et al., 2024). Most importantly, these agents are not tested under the cognitive
demands of tasks that mirror MTB decision-making: questions involving partial data, sequential
updates, conflicting information, highly heterogeneous and different modalities, and high-stakes
outcomes.

To address this gap, we introduce MTBBench, an oncology-focused benchmark for evaluating Al
agents in longitudinal, multi-modal clinical reasoning. Inspired by the structure and decision flow of
real molecular tumor boards, MTBBench simulates patient case reviews where agents must process
heterogeneous patient data across time—including pathology slides, lab data, pathological, surgical
and genomic reports—and answer clinically meaningful questions at each step. Questions span
diverse task types, including diagnostic classification, spatial biomarker interpretation, and outcome,
progression, or recurrence prediction (Fig. 1b). Importantly, the benchmark is validated by clinicians
using a custom-built expert annotation platform (Fig. 5, for details see Appendix C.1), ensuring both
the clinical plausibility of the data and the correctness of model evaluation.



Table 1: Comparison of MTBBench with existing clinical and biomedical benchmarks.

Benchmark Multi-Modal Longitudinal Interactive / Multi-Agent Clinician-Annotated Domain
MC-BEC (Chen et al., 2023) X X Emergency Medicine
Asclepius (Wang et al., 2024b) X X X General Medicine
MedJourney (Wu et al., 2024) X X X General Medicine
EHRNoteQA (Kweon et al., 2024) X X General Medicine
MediQ (Li et al., 2024) X X X General Medicine
ClinicBench (Liu et al., 2024) X X X General Medicine
HEST-1k (Jaume et al., 2024) X X Pathology
BixBench (Mitchener et al., 2025) X X X X Bioinformatics
MTBBench (ours) Precision Oncology

Beyond benchmark construction, we also introduce a modular agentic framework designed to interface
with different tools as well as pretrained foundation models (Fig. 1b). These include models trained
on large-scale digital pathology datasets, reports, literature, and other domain-specific modalities.
Agents can query these foundation models as part of their reasoning process—invoking them when
needed to interpret image regions, extract genomic signatures, or cross-reference trial data—thus
mirroring how expert clinicians rely on specialized resources in practice. This framework enables
flexible, multi-step decision-making and substantially enhances the agent’s ability to synthesize
information across modalities and time.

Concretely, our main contributions are:

i. A benchmark for longitudinal, multi-modal clinical reasoning. MTBBench simulates MTB-
style decision-making with temporally evolving patient data across modalities—H&E, THC,
hematology, and genomics—and includes complex, expert-curated questions reflecting real
tumor board workflows.

ii.  Systematic evaluation of vision-language models. We benchmark diverse open and closed-
source models and find that performance improves with exposure to more modalities, emphasiz-
ing the importance of integrated multi-modal context.

iii. An agent framework for tool and foundation model integration. Our agent framework
enables dynamic access to external tools and pretrained modality-specific foundation models,
significantly boosting reasoning accuracy across tasks.

iv. Expert-validated data and reproducible tools. We release curated benchmark data, expert-
reviewed annotations, agent logs, and tools to support rigorous and reproducible evaluation of
clinical agents.

2 MTBBench: A Multimodal Sequential Clinical Decision-Making
Benchmark in Oncology

2.1 Motivation and Positioning

LLMs have shown increasing promise across medical domains, but current benchmarks remain
disconnected from the realities of clinical workflows. Ferber et al. (2024) introduce an agent for
clinical decision making, however it is limited to general tool frameworks and to single-image inputs.
Others evaluate unimodal, static question-answering tasks without requiring the model to gather
information, reconcile conflicting inputs, or reason over time (Li et al., 2025). In contrast, real clinical
decision-making—especially in molecular tumor boards—is inherently multimodal, interactive, and
longitudinal.

MTBBench is a benchmark designed to close this gap. It evaluates how well Al agents can simulate
an MTB-style setting, where patient cases evolve across time and require integration of imaging, lab,
pathology, genomic, and textual information. MTBBench captures three essential dimensions lacking
in prior work:

Multimodality: Clinical data spans digital pathology (H&E, IHC), hematology, radiology, and
genomics.

Longitudinality: Patient histories unfold over multiple timepoints, with temporally ordered
updates.

Agent workflow: Models must actively request relevant information, access tools, and answer in
multi-turn settings.



As shown in Table 1, MTBBench is the first benchmark to jointly address these three dimensions. All
questions are expert-validated through a co-developed application, which we further describe below.
Together, these components establish MTBBench as a framework for evaluating the capabilities of
Al agents in clinical settings that require multi-modal and longitudinal understanding. For further
related works, see Appendix B.

2.2 A Benchmark for Molecular Tumor Boards

MTBBench comprises both multiple-choice and true/false questions designed to be answered within
a clinically grounded, agent-based framework. Questions span multimodal and longitudinal patient
data, requiring the agent to retrieve, interpret, and reason over diverse evidence sources under realistic
constraints that mirror the sequential and evolving nature of clinical decision-making.

Companion application for expert validation. To support expert review of the benchmark, we
developed a web-based interface allowing clinicians to inspect the clinical context, browse pathology
and IHC images, and annotate feedback for each question. The interface presents structured case
descriptions alongside image thumbnails of different modalities that open full-resolution slides on
demand (Fig. 5). Clinicians can view grouped images by region and marker (e.g., CD3, CD163) and
provide detailed assessments directly linked to individual Q&A items. This tool enabled efficient,
structured validation of questions and answers by domain experts.

2.2.1 MTBBench-Multimodal

Dataset. We curated a subset of 26 patient cases from the HANCOCK dataset (CC BY 4.0) (Dorrich
et al., 2024), a multimodal repository of head and neck cancer patients that includes demographic,
pathological, hematological, surgical, and histological data. For each selected patient, an average
of 40 modality-specific files are available, including 1.2 H&E slides, 26.2 THC images, and one
hematology report. Among these cases, 32 include a primary tumor H&E slide, and 17 contain at
least one lymph node slide. Notably, 27 of the primary tumor slides are accompanied by annotated
regions of interest.

Q&A design. We generate 390 multimodal question-answer pairs (15 per patient) using GPT-4o,
with select questions verified through expert-in-the-loop review through the companion app (Fig. 5,
Appendix C.1). The questions span a range of modalities and clinical reasoning tasks: 2 H&E-based,
4 THC-based, 3 joint H&E+IHC, 4 hematology-based, and one question each related to clinical
outcome and cancer recurrence.

Tasks. The multi-modal track unfolds in three clinically grounded stages. The first focuses on
pathological image interpretation (e.g., of H&E, IHC images): agents must infer histologic sub-
types and assess spatial patterns of immune infiltration (e.g., CD3*, CD8" T cells, CD68*, CD163*
macrophages) across tumor subregions such as the invasion front and tumor center. Intermediate
questions probe immune correlates of pathology, such as whether lymphovascular or perineural
invasion associates with distinct immune profiles. The second stage evaluates hematologic reasoning
in a preoperative context—models analyze lab parameters (e.g., CRP, MPV, leukocyte subtypes,
creatinine) to infer infection risk, bleeding tendency, renal impairment, and thromboembolic predispo-
sition. Finally, in the post-surgical stage, agents must integrate pathology and lab findings to predict
high-level outcomes, including 5-year survival and 2-year recurrence, simulating tumor board-style
prognostic deliberation.

2.2.2 MTBBench-Longitudinal

Dataset. We curated a subset of 40 patient cases from the MSK-CHORD dataset (CC BY-NC-ND
4.0) (Jee et al., 2024), a clinicogenomic resource of cancer patients linking genomic profiles with
structured clinical timelines, each with an average of five associated files, including copy-number
alterations, somatic mutations, specimen pathology reports, and clinical timelines. The timelines
capture key clinical events such as diagnostic procedures and treatment transitions, and are segmented
into decision-relevant timepoints to support temporally grounded evaluation.



Q&A design. We manually construct 183 question-answer pairs (i.e., on average 4.6 questions
per patient), with clinical feedback, targeting outcome prediction, recurrence risk, and treatment
progression across clinically actionable stages.

Tasks. The longitudinal track challenges agents to reason over temporally structured patient data
segmented into decision-relevant timepoints. Initial questions assess diagnosis and disease trajectory,
followed by outcome prediction (e.g., survival), recurrence forecasting, and treatment progression
mapping. Genomic data—such as somatic mutations and copy—number alterations—are introduced
at key stages, enabling reasoning about resistance patterns or post-treatment stratification. Agents
must align treatment regimens with outcomes and integrate evolving context (e.g., updated timelines,
new genomic tests, surgical pathology) to justify predictions. This setup mirrors the longitudinal de-
liberations of MTBs, where clinicians revise hypotheses in light of new events and cumulative history.

2.3 Agent System

Current LLM-based systems struggle to reason across multiple modalities and timepoints (Hager
et al., 2024; AlSaad et al., 2024)—a critical requirement in real-world clinical decision-making. In
particular, tasks encountered in molecular tumor boards involve dynamic access to evolving patient
data, integration of heterogeneous sources such as pathology, lab tests, and genomics, and the ability
to contextualize findings over time. Static, single-shot prompting falls short in such settings.

To overcome these limitations, MTBBench implements an agentic framework that enables interactive,
multi-turn decision-making. Agents must actively select which files to access, manage evolving
memory across turns. A key novelty of our setup is the integration of domain-specific foundation
models (FMs) as callable tools besides structured biomedical resources used as tool (e.g., PubMed,
DrugBank). These models—trained on large corpora of pathology slides, IHC images, or clinical
texts—offer rich, pretrained representations that complement the LLM’s general capabilities. Rather
than evaluating FMs in isolation, MTBBench enables agents to selectively invoke them as part of
a decision-making process, simulating how clinicians consult expert resources. This design of an
agentic framework reflects how expert clinicians reason iteratively and selectively, and allows us
to benchmark not only factual accuracy but also the agent’s ability to gather and use evidence in a
realistic clinical workflow.

Agentic workflow. In MTBBench, the agent engages in a multi-turn decision-making process over a
temporally evolving patient trajectory. At each turn ¢, the agent receives a clinical query ¢, along with
access to a set of modality-specific files F; = {f}, f2, ..., f¥}, which may include digital pathology
images, lab results, clinical notes, or structured genomic and temporal data. The agent may issue a
request R; C F; to retrieve any subset of these files, which remain accessible only within the current
turn. Namely, they do not persist across turns. However, any file from J; may be re-requested at
a future turn ¢’ > ¢, simulating realistic constraints in clinical workflows where information must
be actively re-accessed. The agent’s internal memory consists of its reasoning history h; and a
record of previously accessed files R<;, forming the basis for answering downstream queries. In

the longitudinal track, clinical context is further enriched by an evolving timeline 7; = Ule Tis
incrementally summarizing patient history. This setup enforces non-persistent access patterns while
encouraging deliberate information gathering and reasoning over temporally non-stationary data. An
extensive overview of this workflow is provided in Appendix D.1.

Overview of models. We select a wide range of models with varying sizes. For the multimodal part
of our benchmark, we evaluate the vision-text models (including some models with reasoning ca-
pabilities): gemma-3-12b, gemma-3-27b, gpt4o, o4-mini (reasoning), internvl3-38b, internvl3-78b,
llama90b, mistralsmall, qwen25-7b, and qwen25-32b. For the longitudinal part, we evaluate a
mix of text-only and vision-text models: gemma-3-12b, gemma-3-27b, gpt4o, 04-mini (reasoning),
llama31-8b, llama33-70b, qwen3-8b (reasoning), and qwen3-32b (reasoning).

2.3.1 Foundation Model-based Tools

While large language models excel at reasoning over textual inputs, they exhibit well-known limi-
tations in visual understanding—especially when interpreting high-resolution biomedical imagery
such as histopathology slides (Lu et al., 2024c). In clinical contexts like MTBs, however, the ability
to analyze and contextualize pathology images is essential. At the same time, recent advances in



Table 2: Mean accuracy and 95% confidence intervals of various LLMs by task, estimated via bootstrap
resampling. Each cell reports the model’s mean accuracy, with confidence intervals computed by resampling
(with replacement) 1,000 times from the set of patient—question pairs within each task.

Multi-Modal Analysis Digital Pathology Hematology Outcome and Recurrence  Overall

gemma-3-12b 559 + 64 749 + 87 53.6 135 61.5 £+ 101
gemma-3-27b 51.8 64 76.9 82 42.1 £ 135 56.9 £ 165
gptdo 63.2 £ 6.0 76.9 £ 17 59.9 £ 135 66.7 £ 8.1
04-mini 59.5 + 64 77.8 £382 55.7 & 144 64.3 £+ 105
internvl3-38b 54.7 + 64 79.7 £ 82 55.9 £ 135 63.5 & 119
internv13-78b 62.0 £ 64 79.7 £ 177 65.6 £ 115 69.1 £ 84
Ilama90b 54.6 £62 82.8 £ 72 51.7 £ 135 63.0 £ 1438
mistralsmall 62.4 + 62 75.8 87 51.7 £ 135 633 £ 115
qwen25-7b 423 £62 61.1 9.1 539 £ 125 52.4 + 90
qwen25-32b 533 %62 73.0 87 63.6 £ 125 63.3 £ 93
Longitudinal Analysis QOutcome Progression Recurrence Overall

gemma-3-12b 633+ 113 559 £ 132 54.6 £ 128 58.0 £ 4.1
gemma-3-27b 577 £ 13 50.7 £ 140 474 £ 136 519 £ 49
gptdo 72.9 £ 106 64.8 £ 132 54.8 £ 136 64.2 £ 856
04-mini 66.0 = 106 63.1 & 123 51.1 £ 136 60.0 = 7.1
Ilama31-8b 60.4 £ 113 49.0 £ 123 455 136 51.6 =71
Ilama33-70b 73.2 £ 99 68.2 £ 132 56.7 £ 136 66.0 = 7.8
qwen3-8b 63.1 =113 57.6 + 132 474 + 127 56.0 75
gqwen3-32b 83.0 £ 92 63.3 &+ 123 54.6 £ 136 67.0 135

vision-language foundation models have shown that pretrained models trained on large-scale medical
imaging corpora can capture powerful, domain-specific visual representations (Vaidya et al., 2025a).
To harness these capabilities, MTBBench integrates foundation models as external tools (taking
inspiration from (Schick et al., 2023; Yao et al., 2023)) that LLM agents can call on-demand. These
models are not used passively; instead, agents learn to query them selectively as part of a broader rea-
soning process. This setup reflects real-world clinical workflows, where specialists consult diagnostic
systems or reference image atlases to refine decisions. By exposing FMs as callable components,
MTBBench enables systematic evaluation of how agents can leverage visual expertise to complement
their textual reasoning.

2.3.2 Digital Pathology Foundation Models

For H&E images, we integrate CONCH (Lu et al., 2024d), a vision-language model pretrained on
over 1.17 million H&E image—caption pairs. CONCH generates dual visual and textual embeddings,
allowing image—text similarity computations. We expose this capability to the LLM by framing it as
a tool: given an image and a list of candidate textual descriptors, the tool returns the one with highest
embedding similarity to the image, based on dot product in the shared representation space.

For IHC images, we develop a custom tool that combines foundation model embeddings with weakly
supervised learning to support quantification of marker-specific staining. Tissue regions are segmented
and tiled into fixed-size patches (256 x 256), each embedded using the UNI2 foundation model
(Chen et al., 2024a) to produce 1536-dimensional representations. These embeddings are aggregated
using an attention-based multiple instance learning (ABMIL) (Ilse et al., 2018) model trained to
regress the percentage of positively stained cells. The ABMIL model is trained on a manually curated
dataset of IHC images annotated via QuPath (see Appendix E.1), providing marker-level supervision
without requiring single-cell labels.

2.3.3 Analysis and Knowledge Database Tools

To support reasoning over temporal sequences of clinical events, we introduce two tools that provide
external biomedical knowledge for answering longitudinal questions more accurately: a literature
search tool and a pharmacological knowledge base.
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Figure 2: Accuracy vs. average number of files accessed per question. Analyzed across tasks for multi-modal
understanding (a—c) and longitudinal reasoning (d—f). Each point represents a model evaluated on a specific
task across all patients. Dots indicate model sizes (gpt-40’s size has been reduced for visibility). Higher file
access generally correlates with increased accuracy, highlighting the importance of cross-modality and temporal
integration for performance.

PubMed. The tool enables the LLM to issue natural language queries to retrieve biomedical literature
relevant to a patient’s clinical trajectory. The LLM issues natural language queries, which are used
to retrieve the top 30 PubMed articles. These are reranked using the BAAI-bge-reranker-v2-m3
model (Li et al., 2023), and the top 3 abstracts are returned to the LLM, supporting evidence-grounded
reasoning for questions involving treatment effectiveness, sequencing, or disease progression.

DrugBank. To augment drug-related knowledge, we integrate information from DrugBank (Wishart,
2006; Knox et al., 2023). When processing a patient’s clinical timeline, drug mentions are automati-
cally linked to corresponding DrugBank entries. Relevant metadata such as therapeutic indications,
mechanisms of action, and known drug interactions is incorporated into the model’s context. This
enrichment enables the language model to reason about treatment sequences with greater specificity,
especially in scenarios involving therapeutic decision making and longitudinal disease management.

3 Empirical Evaluation

We evaluate models on both the multi-modal and longitudinal tracks of MTBBench under two
conditions: (i) baseline inference without tool support and (ii) augmented inference with access
to domain-specific tools, across several metrics, including their accuracy, analysis on multi-modal
understanding and ability to reason across temporally-resolved data. Each model acts as an agent
interacting with the benchmark via multi-turn dialogues, selectively retrieving and reasoning over
available patient files to answer clinical questions. Models are provided only with patient metadata
and a list of modality-specific files at each turn. They must request specific files and construct their
answers from retrieved content.

3.1 Results on MTBBench without Tools

Settings. We evaluate a diverse set of LLMs and VLMs across all tasks in both the multimodal
and longitudinal tracks of MTBBench. To simulate realistic tumor board conditions, we adjust the
context and available files for each question type, ensuring that only data plausibly accessible at the
corresponding clinical stage is provided. No tools or external resources are available in this setting.
Models receive only demographic details, pathology reports, imaging references, and structured



clinical information. The core task remains multiple-choice question answering, but success requires
multimodal reasoning, data retrieval, and longitudinal inference rather than simple pattern recognition.

Evaluation metrics. We report mean accuracy per model and task. To quantify uncertainty, we
estimate 95% confidence intervals using bootstrap resampling with 1000 iterations. For each task, we
sample with replacement from the set of question outcomes per model, compute the mean accuracy
per sample, and extract the 2.5th and 97.5th percentiles to define the confidence interval. To assess
their ability to incorporate findings from several modalities, we analyze the number of modalities
queried compared to the resulting achieved accuracy. The analysis is conducted across 26 patients for
MTBBench-Multimodal and 40 for MTBBench-Longitudinal. For details, see Appendix E.

Results for MTBBench-Multimodal. Accuracy across all models (of different parameter sizes) are
displayed in Table 2. Model performance varies substantially across the multimodal tasks. Digital
pathology, despite being visually complex, does not show a consistent benefit from model size—for
instance, gemma-3-12b outperforms its larger counterpart gemma-3-27b. Hematology emerges as
the most approachable task, likely due to its structured and interpretable inputs. In contrast, outcome
and recurrence prediction remain the most difficult, with accuracies near random (50%), even for
leading models. The strongest overall performance is achieved by internvl3-78b at 69.1% accuracy,
outperforming closed-source baselines like gpt4o by 2.5%. Nevertheless, large performance gaps
persist: up to 36.7% in digital pathology, 17.2% in hematology, and 34.6% in outcome and recurrence
prediction—highlighting the need for more robust multimodal reasoning.

Instead of model size, a stronger signal emerges in the relationship between performance and the
number of files accessed (Fig. 2a-c), in both MTBBench-Multimodal and MTBBench-Longitudinal.
This suggests that effective information gathering, rather than raw scale, is a key determinant of
accuracy. This is also demonstrated in Example 1: Compared to qwen25-7b, gptdo accesses more
modalities including higher resolution H&E regions-of-interest, resulting in the correct cancer
subtype identification. In Example 2, mistralsmall requests file access to more IHCs and the H&E
slide compared to gemma-3-27b, resulting in correct cancer subtype identification. However, this
trend does not hold for outcome and recurrence tasks, where high error rates persist across models. We
hypothesize that these questions require contextual grounding and biomarker interpretation beyond the
current capabilities of uni-modal or tool-free agents. For further results, see Appendix G and Figs. 6).

Results for MTBBench-Longitudinal. The longitudinal track reveals persistent weaknesses in
baseline LLMs. While outcome prediction shows some promise—qwen3-32b reaches 83.1% accu-
racy—tecurrence and progression tasks remain near chance (Table 2). Similarly, querying multiple
modalities improves model performance (Fig. 2d-f). This is also demonstrated in Example 3: com-
pared to gemma-3-27b, qwen3-32b re-accesses part of the patient timeline of events as well as
pathological data, resulting in better cancer progression prediction. This disparity suggests models
can detect coarse survival signals but struggle with more nuanced temporal reasoning, reflecting
varied evidence complexity across tasks.

3.2 Results on MTBBench with Tools

Settings. In this setup, we augment the baseline LLMs with access to external tools, including
foundation model-based modules (UNI, Chen et al. (2024a) and CONCH, Lu et al. (2024b)) and
classical biomedical resources (PubMed and DrugBank). These tools are accessible via API-style
interfaces, allowing agents to retrieve structured outputs during multi-turn reasoning. Visual tools are
primarily used in multimodal tasks, while longitudinal tools support reasoning over treatment history,
drug interactions, and literature-based evidence.

Evaluation metrics. We use the same accuracy metrics described in Section 3.1. Results are reported
per task and model, and improvements are measured relative to tool-free baselines.

Results for MTBBench-Multimodal. As shown in Figure 3a—c (exact numbers in Fig. 8), access to
visual foundation model tools significantly improves performance on all multimodal tasks. Digital
pathology, in particular, benefits from integration of the FMs, with models like gemma-3-12b
and qwen25-7b showing improvements of up to 9%. Notably, tool augmentation also improves
performance on hematology tasks, despite the absence of dedicated tools for lab analysis. We
attribute this to better contextual grounding: agents are more effective at integrating diverse file types
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Figure 3: Accuracy across models and tasks for naive and tool-augmented agents. For multi-modal (a.—c.)
and longitudinal (d.—f.) evaluation. Models equipped with tool access (hatched bars) generally show improved
accuracy, highlighting the benefit of querying external resources in both multi-modal and temporal settings.

when given richer information from related modalities. Outcome and recurrence tasks, which showed
low baseline performance, also benefit modestly from the improved visual reasoning capabilities.

This behavior is also demonstrated through an example: in Example 4, mistralsmall + TOOLS in
contrast to mistralsmall without tools accesses a digital pathology FM for IHC analysis. Despite both
models accessing the same number of modalities, mistralsmall + TOOLS is able to properly address
the question, i.e., which marker is critical in a given pathological analysis.

Results for MTBBench-Longitudinal. Figures 3d—f show that tool access improves performance
across most longitudinal tasks, though gains are generally modest. This is expected, as no specialized
foundation model currently exists for longitudinal clinical reasoning—a key limitation in this track.
Instead, agents rely on general-purpose tools like DrugBank and PubMed, which still provide some
benefit by enriching context and supporting evidence-based decisions. For example, progression and
recurrence predictions improve by over 5% in selected models. Outcome prediction—which already
exhibited strong baseline performance—also sees incremental gains, underscoring the potential of
even generic tools to enhance structured clinical reasoning.

4 Conclusion

MTBBench introduces a benchmark and agentic framework for evaluating Al agents in longitudi-
nal, multi-modal oncology workflows, modeled on the structure of real molecular tumor boards.
By combining temporally evolving patient data, expert-validated clinical questions, and access
to external tools and pretrained foundation models, MTBBench enables a rigorous assessment of
agents’ ability to reason across modalities and time. Our evaluation shows that agents perform
significantly better when equipped to query diverse modalities and leverage domain-specific models,
underscoring the need for flexible, tool-augmented reasoning in clinical AI. MTBBench shifts the
field from static, uni-modal evaluation toward dynamic, decision-centric assessment grounded in
clinical complexity. While MTBBench simulates realistic decision-making, it remains a controlled
offline benchmark—agents are not yet tested in interactive, real-world clinical workflows or exposed
to ambiguous or incomplete inputs requiring clarification or adaptive strategies. Looking forward,



future work will explore extending MTBBench to more diverse clinical domains and incorporating
interactive elements—paving the way for evaluating agents not only as reasoning tools but as potential
collaborators in real-world precision oncology. A particularly promising direction we would like
to explore involves the integration of medical foundation models with capabilities for analyzing
complex longitudinal data, enabling deeper temporal reasoning and personalized decision support.

Societal impacts. MTBBench offers clear benefits by promoting clinically relevant evaluation of Al
agents, potentially advancing more trustworthy decision support in oncology. It encourages models to
reason over multimodal, longitudinal data, closer to real-world needs. However, risks include misuse
of the benchmark to suggest clinical readiness, and reduced transparency when agents rely heavily on
tools. We emphasize that MTBBench is for research only, not clinical deployment, and should be
used with proper oversight and ethical safeguards.
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Appendix

A Background on Molecular Tumor Boards

Participants: oncologists, physician
scientists, precision oncology
scientists, cancer geneticists, clinical
fellows and/or residents, studies
coordinators, haematologists,
pathologists, patient advocates,
radiation oncologists, surgeons and
clinical genetics counsellors

« The meetings are usually held
weekly, biweekly or monthly

- Ad hoc meetings are held
to provide treatment

rec ions in
atimely manner

« MTB members with clinical
expertise should propose matched
targeted therapy

+ Non-molecular matched approved
and investigational therapy options
should also be considered

MTB members and patient
advocates should provide input
regarding treatment
recommendations

Consensus recommendations
should be provided in writing by
the chair of the MTB, and they
should be clearly communicated
to the treating physician

The conclusion should be
summarized by the chair of the MTB

Treating physician to make ’
the final treatment decision ) ‘“

Figure 4: Overview of the Molecular Tumor Board process. Meetings are held at regular intervals or on
demand, bringing together multidisciplinary experts who jointly review patient history, molecular profiling
results, and clinical evidence to recommend personalized treatment strategies. Final decisions are communicated
in writing to the treating physician. Figure adapted from Tsimberidou et al. (2023).

Molecular Tumor Boards are structured, multidisciplinary forums where complex cancer cases are
evaluated through the integration of clinical, pathological, and molecular data. These boards include
oncologists, pathologists, geneticists, and other specialists who collectively interpret diagnostic and
genomic findings to formulate personalized treatment recommendations. The process begins with
the treating physician presenting the patient’s case, including demographic and clinical background,
prior therapies, and pathological findings. Scientists contribute molecular profiling data—such as
tumor mutational burden (TMB), microsatellite instability (MSI) status, fusion events, and biomarker
expression—that are critical for matching patients to targeted therapies (Tsimberidou et al., 2023).

Treatment options are proposed by the MTB members based on this integrated evidence, and
consensus recommendations are recorded and relayed to the treating physician for final decision-
making. The process is iterative, often revisiting cases as new data becomes available, and increasingly
involves patient advocates and real-time access to clinical trial data and treatment databases.

Figure 4 visualizes this workflow, emphasizing how the flow of structured information and expert
input leads to treatment recommendations that are tailored, evidence-driven, and context-aware. This
structured, evolving nature of clinical decision-making underpins the MTBBench benchmark design,
which mirrors MTB dynamics through sequential, multimodal question-answering tasks grounded in
expert-reviewed patient cases.
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B Related Work

Benchmarks for clinical AI. Numerous benchmarks have been developed to evaluate clinical
question-answering and medical reasoning in large language models. Early efforts focused on
textual data, such as EHRNoteQA (Kweon et al., 2024), which uses discharge summaries to evaluate
clinical understanding, and MedQA (Jin et al., 2020), which tests medical licensing exam-style
questions. While these benchmarks provide foundational testbeds, they are largely unimodal and do
not evaluate temporal reasoning or interaction. ClinicBench (Liu et al., 2024) and MedJourney (Wu
et al., 2024) introduced more realistic clinical tasks with timeline structures, but still lack multimodal
integration and agentic file access. MTBBench addresses these gaps by combining longitudinal
structure, multimodal data, and interactive information retrieval within a single benchmark.

Multimodal biomedical benchmarks. Multimodal benchmarks such as MC-BEC (Chen et al.,
2023), Asclepius (Wang et al., 2024b), GMAI-MMBench (Chen et al., 2024b), and MedTrinity-
25M (Xie et al., 2024) have broadened evaluation to include clinical text, waveforms, and images,
testing foundation models across diverse modalities. However, these tasks are typically static and
do not assess models’ ability to retrieve, interpret, or combine information across time. Pathology-
specific datasets like HEST-1k (Jaume et al., 2024) and PANDA (Bulten et al., 2022) enable visual
classification, but lack the clinical reasoning components required for decision-making. MTBBench
advances this line of work by evaluating whether models can synthesize insights across pathology,
hematology, and genomics within evolving case contexts.

Agentic clinical systems. Recent interest in LLM-based clinical agents has led to new frameworks
such as MedAgentBench (Jiang et al., 2025), MediQ (Li et al., 2024), MedAgent-Pro (Wang et al.,
2025c¢), RadA-BenchPlat (Zheng et al., 2025), and AgentClinic (Schmidgall et al., 2024). These
systems evaluate agents in interactive or dialogue-based environments, but focus primarily on textual
data or synthetic tasks. There has been effort to develop LLM-based agents for chest X-rays (Fal-
lahpour et al., 2025), histopathology (Ghezloo et al., 2025), and multiple imaging modalities (Wang
et al., 2025d). MTBBench complements these efforts by embedding tool-use into clinically realistic
workflows and measuring how tool-augmented agents reason in complex, multimodal scenarios.

Foundation models in healthcare. Foundation models trained on biomedical corpora or medical
imaging datasets have demonstrated promising capabilities in generalization and zero-shot reason-
ing (Moor et al., 2023). Biomedical language models trained on literature and structured data
(e.g., BioGPT (Luo et al., 2022), BioMedLM (Bolton et al., 2024)) support evidence grounding.
In pathology, several vision foundation models have emerged: H-optimus-0 (Saillard et al., 2024),
Phikon-v2 (Filiot et al., 2024), Virchow (Vorontsov et al., 2024), and PathOrchestra (Yan et al., 2025).
Vision-language models like CONCH (Lu et al., 2024b), UNI-2 (Chen et al., 2024a), and MUSK (Xi-
ang et al., 2025) integrate histopathology images with clinical text to enhance slide interpretation and
support precision oncology applications. However, these models are typically benchmarked in isola-
tion. MTBBench instead evaluates how foundation models function as tools within agentic systems,
testing not just their predictive accuracy but also their integration into sequential decision-making
processes.

Precision oncology and Molecular Tumor Boards. MTBs represent a high-stakes, information-
dense setting in which multimodal and longitudinal reasoning is essential (Tsimberidou et al., 2023).
Lammert et al. (2024) introduces a domain-specific LLM system for oncology treatment recommen-
dations. Prior datasets in this space are often limited to structured formats or single-modality use
cases. MTBBench is among the first benchmarks to simulate MTB workflows comprehensively, cap-
turing the clinical sequencing, agent interaction, and data integration that define real-world oncology
decision-making (Jee et al., 2024).

C Clinical Validation

C.1 Companion App for Clinical Validation
To ensure the clinical validity of the benchmark and facilitate expert-in-the-loop review, we de-

veloped a custom web-based application to support question and answer annotation (https:
//share.streamlit.io/app/oncoform/ - private). The companion app allows clinicians to
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Feedback for Q6

Q7: Based on the H&E and IHC images, is there evidence of lymphovascular invasion, and does this
correlate with immune cell infiltration patterns?

A) Yes, lymphovascular invasion is observed and correlates with increased immune infiltration.
B) Yes, lymphovascular invasion is observed but does not correlate with immune infiltration.

€) No, lymphovascular invasion is not observed, but there is evidence of increased immune
infiltration.

D) No, lymphovascular invasion is not observed, and immune infiltration s low across allregions,
E) Yes, lymphovascular invasion is observed, but immune infiltration is absent.

F) No, lymphovascular invasion is not observed, but CD8-positive cells dominate the invasion front.

Figure 5: Companion app interface for clinical validation. The platform displays clinical context, reference
images grouped by region and marker, and multiple-choice questions for expert review. Full-resolution slide
viewers and inline feedback fields allow for efficient validation of benchmark items.

browse detailed patient cases, including demographic data, clinical summaries, reference images
(H&E and THC), and the associated question-answer pairs (Fig. 5).

Each patient case is presented with a structured clinical context, followed by a grid of labeled image
thumbnails categorized by tissue region and marker (e.g., "Tumor Center CD8", "Invasion Front
H&E"). Clicking a thumbnail loads the full-resolution slide. Besides the image panel, the user is
presented with multiple-choice questions linked to the case, and input fields to provide feedback or
corrections for each answer.

This interface was designed to mirror the decision-making process of molecular tumor boards,
offering domain experts an intuitive environment for validating multimodal reasoning tasks. It
supports both qualitative feedback and quantitative validation, and was used extensively during
benchmark construction to curate expert-reviewed question sets for both MTBBench-Multimodal
and MTBBench-Longitudinal.

C.2 Expert Validation

After multiple iterations of internal expert-in-the-loop auditing, the final set of questions in
MTBBench were sent for external manual review by domain specialists via the companion ap-
plication, where we aimed to judge the soundness and relevance of the QA-pairs. Due to the diverse
nature of the benchmark and different categories of questions, reviews were conducted both indepen-
dently and with overlapping sets to assess consistency. In total, 10 experts from multiple countries,
hospitals, and levels of expertise were involved in the review process. For the overlapping sets, the
external reviewers received 45 questions to review via the app, and the QA pairs were rated as Good
as is, Needs minor rewording, or Inappropriate. We report the average inter-rater agreement metrics
over these reviews in Table 3. We observe that there is a high annotation consistency and confidence
in question quality.
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Table 3: Average inter-rater agreement metrics of ten experts over 45 questions.
Overall Mean pairwise Mean Cohen’s £ (Cohen, 1960)  Fleiss’  (Fleiss, 1971) Mean PABAK (Byrt et al., 1993)  Gwet’s ACI (Gwet, 2008)  Krippendorff’s a (Krippendorff, 2011)
0.91 0.94 0.81 0.79 0.91 0.91 0.79

D Additional Details on MTBBench
D.1 Agentic Workflow

Interactive dialogue setup. To simulate realistic clinical scenarios, MTBBench employs an inter-
active, multi-turn dialogue setup in which a Doctor agent is tasked with responding to several user
questions. These questions are grounded in access to several modalities grouped in a comprehensive
patient case folder.

Conversation initialization. Both evaluation datasets follow the same general approach, where the
conversation begins with a short patient introduction, which contains patient demographic information
such as age, gender, as well as symptoms the patient is currently experiencing about their oncological
condition. The agent is then guided on the availability and structure of files that contain additional
patient-specific information.

Differences between datasets. The available files vary between the two MTBBench datasets. In the
multimodal dataset, patient data can include digital pathology, hematological, and general clinical
notes. In contrast, the longitudinal dataset presents information in temporal or tabular format,
reflecting the patient’s medical history over time.

Agent actions and memory constraints. The agent is equipped with two main actions during its
reasoning: it can either request one or several files or provide a final answer once it has gathered
sufficient information. Files accessed by the agent remain available only during the context of the
current question being answered. For instance, if the model receives several images or text files while
responding to a query, those files will no longer be accessible when answering subsequent questions,
unless the model requests them again. This setup simulates a realistic clinical workflow, where an
agent opens several clinical files from a patient folder, processes their information, and closes them
upon completion of the current task. As a result, only the agent’s reasoning steps alongside the record
of which files were accessed persist across turns, reinforcing the need for information gathering and
memory management.

Progressive contextual disclosure. As the conversation progresses, with multiple questions ad-
dressed, new contextual information and corresponding patient files are made available to the agent.
This design mirrors a real-life clinical workflow, where the initial diagnosis is performed, and sev-
eral additional tests are performed over time. By introducing new stages, the agent is required to
continuously reason over evolving patient information.

MTBBench-Multimodal structure. In the multi-modal part of our benchmark, the conversation
begins with initial patient information, accompanied by multiple H&E and THC slides, provided to
support reasoning around oncological image interpretation. With the initial assessment performed
and primary cancer type identified, the simulated environment continues with a pre-surgical stage.
In preparation for a surgery, the patient undergoes several lab tests aimed at assessing the overall
health status and fitness for surgery and future treatments. In this stage, the agent has access to the
patient’s blood tests, together with a reference table specifying normal ranges for male and female
patients. Following this, the surgery would be carried out, and a summary of the outcome would be
provided in the context. The full surgery report and a short list of interventions would be accessible
in the patient’s case folder. At this stage, the questions asked would have a prognostic nature, with
the agent tasked to predict the 5-year survival outcome and 2-year cancer recurrence, based on the
patient data gathered throughout the entire case.

MTBBench-Longitudinal structure. In the longitudinal evaluation track, the conversation begins
with baseline clinical information and the introduction of the primary cancer type. The questions
asked target outcome prediction, recurrence, and cancer progression for a given period. To support
the agent in its reasoning, a timeline file is available in the patient’s case folder with important events
sorted by the age at which they occurred. If a sample has been taken and sequenced, additional
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patient data is provided in tabular format, such as gene mutations, copy number alterations, and
structural variants. After the agent has answered several questions, a new context may be provided
containing the outcome of all questions asked, with a new timeline file capturing the additional
patient history. The agent can then combine all timeline files together to create a complete and
comprehensive medical history to answer additional questions.

Evaluation and reproducibility. To facilitate reproducibility and streamline model evaluation, each
run stores the complete conversation history, including the model’s final answers for each question,
the set of files accessed per query, and any hallucinated file names. We provide comprehensive logs
for all evaluated models, both with and without tool access, in the project repository.

E Details on Experiments

E.1 Details on Foundation Models and Downstream Tasks

H&E foundation model. For histopathology image encoding, we employ the CONCH model
directly, without any task-specific fine-tuning on H&E slides. Model weights are obtained from the
official HuggingFace repository. To ensure compatibility and optimal performance, we adhere strictly
to the preprocessing and usage guidelines outlined in the model card, including image normalization
and text-token preparation for the dual-encoder architecture.

CONCH downstream tasks. The CONCH foundation model is utilized for zero-shot region-of-
interest (ROI) classification, where candidate labels are supplied by the LLM. Classification is
performed by computing the dot product similarity between image and text embeddings. The label
with the highest similarity is selected and returned to the LLM, along with a confidence estimate. To
improve interpretability and account for potential label ambiguity, the raw softmax score is discretized
into confidence bins: very low (0-20%), low (20—40%), medium (40-60%), high (60-80%), and very
high (80-100%). Because the LLM-generated label set may not always include the most semantically
accurate class, we avoid exposing exact probabilities and instead provide only the corresponding bin.

Tissue extraction using QuPath (Bankhead et al., 2017). To develop our ABMIL tool, which
predicts the percentage of positively stained cells, we manually curated a dataset of immunohisto-
chemistry (IHC) images using a semi-automated annotation pipeline in QuPath. For each patient,
tissue microarray (TMA) cores were segmented to isolate regions containing tissue, and each region
was mapped to the corresponding patient metadata. Within these regions, individual cells were
identified through a combination of optical density transformation, background correction, and mor-
phological segmentation. Cells were then classified as positively or negatively-stained based on DAB
staining intensity. The resulting cell-level annotations formed the basis for training and evaluating
our ABMIL model.

IHC foundation model. We extract UNIv2 embeddings using the TRIDENT framework (Vaidya
et al., 2025b). Each whole-slide image is first loaded at the appropriate microns-per-pixel (mpp)
resolution, followed by tissue segmentation using the HEST model (Jaume et al., 2024). The
segmented tissue regions are then divided into fixed-size patches of 256 x 256 pixels. The UniV2
foundation model is applied to each patch to generate feature embeddings, which are subsequently
aggregated using the ABMIL.

Our Gated ABMIL model architecture consists of two attention heads, each with a dimensionality of
512. The model incorporates a dropout rate of 0.3 and an overall model dimensionality of 1536. The
regression component of the IHC tool is implemented as a five-layer fully connected neural network,
utilizing ReLLU activation functions and a dropout rate of 0.2. Training was conducted over 70 epochs
using a batch size of 64, the Adam optimizer, and a learning rate of 0.0004. All experiments were
carried out on a single NVIDIA A100 GPU with 80 GB of memory.

We release the pretrained weights of our IHC foundation model as part of the project’s GitHub
repository.
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E.2 Details on Resource and Knowledge Database Tools

PubMed querying tool. To retrieve biomedical literature, we integrate a PubMed querying tool using
the Biopython library (https://biopython.org/). Search queries are generated by the calling
LLM and may include advanced formatting, such as boolean operators (e.g., lung carcinoma OR
lung adenocarcinoma). The tool retrieves the top 30 articles from PubMed based on the provided
query and reranks them using the BAAI-bge-reranker-v2-m3 model. The reranker jointly embeds
the query and each article’s abstract as a text pair and computes a logit-based relevance score. The
top 3 abstracts with the highest scores are returned to the LLM for downstream reasoning.

DrugBank querying tool. To integrate drug-related knowledge, we obtained a non-commercial
research license for DrugBank and accessed the platform’s API. We retrieved a snapshot containing
approximately 21,000 drug names along with their corresponding descriptions. Our DrugBank
querying tool performs string-based lookups on file contents requested by the LLM. When a drug
name match is identified, the corresponding description is returned to the LLM, enabling enhanced
contextual understanding and more informed clinical reasoning.

E.3 Details on Large Language and Vision Language Models

LLM specifications. We benchmark the following models: gemma-3-12b, gemma-3-27b (Team
et al., 2025), gptdo (OpenAl et al., 2024), o4-mini, internvl3-38b, internvl3-78b (Zhu et al., 2025),
Ilama90b, llama31-8b, llama33-70b (Grattafiori et al., 2024), mistralsmall, qwen25-7b, qwen25-
32b (Bai et al., 2025), qwen3-8b, qwen3-32b (Yang et al., 2025). To optimize GPU memory
usage while preserving model performance, we apply 4-bit quantization to the following models:
Ilama90b, mistralsmall, llama31-8b, llama33-70b, qwen3-8b (reasoning), and qwen3-32b (reason-
ing). These models are served using the VLLM inference engine (Kwon et al., 2023), with weights
sourced from HuggingFace. For gemma-3-12b, gemma-3-27b, qwen25-7b, and qwen25-32b, we
employ 8-bit quantization and use the HuggingFace implementation and associated pretrained
weights. For OpenAl-based models, we use the gpt-40-2024-08-06 checkpoint for gpt4o and the
04-mini-2025-04-16 checkpoint for 04-mini.

E.4 Details on Evaluation Metrics

Answer accuracy. We evaluate the agent system primarily using accuracy, measured on a set of
true/false and multiple-choice questions (each with six answer options). This formulation enables
objective evaluation without relying on human annotators or oracle LLMs, thereby ensuring re-
producibility and consistency across models. Model outputs are parsed using regular expressions
to extract answers. We attempt to identify whether the output is a single letter (e.g., [ANSWER:
A]) or a letter with the corresponding option (e.g., [ANSWER: A) Squamous Cell Carcinoma,
Keratizing]). If the model does not follow this format, we prompt it again to extract a valid answer.
After three failed attempts, the response is marked as incorrect.

File access count. In addition to accuracy, we track the number of files accessed per question. The
model is allowed to access files by explicitly specifying the filename and extension in the prescribed
format (i.e., [REQUEST: primary_tumor_roi. jpgl). This metric captures how actively the model
explores the available patient data, serving as a proxy for information-seeking behavior. A lower
file access count may indicate superficial reasoning or hallucination, whereas higher counts suggest
information retrieval and more grounded decision-making. Thus, this metric provides valuable insight
into the agent’s interpretability and alignment with real-world clinical workflows.

E.5 Details on Computational Resources

All agentic experiments were conducted using NVIDIA A100 80GB GPUs. Specifically, the models
gwen3-8b (reasoning), gemma-3-12b, llama31-8b, and qwen25-7b were run on a single GPU. We
used two GPUs for gemma-3-27b, qwen25-32b, qwen3-32b (reasoning), and mistralsmall. The most
resource-intensive model, llama33-70b, required seven GPUs for inference. For the OpenAl models
gptdo and o4-mini, all evaluations were performed using CPU-only inference via API access. Across
all configurations, the full execution of the MTBBench benchmark for a given model was completed
within a maximum of two days.
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F Examples of MTBBench Agentic Interactions

In 2016, a 52-year-old male presented for evaluation. The patient has a history of smoking. At the
time of initial assessment, diagnostic workup was initiated, including imaging studies and a sample
collection for further analysis. Hematoxylin and eosin (H&E) staining, as well as immunohistochemical
(IHC) staining, have been performed on the collected sample to assist in determining the underlying
condition. Further evaluation and clinical correlation are ongoing.

New files available: [List of H&E slides at Primary-Tumor and Lymph Nodes, and 28 IHC tumor microarrays
spanning 7 different markers]

Question: Based on the histopathological features visible on the H&E image, what is the most likely
histologic type of the tumor?

A) SCC_Conventional-Keratinizing

B) Adenocarcinoma

C) Small cell neuroendocrine carcinoma

D) Non-keratinizing SCC

E) Clear cell carcinoma

F) Synovial sarcoma

GPT-40 System Qwen2.5-7b

To determine the most likely To determine the most likely
histologic type of the tumor, I histologic type of the tumor based
need to analyze the H&E-stained on the H&E images, I would need to
images provided. Specifically, I review the H&E stained slides.

will examine the primary tumor H&E Please provide the H&E stained image
image and its region of interest so I can analyze it.

(ROI).

Thank you for providing the H&E
stained image. Based on the
appearance of the tissue, the
tumor shows glandular structures
with a cribriform pattern, which
is characteristic of
adenocarcinoma. The presence of
glandular structures and the
absence of squamous
differentiation suggest that
this is not a squamous cell

i carcinoma (SCC). Therefore, the
Reglon most likely histologic type of
the tumor is:

Thank you for providing the
images. I will now analyze the
histopathological features
visible in the H&E-stained
images to determine the most
likely histologic type of the
tumor.

The images show the following
features:

- Keratinization: Evidence of
keratin pearls or individual
cell keratinization. of-Interest

— Cellular arrangement: The
organization of cells, including
glandular structures or sheets
of cells.

— Nuclear morphology: The size,
shape, and chromatin pattern of
nuclei.

— Stromal interaction: The
relationship between the tumor
cells and the surrounding
stroma.

[ANSWER: B) Adenocarcinoma]

Based on these features, I will

provide the most likely

diagnosis. Please provide the final
answer in [ANSWER: LETTER)
answer] specifying the
answer choice letter you
picked (A, B, C, D, E, or
F) or ask for files with
[REQUEST:
filename.extension]. Make

. . sure you have both the
Based on the histopathological opening an closing brackets
features visible in the provided )
H&E-stained images, the most likely

histologic type of the tumor is:

[ANSWER: A) SCC_Conventio

Keratinizing]

Example 1: In this digital pathology question, gpt4o requests not only the low-resolution primary tumor slide,
but also the high resolution region-of-interest (ROI), which allows to identify the correct cancer subtype. On
the other hand, qwen25-7b cannot identify the correct subtype because it only requested the primary tumor
slide, which is too high level to identify the critical features for cancer subtype identification. Note that the
raw histology slides are high resolution (which allows to extract ROIs) but were resized for compatibility with
VLMs.
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[... previous questions on H&E slides and specific TMA markers...]

Question: Based on both H&E and IHC slides, is perineural invasion present, and how does this correlate
with immune cell infiltration?

A) Perineural invasion is present, with dense T-cell infiltration around nerves.

B) Perineural invasion is absent, with sparse T-cell infiltration in perineural areas.

C) Perineural invasion is present, with sparse T-cell infiltration around nerves.

D) Perineural invasion is absent, with dense macrophage infiltration in perineural areas.

E) Perineural invasion is absent, with dense NK cell infiltration in perineural areas.

F) Perineural invasion is present, with dense NK cell infiltration around nerves.

System Gemma3-27b

Mistral-Small

To determine the presence of
perineural invasion and its
correlation with immune cell
infiltration, I need to examine the
relevant H&E and IHC slides.

H&E ROl +
InvasionFront_CD3_0 |«

[Request for H&E slide, H&E Region-of-
interest, and all IHCs for markers
cD3, (D8, (D56, (D68 at Invasion Front
and Tumor Center]

To assess for perineural invasion, I
need to carefully review the H&E
slides looking for tumor cells
infiltrating around nerves. I will
also examine the CD3 IHC slides to
assess T-cell infiltration in
perineural spaces.

[REQUEST:
PrimaryTumor_HE_706_roi.jpg]l

[REQUEST:
TMA_IHC_InvasionFront_CD3_0.png]

Based on the provided H&E and IHC
slides, we can evaluate the presence
of perineural invasion and its
correlation with immune cell
infiltration.

After careful review of the H&E and
CD3 IHC slides, perineural invasion
is present. I can identify tumor
cells closely associated with and
surrounding a nerve bundle.
Furthermore, there is sparse T-cell
infiltration around the affected
nerve. The CD3 staining shows only a
limited number of T cells in the
perineural space.

1. H&E Slides:

- The H&E slides
(PrimaryTumor_HE_706.jpg and
PrimaryTumor_HE_706_roi.jpg) show
areas where tumor cells are in close
proximity to nerves. However,
definitive perineural invasion is
not clearly evident in these images.
Perineural invasion typically
appears as tumor cells tracking
along the nerve sheath, which is not
distinctly visible here.

InvasionFront_CD68_1

[ANSWER: C) Perineural invasion is
present, with sparse T-cell
infiltration around nerves.]

2. IHC Slides:

- €D3 Staining: The CD3 stained images (TMA_IHC_TumorCenter_CD3_0.png,
TMA_IHC_TumorCenter_CD3_1.png, TMA_IHC_InvasionFront_CD3_0.png,
TMA_IHC_InvasionFront_CD3_1.png) show T-cell infiltration. The invasion front appears to have
a higher density of CD3-positive T-cells compared to the tumor center.

- CD8 Staining: The CD8 stained images (TMA_IHC_TumorCenter_CD8_0.png,
TMA_IHC_TumorCenter_CD8_1.png, TMA_IHC_InvasionFront_CD8_0.png,
TMA_IHC_InvasionFront_CD8_1.png) also show a higher density of CD8-positive T-cells at the
invasion front.

- CD56 Staining: The CD56 stained images (TMA_IHC_TumorCenter_CD56_0.png,
TMA_IHC_TumorCenter_CD56_1.png, TMA_IHC_InvasionFront_CD56_0.png,
TMA_IHC_InvasionFront_CD56_1.png) show sparse NK cell infiltration in both the tumor center
and the invasion front.

- CD68 Staining: The CD68 stained images (TMA_IHC_TumorCenter_CD68_0.png,
TMA_IHC_TumorCenter_CD68_1.png, TMA_IHC_InvasionFront_CD68_0.png,
TMA_IHC_InvasionFront_CD68_1.png) indicate higher macrophage infiltration at the invasion
front compared to the tumor center.

Given these observations, there is no definitive evidence of perineural invasion in the
provided H&E slides. The immune cell infiltration, particularly T-cells (CD3 and CD8), is
higher at the invasion front, but there is no dense T-cell infiltration specifically around
nerves. Macrophage infiltration is also higher at the invasion front.

Therefore, the answer is:

[ANSWER: B) Perineural invasion is absent, with sparse T-cell infiltration in perineural
areas.]

Example 2: In this digital pathology question, mistralsmall requests the histology slide and ROL, as well as 16
IHC images corresponding to two images for each of 4 markers observed at Tumor Center and Invasion Front.
On the other hand, gemma-3-27b only requests the histology ROI and one IHC, which leads to a wrong analysis.
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The patient is a 60.5-year-old White female of Non-Spanish, Non-Hispanic ethnicity with a diagnosis of

pancreatic adenocarcinoma. A sample from the patient has been sequenced, and mutation data is available
for analysis. Additionally, detailed clinical history, including information on diagnosis, treatments,

and lab tests, is documented for the period between 60.5 and 61.6 years of age.

[... previous question about recurrence in the next 12 months ...]

Question: Given that the patient is 61.6 years old, will the cancer progress in the next 12 months?
A) Yes
B) No

Qwen3-32b Gemma3-27b

Considering the patient's current clinical status
and the information from the provided files, I
believe the cancer will likely progress in the
next 12 months.

<think>

Okay, let's tackle this question. The user is
asking if the cancer will progress in the next
12 months for a 61.6-year-old patient with
pancreatic adenocarcinoma. They provided two ,
files: timeline@.txt and specimen.txt. Reasoning:

As previously established, the patient initially
responded to chemotherapy, but there are
concerning signs suggesting potential disease
progression. Specifically:

First, I need to recall what information those
files contain. From the previous interaction,
the timeline file probably details the patient's
clinical history, including diagnosis dates,
treatments, and any lab results. The specimen
file likely has the mutation data from the g
sequenced sample.

CA 19-9 Trend: While the CA 19-9 level
decreased from 121 to 52 between ages 61.293 and
61.523, it remains elevated above the initial
Pancreatic adenocarcinoma is an aggressive diagnostic level of 70. This suggests ongoing
cancer, but progression can depend on factors disease activity.

like treatment response, genetic mutations, and *  Indeterminate Scan: The "indeterminate"
overall health. The user wants to know if finding on the MR scan at age 61.284 raises
progression is expected in the next year. suspicion of early recurrence, even though the
subsequent scan at 61.523 was reported as showing
no progression. Indeterminate findings often
warrant close monitoring as they can precede

I should check the timeline for recent
treatments. If the patient has been on effective
therapy, progression might be slower. Also, definitive progression.

looking at lab tests around 61.6 years old could *  Molecular Profile: The MSS status and low TMB
show if there are signs of progression like indicate a limited likelihood of response to
rising tumor markers. The specimen data might immunotherapy, reducing treatment options if the
reveal mutations associated with aggressive disease progresses.

behavior or resistance to treatment. * Stage: The patient was diagnosed with stage
1-3 pancreatic adenocarcinoma. Even with initial
treatment response, recurrence rates are
significant in this disease.

Wait, in the previous question about recurrence,
the answer was "No." Maybe the data showed no
signs of recurrence yet. For progression, even
if there's no recurrence, the cancer might still
progress. But I need to check the files again.

(]

Given these factors, it is more probable than not
that the cancer will progress within the next 12
months, even if the progression is slow or
initially subtle.

Let me proceed to request the files again to [ANSWER: A) Yes]
verify.

</think>

[REQUEST: timeline@.txt] [REQUEST: specimen.txt]

’AGE 60.517, samples...

. AGE: 60.517, diagnosis > diagnosis
<think> : g .

“METASTATIC_SITE": “Not Applicable, “PRIMARY_SITE":
[ CRCN ] “Pancreas", "CANCER_TYPE_DETAILED": "Pancreatic
‘Adenocarcinoma", "GENE_PANEL": “IMPACT468",

AGE: 60591, surgery --> SUBTYPE: PROCEDURE,

The CA 19-9 levels fluctuate but don't show a
consistent upward trend. The CEA levels are also

"SAMPLE_COVERAGE": 570, "TUMOR_PURITY": 10.0,
“ONCOTREE_CODE": *PAAD"

ee S| note below.”,

AGE: 60.591, specimen_surgery --> SAMPLE_ID: ...
AGE: 60.624, diagnosis > cancer_pr
AGE: 60.624, diagnosis > progressi

table",
relatively stable. The most recent data point is g NIOAL-GROUP. "

at 61.523, which is about 0.9 months before the
current age of 61.6. Since the question is about
the next 12 months, the available data only
covers up to 0.9 months post-61.6. However,
based on the trend up to 61.523, there's no
evidence of progression.

AGE: 60627,
AGE: 60.682, diagnosis > performance
AGE: 60.684, treatment > prior_med:

", "PATHOLOGICAL_GROUP": 2.0,
“CLINICAL_SUMMARY": "Regional Both 2 and 3",
“ICD_O_HISTOLOGY_DESCRIPTION": “Adenocarcinoma,
Nos’, "DIAGNOSIS_DESCRIPTION": *Pancreas”,
“TMB_NONSYNONYMOUS": 2.594094285,
MA,

AGE: 60.739, treatment > treatment --> STOP_AGH
AGE: 60.739, treatment > treatment --> STOP_AGH
AGE: 60.739, treatment > treatment --> STOP_AGE: ...
AGE: 60.895, labtest > ca_19-9_labs --> RESULT: 39...
AGE: 60.895, labtest > cea_labs --> CEA: 2.7000 ng/mi

N J

“CLINICAL_GROUP._y’ X
"STAGE_CDM_DERIVED": *Stage 1-3
“Regional both 2and 3

“C25.1"}

looal
</think> k

specimen.txt

timeline0.txt

[ANSWER: B) Nol

Example 3: In this longitudinal case, the question asks about cancer progression in the next months. However,
previous questions already asked about cancer recurrence, so gemma-3-27b re-uses the data analysis from
the previous question, without requesting for the timeline data or pathological data again. On the other hand,
gwen3-32b reasons that progression may not require the same analysis than recurrence and requests for the files
again, which leads to the correct analysis.
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[.. previous questions on H&E slides and other tumour markers..]

Question: Which marker shows the lowest proportion of positive cells in both the tumor center and
invasion front?

A) CD3

B) CD8

C) CD56

D) CD68

E) PDL1

F) MHC1

Mistral-Small Mistral-Small (with tools)

System

To determine which marker shows the
lowest proportion of positive cells
in both the tumor center and the in both the tumor center and
invasion front, I need to examine invasion front, I need to analyze
the IHC stained images for each of . the provided IHC images.

the specified markers in both

regions. TumorCenter_CD3_0,
TumorCenter_CD3_1,
[Request for all pairs of IHCs for InvasionFront_CD3_0,
all 6 markers] InvasionFront_CD3_1

To determine which marker shows the
lowest proportion of positive cells

[Request for all pairs of IHCs for
all 6 markers]

I will wait for the images to be
provided before proceeding with the
analysis.

InvasionFront_ MHC1_1

Based on the provided IHC images,
the marker that shows the lowest [IHCTool: According to IHC
proportion of positive cells in tool around 23.98% of the
both the tumor center and the cells in

invasion front is PDL1. The images TMA_IHC_TumorCenter_CD3_0.p
for PDL1 (both _@ and _1) in both ng are positively stained.]
regions exhibit minimal brown

staining, indicating a low
proportion of positive cells
compared to the other markers.

Therefore, the answer is: Assistant: Based on the analysis
of the IHC images and the data

[ANSWER: E) PDL1] provided by the IHCTool, the
marker that shows the lowest

proportion of positive cells in
both the tumor center and
invasion front is MHC1.

[ANSWER: F] V

Example 4: Augmenting LLMs with tools such as foundation models allows for grounded and explainable
predictions. In this case, the tool-augmented model uses the output of the ABMIL model that quantifies the
percent of positive cells in a IHC core, which, in contrast to the zero-shot LLM, leads to the correct answer.
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G Further Experimental Results

a. Task: Digital Pathology b. Task: Hematology c. Task: Outcome and Recurrence
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Figure 6: Distribution of number of files requested for a given backbone LLM per task.
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Figure 7: Distribution of the number of files accessed per patient. Across models for MTBBench-Multimodal
a. and MTBBench-Longitudinal b. tasks.

Figure 6 shows the distribution of requested files per model and task. Some tasks show consistent
file requests across models: for example, hematology usually requires two files to answer questions,
namely patient hematology data and hematology reference ranges. However, some harder tasks like
Outcome & Recurrence show more variability across models. For example, mistralsmall tends to ask
for more files than any other model, which could explain how it reaches a similar accuracy in this
task as 1lama90b, a model that contains almost four times as many parameters (see Fig. 2).

Figure 7 shows the distribution of number of files accessed per patient. Stronger models tend to access
more files per case, reflecting greater use of available modalities, especially in multi-modal settings.
This especially supports the analysis of the Example 3, where models benefit from requesting again
detached files in the same conversation.

Figure 8 shows the difference in bootstrap accuracies + TOOLS minus without tools. Smaller models
tend to benefit more from tool use (e.g. qwen25-7b, llama33-8b, gemma-3-12b, gemma-3-27b,
qwen25-32b, mistralsmall) especially in Digital Pathology, Outcome/Recurrence, and Progression
tasks. Notice that mistralsmall does not benefit that much from tool use in Digital Pathology (+0.6),
which could be due to strong vision capabilities. Another notable outlier is qwen25-32b which
significantly decreases performance with tool use in Outcome/Recurrence tasks.
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Figure 8: Effect (difference) of tool use on bootstrap accuracy for a. MTBBench-Multimodal and b.
MTBBench-Longitudinal.

H Other Prompts

System prompt used at the beginning of each conversation:

System: You are a pathologist AI assistant expert at analyzing patient data and answering user
questions.

You will be provided with files that you are allowed to read.

More files may become available as the conversation progresses.

To ask for files, include in your reasoning [REQUEST: filename.extension] for each file you
needExample: [REQUEST: imagel.jpg]l [REQUEST: image2.jpg]l

You may request multiple files at once if necessary. If you ask for a file wait to receive it from the
user.

To provide a final answer to a question, include [ANSWER: your answer] in your response.

You MUST ONLY provide [ANSWER] when you have all necessary information.

System prompt when tool calling is enabled:

System: You are a pathologist AI assistant expert at analyzing patient data and answering user
questions.

You will be provided with files that you are allowed to read.

To ask for files, include in your reasoning [REQUEST: filename.extension] for each file you
needExample: [REQUEST: imagel.jpgl [REQUEST: image2.jpgl

To provide a final answer to a question, include [ANSWER: LETTER) your answer] in your response,
specifying the answer choice you picked (A, B, C, D, E, or F).

You MUST ONLY provide [ANSWER] when you have all necessary information.You also have access to a H&E
foundation model CONCH that can be used to determine cancer type and NOTHING ELSE.

To use CONCH you must provide the H&E image name and extension and a list of options in the format
[CONCH: filename.extension, (optionl text), (option2 text), ...] with each option surrounded by ()
Example: [CONCH: imagel.jpg, (melanoma), (squamous cell carcinoma)] [CONCH: image2.jpg, (option 1)
(option 2)]

The model will then tell you which option resembles the image the most.
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the abstract explicitly mentions the main contributions of this paper, and
the introduction provides a more elaborate list of the four main ones.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are explicitly acknowledged and discussed in the conclusion
(Section 4) of the paper.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not contain theoretical results based on a supporting mathemat-
ical proofs.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experiment results and model performances in this paper are fully repro-
ducible. All steps for the benchmark creation (Section 2) and evaluation (Section 3) are
explained, and the supporting code with executed agent logs is available to be reviewed. The
code also explains how to run the experiments if needed.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper code and evaluation logs from the agent runs are completely
provided together with this paper. Our benchmark is based on publicly available datasets.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and test details of our ABMIL model are described in Appendix
E.1 of the paper.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All accuracy plots in our paper have a 95% confidence interval and the method
of calculation is explained in Section 3.1.

. Experiments compute resources
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10.

11.

12.

13.

14.

15.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information about the training of models and inference of algorithms is
explicitly stated, mentioning the cluster, the type of GPUs used, and the hyperparameters
used is shown in Appendix E.1.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have closely followed the ethics guidelines while developing this project.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have added a section discussing both potential positive societal impacts
and negative societal impacts into the Conclusion.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We foresee no high risk of misuse that can occur from using our benchmark
for training and evaluation.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Licenses are explicitly mentioned for the datasets on which this benchmark is
based in Section 2.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The newly introduced benchmark is documented on Kaggle link we provide.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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16.

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development did not involve LLMs in any important, original,
or non-standard components.
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