
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VISUAL DIFFUSION MODELS ARE GEOMETRIC
SOLVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper we show that visual diffusion models can serve as effective geometric
solvers: they can directly reason about geometric problems by working in pixel
space. We first demonstrate this on the Inscribed Square Problem, a long-standing
problem in geometry that asks whether every Jordan curve contains four points
forming a square. We then extend the approach to two other well-known hard
geometric problems: the Steiner Tree Problem and the Simple Polygon Problem.
Our method treats each problem instance as an image and trains a standard vi-
sual diffusion model that transforms Gaussian noise into an image representing a
valid approximate solution that closely matches the exact one. The model learns
to transform noisy geometric structures into correct configurations, effectively re-
casting geometric reasoning as image generation. Unlike prior work that neces-
sitates specialized architectures and domain-specific adaptations when applying
diffusion to parametric geometric representations, we employ a standard visual
diffusion model that operates on the visual representation of the problem. This
simplicity highlights a surprising bridge between generative modeling and geo-
metric problem solving. Beyond the specific problems studied here, our results
point toward a broader paradigm: operating in image space provides a general and
practical framework for approximating notoriously hard problems, and opens the
door to tackling a far wider class of challenging geometric tasks.

1 INTRODUCTION

Diffusion models have emerged as a transformative force in generative AI. Initially developed for
image synthesis, they have quickly proven to be among the most powerful and versatile generative
models across a wide range of media, including audio, video, and 3D content. Their ability to pro-
gressively denoise random signals into coherent and high-fidelity samples has enabled breakthrough
applications, from photorealistic image generation to controllable editing and cross-modal transla-
tion. Beyond their remarkable empirical success, diffusion models are increasingly recognized as a
general framework for modeling complex, multimodal distributions.

In this work, we take a different perspective on diffusion models: rather than focusing on their cre-
ative generative capacity, we demonstrate their potential as solvers of hard geometric problems. We
show that the sampling process of diffusion can be harnessed to directly reason about and discover
geometric structures, guided only by pixel-level formulations of the problem. This visual diffusion
approach allows us to treat abstract geometric challenges as image generation tasks, bridging the
gap between visual synthesis and mathematical problem-solving.

Diffusion models have been used in various contexts to tackle optimization and reasoning problems,
including combinatorial tasks such as the traveling salesman problem (Sun & Yang, 2023; Li et al.,
2023; Sanokowski et al., 2025). These approaches typically formulate the problem in symbolic
or graph-based representations, leveraging the probabilistic nature of diffusion to search solution
spaces. In contrast, our method operates purely in the visual domain. By representing geometric
problems as images and reasoning directly in pixel space, we exploit the intrinsic strength of diffu-
sion models in handling multimodal distributions and ambiguous solutions. This visual formulation
makes our approach fundamentally distinct from prior problem-solving applications of diffusion.

To ground our approach, we begin with the Inscribed Square Problem, a long-standing problem that
asks whether every simple closed curve in the plane admits an inscribed square. The problem is still

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

unsolved in the general case. Furthermore, a given curve may admit multiple and often very different
inscribed squares, and enumerating them is non-trivial even in restricted settings (van Heijst, 2014).
This multiplicity naturally forms a distribution, which makes the problem especially well suited to
diffusion models. Our method addresses it in an unexpected way, operating directly in image space
on a visual representation of the geometric challenge. By starting from different random seeds, the
model can uncover diverse valid squares, each corresponding to a distinct solution of the problem.
Figure 1 illustrates the setting and highlights both the complexity and the variability of possible
solutions.

Figure 1: We introduce a visual diffusion ap-
proach to solving hard geometric problems di-
rectly in pixel space. Shown here on the In-
scribed Square Problem, where we task the
model with finding a square such that all of its
four vertices lie on a given curve. Our method
uncovers diverse approximate solutions, corre-
sponding to different random seeds.

We next illustrate the competence of our
diffusion-in-image-space approach on two addi-
tional hard geometric problems. The first is
the Steiner Tree Problem, which asks for the
shortest possible network connecting a given set
of points. Its solution may introduce auxiliary
nodes, known as Steiner points, and finding the
optimal configuration is NP-hard (Garey et al.,
1977). The second is the problem of connecting a
set of points into a simple polygon of maximum
area, which was featured in the CG:SHOP global
optimization challenge of 2019 (Demaine et al.,
2022). This task is known for its combinatorial
complexity and strict geometric constraints, and
is also NP-hard. As with the inscribed square
problem, our method addresses these problems
directly in image space, operating in the pixel do-
main. While discretization at finite resolution im-
poses limitations, it nonetheless enables valid ap-
proximations to problems that are otherwise ex-
tremely hard, with solutions that can be naturally
refined. We evaluate this aspect rigorously in the
paper.

Training follows a deliberately simple yet effec-
tive strategy. We generate a large distribution of
valid solutions directly in image space and train
a diffusion process to denoise random Gaussian
samples into this distribution. This strategy builds
on the observation that, in many cases, constructing examples of valid solutions is far easier than
deriving one for a specific input instance. Our image-space formulation therefore offers notable
simplicity: it requires no elaborate encodings or specialized representations. At the same time, it
provides a natural entry point to a wide spectrum of hard geometric problems that admit natural
visual representations, beyond the three studied in this work.

2 RELATED WORK

Several works have attempted to use diffusion models in order to learn to solve problems for which
no known efficient algorithm exists, mostly of combinatorial nature. Most existing diffusion works
operate directly on the parameter space of the problem. DIFUSCO (Sun & Yang, 2023), a graph-
based diffusion framework, casts a broad family of NP-complete problems into {0, 1}N indica-
tor vectors and learns a denoiser over graphs. They compare continuous (Gaussian) and discrete
(Bernoulli) noise processes, and show strong results on traveling salesman problem (TSP) and
maximum independent set (MIS). Complementing the supervised approach, the T2T (Li et al.,
2023) line of work learns a distribution of high-quality solutions during training and then performs
gradient-guided optimization at test time by iteratively noising the current solution and denoising
while guiding towards lower energy solutions of some relaxed objective, achieving competitive qual-
ity–efficiency trade-offs on TSP and MIS. Fast T2T (Li et al., 2024) significantly speeds this up via
an optimization-consistency objective, matching or surpassing multi-step diffusion solvers perfor-
mance with single-step generation plus a single gradient step.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

t = 99 t = 98 t = 97 t = 96 t = 95 t = 90 t = 70 t = 50 t = 10 t = 0 Snapped

Figure 2: Inscribed square x0 predictions across denoising steps. Each row corresponds to a
different seed (inscribed square). Columns show selected x0 predictions for decreasing timesteps
t from left to right (leftmost: t=T ; penultimate: t=0). For t ̸= 0 we render only the filled mask;
at t=0 we also draw square edges and the minimum-area bounding box. The rightmost column
(“snapped”) shows the rigidly snapped version of the t=0 prediction on the curve, with an arrow
from the original centroid to the snapped centroid.

Closer to our approach, some methods solve constrained problems in pixel-space representation.
Graikos et al. (2023) train an unconditional diffusion model on pixel-space representations of TSP
instances. They then solve new instances with stochastic optimization using a differential renderer,
utilizing the prior of the learned model. Differently from us, they optimize a parametric repre-
sentation of the solution to a given instance, while we generate solutions with DDIM sampling of
a conditional model. Wewer et al. (2025) train a noise-prediction UNet in pixel space on a visual
representation of Sudoku, which is another NP-hard combinatorial problem. They depart from fully-
parallel image diffusion by (i) assigning individual noise levels to patches, and (ii) sampling patches
in a learned order or a hand-crafted order. They demonstrate that sampling order matters, and can
substantially outperform a conditional DDPM baseline that operates fully in parallel.

3 INSCRIBED SQUARE PROBLEM

We present our visual diffusion approach as a solver for hard geometric problems by structuring
the paper around a set of case studies on well-known challenges. Each case study begins with the
problem statement and its mathematical context, followed by a brief review of existing methods.
We then describe how our image-space diffusion formulation addresses the task, highlighting both
its capabilities and limitations. The first and central case we study is the inscribed square problem,
which serves as an illustrative entry point into our approach.

Figure 3: Example of a curve (black)
with three inscribed squares. Note that
the inscribed squares are defined only
by having all four vertices on the curve:
they need not be fully contained within
the curve, and they may overlap with
each other.

Problem Statement The Inscribed Square Problem,
also known as Toeplitz’s Square Peg Problem first posed
in 1911, asks whether every Jordan curve in the Euclidean
plane contains four points that form a square. Formally,
the conjecture states that for every Jordan curve C ⊂ R2,
there exist four points {p1, p2, p3, p4} ⊂ C such that
p1, p2, p3, p4 are the vertices of a non-degenerate square.

Figure 3 illustrates this setting, showing a curve with sev-
eral inscribed squares.

The problem has since been resolved in several restricted
settings. Some works show the conjecture holds for con-
vex and piecewise analytic curves (Emch, 1913; 1915;
1916) and later results prove it for C1-smooth curves
and for curves of finite total curvature or generic C1

curves (Stromquist, 1989; Cantarella et al., 2021). More

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Figure 4: Solutions produced by our model. Each Jordan curve (black) is accompanied by predicted
inscribed squares (colored).

recent work demonstrates validity under additional low-
regularity assumptions (Tao, 2017), yet it remains open for the general Jordan curve case.

Existing Methods Algorithmic approaches for finding inscribed squares exist primarily for dis-
crete or polygonal cases. For convex polygons, efficient procedures have been developed to detect or
enumerate inscribed squares in subquadratic time (Chazelle, 1983; Sharir & Toledo, 1994). Discrete
relaxations on grid polygons have likewise been studied and verified computationally for bounded
cases (Pettersson et al., 2014). All these methods represent the curve symbolically or combinatori-
ally, relying on exact geometric descriptions. In contrast, our work formulates the problem directly
in pixel space.

Method We address the inscribed square problem by formulating it entirely in image space and
training a conditional diffusion model to recover inscribed squares from noisy inputs. To this end,
we generated a dataset of synthetic samples. Each sample consists of a smooth Jordan curve C
together with one to five inscribed squares. The curves were constructed procedurally such that
they pass through the square vertices while avoiding self-intersections, and both curves and squares
were rasterized into 128× 128 binary images. Each training example pairs a curve image with one
inscribed square. Full details of the curve-generation process are provided in the supplementary
material, under Appendix B.1.

Our model follows the standard diffusion framework with a U-Net (Ronneberger et al., 2015) back-
bone with self-attention layers (Vaswani et al., 2017), similar to those employed in text-to-image
diffusion models such as Stable Diffusion (Rombach et al., 2022). The conditioning signal is the
clean binary image of the curve, while the ground truth x0 is the clean image of the square, both
represented in two-dimensional pixel space. The conditioning image is concatenated as an addi-
tional channel to the noisy input xt at each timestep, effectively treating the curve as a non-noisy
color channel. We train with 100 denoising steps using a standard noise schedule and mean-squared
error objective, enabling the model to transform noisy square images into valid inscribed squares
consistent with the given curve.

During sampling, at each step the network predicts an x0 estimate of the square conditioned on
the curve. To inspect this behavior, we visualize x0 predictions at a subset of timesteps arranged
left-to-right from t=T to t=0 (penultimate column) in Fig. 2.

Square Enhancement (Snapping) As a final post-processing step, we refine each predicted
square Ŝ by snapping it to the conditioning curve C of the respective problem instance. Let
V (S) = {p1, p2, p3, p4} denote the set of four vertices of a square S. To quantify how well S
aligns with C, we define the negative average corner-to-curve distance as the alignment score:

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Evaluation Results. We report alignment A(S,C) and squareness Q under three condi-
tions: before snapping, after snapping, and ground truth (GT).

w/o snapping w/ snapping Data (GT)
Align ↑ Square ↑ Align ↑ Square ↑ Align ↑ Square ↑
-1.60 0.892 -0.90 0.891 -0.14 0.924

A(S,C) = −1

4

∑
p∈V (S)

dist(p, C), (1)

where dist(p, C) is the Euclidean distance from vertex p to the curve C.

We then apply a small rigid transformation (Rθ, t) to Ŝ and select the configuration that maximizes
this alignment score. In practice, we approximate this optimization with a coarse grid search over
small rotations and translations (see Appendix B.2 for details). This procedure nudges the predicted
square so that its corners sit more closely on C, as visualized in the rightmost column of Fig. 2.

Evaluation Since multiple valid squares could potentially fit the curves beyond the ground truth
squares used in construction, we avoid comparing distances to the closest ground truth square and
instead focus on evaluating the geometric properties of our generated solutions.

We evaluate our method along two complementary axes: alignment and quality. For alignment,
we report the score A(S,C) defined in Eq. 1, which directly measures how well the vertices of
a predicted square lie on the conditioning curve. For quality, we introduce a squareness metric
that captures how close a predicted shape is to a valid square. Given a predicted square S, let
area(S) denote its contour area, and let (w, h) denote the side lengths of its minimum-area enclosing
rectangle. We define:

Q(S) =
area(S)

w · h
· exp

(
− 2

∣∣∣max(w,h)
min(w,h) − 1

∣∣∣) . (2)

This produces a score in [0, 1] that is high only when S tightly fills a nearly equilateral rectangle,
i.e., when it closely resembles a true square.

We report both alignment and quality metrics under three conditions: (i) predictions before snapping,
(ii) predictions after snapping, and (iii) the ground-truth squares from the dataset (Tab. 1). This
evaluation disentangles the intrinsic generative ability of the diffusion model from the gains achieved
by the geometric snapping refinement.

Interpretation of Evaluation Results The evaluation demonstrates that our model consistently
produces shapes that closely approximate true inscribed squares with strong accuracy. Even though
the alignment of predicted squares with the conditioning curve is not always pixel-perfect, the snap-
ping step leads to a substantial refinement, bringing the results impressively close to the ground
truth. In practice, this shows that the diffusion process is highly effective at capturing both the
structural regularity and the correct placement of squares, with only minimal residual deviation that
often manifests at the sub-pixel level. Importantly, such deviations are expected given the inherent
discretization of the pixel domain, which naturally puts an upper bound even on the ground truth
results. Within this setting, our method reliably recovers high-quality approximations of valid in-
scribed squares. The reported numbers confirm that the model does not merely suggest plausible
candidates but in fact achieves precise and robust approximations, validating the strength of the
visual diffusion framework as a solver for this classical geometric challenge.

4 STEINER TREE PROBLEM

The second problem we cover in our case study is that of the Steiner Tree Problem. The Steiner tree
problem asks, given a set of terminal points, to find a network of minimum total length that connects
all terminals, where the construction is allowed to introduce additional points (Steiner points) to
reduce length. In the Euclidean variant, which we focus on, Steiner points may be placed anywhere
in the plane. The Steiner formulation is central to many applications where minimizing connection
cost is critical. Some typical use cases for it include telecommunication (Voss, 2006), PCB routing
(Chu & Wong, 2008), as well as infrastructure layout (roads, pipelines) (Schwartz & Stückelberger,
2008; Cui et al., 2021).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 5: Example of a Steiner Minimal Tree.
Left: The input terminal nodes, colored in red.
Right: The Steiner Minimal Tree for this in-
stance, where auxiliary Steiner points are col-
ored in dark gray.

Problem statement. Formally, given a finite set
of terminals P = {p1, . . . , pn} ⊂ R2, the Eu-
clidean Steiner Tree (EST) problem asks for a
straight-line embedded tree T = (V,E) with
P ⊆ V that minimizes total Euclidean length
L(T ) =

∑
uv∈E ∥u − v∥2. Vertices in V \ P

are Steiner points. An optimal solution is called a
Steiner minimal tree (SMT) and its length is de-
noted L⋆(P ) (Gilbert & Pollak, 1968). Figure 5
illustrates an instance of the problem and its opti-
mal solution.

Complexity and Approximability. For gen-
eral n (the number of initial given points), the
EST problem is NP-hard already in the plane
(Garey et al., 1977). However, there is a polynomial-time approximation scheme (PTAS) for Eu-
clidean Steiner tree in fixed dimensions: for any fixed ε > 0 one can compute a (1+ε)-approximate
tree in time polynomial in n (for fixed ε and dimension).

Structure and Properties SMTs in the plane are highly structured: (i) no two edges cross; (ii)
each Steiner point has degree exactly 3 and the three incident edges meet at 120◦; (iii) all angles in
the tree are at least 120◦ (at terminals that have degree > 1); (iv) the number of Steiner points is at
most n − 2; and (v) all Steiner points lie in the convex hull of P (Hwang & Richards, 1992; Brazil
et al., 2004). These properties provide strong geometric constraints that are exploited by both exact
and approximate methods, as discussed next.

Algorithmic Approaches. Exact algorithms typically rely on generating locally optimal full
Steiner trees and then selecting a minimum-length subset, with implementations such as
GEOSTEINER solving large 2D instances (Warme et al., 2000; Juhl et al., 2018). On the approxi-
mation side, PTASes based on dissection or guillotine methods provide near-optimal guarantees in
fixed dimensions (Arora, 1998; Mitchell, 1999).

t=99 t=98 t=97 t=90 t=70 t=0

Figure 6: Steiner tree x0 predictions across
denoising steps. Each row corresponds to a dif-
ferent seed. Columns show selected x0 predic-
tions for decreasing timesteps t from left to right
(leftmost: t=T ; rightmost: t=0). Input points
are overlaid in red.

Learning-based Approaches While classical
exact/approximate algorithms dominate practice,
there have been several attempts to use learning-
based solvers for the problem. For the Euclidean
case, Wang et al. propose Deep-Steiner, which
casts SMT construction as a sequential deci-
sion process: it discretizes the continuous search
space, prunes candidates via KNN/MST neigh-
borhoods, and then uses an attention-based policy
trained with REINFORCE to add Steiner points
iteratively (Wang et al., 2022). For non-Euclidean
variants (rectilinear SMT and graph STP), several
learning-based methods have been explored, in-
cluding RL and GNN-driven solvers and mixed
neural–algorithmic pipelines (Liu et al., 2021;
2024; Kahng et al., 2023; Ahmed et al., 2021; Du
et al., 2021; Park et al., 2025).

Method We generate a synthetic dataset by sampling random points (between 10 and 20 for each
instance), and finding their SMT using the GeoSteiner solver (Juhl et al., 2018). Each solution is
then rasterized into a grayscale image with different values for edges, nodes and background. The
full details for data generation are found in Appendix B.3. We employ the same U-Net backbone as
in the inscribed square experiment. The conditioning input consists of the rasterized terminal points,
concatenated as an additional channel to the noisy input xt at each denoising step.

Recovering a graph structure from the generated image is performed in two stages. We begin by
node detection, where we binarize the output with a threshold and detect centers of connected com-
ponents. The centroid of each blob is then taken as a node position, with nodes falling within a
small radius of an input terminal being snapped to that terminal’s location. In the second stage, we
extract edges by considering the complete graph over the detected nodes. For each candidate edge,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Steiner Tree Evaluation Results. Comparison of our method, MST, and random solutions.
Reported are valid tree rates and mean Euclidean length ratios (± std) relative to the optimal solution
across input point ranges.

Number of
Input Points

Valid Trees
Rate

Ours
Ratio Mean ± Std

MST
Ratio Mean ± Std

Random
Ratio Mean ± Std

10-20 0.996 1.0008 ± 0.0005 1.0363 ± 0.0124 1.8344 ± 0.2363
21-30 0.986 1.0018 ± 0.0011 1.0416 ± 0.0095 1.9044 ± 0.1827
31-40 0.834 1.0044 ± 0.0035 1.0470 ± 0.0079 1.8981 ± 0.1656
41-50 0.334 1.0092 ± 0.0055 1.0522 ± 0.0072 1.8605 ± 0.1425

0 1 2 3

4 5 6 7

8 9 10 11

Figure 7: Optimal solutions (left) vs. our model’s solutions (middle) and the difference between
them (right). Input points are overlaid over both optimal and produced solutions as red circles.

we compute the fraction of pixels along the straight line segment that are marked as foreground. If
this fraction exceeds a threshold (70% in our implementation), the edge is retained. If two vertices
are very close to each other, we assume they are connected via an edge. In cases of ambiguity where
multiple potential edges with a shared node overlap, we retain the shortest one and discard the rest.

Evaluation We evaluate our trained model on a test set containing instances with 10-20 input
points, matching the number of points seen during training, and four other test sets containing 11-
20, 21-30, 31-40 and 41-50 input points. After extracting the graph from the generated solution, we
check the validity of the solution by verifying that the resulting graph is a tree and that it contains
all of the input points . If the solution is valid, we then measure the total Euclidean length of the
tree. For each instance, we generate in parallel 10 solutions from different noise seeds and select the
one with minimal total edge length that is also valid. In Table 2 we report for each test set the rate
of valid solutions as well as the mean ratio between the total Euclidean length of the best solution
produced by our model compared to that of the optimal solution (L⋆(P )). For comparison, we also
report the ratio between the total Euclidean length of a random planar tree and the optimal solution
and that of the solution produced by the minimum spanning tree of the full graph and L⋆(P ).

Our model is able to successfully produce high quality solutions even for instances with markedly
more input points than were seen during training, and often produces solutions that align with the
optimal ones (see Figure 7).

While there is generally a one-to-one coupling between an input and the optimal solution, for some
instances the model still produces variations, often of similar quality, for different noise initializa-
tions (see Figure 6). However, some of these variations can happen to be invalid, especially for
instances with a large number of input points. This is evident in the third row, where the solution
produced by the noise initialization contains a loop and is not a tree.

5 MAXIMUM AREA POLYGON PROBLEM

The third problem we attempt to tackle with our approach is the Maximum Area Polygonization
Problem (MAXAP), a well-established problem in computational geometry. Given a set of vertices
in the plane, the problem asks to find a simple polygon (a polygon that does not intersect itself and
has no holes) that passes through all the vertices and has the largest possible area.

MAXAP is known to be NP-complete (Fekete, 1992; Fekete & Pulleyblank, 1993) and difficult
to solve both in theory and in practice (Fekete et al., 2021), with no known algorithm that provides

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3

4 5 6 7

8 9 10 11

Figure 8: Qualitative examples of maximum area polygons (left) vs. polygons produced by our
model (middle) and the difference between them (right). Areas depicted in red and blue in the
difference map correspond to regions that are exclusive to the optimal solution and our solution,
respectively. It can be noticed that even in cases where there is a disparity between the optimal
solution and the one produced by the model, the area difference between the exclusive regions tends
to be small, amounting to a solution of similar quality. Input points are overlaid over both optimal
and produced solutions as red circles.

Table 3: Maximum Area Polygon Evaluation Results. Comparison of our method, random poly-
gons, and optimal solutions. Metrics include polygon validity rate, mean area ratio (± std), and
optimal solution rate for different input point ranges.

Number of
Input Points

Valid Polygons
Rate

Ours
Ratio Mean ± Std

Random Polygon
Ratio Mean ± Std

Optimal Solutions
Rate

7-12 0.953 0.9887 ± 0.0205 0.7711 ± 0.1361 0.574
13-15 0.620 0.9624 ± 0.0418 0.4779 ± 0.2717 0.062

better than 1
2 -approximation factor in polynomial time. Furthermore, deciding whether there exists a

simple polygon that contains strictly more than 2/3 of the area of the convex hull is also NP-complete
(Fekete, 1992). Exact approaches based on integer programming are able to solve instances with up
to 25 points (Fekete et al., 2021), while a recent mixed-integer-programming approach is able to
solve instances with up to 50 points (Hernández-Pérez et al., 2025). Heuristic approaches are
commonly applied to larger instances, including constrained triangulations (Lepagnot et al., 2023),
simulated annealing (Lepagnot et al., 2023; Goren et al., 2022), and divide-and-conquer strategies
for very large point sets of up to 1,000,000 points (Crombez et al., 2022; Goren et al., 2022).

Method To address the maximum area polygonization problem, we adopt the same visual dif-
fusion architecture as in the previous two tasks, using an identical U-Net backbone. As with the
previous methods, we generate a synthetic dataset of examples to train the model on. For each
training example we sample input points randomly on the grid, and compute their optimal polygo-
nizations through exhaustive search over all valid simple polygons, which is feasible at this scale
using a DFS procedure. Each polygon is rasterized to an image, while the input points are rasterized
into a separate image that is concatenated as an additional conditioning channel. The data generation
procedure is described in full in Appendix B.4

At inference time, we recover the polygon structure from the generated image by testing candidate
edges between all point pairs. Each edge is retained if more than 70% of its pixels align with
foreground edge pixels in the output. The resulting set of edges is then validated to ensure that
no intersections occur, with mild tolerance for nearly parallel overlaps. Finally, we search for a
simple cycle that passes through all input vertices, which we consider the recovered polygonization
produced by our model.

Evaluation We evaluate the trained model on a test set containing 7–12 points, matching the
range used during training. To further assess generalization, we also test the model on a set with
13–15 points . For each instance, we generate 10 candidate solutions from different random seeds
and select the one that achieves the largest area while remaining valid. In Table 3, we report the
mean and standard deviation of the ratio between the best solution found for each instance and the
corresponding optimal solution, and show a comparison against random simple polygons on the
same point sets. We also report the rate of valid polygons (the proportion of instances for which a
valid polygon was produced), as well as the frequency with which the recovered polygon coincides
exactly with the optimal one.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 8 shows qualitative examples of polygons produced by our model. In many cases, the gen-
erated polygons align almost perfectly with the optimal ones. When discrepancies occur, the differ-
ences often balance out, with areas lost in one region largely compensated elsewhere (see instances
9, 10 in the figure). Owing to the non-local nature of the problem, instances with a larger num-
ber of points are substantially more challenging, and the rate of valid solutions drops noticeably
for the 13–15 point test set. Typical failure cases include polygons that do not pass through all
input points or that contain holes (see the third and fourth rows in Figure 9). Nevertheless, when-
ever a valid polygon is produced, its area is typically very close to that of the optimal solution.

t=99 t=98 t=97 t=90 t=70 t=0

Figure 9: Maximum area polygon x0 predic-
tions across denoising steps. Each row corre-
sponds to a different seed. Columns show se-
lected x0 predictions for decreasing timesteps
t from left to right (leftmost: t=T ; rightmost:
t=0). Input points are overlayed in red.

We note that for this problem, like the last one,
there is generally only a single optimal solution
per problem instance. Therefore the benefit of
training conditional diffusion models which are
generally used to learn conditional distributions
in order to solve these instances is not immedi-
ately clear. In Appendix A we demonstrate on
the MAXAP problem that there is a performance
advantage over using a regression model even for
problems of this kind.

6 DISCUSSION AND CONCLUSIONS

In this work, we presented visual diffusion as a
general framework for approximating solutions to
notoriously hard geometric problems. Through
three case studies, the Inscribed Square problem,
the Steiner Tree Problem, and the Simple Polygon
Problem, we demonstrated that diffusion models
can operate in image space to uncover valid geo-
metric structures.

We do not claim that our method outperforms specialized solvers tailored to any single problem.
Indeed, for each of these problems, carefully designed algorithms may yield more efficient or more
accurate solutions. Instead, our contribution is to reveal a paradigm: visual diffusion provides a
single, simple framework that applies across a diverse set of problems without requiring custom
formulations. Specifically, each task uses the very same diffusion architecture without modification,
varying only in task-specific training data. Our approach produces accurate and diverse approxima-
tions, naturally recovering multiple valid solutions through diffusion, as illustrated in the Inscribed
Square problem. These solutions can be further refined if desired. Importantly, we also observe that
models trained on relatively simple instances generalize to more complex inputs, such as handling a
larger number of points than those seen in training. This behavior is particularly valuable for prob-
lems where complexity grows with the number of points. This contrasts with traditional geometric
solvers, whose runtime typically grows polynomially or even exponentially with input size.

Despite the diversity of the problems they are trained to solve, the models exhibit a consistent be-
havior, evident in the denoising progression (Figures 2, 6 and 9). Already in the early steps of the
sampling process, the global structure of the solution becomes apparent, suggesting that the essence
of the solution lies primarily in low-frequency geometric features that can be recovered quickly.
The subsequent denoising steps refine these structures to achieve high accuracy. This observation
indicates that inference time could be further optimized, with only a small trade-off in precision,
by using denoising schedulers that allocate more of the sampling steps budget to earlier timesteps.
More broadly, this progressive reasoning mirrors how humans intuitively reason about geometric
problems: they first sketch a mental image of a coarse solution in their mind, which they can then
try to translate to a concrete solution, with details settled upon after the initial structure is clear.

The key message of this work is that image diffusion models, long celebrated for their generative
capacity, also serve as geometric solvers. This outlook opens the door to exploring a wide spectrum
of geometric challenges under a single methodology, and suggests new opportunities for bridging
generative modeling with geometric problem solving.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our experiments were conducted using 4 GTX 3090 GPUs on a shared GPU cluster, with training
times of around 20 hours per geometric problem. While we acknowledge the environmental im-
plications of any computational research, our resource requirements are modest compared to many
modern deep learning projects. To further minimize environmental impact, we utilized shared insti-
tutional resources that allow for efficient GPU utilization across multiple research projects, and we
will release all pre-trained models to prevent redundant retraining. Researchers can reproduce our
results or build upon our work using the released checkpoints without incurring additional training
costs.

REPRODUCIBILITY STATEMENT

In Appendix B.5 and Appendix B.6 we provide details about the hyper-parameters we used the
model and the training runs. We will also release code and training data for all three problems,
allowing for convenient reproduction of our reported experimental results.

REFERENCES

Reyan Ahmed, Md Asadullah Turja, Faryad Darabi Sahneh, Mithun Ghosh, Keaton Hamm, and
Stephen Kobourov. Computing steiner trees using graph neural networks, 2021. URL https:
//arxiv.org/abs/2108.08368.

Sanjeev Arora. Polynomial-time approximation schemes for Euclidean TSP and other geometric
problems. Journal of the ACM, 45(5):753–782, 1998. doi: 10.1145/290179.290180.

Marcus Brazil, Pawel Winter, and Martin Zachariasen. Flexibility of steiner trees in uniform
orientation metrics. pp. 196–208, 12 2004. ISBN 978-3-540-24131-7. doi: 10.1007/
978-3-540-30551-4 19.

Jason Cantarella, Elizabeth Denne, and John McCleary. Transversality for configuration spaces and
the ”square-peg” theorem, 2021. URL https://arxiv.org/abs/1402.6174.

Bernard Chazelle. The Polygon Containment Problem. Advances in Computing Re-
search, 1(1):1–33, 1983. URL https://www.cs.princeton.edu/˜chazelle/pubs/
PolygContainmentProb.pdf.

Chris Chu and Yiu-Chung Wong. Flute: Fast lookup table based rectilinear steiner minimal tree
algorithm for VLSI design. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 27(1):70–83, 2008. URL https://www.engineering.iastate.edu/
˜cnchu/pubs/j29.pdf.

Loı̈c Crombez, Guilherme D. da Fonseca, and Yan Gerard. Greedy and local search heuristics
to build area-optimal polygons. ACM J. Exp. Algorithmics, 27, 2022. ISSN 1084-6654. doi:
10.1145/3503999. URL https://doi.org/10.1145/3503999.

Ziyuan Cui, Hai Lin, Yan Wu, Yufei Wang, and Xiao Feng. Optimization of pipeline network layout
for multiple heat sources distributed energy systems considering reliability evaluation. Processes,
9(8):1308, 2021. doi: 10.3390/pr9081308. URL https://www.mdpi.com/2227-9717/
9/8/1308.

Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B. Mitchell.
Area-optimal simple polygonalizations: The cg challenge 2019. ACM J. Exp. Algorithmics, 27,
March 2022. ISSN 1084-6654. doi: 10.1145/3504000. URL https://doi.org/10.1145/
3504000.

Haizhou Du, Zong Yan, Qiao Xiang, and Qinqing Zhan. Vulcan: Solving the steiner tree problem
with graph neural networks and deep reinforcement learning. arXiv, 2021.

Arnold Emch. Some properties of closed convex curves in a plane. American Journal of Mathe-
matics, 35(4):407–412, 1913. ISSN 00029327, 10806377. URL http://www.jstor.org/
stable/2370404.

10

https://arxiv.org/abs/2108.08368
https://arxiv.org/abs/2108.08368
https://arxiv.org/abs/1402.6174
https://www.cs.princeton.edu/~chazelle/pubs/PolygContainmentProb.pdf
https://www.cs.princeton.edu/~chazelle/pubs/PolygContainmentProb.pdf
https://www.engineering.iastate.edu/~cnchu/pubs/j29.pdf
https://www.engineering.iastate.edu/~cnchu/pubs/j29.pdf
https://doi.org/10.1145/3503999
https://www.mdpi.com/2227-9717/9/8/1308
https://www.mdpi.com/2227-9717/9/8/1308
https://doi.org/10.1145/3504000
https://doi.org/10.1145/3504000
http://www.jstor.org/stable/2370404
http://www.jstor.org/stable/2370404


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Arnold Emch. On the medians of a closed convex polygon. American Journal of Mathematics,
37(1):19–28, 1915. ISSN 00029327, 10806377. URL http://www.jstor.org/stable/
2370252.

Arnold Emch. On some properties of the medians of closed continuous curves formed by analytic
arcs. American Journal of Mathematics, 38(1):6–18, 1916. ISSN 00029327, 10806377. URL
http://www.jstor.org/stable/2370541.

Sándor P Fekete. Geometry and the travelling salesman problem. University of Waterloo, 1992.

Sándor P Fekete and William R Pulleyblank. Area optimization of simple polygons. In Proceedings
of the ninth annual symposium on computational geometry, pp. 173–182, 1993.

Sándor P. Fekete, Andreas Haas, Phillip Keldenich, Michael Perk, and Arne Schmidt. Comput-
ing area-optimal simple polygonizations, 2021. URL https://arxiv.org/abs/2111.
05386.

M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing steiner minimal
trees. SIAM Journal on Applied Mathematics, 32(4):835–859, 1977. ISSN 00361399. URL
http://www.jstor.org/stable/2100193.

Edgar N. Gilbert and Henry O. Pollak. Steiner minimal trees. Siam Journal on Applied Mathematics,
16:1–29, 1968. URL https://api.semanticscholar.org/CorpusID:123196263.

Nir Goren, Efi Fogel, and Dan Halperin. Area optimal polygonization using simulated annealing.
ACM J. Exp. Algorithmics, 27, 2022. ISSN 1084-6654. doi: 10.1145/3500911. URL https:
//doi.org/10.1145/3500911.

Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as
plug-and-play priors, 2023. URL https://arxiv.org/abs/2206.09012.

Hipólito Hernández-Pérez, Jorge Riera-Ledesma, Inmaculada Rodrı́guez-Martı́n, and Juan-José
Salazar-González. Optimal area polygonisation problems: Mixed integer linear programming
models. European Journal of Operational Research, 2025. ISSN 0377-2217. doi: 10.1016/j.ejor.
2025.08.023. URL https://www.sciencedirect.com/science/article/pii/
S0377221725006393.

F. K. Hwang and Dana S. Richards. Steiner tree problems. Networks, 22(1):55–89, 1992. doi: https:
//doi.org/10.1002/net.3230220105. URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/net.3230220105.

D. Juhl, D. M. Warme, P. Winter, and M. Zachariasen. The GeoSteiner software package for com-
puting steiner trees in the plane: An updated computational study. Mathematical Programming
Computation, 10(4):487–532, 2018. doi: 10.1007/s12532-018-0135-8.

Andrew B. Kahng, Robert R. Nerem, Yusu Wang, and Chien-Yi Yang. Nn-steiner: A mixed neural-
algorithmic approach for the rectilinear steiner minimum tree problem, 2023. URL https:
//arxiv.org/abs/2312.10589.

Julien Lepagnot, Laurent Moalic, and Dominique Schmitt. Optimal area polygonization by trian-
gulation and visibility search. ACM J. Exp. Algorithmics, 27, 2023. ISSN 1084-6654. doi:
10.1145/3503953. URL https://doi.org/10.1145/3503953.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training
to gradient search in testing for combinatorial optimization. In Advances in Neural Information
Processing Systems, 2023.

Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast t2t: Optimization
consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=xDrKZOZEOc.

11

http://www.jstor.org/stable/2370252
http://www.jstor.org/stable/2370252
http://www.jstor.org/stable/2370541
https://arxiv.org/abs/2111.05386
https://arxiv.org/abs/2111.05386
http://www.jstor.org/stable/2100193
https://api.semanticscholar.org/CorpusID:123196263
https://doi.org/10.1145/3500911
https://doi.org/10.1145/3500911
https://arxiv.org/abs/2206.09012
https://www.sciencedirect.com/science/article/pii/S0377221725006393
https://www.sciencedirect.com/science/article/pii/S0377221725006393
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230220105
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230220105
https://arxiv.org/abs/2312.10589
https://arxiv.org/abs/2312.10589
https://doi.org/10.1145/3503953
https://openreview.net/forum?id=xDrKZOZEOc


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jinwei Liu, Guojie Chen, and Evangeline F. Young. Rest: Constructing rectilinear steiner minimum
tree via reinforcement learning. In Proc. DAC, pp. 1135–1140, 2021. doi: 10.1109/DAC18074.
2021.9586209.

Ruizhi Liu, Zhisheng Zeng, Shizhe Ding, Jingyan Sui, Xingquan Li, and Dongbo Bu. Neuralsteiner:
Learning steiner tree for overflow-avoiding global routing in chip design. In Proc. NeurIPS, 2024.

Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple PTAS
for geometric TSP, k-MST, and related problems. SIAM Journal on Computing, 28(4):1298–
1309, 1999. doi: 10.1137/S0097539796309764.

Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, 2 edition, 1998.
Section 1.3: Area of Polygon.

Youngjoon Park, Han-Seul Jeong, Kyunghyun Lee, Sungdong Yoo, Hyungseok Song, and
Woohyung Lim. Steben: Steiner tree problem benchmark for neural combinatorial optimization
on graphs, 2025. URL https://openreview.net/forum?id=tKif2rXQ6V.

Ville H. Pettersson, Helge A. Tverberg, and Patric R.J. Östergård. A note on toeplitz’ conjecture.
Discrete & Computational Geometry, 51(3):722–728, 2014. doi: 10.1007/s00454-014-9578-5.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation, 2015. URL https://arxiv.org/abs/1505.04597.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for
unsupervised neural combinatorial optimization, 2025. URL https://arxiv.org/abs/
2406.01661.

Justus Schwartz and Jürg Stückelberger. Computing lower bounds for steiner trees in road net-
work design. In Proceedings of the 7th International Symposium on Operations Research and
Its Applications (ISORA’08), pp. 172–181, Lijiang, China, 2008. ORSC & APORC. URL
https://www.aporc.org/LNOR/8/ISORA2008F22.pdf.

Micha Sharir and Sivan Toledo. External polygon containment problems. Compu-
tational Geometry, 4(2):99–118, 1994. ISSN 0925-7721. doi: https://doi.org/10.
1016/0925-7721(94)90011-6. URL https://www.sciencedirect.com/science/
article/pii/0925772194900116.

Walter Stromquist. Inscribed squares and square-like quadrilaterals in closed curves.
Mathematika, 36(2):187–197, 1989. doi: https://doi.org/10.1112/S0025579300013061.
URL https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/
S0025579300013061.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion, 2023. URL https://arxiv.org/abs/2302.08224.

Terence Tao. An integration approach to the toeplitz square peg problem, 2017. URL https:
//arxiv.org/abs/1611.07441.

Wouter van Heijst. The algebraic square peg problem, 2014. URL https://arxiv.org/abs/
1403.5979.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
URL http://arxiv.org/abs/1706.03762.

Stefan Voss. Steiner Tree Problems in Telecommunications, pp. 459–492. 01 2006. ISBN
9780387306629. doi: 10.1007/978-0-387-30165-5 18.

12

https://openreview.net/forum?id=tKif2rXQ6V
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2406.01661
https://arxiv.org/abs/2406.01661
https://www.aporc.org/LNOR/8/ISORA2008F22.pdf
https://www.sciencedirect.com/science/article/pii/0925772194900116
https://www.sciencedirect.com/science/article/pii/0925772194900116
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/S0025579300013061
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/S0025579300013061
https://arxiv.org/abs/2302.08224
https://arxiv.org/abs/1611.07441
https://arxiv.org/abs/1611.07441
https://arxiv.org/abs/1403.5979
https://arxiv.org/abs/1403.5979
http://arxiv.org/abs/1706.03762


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Siqi Wang, Yifan Wang, and Guangmo Tong. Deep-steiner: Learning to solve the euclidean steiner
tree problem, 2022. URL https://arxiv.org/abs/2209.09983.

D. M. Warme, P. Winter, and M. Zachariasen. Exact Algorithms for Plane Steiner Tree Prob-
lems: A Computational Study, pp. 81–116. Springer US, Boston, MA, 2000. ISBN 978-1-
4757-3171-2. doi: 10.1007/978-1-4757-3171-2 6. URL https://doi.org/10.1007/
978-1-4757-3171-2_6.

Christopher Wewer, Bart Pogodzinski, Bernt Schiele, and Jan Eric Lenssen. Spatial reasoning with
denoising models, 2025. URL https://arxiv.org/abs/2502.21075.

13

https://arxiv.org/abs/2209.09983
https://doi.org/10.1007/978-1-4757-3171-2_6
https://doi.org/10.1007/978-1-4757-3171-2_6
https://arxiv.org/abs/2502.21075


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A REGRESSION MODEL ABLATION

For certain geometric problems, each input instance admits a unique optimal solution. In such cases,
one may wonder whether training a diffusion model is necessary, since the task appears to reduce to
learning a deterministic mapping. Indeed, the conditional distribution to be learned degenerates into
a collection of Dirac delta functions.

To examine this, we compared our diffusion framework with a direct regression baseline. For the
Maximum Area Polygonization problem, we trained a regression model with the same U-Net back-
bone as our diffusion model, using identical training data and budget. The regression model outputs
a polygon image in a single forward pass, conditioned only on the rasterized input points.

While the regression model succeeds on simpler instances, it often produces polygons with blurry
edges or missing segments for more complex cases. This degrades our polygon extraction stage,
which frequently fails to recover a valid polygon from such outputs. The quantitative results, shown
in the “Regression Valid Polygons Rate” column of Table 4, confirm this limitation.

In contrast, the diffusion model retains a key advantage: stochasticity. By conditioning on both the
input points and a noise vector, we can generate multiple candidate solutions and resample until
a valid polygon is obtained. This property directly improves the robustness of the approach, and
highlights why diffusion remains beneficial even in problems that might superficially appear de-
terministic. This ablation study demonstrates our key finding: diffusion models offer a versatile
and robust solution framework. This framework can also surpass the capabilities of determinis-
tic regression approaches, even in scenarios where the underlying function maintains a one-to-one
correspondence.

Table 4: Regression Model Evaluation Results. Comparison of diffusion (best-of-10) and regres-
sion models. Reported are valid polygon rates and mean area ratios (± std) across input point ranges.

Number of
Input Points

Diffusion
Valid Polygons

Rate

Regression
Valid Polygons

Rate
Diffusion

Ratio Mean ± Std
Regression

Ratio Mean ± Std

7-12 0.953 0.361 0.9887 ± 0.0205 0.9994 ± 0.0025
13-15 0.620 0.016 0.9624 ± 0.0418 0.9988 ± 0.0031

B IMPLEMENTATION DETAILS

B.1 CURVE GENERATION

For harmonic-based curves, we construct a random radial profile

r(θ) = 1 +

H∑
h=1

ρh sin(hθ + ϕh),

with H sampled uniformly from [Hmin, Hmax] and amplitudes ρh drawn from a decaying envelope
to produce smooth perturbations. Square vertices are first placed in Cartesian coordinates, then
converted to polar coordinates (θi, ri). A periodic cubic spline is fit to the radius corrections ri −
r(θi), ensuring that the resulting contour passes exactly through all square vertices. To guarantee
validity, we enforce periodicity in the spline domain and regenerate until a non-self-intersecting
(Jordan) curve is obtained. A random global translation is then applied, and both the curve and its
inscribed squares are normalized to fit inside [−1, 1]2 before rasterization.

In practice, we used the following parameter ranges: H ∈ [6, 30], 500 angular samples, square side
lengths sampled from [0.3, 0.7], rotations from [0, 2π], and global translations up to 0.5 units. Each
curve contains between 1 and 5 inscribed squares.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

As an additional augmentation, with probability 0.1 we replace the harmonic-based curve with a
perfect circle of random radius. Since a circle trivially admits infinitely many inscribed squares
(obtained by rotation), we sample a small number of representative ones to enrich the dataset. The
samples are finally rasterized into 128 × 128 binary images, with curves as one-pixel-wide strokes
and squares as filled shapes. In total, the dataset contains 100,000 examples.

B.2 SQUARE ENHANCEMENT

To extract the initial square Ŝ from the predicted mask, we fit a contour-aligned minimum-area
rectangle and take its four vertices as V (Ŝ) = {pi}4i=1. For a candidate rigid transform (Rθ, t) with
θ in radians and t ∈ R2, we form the transformed square

S(θ, t) = RθŜ + t,

with vertices V (S(θ, t)) = {qi(θ, t)}4i=1, where qi(θ, t) = Rθpi+t. We then evaluate the alignment
score with the curve C as defined in Eq. 1.

The final snapped square is obtained by selecting the rigid transform that maximizes this score:

(θ∗, t∗) = argmax
θ,t

A(S(θ, t), C), S∗ = Rθ∗ Ŝ + t∗.

We approximate this maximization with a discrete grid search. Specifically, we sample θ ∈
[θmin, θmax] with step ∆θ, and translations t = (∆x,∆y) with ∆x,∆y ∈ {−T, . . . , T} in steps of
one pixel. For each candidate (θ, t), the square mask is rigidly warped, its corners recomputed, and
A(S(θ, t), C) evaluated.

B.3 STEINER TREE GENERATION

Generation of a synthetic instance begins by sampling n terminal nodes within the unit square,
with n drawn uniformly from [10, 20]. To prevent rasterization artifacts, we enforce a minimum
separation between terminals with rejection sampling. For each sampled configuration, we compute
the Steiner Minimal Tree using the GeoSteiner solver (Juhl et al., 2018). The resulting solutions are
rasterized into grayscale images of fixed resolution (128× 128), where terminals and Steiner points
are depicted as small filled black circles with a radius of 2 pixels and edges as thin white lines that
are 2 pixels wide, while the background is gray. The final dataset contains 1,000,000 instances.

B.4 MAXIMUM AREA POLYGON GENERATION

For MAXAP instance generation, we first sample n points within the unit square, with n drawn
uniformly from [7, 12]. Also here we enforce a minimum separation between points with rejection
sampling. For each set of point, we exhaustively go over all valid polygon configurations and find
the one with the largest area. We employ a backtracking depth-first search to systematically ex-
plore all valid simple polygons formed by a given point set. The method fixes an anchor point at
the bottommost-leftmost position to eliminate rotational symmetry, then incrementally constructs
polygons by selecting vertices in angular order around the centroid. At each step, the algorithm
prunes invalid branches by rejecting vertices that would create edge intersections with the existing
partial polygon. When a complete polygon is formed, the closing edge is validated for intersections,
and the polygon area is computed using the shoelace formula (O’Rourke, 1998). The search main-
tains the globally optimal solution by comparing areas and updating the best configuration found.
This approach guarantees finding the maximum area simple polygon while significantly reducing
the exponential search space through geometric pruning, making the O(n!) worst-case complexity
manageable and runtime that is fast in practice for small point sets (n ≤ 15). Finally, the polygon is
rasterized into grayscale images of fixed resolution (128×128), where the polygon edges are drawn
as white lines that are 1 pixel wide, the polygon interior is black and the background is gray. In total
the dataset contains 1,000,000 instances.

B.5 MODEL ARCHITECTURE

Our approach employs a conditional diffusion model based on a U-Net architecture for generating
geometric solutions. The U-Net consists of 4 encoder and decoder levels with a base channel count

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

of 64, following a standard channel progression of 64 → 128 → 256 → 512 in the encoder path.
The model takes a 2-channel input (noisy target and condition images) and produces a single-channel
denoised prediction.

Multi-head self-attention with 8 heads is integrated at the bottleneck and at encoder/decoder lev-
els 2 and 3. The attention mechanism uses GroupNorm with 32 groups. Each level incorporates
residual blocks with two 3 × 3 convolutional layers, BatchNorm, and ReLU activations, along with
time embedding injection through learned linear projections. Sinusoidal time embeddings with 128
dimensions condition the model on the diffusion timestep.

B.6 TRAINING PROCEDURE

The model is trained using the DDIM (Denoising Diffusion Implicit Models) framework with 100
diffusion steps, a linear beta schedule and deterministic sampling (η = 0.0). We employ an L2

loss on noise prediction, where the model learns to predict the noise ϵ added to the clean image at
timestep t:

L = Et,ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t, c)∥22

]
. (3)

Training is performed using the AdamW optimizer with a learning rate of 6 × 10−4 and cosine
annealing with warm restarts over 0.5 cycles, including 100 warm-up steps and a minimum learning
rate factor of 0.1. We use gradient accumulation over 8 steps with gradient clipping at a maximum
norm of 1.0, and a batch size of 128 per GPU. The training employs mixed precision with bfloat16
autocast for efficiency and is distributed across 4 NVIDIA GTX 3090 GPUs for 100 epochs.

C LLM USE DISCLOSURE

Large language models (LLMs) were used as part of this paper’s writing for the purpose of assis-
tance with editorial refinement as well as literature discovery in certain areas. All content has been
carefully reviewed and verified by the authors, and we take full responsibility for the accuracy of the
presented research.

16


	introduction
	Related Work
	Inscribed Square Problem
	Steiner Tree Problem
	Maximum Area Polygon Problem
	Discussion and Conclusions
	Regression Model Ablation
	Implementation Details
	Curve Generation
	Square Enhancement
	Steiner Tree Generation
	Maximum Area Polygon Generation
	Model Architecture
	Training Procedure

	LLM Use Disclosure

