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ABSTRACT

In this paper we show that visual diffusion models can serve as effective geometric
solvers: they can directly reason about geometric problems by working in pixel
space. We first demonstrate this on the Inscribed Square Problem, a long-standing
problem in geometry that asks whether every Jordan curve contains four points
forming a square. We then extend the approach to two other well-known hard
geometric problems: the Steiner Tree Problem and the Simple Polygon Problem.
Our method treats each problem instance as an image and trains a standard vi-
sual diffusion model that transforms Gaussian noise into an image representing a
valid approximate solution that closely matches the exact one. The model learns
to transform noisy geometric structures into correct configurations, effectively re-
casting geometric reasoning as image generation. Unlike prior work that neces-
sitates specialized architectures and domain-specific adaptations when applying
diffusion to parametric geometric representations, we employ a standard visual
diffusion model that operates on the visual representation of the problem. This
simplicity highlights a surprising bridge between generative modeling and geo-
metric problem solving. Beyond the specific problems studied here, our results
point toward a broader paradigm: operating in image space provides a general and
practical framework for approximating notoriously hard problems, and opens the
door to tackling a far wider class of challenging geometric tasks.

1 INTRODUCTION

Diffusion models have emerged as a transformative force in generative AI. Initially developed for
image synthesis, they have quickly proven to be among the most powerful and versatile generative
models across a wide range of media, including audio, video, and 3D content. Their ability to pro-
gressively denoise random signals into coherent and high-fidelity samples has enabled breakthrough
applications, from photorealistic image generation to controllable editing and cross-modal transla-
tion. Beyond their remarkable empirical success, diffusion models are increasingly recognized as a
general framework for modeling complex, multimodal distributions.

In this work, we take a different perspective on diffusion models: rather than focusing on their cre-
ative generative capacity, we demonstrate their potential as solvers of hard geometric problems. We
show that the sampling process of diffusion can be harnessed to directly reason about and discover
geometric structures, guided only by pixel-level formulations of the problem. This visual diffusion
approach allows us to treat abstract geometric challenges as image generation tasks, bridging the
gap between visual synthesis and mathematical problem-solving.

Diffusion models have been used in various contexts to tackle optimization and reasoning problems,
including combinatorial tasks such as the traveling salesman problem (Sun & Yang, 2023; Li et al.,
2023; Sanokowski et al., 2025). These approaches typically formulate the problem in symbolic
or graph-based representations, leveraging the probabilistic nature of diffusion to search solution
spaces. In contrast, our method operates purely in the visual domain. By representing geometric
problems as images and reasoning directly in pixel space, we exploit the intrinsic strength of diffu-
sion models in handling multimodal distributions and ambiguous solutions. This visual formulation
makes our approach fundamentally distinct from prior problem-solving applications of diffusion.

To ground our approach, we begin with the Inscribed Square Problem, a long-standing problem that
asks whether every simple closed curve in the plane admits an inscribed square. The problem is still
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unsolved in the general case. Furthermore, a given curve may admit multiple and often very different
inscribed squares, and enumerating them is non-trivial even in restricted settings (van Heijst, 2014).
This multiplicity naturally forms a distribution, which makes the problem especially well suited to
diffusion models. Our method addresses it in an unexpected way, operating directly in image space
on a visual representation of the geometric challenge. By starting from different random seeds, the
model can uncover diverse valid squares, each corresponding to a distinct solution of the problem.
Figure 1 illustrates the setting and highlights both the complexity and the variability of possible
solutions.

Figure 1: We introduce a visual diffusion ap-
proach to solving hard geometric problems di-
rectly in pixel space. Shown here on the In-
scribed Square Problem, where we task the
model with finding a square such that all of its
four vertices lie on a given curve. Our method
uncovers diverse approximate solutions, corre-
sponding to different random seeds.

We next illustrate the competence of our
diffusion-in-image-space approach on two addi-
tional hard geometric problems. The first is
the Steiner Tree Problem, which asks for the
shortest possible network connecting a given set
of points. Its solution may introduce auxiliary
nodes, known as Steiner points, and finding the
optimal configuration is NP-hard (Garey et al.,
1977). The second is the problem of connecting a
set of points into a simple polygon of maximum
area, which was featured in the CG:SHOP global
optimization challenge of 2019 (Demaine et al.,
2022). This task is known for its combinatorial
complexity and strict geometric constraints, and
is also NP-hard. As with the inscribed square
problem, our method addresses these problems
directly in image space, operating in the pixel do-
main. While discretization at finite resolution im-
poses limitations, it nonetheless enables valid ap-
proximations to problems that are otherwise ex-
tremely hard, with solutions that can be naturally
refined. We evaluate this aspect rigorously in the
paper.

Training follows a deliberately simple yet effec-
tive strategy. We generate a large distribution of
valid solutions directly in image space and train
a diffusion process to denoise random Gaussian
samples into this distribution. This strategy builds
on the observation that, in many cases, constructing examples of valid solutions is far easier than
deriving one for a specific input instance. Our image-space formulation therefore offers notable
simplicity: it requires no elaborate encodings or specialized representations. At the same time, it
provides a natural entry point to a wide spectrum of hard geometric problems that admit natural
visual representations, beyond the three studied in this work.

2 RELATED WORK

Several works have attempted to use diffusion models in order to learn to solve problems for which
no known efficient algorithm exists, mostly of combinatorial nature. Most existing diffusion works
operate directly on the parameter space of the problem. DIFUSCO (Sun & Yang, 2023), a graph-
based diffusion framework, casts a broad family of NP-complete problems into {0, 1}N indica-
tor vectors and learns a denoiser over graphs. They compare continuous (Gaussian) and discrete
(Bernoulli) noise processes, and show strong results on traveling salesman problem (TSP) and
maximum independent set (MIS). Complementing the supervised approach, the T2T (Li et al.,
2023) line of work learns a distribution of high-quality solutions during training and then performs
gradient-guided optimization at test time by iteratively noising the current solution and denoising
while guiding towards lower energy solutions of some relaxed objective, achieving competitive qual-
ity–efficiency trade-offs on TSP and MIS. Fast T2T (Li et al., 2024) significantly speeds this up via
an optimization-consistency objective, matching or surpassing multi-step diffusion solvers perfor-
mance with single-step generation plus a single gradient step.
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t = 99 t = 98 t = 97 t = 96 t = 95 t = 90 t = 70 t = 50 t = 10 t = 0 Snapped

Figure 2: Inscribed square x0 predictions across denoising steps. Each row corresponds to a
different seed (inscribed square). Columns show selected x0 predictions for decreasing timesteps
t from left to right (leftmost: t=T ; penultimate: t=0). For t ̸= 0 we render only the filled mask;
at t=0 we also draw square edges and the minimum-area bounding box. The rightmost column
(“snapped”) shows the rigidly snapped version of the t=0 prediction on the curve, with an arrow
from the original centroid to the snapped centroid.

Closer to our approach, some methods solve constrained problems in pixel-space representation.
Graikos et al. (2023) train an unconditional diffusion model on pixel-space representations of TSP
instances. They then solve new instances with stochastic optimization using a differential renderer,
utilizing the prior of the learned model. Differently from us, they optimize a parametric repre-
sentation of the solution to a given instance, while we generate solutions with DDIM sampling of
a conditional model. Wewer et al. (2025) train a noise-prediction UNet in pixel space on a visual
representation of Sudoku, which is another NP-hard combinatorial problem. They depart from fully-
parallel image diffusion by (i) assigning individual noise levels to patches, and (ii) sampling patches
in a learned order or a hand-crafted order. They demonstrate that sampling order matters, and can
substantially outperform a conditional DDPM baseline that operates fully in parallel.

3 INSCRIBED SQUARE PROBLEM

We present our visual diffusion approach as a solver for hard geometric problems by structuring
the paper around a set of case studies on well-known challenges. Each case study begins with the
problem statement and its mathematical context, followed by a brief review of existing methods.
We then describe how our image-space diffusion formulation addresses the task, highlighting both
its capabilities and limitations. The first and central case we study is the inscribed square problem,
which serves as an illustrative entry point into our approach.

Figure 3: Example of a curve (black)
with three inscribed squares. Note that
the inscribed squares are defined only
by having all four vertices on the curve:
they need not be fully contained within
the curve, and they may overlap with
each other.

Problem Statement The Inscribed Square Problem,
also known as Toeplitz’s Square Peg Problem first posed
in 1911, asks whether every Jordan curve in the Euclidean
plane contains four points that form a square. Formally,
the conjecture states that for every Jordan curve C ⊂ R2,
there exist four points {p1, p2, p3, p4} ⊂ C such that
p1, p2, p3, p4 are the vertices of a non-degenerate square.

Figure 3 illustrates this setting, showing a curve with sev-
eral inscribed squares.

The problem has since been resolved in several restricted
settings. Some works show the conjecture holds for con-
vex and piecewise analytic curves (Emch, 1913; 1915;
1916) and later results prove it for C1-smooth curves
and for curves of finite total curvature or generic C1

curves (Stromquist, 1989; Cantarella et al., 2021). More
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Figure 4: Solutions produced by our model. Each Jordan curve (black) is accompanied by predicted
inscribed squares (colored).

recent work demonstrates validity under additional low-
regularity assumptions (Tao, 2017), yet it remains open for the general Jordan curve case.

Existing Methods Algorithmic approaches for finding inscribed squares exist primarily for dis-
crete or polygonal cases. For convex polygons, efficient procedures have been developed to detect or
enumerate inscribed squares in subquadratic time (Chazelle, 1983; Sharir & Toledo, 1994). Discrete
relaxations on grid polygons have likewise been studied and verified computationally for bounded
cases (Pettersson et al., 2014). All these methods represent the curve symbolically or combinatori-
ally, relying on exact geometric descriptions. In contrast, our work formulates the problem directly
in pixel space.

Method We address the inscribed square problem by formulating it entirely in image space and
training a conditional diffusion model to recover inscribed squares from noisy inputs. To this end,
we generated a dataset of synthetic samples. Each sample consists of a smooth Jordan curve C
together with one to five inscribed squares. The curves were constructed procedurally such that
they pass through the square vertices while avoiding self-intersections, and both curves and squares
were rasterized into 128× 128 binary images. Each training example pairs a curve image with one
inscribed square. Full details of the curve-generation process are provided in the supplementary
material, under Appendix B.1.

Our model follows the standard diffusion framework with a U-Net (Ronneberger et al., 2015) back-
bone with self-attention layers (Vaswani et al., 2017), similar to those employed in text-to-image
diffusion models such as Stable Diffusion (Rombach et al., 2022). The conditioning signal is the
clean binary image of the curve, while the ground truth x0 is the clean image of the square, both
represented in two-dimensional pixel space. The conditioning image is concatenated as an addi-
tional channel to the noisy input xt at each timestep, effectively treating the curve as a non-noisy
color channel. We train with 100 denoising steps using a standard noise schedule and mean-squared
error objective, enabling the model to transform noisy square images into valid inscribed squares
consistent with the given curve.

During sampling, at each step the network predicts an x0 estimate of the square conditioned on
the curve. To inspect this behavior, we visualize x0 predictions at a subset of timesteps arranged
left-to-right from t=T to t=0 (penultimate column) in Fig. 2.

Square Enhancement (Snapping) As a final post-processing step, we refine each predicted
square Ŝ by snapping it to the conditioning curve C of the respective problem instance. Let
V (S) = {p1, p2, p3, p4} denote the set of four vertices of a square S. To quantify how well S
aligns with C, we define the negative average corner-to-curve distance as the alignment score:
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Table 1: Evaluation Results. We report alignment A(S,C) and squareness Q under three condi-
tions: before snapping, after snapping, and ground truth (GT).

w/o snapping w/ snapping Data (GT)
Align ↑ Square ↑ Align ↑ Square ↑ Align ↑ Square ↑
-1.60 0.892 -0.90 0.891 -0.14 0.924

A(S,C) = −1

4

∑
p∈V (S)

dist(p, C), (1)

where dist(p, C) is the Euclidean distance from vertex p to the curve C.

We then apply a small rigid transformation (Rθ, t) to Ŝ and select the configuration that maximizes
this alignment score. In practice, we approximate this optimization with a coarse grid search over
small rotations and translations (see Appendix B.2 for details). This procedure nudges the predicted
square so that its corners sit more closely on C, as visualized in the rightmost column of Fig. 2.

Evaluation Since multiple valid squares could potentially fit the curves beyond the ground truth
squares used in construction, we avoid comparing distances to the closest ground truth square and
instead focus on evaluating the geometric properties of our generated solutions.

We evaluate our method along two complementary axes: alignment and quality. For alignment,
we report the score A(S,C) defined in Eq. 1, which directly measures how well the vertices of
a predicted square lie on the conditioning curve. For quality, we introduce a squareness metric
that captures how close a predicted shape is to a valid square. Given a predicted square S, let
area(S) denote its contour area, and let (w, h) denote the side lengths of its minimum-area enclosing
rectangle. We define:

Q(S) =
area(S)

w · h
· exp

(
− 2

∣∣∣max(w,h)
min(w,h) − 1

∣∣∣) . (2)

This produces a score in [0, 1] that is high only when S tightly fills a nearly equilateral rectangle,
i.e., when it closely resembles a true square.

We report both alignment and quality metrics under three conditions: (i) predictions before snapping,
(ii) predictions after snapping, and (iii) the ground-truth squares from the dataset (Tab. 1). This
evaluation disentangles the intrinsic generative ability of the diffusion model from the gains achieved
by the geometric snapping refinement.

Interpretation of Evaluation Results The evaluation demonstrates that our model consistently
produces shapes that closely approximate true inscribed squares with strong accuracy. Even though
the alignment of predicted squares with the conditioning curve is not always pixel-perfect, the snap-
ping step leads to a substantial refinement, bringing the results impressively close to the ground
truth. In practice, this shows that the diffusion process is highly effective at capturing both the
structural regularity and the correct placement of squares, with only minimal residual deviation that
often manifests at the sub-pixel level. Importantly, such deviations are expected given the inherent
discretization of the pixel domain, which naturally puts an upper bound even on the ground truth
results. Within this setting, our method reliably recovers high-quality approximations of valid in-
scribed squares. The reported numbers confirm that the model does not merely suggest plausible
candidates but in fact achieves precise and robust approximations, validating the strength of the
visual diffusion framework as a solver for this classical geometric challenge.

4 STEINER TREE PROBLEM

The second problem we cover in our case study is that of the Steiner Tree Problem. The Steiner tree
problem asks, given a set of terminal points, to find a network of minimum total length that connects
all terminals, where the construction is allowed to introduce additional points (Steiner points) to
reduce length. In the Euclidean variant, which we focus on, Steiner points may be placed anywhere
in the plane. The Steiner formulation is central to many applications where minimizing connection
cost is critical. Some typical use cases for it include telecommunication (Voss, 2006), PCB routing
(Chu & Wong, 2008), as well as infrastructure layout (roads, pipelines) (Schwartz & Stückelberger,
2008; Cui et al., 2021).
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Figure 5: Example of a Steiner Minimal Tree.
Left: The input terminal nodes, colored in red.
Right: The Steiner Minimal Tree for this in-
stance, where auxiliary Steiner points are col-
ored in dark gray.

Problem statement. Formally, given a finite set
of terminals P = {p1, . . . , pn} ⊂ R2, the Eu-
clidean Steiner Tree (EST) problem asks for a
straight-line embedded tree T = (V,E) with
P ⊆ V that minimizes total Euclidean length
L(T ) =

∑
uv∈E ∥u − v∥2. Vertices in V \ P

are Steiner points. An optimal solution is called a
Steiner minimal tree (SMT) and its length is de-
noted L⋆(P ) (Gilbert & Pollak, 1968). Figure 5
illustrates an instance of the problem and its opti-
mal solution.

Complexity and Approximability. For gen-
eral n (the number of initial given points), the
EST problem is NP-hard already in the plane
(Garey et al., 1977). However, there is a polynomial-time approximation scheme (PTAS) for Eu-
clidean Steiner tree in fixed dimensions: for any fixed ε > 0 one can compute a (1+ε)-approximate
tree in time polynomial in n (for fixed ε and dimension).

Structure and Properties SMTs in the plane are highly structured: (i) no two edges cross; (ii)
each Steiner point has degree exactly 3 and the three incident edges meet at 120◦; (iii) all angles in
the tree are at least 120◦ (at terminals that have degree > 1); (iv) the number of Steiner points is at
most n − 2; and (v) all Steiner points lie in the convex hull of P (Hwang & Richards, 1992; Brazil
et al., 2004). These properties provide strong geometric constraints that are exploited by both exact
and approximate methods, as discussed next.

Algorithmic Approaches. Exact algorithms typically rely on generating locally optimal full
Steiner trees and then selecting a minimum-length subset, with implementations such as
GEOSTEINER solving large 2D instances (Warme et al., 2000; Juhl et al., 2018). On the approxi-
mation side, PTASes based on dissection or guillotine methods provide near-optimal guarantees in
fixed dimensions (Arora, 1998; Mitchell, 1999).

t=99 t=98 t=97 t=90 t=70 t=0

Figure 6: Steiner tree x0 predictions across
denoising steps. Each row corresponds to a dif-
ferent seed. Columns show selected x0 predic-
tions for decreasing timesteps t from left to right
(leftmost: t=T ; rightmost: t=0). Input points
are overlaid in red.

Learning-based Approaches While classical
exact/approximate algorithms dominate practice,
there have been several attempts to use learning-
based solvers for the problem. For the Euclidean
case, Wang et al. propose Deep-Steiner, which
casts SMT construction as a sequential deci-
sion process: it discretizes the continuous search
space, prunes candidates via KNN/MST neigh-
borhoods, and then uses an attention-based policy
trained with REINFORCE to add Steiner points
iteratively (Wang et al., 2022). For non-Euclidean
variants (rectilinear SMT and graph STP), several
learning-based methods have been explored, in-
cluding RL and GNN-driven solvers and mixed
neural–algorithmic pipelines (Liu et al., 2021;
2024; Kahng et al., 2023; Ahmed et al., 2021; Du
et al., 2021; Park et al., 2025).

Method We generate a synthetic dataset by sampling random points (between 10 and 20 for each
instance), and finding their SMT using the GeoSteiner solver (Juhl et al., 2018). Each solution is
then rasterized into a grayscale image with different values for edges, nodes and background. The
full details for data generation are found in Appendix B.3. We employ the same U-Net backbone as
in the inscribed square experiment. The conditioning input consists of the rasterized terminal points,
concatenated as an additional channel to the noisy input xt at each denoising step.

Recovering a graph structure from the generated image is performed in two stages. We begin by
node detection, where we binarize the output with a threshold and detect centers of connected com-
ponents. The centroid of each blob is then taken as a node position, with nodes falling within a
small radius of an input terminal being snapped to that terminal’s location. In the second stage, we
extract edges by considering the complete graph over the detected nodes. For each candidate edge,
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Table 2: Steiner Tree Evaluation Results. Comparison of our method, MST, and random solutions.
Reported are valid tree rates and mean Euclidean length ratios (± std) relative to the optimal solution
across input point ranges.

Number of
Input Points

Valid Trees
Rate

Ours
Ratio Mean ± Std

MST
Ratio Mean ± Std

Random
Ratio Mean ± Std

10-20 0.996 1.0008 ± 0.0005 1.0363 ± 0.0124 1.8344 ± 0.2363
21-30 0.986 1.0018 ± 0.0011 1.0416 ± 0.0095 1.9044 ± 0.1827
31-40 0.834 1.0044 ± 0.0035 1.0470 ± 0.0079 1.8981 ± 0.1656
41-50 0.334 1.0092 ± 0.0055 1.0522 ± 0.0072 1.8605 ± 0.1425

0 1 2 3

4 5 6 7

8 9 10 11

Figure 7: Optimal solutions (left) vs. our model’s solutions (middle) and the difference between
them (right). Input points are overlaid over both optimal and produced solutions as red circles.

we compute the fraction of pixels along the straight line segment that are marked as foreground. If
this fraction exceeds a threshold (70% in our implementation), the edge is retained. If two vertices
are very close to each other, we assume they are connected via an edge. In cases of ambiguity where
multiple potential edges with a shared node overlap, we retain the shortest one and discard the rest.

Evaluation We evaluate our trained model on a test set containing instances with 10-20 input
points, matching the number of points seen during training, and four other test sets containing 11-
20, 21-30, 31-40 and 41-50 input points. After extracting the graph from the generated solution, we
check the validity of the solution by verifying that the resulting graph is a tree and that it contains
all of the input points . If the solution is valid, we then measure the total Euclidean length of the
tree. For each instance, we generate in parallel 10 solutions from different noise seeds and select the
one with minimal total edge length that is also valid. In Table 2 we report for each test set the rate
of valid solutions as well as the mean ratio between the total Euclidean length of the best solution
produced by our model compared to that of the optimal solution (L⋆(P )). For comparison, we also
report the ratio between the total Euclidean length of a random planar tree and the optimal solution
and that of the solution produced by the minimum spanning tree of the full graph and L⋆(P ).

Our model is able to successfully produce high quality solutions even for instances with markedly
more input points than were seen during training, and often produces solutions that align with the
optimal ones (see Figure 7).

While there is generally a one-to-one coupling between an input and the optimal solution, for some
instances the model still produces variations, often of similar quality, for different noise initializa-
tions (see Figure 6). However, some of these variations can happen to be invalid, especially for
instances with a large number of input points. This is evident in the third row, where the solution
produced by the noise initialization contains a loop and is not a tree.

5 MAXIMUM AREA POLYGON PROBLEM

The third problem we attempt to tackle with our approach is the Maximum Area Polygonization
Problem (MAXAP), a well-established problem in computational geometry. Given a set of vertices
in the plane, the problem asks to find a simple polygon (a polygon that does not intersect itself and
has no holes) that passes through all the vertices and has the largest possible area.

MAXAP is known to be NP-complete (Fekete, 1992; Fekete & Pulleyblank, 1993) and difficult
to solve both in theory and in practice (Fekete et al., 2021), with no known algorithm that provides

7
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0 1 2 3

4 5 6 7

8 9 10 11

Figure 8: Qualitative examples of maximum area polygons (left) vs. polygons produced by our
model (middle) and the difference between them (right). Areas depicted in red and blue in the
difference map correspond to regions that are exclusive to the optimal solution and our solution,
respectively. It can be noticed that even in cases where there is a disparity between the optimal
solution and the one produced by the model, the area difference between the exclusive regions tends
to be small, amounting to a solution of similar quality. Input points are overlaid over both optimal
and produced solutions as red circles.

Table 3: Maximum Area Polygon Evaluation Results. Comparison of our method, random poly-
gons, and optimal solutions. Metrics include polygon validity rate, mean area ratio (± std), and
optimal solution rate for different input point ranges.

Number of
Input Points

Valid Polygons
Rate

Ours
Ratio Mean ± Std

Random Polygon
Ratio Mean ± Std

Optimal Solutions
Rate

7-12 0.953 0.9887 ± 0.0205 0.7711 ± 0.1361 0.574
13-15 0.620 0.9624 ± 0.0418 0.4779 ± 0.2717 0.062

better than 1
2 -approximation factor in polynomial time. Furthermore, deciding whether there exists a

simple polygon that contains strictly more than 2/3 of the area of the convex hull is also NP-complete
(Fekete, 1992). Exact approaches based on integer programming are able to solve instances with up
to 25 points (Fekete et al., 2021), while a recent mixed-integer-programming approach is able to
solve instances with up to 50 points (Hernández-Pérez et al., 2025). Heuristic approaches are
commonly applied to larger instances, including constrained triangulations (Lepagnot et al., 2023),
simulated annealing (Lepagnot et al., 2023; Goren et al., 2022), and divide-and-conquer strategies
for very large point sets of up to 1,000,000 points (Crombez et al., 2022; Goren et al., 2022).

Method To address the maximum area polygonization problem, we adopt the same visual dif-
fusion architecture as in the previous two tasks, using an identical U-Net backbone. As with the
previous methods, we generate a synthetic dataset of examples to train the model on. For each
training example we sample input points randomly on the grid, and compute their optimal polygo-
nizations through exhaustive search over all valid simple polygons, which is feasible at this scale
using a DFS procedure. Each polygon is rasterized to an image, while the input points are rasterized
into a separate image that is concatenated as an additional conditioning channel. The data generation
procedure is described in full in Appendix B.4

At inference time, we recover the polygon structure from the generated image by testing candidate
edges between all point pairs. Each edge is retained if more than 70% of its pixels align with
foreground edge pixels in the output. The resulting set of edges is then validated to ensure that
no intersections occur, with mild tolerance for nearly parallel overlaps. Finally, we search for a
simple cycle that passes through all input vertices, which we consider the recovered polygonization
produced by our model.

Evaluation We evaluate the trained model on a test set containing 7–12 points, matching the
range used during training. To further assess generalization, we also test the model on a set with
13–15 points . For each instance, we generate 10 candidate solutions from different random seeds
and select the one that achieves the largest area while remaining valid. In Table 3, we report the
mean and standard deviation of the ratio between the best solution found for each instance and the
corresponding optimal solution, and show a comparison against random simple polygons on the
same point sets. We also report the rate of valid polygons (the proportion of instances for which a
valid polygon was produced), as well as the frequency with which the recovered polygon coincides
exactly with the optimal one.

8
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Figure 8 shows qualitative examples of polygons produced by our model. In many cases, the gen-
erated polygons align almost perfectly with the optimal ones. When discrepancies occur, the differ-
ences often balance out, with areas lost in one region largely compensated elsewhere (see instances
9, 10 in the figure). Owing to the non-local nature of the problem, instances with a larger num-
ber of points are substantially more challenging, and the rate of valid solutions drops noticeably
for the 13–15 point test set. Typical failure cases include polygons that do not pass through all
input points or that contain holes (see the third and fourth rows in Figure 9). Nevertheless, when-
ever a valid polygon is produced, its area is typically very close to that of the optimal solution.

t=99 t=98 t=97 t=90 t=70 t=0

Figure 9: Maximum area polygon x0 predic-
tions across denoising steps. Each row corre-
sponds to a different seed. Columns show se-
lected x0 predictions for decreasing timesteps
t from left to right (leftmost: t=T ; rightmost:
t=0). Input points are overlayed in red.

We note that for this problem, like the last one,
there is generally only a single optimal solution
per problem instance. Therefore the benefit of
training conditional diffusion models which are
generally used to learn conditional distributions
in order to solve these instances is not immedi-
ately clear. In Appendix A we demonstrate on
the MAXAP problem that there is a performance
advantage over using a regression model even for
problems of this kind.

6 DISCUSSION AND CONCLUSIONS

In this work, we presented visual diffusion as a
general framework for approximating solutions to
notoriously hard geometric problems. Through
three case studies, the Inscribed Square problem,
the Steiner Tree Problem, and the Simple Polygon
Problem, we demonstrated that diffusion models
can operate in image space to uncover valid geo-
metric structures.

We do not claim that our method outperforms specialized solvers tailored to any single problem.
Indeed, for each of these problems, carefully designed algorithms may yield more efficient or more
accurate solutions. Instead, our contribution is to reveal a paradigm: visual diffusion provides a
single, simple framework that applies across a diverse set of problems without requiring custom
formulations. Specifically, each task uses the very same diffusion architecture without modification,
varying only in task-specific training data. Our approach produces accurate and diverse approxima-
tions, naturally recovering multiple valid solutions through diffusion, as illustrated in the Inscribed
Square problem. These solutions can be further refined if desired. Importantly, we also observe that
models trained on relatively simple instances generalize to more complex inputs, such as handling a
larger number of points than those seen in training. This behavior is particularly valuable for prob-
lems where complexity grows with the number of points. This contrasts with traditional geometric
solvers, whose runtime typically grows polynomially or even exponentially with input size.

Despite the diversity of the problems they are trained to solve, the models exhibit a consistent be-
havior, evident in the denoising progression (Figures 2, 6 and 9). Already in the early steps of the
sampling process, the global structure of the solution becomes apparent, suggesting that the essence
of the solution lies primarily in low-frequency geometric features that can be recovered quickly.
The subsequent denoising steps refine these structures to achieve high accuracy. This observation
indicates that inference time could be further optimized, with only a small trade-off in precision,
by using denoising schedulers that allocate more of the sampling steps budget to earlier timesteps.
More broadly, this progressive reasoning mirrors how humans intuitively reason about geometric
problems: they first sketch a mental image of a coarse solution in their mind, which they can then
try to translate to a concrete solution, with details settled upon after the initial structure is clear.

The key message of this work is that image diffusion models, long celebrated for their generative
capacity, also serve as geometric solvers. This outlook opens the door to exploring a wide spectrum
of geometric challenges under a single methodology, and suggests new opportunities for bridging
generative modeling with geometric problem solving.

9
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ETHICS STATEMENT

Our experiments were conducted using 4 GTX 3090 GPUs on a shared GPU cluster, with training
times of around 20 hours per geometric problem. While we acknowledge the environmental im-
plications of any computational research, our resource requirements are modest compared to many
modern deep learning projects. To further minimize environmental impact, we utilized shared insti-
tutional resources that allow for efficient GPU utilization across multiple research projects, and we
will release all pre-trained models to prevent redundant retraining. Researchers can reproduce our
results or build upon our work using the released checkpoints without incurring additional training
costs.

REPRODUCIBILITY STATEMENT

In Appendix B.5 and Appendix B.6 we provide details about the hyper-parameters we used the
model and the training runs. We will also release code and training data for all three problems,
allowing for convenient reproduction of our reported experimental results.
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APPENDIX

A REGRESSION MODEL ABLATION

For certain geometric problems, each input instance admits a unique optimal solution. In such cases,
one may wonder whether training a diffusion model is necessary, since the task appears to reduce to
learning a deterministic mapping. Indeed, the conditional distribution to be learned degenerates into
a collection of Dirac delta functions.

To examine this, we compared our diffusion framework with a direct regression baseline. For the
Maximum Area Polygonization problem, we trained a regression model with the same U-Net back-
bone as our diffusion model, using identical training data and budget. The regression model outputs
a polygon image in a single forward pass, conditioned only on the rasterized input points.

While the regression model succeeds on simpler instances, it often produces polygons with blurry
edges or missing segments for more complex cases. This degrades our polygon extraction stage,
which frequently fails to recover a valid polygon from such outputs. The quantitative results, shown
in the “Regression Valid Polygons Rate” column of Table 4, confirm this limitation.

In contrast, the diffusion model retains a key advantage: stochasticity. By conditioning on both the
input points and a noise vector, we can generate multiple candidate solutions and resample until
a valid polygon is obtained. This property directly improves the robustness of the approach, and
highlights why diffusion remains beneficial even in problems that might superficially appear de-
terministic. This ablation study demonstrates our key finding: diffusion models offer a versatile
and robust solution framework. This framework can also surpass the capabilities of determinis-
tic regression approaches, even in scenarios where the underlying function maintains a one-to-one
correspondence.

Table 4: Regression Model Evaluation Results. Comparison of diffusion (best-of-10) and regres-
sion models. Reported are valid polygon rates and mean area ratios (± std) across input point ranges.

Number of
Input Points

Diffusion
Valid Polygons

Rate

Regression
Valid Polygons

Rate
Diffusion

Ratio Mean ± Std
Regression

Ratio Mean ± Std

7-12 0.953 0.361 0.9887 ± 0.0205 0.9994 ± 0.0025
13-15 0.620 0.016 0.9624 ± 0.0418 0.9988 ± 0.0031

B IMPLEMENTATION DETAILS

B.1 CURVE GENERATION

For harmonic-based curves, we construct a random radial profile

r(θ) = 1 +

H∑
h=1

ρh sin(hθ + ϕh),

with H sampled uniformly from [Hmin, Hmax] and amplitudes ρh drawn from a decaying envelope
to produce smooth perturbations. Square vertices are first placed in Cartesian coordinates, then
converted to polar coordinates (θi, ri). A periodic cubic spline is fit to the radius corrections ri −
r(θi), ensuring that the resulting contour passes exactly through all square vertices. To guarantee
validity, we enforce periodicity in the spline domain and regenerate until a non-self-intersecting
(Jordan) curve is obtained. A random global translation is then applied, and both the curve and its
inscribed squares are normalized to fit inside [−1, 1]2 before rasterization.

In practice, we used the following parameter ranges: H ∈ [6, 30], 500 angular samples, square side
lengths sampled from [0.3, 0.7], rotations from [0, 2π], and global translations up to 0.5 units. Each
curve contains between 1 and 5 inscribed squares.
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As an additional augmentation, with probability 0.1 we replace the harmonic-based curve with a
perfect circle of random radius. Since a circle trivially admits infinitely many inscribed squares
(obtained by rotation), we sample a small number of representative ones to enrich the dataset. The
samples are finally rasterized into 128 × 128 binary images, with curves as one-pixel-wide strokes
and squares as filled shapes. In total, the dataset contains 100,000 examples.

B.2 SQUARE ENHANCEMENT

To extract the initial square Ŝ from the predicted mask, we fit a contour-aligned minimum-area
rectangle and take its four vertices as V (Ŝ) = {pi}4i=1. For a candidate rigid transform (Rθ, t) with
θ in radians and t ∈ R2, we form the transformed square

S(θ, t) = RθŜ + t,

with vertices V (S(θ, t)) = {qi(θ, t)}4i=1, where qi(θ, t) = Rθpi+t. We then evaluate the alignment
score with the curve C as defined in Eq. 1.

The final snapped square is obtained by selecting the rigid transform that maximizes this score:

(θ∗, t∗) = argmax
θ,t

A(S(θ, t), C), S∗ = Rθ∗ Ŝ + t∗.

We approximate this maximization with a discrete grid search. Specifically, we sample θ ∈
[θmin, θmax] with step ∆θ, and translations t = (∆x,∆y) with ∆x,∆y ∈ {−T, . . . , T} in steps of
one pixel. For each candidate (θ, t), the square mask is rigidly warped, its corners recomputed, and
A(S(θ, t), C) evaluated.

B.3 STEINER TREE GENERATION

Generation of a synthetic instance begins by sampling n terminal nodes within the unit square,
with n drawn uniformly from [10, 20]. To prevent rasterization artifacts, we enforce a minimum
separation between terminals with rejection sampling. For each sampled configuration, we compute
the Steiner Minimal Tree using the GeoSteiner solver (Juhl et al., 2018). The resulting solutions are
rasterized into grayscale images of fixed resolution (128× 128), where terminals and Steiner points
are depicted as small filled black circles with a radius of 2 pixels and edges as thin white lines that
are 2 pixels wide, while the background is gray. The final dataset contains 1,000,000 instances.

B.4 MAXIMUM AREA POLYGON GENERATION

For MAXAP instance generation, we first sample n points within the unit square, with n drawn
uniformly from [7, 12]. Also here we enforce a minimum separation between points with rejection
sampling. For each set of point, we exhaustively go over all valid polygon configurations and find
the one with the largest area. We employ a backtracking depth-first search to systematically ex-
plore all valid simple polygons formed by a given point set. The method fixes an anchor point at
the bottommost-leftmost position to eliminate rotational symmetry, then incrementally constructs
polygons by selecting vertices in angular order around the centroid. At each step, the algorithm
prunes invalid branches by rejecting vertices that would create edge intersections with the existing
partial polygon. When a complete polygon is formed, the closing edge is validated for intersections,
and the polygon area is computed using the shoelace formula (O’Rourke, 1998). The search main-
tains the globally optimal solution by comparing areas and updating the best configuration found.
This approach guarantees finding the maximum area simple polygon while significantly reducing
the exponential search space through geometric pruning, making the O(n!) worst-case complexity
manageable and runtime that is fast in practice for small point sets (n ≤ 15). Finally, the polygon is
rasterized into grayscale images of fixed resolution (128×128), where the polygon edges are drawn
as white lines that are 1 pixel wide, the polygon interior is black and the background is gray. In total
the dataset contains 1,000,000 instances.

B.5 MODEL ARCHITECTURE

Our approach employs a conditional diffusion model based on a U-Net architecture for generating
geometric solutions. The U-Net consists of 4 encoder and decoder levels with a base channel count
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of 64, following a standard channel progression of 64 → 128 → 256 → 512 in the encoder path.
The model takes a 2-channel input (noisy target and condition images) and produces a single-channel
denoised prediction.

Multi-head self-attention with 8 heads is integrated at the bottleneck and at encoder/decoder lev-
els 2 and 3. The attention mechanism uses GroupNorm with 32 groups. Each level incorporates
residual blocks with two 3 × 3 convolutional layers, BatchNorm, and ReLU activations, along with
time embedding injection through learned linear projections. Sinusoidal time embeddings with 128
dimensions condition the model on the diffusion timestep.

B.6 TRAINING PROCEDURE

The model is trained using the DDIM (Denoising Diffusion Implicit Models) framework with 100
diffusion steps, a linear beta schedule and deterministic sampling (η = 0.0). We employ an L2

loss on noise prediction, where the model learns to predict the noise ϵ added to the clean image at
timestep t:

L = Et,ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t, c)∥22

]
. (3)

Training is performed using the AdamW optimizer with a learning rate of 6 × 10−4 and cosine
annealing with warm restarts over 0.5 cycles, including 100 warm-up steps and a minimum learning
rate factor of 0.1. We use gradient accumulation over 8 steps with gradient clipping at a maximum
norm of 1.0, and a batch size of 128 per GPU. The training employs mixed precision with bfloat16
autocast for efficiency and is distributed across 4 NVIDIA GTX 3090 GPUs for 100 epochs.

C LLM USE DISCLOSURE

Large language models (LLMs) were used as part of this paper’s writing for the purpose of assis-
tance with editorial refinement as well as literature discovery in certain areas. All content has been
carefully reviewed and verified by the authors, and we take full responsibility for the accuracy of the
presented research.
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