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ABSTRACT

Large-scale linear models are ubiquitous throughout machine learning, with contem-
porary application as surrogate models for neural network uncertainty quantifica-
tion; that is, the linearised Laplace method. Alas, the computational cost associated
with Bayesian linear models constrains this method’s application to small networks,
small output spaces and small datasets. We address this limitation by introducing a
scalable sample-based Bayesian inference method for conjugate Gaussian multi-
output linear models, together with a matching method for hyperparameter (regu-
larisation strength) selection. Furthermore, we use a classic feature normalisation
method, the g-prior, to resolve a previously highlighted pathology of the linearised
Laplace method. Together, these contributions allow us to perform linearised neural
network inference with ResNet-18 on CIFAR100 (11M parameters, 100 output
dimensions × 50k datapoints) and with a U-Net on a high-resolution tomographic
reconstruction task (2M parameters, 251k output dimensions). An extended version
of this work is available at arxiv.org/pdf/2210.04994.pdf.

1 INTRODUCTION

The linearised Laplace method, originally introduced by Mackay (1992), has received renewed
interest in the context of uncertainty quantification for modern neural networks (NN) (Khan et al.,
2019; Immer et al., 2021b; Daxberger et al., 2021a). The method constructs a surrogate Gaussian
linear model for the NN predictions, and uses the error bars of that linear model as estimates of the
NN’s uncertainty. However, the resulting linear model is very large; the design matrix is sized number
of parameters by number of datapoints times number of output classes. Thus, both the primal (weight
space) and dual (observation space) formulations of the linear model are intractable. This restricts the
method to small network or small data settings. Moreover, the method is sensitive to the choice of
regularisation strength for the linear model (Immer et al., 2021a; Antorán et al., 2022c). Motivated by
linearised Laplace, we study inference and hyperparameter selection in large linear models.

To scale inference and hyperparameter selection in Gaussian linear regression, we introduce a sample-
based Expectation Maximisation (EM) algorithm. It interleaves E-steps, where we infer the model’s
posterior distribution over parameters given some choice of hyperparameters, and M-steps, where the
hyperparameters are improved given the current posterior. Our contributions here are two-fold:

1 We enable posterior sampling for large-scale conjugate Gaussian-linear models with a novel
sample-then-optimize objective, which we use to approximate the E-step.

2 We introduce a method for hyperparameter selection that requires only access to posterior
samples, and not the full posterior distribution. This forms our M-step.

Combined, these allow us to perform inference and hyperparameter selection by solving a series of
quadratic optimisation problems using iterative optimisation, and thus avoiding an explicit cubic cost
in any of the problem’s properties. Our method readily extends to non-conjugate settings, such as
classification problems, through the use of the Laplace approximation. In the context of linearised
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NNs, our approach also differs from previous work in that it avoids instantiating the full NN Jacobian
matrix, an operation requiring as many backward passes as output dimensions in the network.

We demonstrate the strength of our inference technique in the context of the linearised Laplace
procedure for image classification on CIFAR100 (100 classes × 50k datapoints) using an 11M
parameter ResNet-18. We also consider a high-resolution (251k pixel) tomographic reconstruction
(regression) task with a 2M parameter U-Net. In tackling these, we encounter a pathology in the
M-step of the procedure first highlighted by Antorán et al. (2022c): the standard objective therein
is ill-defined when the NN contains normalisation layers. Rather than using the solution proposed
in Antorán et al. (2022c), which introduces more hyperparameters, we show that a standard feature-
normalisation method, the g-prior (Zellner, 1986; Minka, 2000), resolves this pathology. For the
tomographic reconstruction task, the regression problem requires a dual-form formulation of our
E-step; interestingly, we show that this is equivalent to an optimisation viewpoint on Matheron’s rule
(Journel & Huijbregts, 1978; Wilson et al., 2020), a connection we believe to be novel.

2 CONJUGATE GAUSSIAN REGRESSION AND THE EM ALGORITHM

We study Bayesian conjugate Gaussian linear regression with multidimensional outputs, where we
observe inputs x1; : : : ; xn 2 Rd and corresponding outputs y1; : : : ; yn 2 Rm. We model these as

yi = �(xi)� + �i; (1)

where � : Rd 7! Rm � Rd0 is a known embedding function. The parameters � are assumed sampled
fromN (0; A−1) with an unknown precision matrixA 2 Rd0×d0 , and for each i � n, �i � N (0; B−1

i )
are additive noise vectors with precision matrices Bi 2 Rm×m relating the m output dimensions.

Our goal is to infer the posterior distribution for the parameters � given our observations, under the
setting of A of the form A = �I for � > 0 most likely to have generated the observed data. For
this, we use the iterative procedure of Mackay (1992), which alternates computing the posterior for
�, denoted �, for a given choice of A, and updating A, until the pair (A;�) converge to a locally
optimal setting. This corresponds to an EM algorithm (Bishop, 2006).

Henceforth, we will use the following stacked notation: we write Y 2 Rnm for the concate-
nation of y1; : : : ; yn; B 2 Rnm×nm for a block diagonal matrix with blocks B1; : : : ; Bn and
� = [�(X1)T ; : : : ;�(Xn)T ]T 2 Rnm×d0 for the embedded design matrix. We write M := �TB�.
Additionally, for a vector v and a PSD matrix G of compatible dimensions, kvk2G = vTGv.

With that, the aforementioned EM algorithm starts with some initial A 2 Rd0×d0 , and iterates:

• (E step) Given A, the posterior for �, denoted �, is computed exactly as

� = N (��;H−1) where H = M +A and �� = H−1�TBY: (2)

• (M step) We lower bound the log-probability density of the observed data, i.e. the evidence,
for the model with posterior � and precision A′ as (derivation in Appendix B.2)

log p(Y ;A′) � � 1
2k��k2A0 � 1

2 log det(I +A′−1M) + C =:M(A′); (3)

for C independent of A′. We choose an A that improves this lower bound.

Limited scalability The above inference and hyperparameter selection procedure for � and A
is futile when both d′ and nm are large. The E-step requires the inversion of a d′ � d′ matrix and
the M-step evaluating its log-determinant, both cubic operations in d′. These may be rewritten to
instead yield a cubic dependence on nm (as in Section 3.3), but under our assumptions, that too is not
computationally tractable. Instead, we now pursue a stochastic approximation to this EM-procedure.

3 EVIDENCE MAXIMISATION USING STOCHASTIC APPROXIMATION

We now present our main contribution, a stochastic approximation (Nielsen, 2000) to the iterative
algorithm presented in the previous section. Our M-step requires only access to samples from �. We
introduce a method to approximate posterior samples through stochastic optimisation for the E-step.
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3.1 HYPERPARAMETER SELECTION USING POSTERIOR SAMPLES (M-STEP)

For now, assume that we have an efficient method of obtaining samples �1; : : : ; �k � �0 at each step,
where �0 is a zero-mean version of the posterior �, and access to ��, the mean of �. Evaluating the
first order optimality condition forM (see Appendix B.3) yields that the optimal choice of A satisfies

k��k2A = Tr fH−1Mg =: ; (4)

where the quantity  is the effective dimension of the regression problem. It can be interpreted as the
number of directions in which the weights � are strongly determined by the data. Setting A = �I for
� = =k��k2 yields a contraction step converging towards the optimum ofM (Mackay, 1992).

Computing  directly requires the inversion of H , a cubic operation. We instead rewrite  as an
expectation with respect to �0 using Hutchinson (1990)’s trick, and approximate it using samples as

 = Tr fH−1Mg = Tr fH− 1
2MH− 1

2 g = E[�T1 M�1] � 1
k

Pk
j=1 �

T
j �TB��j =: ̂: (5)

We then select � = ̂=k��k2. We have thus avoided the explicit cubic cost of computing the log-
determinant in the expression forM (given in (3)) or inverting H . Due to the block structure of B, ̂
may be computed in order n vector-matrix products.

3.2 SAMPLING FROM THE LINEAR MODEL’S POSTERIOR USING SGD (E-STEP)

Now we turn to sampling from �0 = N (0; H−1). It is known (also, shown in Appendix C.1) that for
E 2 Rnm the concatenation of "1; : : : ; "n with "i � N (0; B−1

i ) and �0 � N (0; A−1), the minimiser
of the following loss is a random variable � with distribution �0:

L(z) = 1
2k�z � Ek2B + 1

2kz � �0k2A: (6)

This is called the “sample-then-optimise” method (Papandreou & Yuille, 2010). We may thus obtain
a posterior sample by optimising this quadratic loss for a given sample pair (E ; �0). Examining L:

• The first term is data dependent. It corresponds to the scaled squared error in fitting E as a
linear combination of �. Its gradient requires stochastic approximation for large datasets.

• The second term, a regulariser centred at �0, does not depend on the data. Its gradient can
thus be computed exactly at every optimisation step.

Predicting E , i.e. random noise, from features � is hard. Due to this, the variance of a mini-batch
estimate of the gradient of k�z � Ek2B may be large. Instead, for E and �0 defined as before, we
propose the following alternative loss, equal to L up to an additive constant independent of z:

L′(z) = 1
2k�zk2B + 1

2kz � �nk2A with �n = �0 +A−1�TBE : (7)

The mini-batch gradients of L′ and L are equal in expectation (see Appendix C.1). However, in L′, the
randomness from the noise samples E and the prior sample �0 both feature within the regularisation
term—the gradient of which can be computed exactly—rather than in the data-dependent term.
This may lead to a lower minibatch gradient variance. To see this, consider the variance of the
single-datapoint stochastic gradient estimators for both objectives’ data dependent terms. At z 2 Rd0 ,
for datapoint index j � Unif(f1; : : : ; ng), these are

ĝ = n�(Xj)
T (�(Xj)z � "j) and ĝ′ = n�(Xj)

T�(Xj)z (8)

for L and L′, respectively. Direct calculation, presented in Appendix C.2, shows that
1
n [Varĝ � Varĝ′] = Var(�TBE)� 2Cov(�TB�z;�TBE) =: �: (9)

Note that both Varĝ and Varĝ′ are d′ � d′ matrices. We impose an order on these by considering their
traces: we prefer the new gradient estimator ĝ′ if the sum of its per-dimension variances is lower than
that of ĝ; that is if Tr � > 0. We analyse two key settings:

• At initialisation, taking z = �0 (or any other initialisation independent of E),

Tr � = Tr f�TBE[EET ]B�g � Tr f�TB�E[�0ET ]B�g = Tr fMg > 0; (10)

where we used that E[EET ] = B−1 and since E is zero mean and independent of �0, we have
E[�0ET ] = E�0EET = 0. Thus, the new objective L′ is always preferred at initialisation.
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• At convergence, that is, when z = �, a more involved calculation presented in Appendix
C.3 shows that L′ is preferred if

2� > TrM: (11)
This is satisfied if � is large relative to the eigenvalues of M (see Appendix C.4), that is,
when the parameters are not strongly determined by the data relative to the prior.

When L′ is preferred both at initialisation and at convergence, we expect it to have lower variance
for most minibatches throughout training. Even if the proposed objective L′ is not preferred at
convergence, it may still be preferred for most of the optimisation, before the noise is fit well enough.

3.3 DUAL FORM OF E-STEP: MATHERON’S RULE AS OPTIMISATION

The minimiser of both L and L′ is � = H−1(A�0 + �TBE). The dual (kernelised) form of this is

� = �0 +A−1�T (B−1 + �A−1�T )−1("� ��0); (12)

which is known in the literature as Matheron’s rule (Wilson et al., 2020, our Appendix D). Evaluating
(12) requires solving a mn-dimensional quadratic optimisation problem, which may be preferable to
the primal problem for mn < d′; however, this dual form cannot be minibatched over observations.
For small n, we can solve this optimisation problem using iterative full-batch quadratic optimisation
algorithms (e.g. conjugate gradients), significantly accelerating our sample-based EM iteration.

4 NN UNCERTAINTY QUANTIFICATION AS LINEAR MODEL INFERENCE

Consider the problem of m-output prediction. Suppose that we have trained a neural network of the
form f : Rd0 � Rd 7! Rm, obtaining weights �w 2 Rd0 , using a loss of the form

L(f(w; �)) =
Pn
i=1 ‘(yi; f(w; xi)) +R(w) (13)

where ‘ is a data fit term (a negative log-likelihood) andR is a regulariser. We now show how to use
linearised Laplace to quantify uncertainty in the network predictions f( �w; �). We then present the
g-prior, a feature normalisation that resolves a certain pathology in the linearised Laplace method
when the network f contains normalisation layers.

4.1 THE LINEARISED LAPLACE METHOD

The linearised Laplace method consists of two consecutive approximations, the latter of which is
necessary only if ‘ is non-quadratic (that is, if the likelihood is non-Gaussian):

1 We take a first-order Taylor expansion of f around �w, yielding the surrogate model

h(�; x) = f( �w; x) + �(x)(� � �w) for �(x) = rwf( �w; x): (14)

This is an affine model in the features �(x) given by the network Jacobian at x.
2 We approximate the loss of the linear model L(h(�; �)) with a quadratic, and treat it as a

negative log-density for the parameters �, yielding a Gaussian posterior of the form

N (��; (r2
�L)−1(h(��; �))) where �� 2 argmin� L(h(�; �)): (15)

Direct calculation shows that (r2
�L)(h(��; �)) = (A+ �TB�) = H , forr2

wR( �w) = A and
B a block diagonal matrix with blocks Bi = r2

ŷi
‘(yi; ŷi) evaluated at ŷi = h(��; xi).

We have thus recovered a conjugate Gaussian multi-output linear model. We treat A as a learnable
parameter thereafter 1In practice, we depart from the above procedure in two ways:

• We use the neural network output f( �w; �) as the predictive mean, rather than the surrogate
model mean h(��; �). Nonetheless, we still need to compute �� to use within the M-step of the
EM procedure. To do this, we minimise L(h(�; �)) over � 2 Rd0 .

1The EM procedure from Section 2 is for the conjugate Gaussian-linear model, where it carries guarantees
on non-decreasing model evidence, and thus convergence to a local optimum. These guarantees do not hold for
non-conjugate likelihood functions, e.g., the softmax-categorical, where the Laplace approximation is necessary.
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• We compute the loss curvatureB i at predictionŝyi = f ( �w; x i ) in place ofh( ��; x i ), since the
latter would change each time the regulariserA is updated, requiring expensive re-evaluation.

Both of these departures are recommended within the literature (Antorán et al., 2022c).

4.2 ON THE COMPUTATIONAL ADVANTAGE OF SAMPLE-BASED PREDICTIONS

The linearised Laplace predictive posterior at an inputx is N (f ( �w; x); � (x)H � 1� (x)T ). Even given
H � 1, evaluating this naïvely requires instantiating� (x), at a cost ofm vector-Jacobian products
(i.e. backward passes). This is prohibitive for largem. However, expectations of any function
r : Rm 7! R under the predictive posterior can be approximated using only samples from� 0 as

E[r ] � 1
k

P k
j =1 r ( j ) for  j = f ( �w; x) + � (x)� j with � 1; : : : ; � k � � 0; (16)

requiring onlyk Jacobian-vector products. In practice, we �ndk much smaller thanm suf�ces.

4.3 FEATURE EMBEDDING NORMALISATION: THE DIAGONAL G-PRIOR

Due to symmetries and indeterminacies in neural networks, the embedding function� (�) = r w f ( �w; �)
used in the linearised Laplace method yields features with arbitrary scales across thed0 weight
dimensions. Consequently, the dimensions of the embeddings may have an (arbitrarily) unequal
weight under an isotropic prior; that is, considering� (x)� 0 for � 0 � N (0; � � 1I ).

There are two natural solutions: either normalise the features by their (empirical) second moment,
resulting in the normalised embedding function� 0 given by

� 0(x) = � (x) diag(s) for s 2 Rd0
given by si = [� T B�] � 1=2

ii ; (17)

or likewise scale the prior, settingA = � diag((s� 2
i )d0

i =1 ). The latter formulation is a diagonal version
of what is known in the literature as the g-prior (Zellner, 1986) or scale-invariant prior (Minka, 2000).

The g-prior may, in general, improve the conditioning of the linear system. Furthermore, when the
linearised network contains normalisation layers, such as batchnorm (that is, most modern networks),
the g-prior is essential. Antorán et al. (2022c) show that normalisation layers lead to indeterminacies
in NN Jacobians, that in turn lead to an ill-de�ned model evidence objective. They propose learning
separate regularisation parameters for each normalised layer of the network. While �xing the
pathology, this increases the complexity of model evidence optimisation. As we show in Appendix E,
the g-prior cancels these indeterminacies, allowing for the use of a single regularisation parameter.

5 DEMONSTRATION: SAMPLE-BASED LINEARISED LAPLACE INFERENCE

We demonstrate our linear model inference and hyperparameter selection approach on the problem of
estimating the uncertainty in NN predictions with the linearised Laplace method. First, in Section 5.1,
we perform an ablation analysis on the different components of our algorithm using small LeNet-style
CNNs trained on MNIST. In this setting, full-covariance Laplace inference (that is, exact linear
model inference) is tractable, allowing us to evaluate the quality of our approximations. We then

Algorithm 1: Sampling-based linearised Laplace hyperparameter learning and inference

Inputs: initial � > 0; k; k0 2 N, number of samples for stochastic EM and prediction,
respectively.

Compute g-prior scaling vectors as in (17)
Sample random regularisers� n

1 ; : : : ; � n
k per (7)

while � has not convergeddo
Find posterior mode�� by optimising linear model lossL (h(�; �)) , given in (13)
Draw posterior samples� 1 : : : � k by optimising objectiveL 0 with � n

1 ; : : : ; � n
k

Estimate effective dimension̂ , per (5), using samples� 1 : : : � k
Update prior precision�  ̂= k�� k2

2

Samplek0 random regularisers� n 0

1 ; : : : ; � n 0

k 0 using optimised�
Draw corresponding posterior samples� 0

1; : : : ; � 0
k 0 using lossL 0

Output: posterior samples� 0
1; : : : ; � 0

k
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Figure 1: Illustration of our procedure for a fully connected NN on the toy dataset of Antorán et al.
(2020). Top: prior function samples present large std-dev. (left). When these samples are optimised
(middle shows a 2D slice of weight space), the resulting predictive errorbars are larger than the
marginal target variance (right). Bottom: after EM, the std-dev. of prior functions roughly matches
that of the targets (left), the overlap between prior and posterior is maximised, leading to shorter
sample trajectories (center), and the predictive errorbars are qualitatively more appealing (right).

demonstrate our method at scale on CIFAR100 classi�cation with a ResNet18 (Section 5.2) and the
dual (kernelised) formulation of our method on tomographic image reconstruction using a U-Net
(Section 5.3). We look at both marginal and joint uncertainty calibration and at computational cost.

For all experiments, our method avoids storing covariance matricesH � 1, computing their log-
determinants, or instantiating Jacobian matrices� (x), all of which have hindered previous linearised
Laplace implementations. We interact with NN Jacobians only through Jacobian-vector and vector-
Jacobian products, which have the same asymptotic computational and memory costs as a NN
forward-pass (Novak et al., 2022). Unless otherwise speci�ed, we use the diagonal g-prior and a
scalar regularisation parameter. Algorithm 1 summarises our method, Figure 1 shows an illustrative
example, and full algorithmic detail is in Appendix F. An implementation of our method in JAX can
be foundhere . Additional experimental results are provided in Appendix H and Appendix I.

5.1 ABLATION STUDY: LENET ON MNIST

We �rst evaluate our approach on MNISTm=10 class image classi�cation, where exact linearised
Laplace inference is tractable. The training set consists ofn=60k observations and we employ 3
LeNet-style CNNs of increasing size: “LeNetSmall” (d0=14634), “LeNet” (d0=29226) and “LeNet-
Big” (d0=46024). The latter is the largest model for which we can store the covariance matrix on an
A100 GPU. We draw samples and estimate posterior modes using SGD with Nesterov momentum
(full details in Appendix G). We use 5 seeds for each experiment, and report the mean and std. error.

Comparing sampling objectives We �rst compare the proposed objectiveL 0with the one standard
in the literatureL , using LeNet. The results are shown in Figure 2. We draw exact samples:(� ?

j ) j � k
through matrix inversion and assess sample �delity in terms of normalised squared distance to
these exact samplesk� � � ? k2

2=k� ? k2
2 . All runs share a prior precision of� � 5:5 obtained with EM

iteration. The effective dimension iŝ � 1300. Noting that the g-prior feature normalisation results
in Tr M = d0, we can see that condition (11) is not satis�ed(2 � 5:5 � 1300< 29k). Despite this,
the proposed objective converges to more accurate samples even when using a 16-times smaller batch
size (left plot). The right side plots relate sample error to categorical symmetrised-KL (sym. KL) and
logit Wasserstein-2 (W2) distance between the sampled and exact lin. Laplace predictive distributions
on the test-set. Both objectives' prediction errors stop decreasing below a sample error of� 0:5 but,
nevertheless, the proposed lossL 0 reaches lower a prediction error.

Fidelity of sampling inference We compare our method's uncertainty using 64 samples against
approximate methods based on the NN weight point-estimate (MAP), a diagonal covariance, and a
KFAC estimate of the covariance (Martens & Grosse, 2015; Ritter et al., 2018) implemented with the
Laplace library, in terms of similarity to the full-covariance lin. Laplace predictive posterior. As
standard, we compute categorical predictive distributions with the probit approximation (Daxberger
et al., 2021a). All methods use the same layerwise prior precision obtained with 5 steps of full-
covariance EM iteration. For all three LeNet sizes, the sampled approximation presents the lowest
categorical sym. KL and logit W2 distance to the exact lin. Laplace pred. posterior (Figure 3, LHS).
The �delity of competing approximations degrades with model size but that of sampling increases.
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