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ABSTRACT

Large-scale linear models are ubiquitous throughout machine learning, with contem-
porary application as surrogate models for neural network uncertainty quantifica-
tion; that is, the linearised Laplace method. Alas, the computational cost associated
with Bayesian linear models constrains this method’s application to small networks,
small output spaces and small datasets. We address this limitation by introducing a
scalable sample-based Bayesian inference method for conjugate Gaussian multi-
output linear models, together with a matching method for hyperparameter (regu-
larisation strength) selection. Furthermore, we use a classic feature normalisation
method, the g-prior, to resolve a previously highlighted pathology of the linearised
Laplace method. Together, these contributions allow us to perform linearised neural
network inference with ResNet-18 on CIFAR100 (11M parameters, 100 output
dimensions × 50k datapoints) and with a U-Net on a high-resolution tomographic
reconstruction task (2M parameters, 251k output dimensions). An extended version
of this work is available at arxiv.org/pdf/2210.04994.pdf.

1 INTRODUCTION

The linearised Laplace method, originally introduced by Mackay (1992), has received renewed
interest in the context of uncertainty quantification for modern neural networks (NN) (Khan et al.,
2019; Immer et al., 2021b; Daxberger et al., 2021a). The method constructs a surrogate Gaussian
linear model for the NN predictions, and uses the error bars of that linear model as estimates of the
NN’s uncertainty. However, the resulting linear model is very large; the design matrix is sized number
of parameters by number of datapoints times number of output classes. Thus, both the primal (weight
space) and dual (observation space) formulations of the linear model are intractable. This restricts the
method to small network or small data settings. Moreover, the method is sensitive to the choice of
regularisation strength for the linear model (Immer et al., 2021a; Antorán et al., 2022c). Motivated by
linearised Laplace, we study inference and hyperparameter selection in large linear models.

To scale inference and hyperparameter selection in Gaussian linear regression, we introduce a sample-
based Expectation Maximisation (EM) algorithm. It interleaves E-steps, where we infer the model’s
posterior distribution over parameters given some choice of hyperparameters, and M-steps, where the
hyperparameters are improved given the current posterior. Our contributions here are two-fold:

1 We enable posterior sampling for large-scale conjugate Gaussian-linear models with a novel
sample-then-optimize objective, which we use to approximate the E-step.

2 We introduce a method for hyperparameter selection that requires only access to posterior
samples, and not the full posterior distribution. This forms our M-step.

Combined, these allow us to perform inference and hyperparameter selection by solving a series of
quadratic optimisation problems using iterative optimisation, and thus avoiding an explicit cubic cost
in any of the problem’s properties. Our method readily extends to non-conjugate settings, such as
classification problems, through the use of the Laplace approximation. In the context of linearised
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NNs, our approach also differs from previous work in that it avoids instantiating the full NN Jacobian
matrix, an operation requiring as many backward passes as output dimensions in the network.

We demonstrate the strength of our inference technique in the context of the linearised Laplace
procedure for image classification on CIFAR100 (100 classes × 50k datapoints) using an 11M
parameter ResNet-18. We also consider a high-resolution (251k pixel) tomographic reconstruction
(regression) task with a 2M parameter U-Net. In tackling these, we encounter a pathology in the
M-step of the procedure first highlighted by Antorán et al. (2022c): the standard objective therein
is ill-defined when the NN contains normalisation layers. Rather than using the solution proposed
in Antorán et al. (2022c), which introduces more hyperparameters, we show that a standard feature-
normalisation method, the g-prior (Zellner, 1986; Minka, 2000), resolves this pathology. For the
tomographic reconstruction task, the regression problem requires a dual-form formulation of our
E-step; interestingly, we show that this is equivalent to an optimisation viewpoint on Matheron’s rule
(Journel & Huijbregts, 1978; Wilson et al., 2020), a connection we believe to be novel.

2 CONJUGATE GAUSSIAN REGRESSION AND THE EM ALGORITHM

We study Bayesian conjugate Gaussian linear regression with multidimensional outputs, where we
observe inputs x1, . . . , xn ∈ Rd and corresponding outputs y1, . . . , yn ∈ Rm. We model these as

yi = ϕ(xi)θ + ηi, (1)

where ϕ : Rd 7→ Rm × Rd′
is a known embedding function. The parameters θ are assumed sampled

fromN (0, A−1) with an unknown precision matrixA ∈ Rd′×d′
, and for each i ≤ n, ηi ∼ N (0, B−1

i )
are additive noise vectors with precision matrices Bi ∈ Rm×m relating the m output dimensions.

Our goal is to infer the posterior distribution for the parameters θ given our observations, under the
setting of A of the form A = αI for α > 0 most likely to have generated the observed data. For
this, we use the iterative procedure of Mackay (1992), which alternates computing the posterior for
θ, denoted Π, for a given choice of A, and updating A, until the pair (A,Π) converge to a locally
optimal setting. This corresponds to an EM algorithm (Bishop, 2006).

Henceforth, we will use the following stacked notation: we write Y ∈ Rnm for the concate-
nation of y1, . . . , yn; B ∈ Rnm×nm for a block diagonal matrix with blocks B1, . . . , Bn and
Φ = [ϕ(X1)

T ; . . . ;ϕ(Xn)
T ]T ∈ Rnm×d′

for the embedded design matrix. We write M := ΦTBΦ.
Additionally, for a vector v and a PSD matrix G of compatible dimensions, ∥v∥2G = vTGv.

With that, the aforementioned EM algorithm starts with some initial A ∈ Rd′×d′
, and iterates:

• (E step) Given A, the posterior for θ, denoted Π, is computed exactly as

Π = N (θ̄, H−1) where H =M +A and θ̄ = H−1ΦTBY. (2)

• (M step) We lower bound the log-probability density of the observed data, i.e. the evidence,
for the model with posterior Π and precision A′ as (derivation in Appendix B.2)

log p(Y ;A′) ≥ − 1
2∥θ̄∥2A′ − 1

2 log det(I +A′−1M) + C =:M(A′), (3)

for C independent of A′. We choose an A that improves this lower bound.

Limited scalability The above inference and hyperparameter selection procedure for Π and A
is futile when both d′ and nm are large. The E-step requires the inversion of a d′ × d′ matrix and
the M-step evaluating its log-determinant, both cubic operations in d′. These may be rewritten to
instead yield a cubic dependence on nm (as in Section 3.3), but under our assumptions, that too is not
computationally tractable. Instead, we now pursue a stochastic approximation to this EM-procedure.

3 EVIDENCE MAXIMISATION USING STOCHASTIC APPROXIMATION

We now present our main contribution, a stochastic approximation (Nielsen, 2000) to the iterative
algorithm presented in the previous section. Our M-step requires only access to samples from Π. We
introduce a method to approximate posterior samples through stochastic optimisation for the E-step.
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3.1 HYPERPARAMETER SELECTION USING POSTERIOR SAMPLES (M-STEP)

For now, assume that we have an efficient method of obtaining samples ζ1, . . . , ζk ∼ Π0 at each step,
where Π0 is a zero-mean version of the posterior Π, and access to θ̄, the mean of Π. Evaluating the
first order optimality condition forM (see Appendix B.3) yields that the optimal choice of A satisfies

∥θ̄∥2A = Tr {H−1M} =: γ, (4)

where the quantity γ is the effective dimension of the regression problem. It can be interpreted as the
number of directions in which the weights θ are strongly determined by the data. Setting A = αI for
α = γ/∥θ̄∥2 yields a contraction step converging towards the optimum ofM (Mackay, 1992).

Computing γ directly requires the inversion of H , a cubic operation. We instead rewrite γ as an
expectation with respect to Π0 using Hutchinson (1990)’s trick, and approximate it using samples as

γ = Tr {H−1M} = Tr {H− 1
2MH− 1

2 } = E[ζT1 Mζ1] ≈ 1
k

∑k
j=1 ζ

T
j Φ

TBΦζj =: γ̂. (5)

We then select α = γ̂/∥θ̄∥2. We have thus avoided the explicit cubic cost of computing the log-
determinant in the expression forM (given in (3)) or inverting H . Due to the block structure of B, γ̂
may be computed in order n vector-matrix products.

3.2 SAMPLING FROM THE LINEAR MODEL’S POSTERIOR USING SGD (E-STEP)

Now we turn to sampling from Π0 = N (0, H−1). It is known (also, shown in Appendix C.1) that for
E ∈ Rnm the concatenation of ε1, . . . , εn with εi ∼ N (0, B−1

i ) and θ0 ∼ N (0, A−1), the minimiser
of the following loss is a random variable ζ with distribution Π0:

L(z) = 1
2∥Φz − E∥2B + 1

2∥z − θ0∥2A. (6)

This is called the “sample-then-optimise” method (Papandreou & Yuille, 2010). We may thus obtain
a posterior sample by optimising this quadratic loss for a given sample pair (E , θ0). Examining L:

• The first term is data dependent. It corresponds to the scaled squared error in fitting E as a
linear combination of Φ. Its gradient requires stochastic approximation for large datasets.

• The second term, a regulariser centred at θ0, does not depend on the data. Its gradient can
thus be computed exactly at every optimisation step.

Predicting E , i.e. random noise, from features Φ is hard. Due to this, the variance of a mini-batch
estimate of the gradient of ∥Φz − E∥2B may be large. Instead, for E and θ0 defined as before, we
propose the following alternative loss, equal to L up to an additive constant independent of z:

L′(z) = 1
2∥Φz∥2B + 1

2∥z − θn∥2A with θn = θ0 +A−1ΦTBE . (7)

The mini-batch gradients of L′ and L are equal in expectation (see Appendix C.1). However, in L′, the
randomness from the noise samples E and the prior sample θ0 both feature within the regularisation
term—the gradient of which can be computed exactly—rather than in the data-dependent term.
This may lead to a lower minibatch gradient variance. To see this, consider the variance of the
single-datapoint stochastic gradient estimators for both objectives’ data dependent terms. At z ∈ Rd′

,
for datapoint index j ∼ Unif({1, . . . , n}), these are

ĝ = nϕ(Xj)
T (ϕ(Xj)z − εj) and ĝ′ = nϕ(Xj)

Tϕ(Xj)z (8)

for L and L′, respectively. Direct calculation, presented in Appendix C.2, shows that
1
n [Varĝ − Varĝ′] = Var(ΦTBE)− 2Cov(ΦTBΦz,ΦTBE) =: ∆. (9)

Note that both Varĝ and Varĝ′ are d′ × d′ matrices. We impose an order on these by considering their
traces: we prefer the new gradient estimator ĝ′ if the sum of its per-dimension variances is lower than
that of ĝ; that is if Tr∆ > 0. We analyse two key settings:

• At initialisation, taking z = θ0 (or any other initialisation independent of E),

Tr∆ = Tr {ΦTBE[EET ]BΦ} − Tr {ΦTBΦE[θ0ET ]BΦ} = Tr {M} > 0, (10)

where we used that E[EET ] = B−1 and since E is zero mean and independent of θ0, we have
E[θ0ET ] = Eθ0EET = 0. Thus, the new objective L′ is always preferred at initialisation.
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• At convergence, that is, when z = ζ, a more involved calculation presented in Appendix
C.3 shows that L′ is preferred if

2αγ > TrM. (11)
This is satisfied if α is large relative to the eigenvalues of M (see Appendix C.4), that is,
when the parameters are not strongly determined by the data relative to the prior.

When L′ is preferred both at initialisation and at convergence, we expect it to have lower variance
for most minibatches throughout training. Even if the proposed objective L′ is not preferred at
convergence, it may still be preferred for most of the optimisation, before the noise is fit well enough.

3.3 DUAL FORM OF E-STEP: MATHERON’S RULE AS OPTIMISATION

The minimiser of both L and L′ is ζ = H−1(Aθ0 +ΦTBE). The dual (kernelised) form of this is

ζ = θ0 +A−1ΦT (B−1 +ΦA−1ΦT )−1(ε− Φθ0), (12)

which is known in the literature as Matheron’s rule (Wilson et al., 2020, our Appendix D). Evaluating
(12) requires solving a mn-dimensional quadratic optimisation problem, which may be preferable to
the primal problem for mn < d′; however, this dual form cannot be minibatched over observations.
For small n, we can solve this optimisation problem using iterative full-batch quadratic optimisation
algorithms (e.g. conjugate gradients), significantly accelerating our sample-based EM iteration.

4 NN UNCERTAINTY QUANTIFICATION AS LINEAR MODEL INFERENCE

Consider the problem of m-output prediction. Suppose that we have trained a neural network of the
form f : Rd′ × Rd 7→ Rm, obtaining weights w̄ ∈ Rd′

, using a loss of the form

L(f(w, ·)) = ∑n
i=1 ℓ(yi, f(w, xi)) +R(w) (13)

where ℓ is a data fit term (a negative log-likelihood) andR is a regulariser. We now show how to use
linearised Laplace to quantify uncertainty in the network predictions f(w̄, ·). We then present the
g-prior, a feature normalisation that resolves a certain pathology in the linearised Laplace method
when the network f contains normalisation layers.

4.1 THE LINEARISED LAPLACE METHOD

The linearised Laplace method consists of two consecutive approximations, the latter of which is
necessary only if ℓ is non-quadratic (that is, if the likelihood is non-Gaussian):

1 We take a first-order Taylor expansion of f around w̄, yielding the surrogate model

h(θ, x) = f(w̄, x) + ϕ(x)(θ − w̄) for ϕ(x) = ∇wf(w̄, x). (14)

This is an affine model in the features ϕ(x) given by the network Jacobian at x.
2 We approximate the loss of the linear model L(h(θ, ·)) with a quadratic, and treat it as a

negative log-density for the parameters θ, yielding a Gaussian posterior of the form

N (θ̄, (∇2
θL)−1(h(θ̄, ·))) where θ̄ ∈ argminθ L(h(θ, ·)). (15)

Direct calculation shows that (∇2
θL)(h(θ̄, ·)) = (A+ΦTBΦ) = H , for∇2

wR(w̄) = A and
B a block diagonal matrix with blocks Bi = ∇2

ŷi
ℓ(yi, ŷi) evaluated at ŷi = h(θ̄, xi).

We have thus recovered a conjugate Gaussian multi-output linear model. We treat A as a learnable
parameter thereafter 1In practice, we depart from the above procedure in two ways:

• We use the neural network output f(w̄, ·) as the predictive mean, rather than the surrogate
model mean h(θ̄, ·). Nonetheless, we still need to compute θ̄ to use within the M-step of the
EM procedure. To do this, we minimise L(h(θ, ·)) over θ ∈ Rd′

.
1The EM procedure from Section 2 is for the conjugate Gaussian-linear model, where it carries guarantees

on non-decreasing model evidence, and thus convergence to a local optimum. These guarantees do not hold for
non-conjugate likelihood functions, e.g., the softmax-categorical, where the Laplace approximation is necessary.
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• We compute the loss curvatureBi at predictions ŷi = f(w̄, xi) in place of h(θ̄, xi), since the
latter would change each time the regulariserA is updated, requiring expensive re-evaluation.

Both of these departures are recommended within the literature (Antorán et al., 2022c).

4.2 ON THE COMPUTATIONAL ADVANTAGE OF SAMPLE-BASED PREDICTIONS

The linearised Laplace predictive posterior at an input x isN (f(w̄, x), ϕ(x)H−1ϕ(x)T ). Even given
H−1, evaluating this naïvely requires instantiating ϕ(x), at a cost of m vector-Jacobian products
(i.e. backward passes). This is prohibitive for large m. However, expectations of any function
r : Rm 7→ R under the predictive posterior can be approximated using only samples from Π0 as

E[r] ≈ 1
k

∑k
j=1 r(ψj) for ψj = f(w̄, x) + ϕ(x)ζj with ζ1, . . . , ζk ∼ Π0, (16)

requiring only k Jacobian-vector products. In practice, we find k much smaller than m suffices.

4.3 FEATURE EMBEDDING NORMALISATION: THE DIAGONAL G-PRIOR

Due to symmetries and indeterminacies in neural networks, the embedding function ϕ(·) = ∇wf(w̄, ·)
used in the linearised Laplace method yields features with arbitrary scales across the d′ weight
dimensions. Consequently, the dimensions of the embeddings may have an (arbitrarily) unequal
weight under an isotropic prior; that is, considering ϕ(x)θ0 for θ0 ∼ N (0, α−1I).

There are two natural solutions: either normalise the features by their (empirical) second moment,
resulting in the normalised embedding function ϕ′ given by

ϕ′(x) = ϕ(x) diag(s) for s ∈ Rd′
given by si = [ΦTBΦ]

−1/2
ii , (17)

or likewise scale the prior, setting A = α diag((s−2
i )d

′

i=1). The latter formulation is a diagonal version
of what is known in the literature as the g-prior (Zellner, 1986) or scale-invariant prior (Minka, 2000).

The g-prior may, in general, improve the conditioning of the linear system. Furthermore, when the
linearised network contains normalisation layers, such as batchnorm (that is, most modern networks),
the g-prior is essential. Antorán et al. (2022c) show that normalisation layers lead to indeterminacies
in NN Jacobians, that in turn lead to an ill-defined model evidence objective. They propose learning
separate regularisation parameters for each normalised layer of the network. While fixing the
pathology, this increases the complexity of model evidence optimisation. As we show in Appendix E,
the g-prior cancels these indeterminacies, allowing for the use of a single regularisation parameter.

5 DEMONSTRATION: SAMPLE-BASED LINEARISED LAPLACE INFERENCE

We demonstrate our linear model inference and hyperparameter selection approach on the problem of
estimating the uncertainty in NN predictions with the linearised Laplace method. First, in Section 5.1,
we perform an ablation analysis on the different components of our algorithm using small LeNet-style
CNNs trained on MNIST. In this setting, full-covariance Laplace inference (that is, exact linear
model inference) is tractable, allowing us to evaluate the quality of our approximations. We then

Algorithm 1: Sampling-based linearised Laplace hyperparameter learning and inference
Inputs: initial α > 0; k, k′ ∈ N, number of samples for stochastic EM and prediction,

respectively.
Compute g-prior scaling vector s as in (17)
Sample random regularisers θn1 , . . . , θ

n
k per (7)

while α has not converged do
Find posterior mode θ̄ by optimising linear model loss L(h(θ, ·)), given in (13)
Draw posterior samples ζ1 . . . ζk by optimising objective L′ with θn1 , . . . , θ

n
k

Estimate effective dimension γ̂, per (5), using samples ζ1 . . . ζk
Update prior precision α← γ̂/∥θ̄∥22

Sample k′ random regularisers θn
′

1 , . . . , θ
n′

k′ using optimised α
Draw corresponding posterior samples ζ ′1, . . . , ζ

′
k′ using loss L′

Output: posterior samples ζ ′1, . . . , ζ
′
k
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Figure 1: Illustration of our procedure for a fully connected NN on the toy dataset of Antorán et al.
(2020). Top: prior function samples present large std-dev. (left). When these samples are optimised
(middle shows a 2D slice of weight space), the resulting predictive errorbars are larger than the
marginal target variance (right). Bottom: after EM, the std-dev. of prior functions roughly matches
that of the targets (left), the overlap between prior and posterior is maximised, leading to shorter
sample trajectories (center), and the predictive errorbars are qualitatively more appealing (right).

demonstrate our method at scale on CIFAR100 classification with a ResNet18 (Section 5.2) and the
dual (kernelised) formulation of our method on tomographic image reconstruction using a U-Net
(Section 5.3). We look at both marginal and joint uncertainty calibration and at computational cost.

For all experiments, our method avoids storing covariance matrices H−1, computing their log-
determinants, or instantiating Jacobian matrices ϕ(x), all of which have hindered previous linearised
Laplace implementations. We interact with NN Jacobians only through Jacobian-vector and vector-
Jacobian products, which have the same asymptotic computational and memory costs as a NN
forward-pass (Novak et al., 2022). Unless otherwise specified, we use the diagonal g-prior and a
scalar regularisation parameter. Algorithm 1 summarises our method, Figure 1 shows an illustrative
example, and full algorithmic detail is in Appendix F. An implementation of our method in JAX can
be found here. Additional experimental results are provided in Appendix H and Appendix I.

5.1 ABLATION STUDY: LENET ON MNIST

We first evaluate our approach on MNIST m=10 class image classification, where exact linearised
Laplace inference is tractable. The training set consists of n=60k observations and we employ 3
LeNet-style CNNs of increasing size: “LeNetSmall” (d′=14634), “LeNet” (d′=29226) and “LeNet-
Big” (d′=46024). The latter is the largest model for which we can store the covariance matrix on an
A100 GPU. We draw samples and estimate posterior modes using SGD with Nesterov momentum
(full details in Appendix G). We use 5 seeds for each experiment, and report the mean and std. error.

Comparing sampling objectives We first compare the proposed objective L′ with the one standard
in the literature L, using LeNet. The results are shown in Figure 2. We draw exact samples: (ζ⋆j )j≤k

through matrix inversion and assess sample fidelity in terms of normalised squared distance to
these exact samples ∥ζ−ζ⋆∥2

2/∥ζ⋆∥2
2. All runs share a prior precision of α ≈ 5.5 obtained with EM

iteration. The effective dimension is γ̂ ≈ 1300. Noting that the g-prior feature normalisation results
in TrM = d′, we can see that condition (11) is not satisfied (2× 5.5× 1300 < 29k). Despite this,
the proposed objective converges to more accurate samples even when using a 16-times smaller batch
size (left plot). The right side plots relate sample error to categorical symmetrised-KL (sym. KL) and
logit Wasserstein-2 (W2) distance between the sampled and exact lin. Laplace predictive distributions
on the test-set. Both objectives’ prediction errors stop decreasing below a sample error of ≈0.5 but,
nevertheless, the proposed loss L′ reaches lower a prediction error.

Fidelity of sampling inference We compare our method’s uncertainty using 64 samples against
approximate methods based on the NN weight point-estimate (MAP), a diagonal covariance, and a
KFAC estimate of the covariance (Martens & Grosse, 2015; Ritter et al., 2018) implemented with the
Laplace library, in terms of similarity to the full-covariance lin. Laplace predictive posterior. As
standard, we compute categorical predictive distributions with the probit approximation (Daxberger
et al., 2021a). All methods use the same layerwise prior precision obtained with 5 steps of full-
covariance EM iteration. For all three LeNet sizes, the sampled approximation presents the lowest
categorical sym. KL and logit W2 distance to the exact lin. Laplace pred. posterior (Figure 3, LHS).
The fidelity of competing approximations degrades with model size but that of sampling increases.
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Figure 3: Left: similarity to exact lin. Laplace predictions on MNIST test-set for different approximate
methods applied to NNs of increasing size. Centre right: comparison of EM convergence for a single
hyperparameter across approximations. Right: layerwise convergence for exact and sampling methods.

Accuracy of sampling hyperparameter selection We compare our sampling EM iteration with
16 samples to full-covariance EM on LeNet without the g-prior. Figure 3, right, shows that for a
single precision hyperparameter, both approaches converge in about 3 steps to the same value. In this
setting, the diagonal covariance approximation diverges, and KFAC converges to a biased solution.
We also consider learning layer-wise prior precisions by extending the M-step update from Section
3 to diagonal but non-isotropic prior precision matrices (see Appendix B.4). Here, neither the full
covariance nor sampling methods converge within 15 EM steps. The precisions for all but the final
layer grow, revealing a pathology of this prior parametrisation: only the final layer’s Jacobian, i.e. the
final layer activations, are needed to accurately predict the targets; other features are pruned away.

5.2 RESNET18 ON CIFAR100

We showcase the stability and performance of our approach by applying it to CIFAR100 m=100-way
image classification. The training set consists of n=50k observations, and we employ a ResNet-18
model with d′ ≈ 11M parameters. We perform optimisation using SGD with Nesterov momentum
and a linear learning rate decay schedule. Unless specified otherwise, we run 8 steps of EM with 6
samples to select α. We then optimise 64 samples to be used for prediction. We run each experiment
with 5 different seeds reporting mean and std. error. Full experimental details are in Appendix G.

Stability and cost of sampling algorithm Figure 4 shows that our sample-based EM converges in
6 steps, even when using a single sample. At convergence, α ≈ 104 and γ̂ ≈ 700, so 2×700×104 =
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Figure 4: Left: prior precision optimisation traces for ResNet18 on CIFAR100 varying n. samples.
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Figure 5: Performance under distribu-
tion shift for ResNet18 and CIFAR100.

κ MAP Ensemble (5) KFAC Sampling
marginal LL 1 -1.40± 0.00 -0.90± 0.00 -1.12± 0.01 -1.07± 0.01

joint LL

2 -13.97± 0.01 -6.86± 0.01 -4.92± 0.04 -5.14± 0.04
3 -27.89± 0.03 -14.17± 0.03 -10.83± 0.12 -10.77± 0.09
4 -41.83± 0.03 -22.29± 0.04 -19.02± 0.22 -18.04± 0.18
5 -55.89± 0.02 -31.07± 0.09 -29.40± 0.40 -26.75± 0.26

Table 1: Comparison of methods’ marginal and joint pre-
diction performance for ResNet18 on CIFAR100.

1.4× 107 > 1.1× 107. Thus, (11) is satisfied and L′ is preferred. We use 50 epochs of optimisation
for the posterior mode and 20 for sampling. When using 2 samples, the cost of one EM step with our
method is 45 minutes on an A100 GPU; for the KFAC approximation, this takes 20 minutes.

Evaluating performance in the face of distribution shift We employ the standard benchmark for
evaluating methods’ test Log-Likelihood (LL) on the increasingly corrupted data sets of Hendrycks
& Gimpel (2017); Ovadia et al. (2019). We compare the predictions made with our approach to those
from 5-element deep ensembles, arguably the strongest baseline for uncertainty quantification in deep
learning (Lakshminarayanan et al., 2017; Ashukha et al., 2020), with point-estimated predictions
(MAP), and with a KFAC approximation of the lin. Laplace covariance (Ritter et al., 2018). For the
latter, constructing full Jacobian matrices for every test point is computationally intractable, so we
use 64 samples for prediction, as suggested in Section 4.2. The KFAC covariance structure leads to
fast log-determinant computation, allowing us to learn layer-wise prior precisions (following Immer
et al., 2021a) for this baseline using 10 steps of non-sampled EM. For both lin. Laplace methods, we
use the standard probit approximation to the categorical predictive (Daxberger et al., 2021b). Figure
5 shows that for in-distribution inputs, ensembles performs best and KFAC overestimates uncertainty,
degrading LL even relative to point-estimated MAP predictions. Conversely, our method improves
LL. For sufficiently corrupted data, our approach outperforms ensembles, also edging out KFAC,
which fares well here due to its consistent overestimation of uncertainty.

Joint predictions Joint predictions are essential for sequential decision making, but are often
ignored in the context of NN uncertainty quantification (Janz et al., 2019). To address this, we
replicate the “dyadic sampling” experiment proposed by Osband et al. (2022). We group our test-set
into sets of κ data points and then uniformly re-sample the points in each set until sets contain τ
points. We then evaluate the LL of each set jointly. Since each set only contains κ distinct points,
a predictor that models self-covariances perfectly should obtain an LL value at least as large as its
marginal LL for all values of κ. We use τ=10(κ − 1) and repeat the experiment for 10 test-set
shuffles. Our setup remains the same as above but we use Monte Carlo marginalisation instead of
probit, since the latter discards covariance information. Table 1 shows that ensembles make calibrated
predictions marginally but their joint predictions are poor, an observation also made by Osband et al.
(2021). Our approach is competitive for all κ, performing best in the challenging large κ cases.

5.3 TOMOGRAPHIC RECONSTRUCTION

To demonstrate our approach in dual (kernelised) form, we replicate the setting of Barbano et al.
(2022a;b) and Antorán et al. (2022b), where linearised Laplace is used to estimate uncertainty for
a tomographic reconstruction outputted by a U-Net autoencoder. We provide an overview of the
problem in Appendix G.3, but refer to Antorán et al. (2022b) for full detail. Whereas the authors use
a single EM step to learn hyperparameters, we use our sample-based variant and run 5 steps. Unless
otherwise specified, we use 16 samples for stochastic EM, and 1024 for prediction.

We test on the real-measured µCT dataset of 251k pixel scans of a single walnut released by
Der Sarkissian et al. (2019b). We train d′=2.97M parameter U-Nets on the m=7680 dimensional
observation used by Antorán et al. (2022b) and a twice as large setting m=15360. Here, the U-Net’s
input is clamped to a constant (n = 1), and its parameters are optimised to output the reconstructed
image. As a result, we do not need mini-batching and can draw samples using Matheron’s rule (12).
We solve the linear system contained therein using conjugate gradient (CG) iteration implemented
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Figure 6: Left 3 plots: traces of prior precision, eff. dim., and marginal test LL vs EM steps for the
tomographic reconstruction task with m = 7680. Right: joint test LL for varying image patch sizes.

Table 2: Tomographic reconstruction: test LL and wall-clock times (A100 GPU) for both data sizes.
m = 7680 m = 15360

LL wall-clock time (min.) LL wall-clock time (min.)
Method marginal (10× 10) params optim. prediction marginal (10× 10) params. optim. prediction

MCDO-UNet 0.028 2.474 0 3′ 0.002 2.762 0 3′

lin.-UNet 2.214 2.601 1260′ 196′ − − − −
sampl.-lin.-UNet 2.341 2.869 12′ 14′ 2.310 2.972 15′ 14′

with GPyTorch (Gardner et al., 2018). We accelerate CG with a randomised SVD preconditioner of
rank 400 (alg. 5.6 in Halko et al., 2011). See Appendix G for full experimental details.

Stability and cost of sampling algorithm Figure 6 shows that sample-based EM iteration converges
within 4 steps using as few as 2 samples. Table 2 shows the time taken to perform 5 sample-based EM
steps for both the m=7680 and m=15360 settings; avoiding explicit estimation of the covariance
log-determinant provides us with a two order of magnitude speedup relative to Antorán et al. (2022c)
for hyperparameter learning. By avoiding covariance inversion, we obtain an order of magnitude
speedup for prediction. Furthermore, while scaling to double the observationsm=15360 is intractable
with the previous method, our sampling method requires only a 25% increase in computation time.

Predictive performance Figure 7 shows, qualitatively, that the marginal standard deviation assigned
to each pixel by our method aligns with the pixelwise error in the U-Net reconstruction in a fine-
grained manner. By contrast, MC dropout (MCDO), the most common baseline for NN uncertainty
estimation in tomographic reconstruction (Laves et al., 2020; Tölle et al., 2021), spreads uncertainty
more uniformly across large sections of the image. Table 2 shows that the pixelwise LL obtained
with our method exceeds that obtained by Antorán et al. (2022b), potentially due to us optimising
the prior precision to convergence while the previous work could only afford a single EM step. The
rightmost plot in Figure 6 displays joint test LL, evaluated on patches of neighbouring pixels. Our
method performs best. MCDO’s predictions are poor marginally. They improve when considering
covariances, although remaining worse than lin. Laplace.
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Figure 7: Original 501×501 pixel walnut image and reconstruction error for a m=7680 dimensional
observation, along with pixel-wise std-dev obtained with sampling lin. Laplace and MCDO.

6 CONCLUSION

Our work introduced a sample-based approximation to inference and hyperparameter selection in
Gaussian linear multi-output models. This allowed us to scale the linearised Laplace method to
ResNet-18 on CIFAR100, where it was computationally intractable with existing methods. We also
demonstrated the strength of the approach on a high resolution tomographic reconstruction task,
where it decreases the cost of hyperparameter selection by two orders of magnitude. The uncertainty
estimates obtained through our method are well-calibrated not just marginally, but also jointly across
predictions. Thus, our work may be of interest in the fields of active and reinforcement learning,
where joint predictions are of importance, and computation of posterior samples is often needed.
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REPRODUCIBILITY STATEMENT

In order to aid the reproduction of our results, we provide a high-level overview of our procedure in
algorithm 1 and the fully detailed algorithms we use in our two major experiments in Appendix F.
Appendix G provides full experimental details for all datasets and models used in our experiments.
Our code is available in a repository at this link.
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A RELATED WORK

Bayesian Gaussian linear models This work builds on the rich literature of Bayesian linear
regression (Gull, 1989; Bishop, 2006; Rasmussen & Williams, 2006). Specifically, we present
a stochastic approximation to the iterative algorithm for hyperparameter selection introduced by
(Mackay, 1992) and extended by Tipping (2001); Tipping & Faul (2003); Wipf & Nagarajan (2007);
Antorán et al. (2022c). Analytical tractability makes linear models ubiquitous in machine learning,
with applications in genomics (Runcie et al., 2021), reinforcement learning (Ash et al., 2022), and
pandemic modelling (Nicholson et al., 2022), among others. Alas, linear models are held back by
a cost of inference cubic in the number of parameters when expressed in primal form, or cubic in
the number of observations for the dual (i.e. kernelised or Gaussian Process) form. Additionally,
for non-Gaussian likelihoods, e.g. in classification, inference is no longer closed form. The most
common approximations used in these settings are Laplace’s method (Mackay, 1992) and variational
inference (Hensman et al., 2013). Khan et al. (2019) and Adam et al. (2021) show that every Gaussian
approximation corresponds to the true posterior of a surrogate regression problem with the same
features, a fact which we use in this work to apply sample-then-optimise to Laplace posteriors.

Sample-then-optimise Papandreou & Yuille (2010); de G. Matthews et al. (2017) phrase sampling
from a conjugate Gaussian-linear model as solving a perturbed quadratic optimisation problem. This
method has been applied for uncertainty estimation in non-linearised NNs by Osband et al. (2018;
2021), and Pearce et al. (2020), although in these setting it does not draw exact posterior samples.
In this work, we show sample-then-optimise to be the primal form of Matheron’s rule (Journel &
Huijbregts, 1978; Hoffman & Ribak, 1991), a method for updating jointly Gaussian samples into
conditional samples, which was recently repopularised by Wilson et al. (2020).

Linearised neural networks Introduced by Mackay (1992), this approximation yields closed-
form errorbars for Laplace posteriors. Lawrence (2000) and Ritter et al. (2018) found the Laplace
approximation to underperform without the linearisation step. Khan et al. (2019) and Immer et al.
(2021b) re-popularised the linearisation step by showing that it improves the quality of uncertainty
estimates. Kristiadi et al. (2020) show that the Laplace approximation is sufficient to resolve certain
pathologies of point-estimated NNs’ predictions. Immer et al. (2021a) and Antorán et al. (2022a;c)
explore the linear model’s evidence for model selection. Immer et al. (2022) shows the objective can
even be used to learn invariances in deep models. Daxberger et al. (2021b) and Maddox et al. (2021)
introduce subnetwork and finite differences approaches, respectively, for faster inference with the
linearised model. This line of work is also closely related to the neural tangent kernel (Jacot et al.,
2018; Lee et al., 2019; Novak et al., 2020) in which NNs are linearised at initialisation.

The g-prior, originally introduced by Zellner (1986), consists of a centred Gaussian with covariance
matching the inverse of the Fisher information matrix. Resultantly, the g-prior ensures inferences are
independent of the units of measurement of the covariates (Minka, 2000). Since then, it has extensively
used in the context of model selection for generalised linear models (Liang et al., 2008; Bové &
Held, 2011; Baragatti & Pommeret, 2012). In the large-scale setting, we overcome the computational
intractability of the Fisher by diagonalising the g-prior while preserving its scale-invariance property.

B MODEL EVIDENCE LOWER BOUND AND THE EFFECTIVE DIMENSION

B.1 EQUIVALENT FORMULATIONS OF EFFECTIVE DIMENSION

We begin by relating two standard forms of effective dimension, which we use throughout. Starting
with the form standard in the kernel-based literature (that without an explicit d′ dependence),

γ = Tr {(A+M)−1M} = Tr {(I +A−1M)−1A−1M} = Tr {I − (I +A−1M)−1} (18)

= d′ − Tr {A(A+M)−1}, (19)

we have arrived at the form used within the finite-dimensional linear modelling literature (Mackay,
1992; Wipf & Nagarajan, 2007; Maddox et al., 2020).
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B.2 DERIVATION OFM AS A LOWER BOUND ON THE MODEL EVIDENCE

Let pθ be the Lebesgue density of N (Φθ,B−1), P = N (0, A′−1) and Q = N (θ̄, (M + A′)−1).
Then,

log p(Y ;A′) = log

∫
pθ(Y )dP = log

∫
pθ(Y )

dP

dQ
dQ ≥

∫
log

[
pθ(Y )

dP

dQ

]
dQ (20)

=

∫
log pθ(Y )dQ− D(Q||P ). (21)

where D denotes the KL-divergence. Starting with the first term,∫
log pθ(Y )dQ =

1

2

∫
−n log 2π + log detB− (Y − Φθ)TB(Y − Φθ)dQ (22)

=
1

2
[−n log 2π + log detB]− 1

2

∫
(Y − Φθ)TB(Y − Φθ)dQ, (23)

and expanding the quadratic form,∫
(Y − Φθ)TB(Y − Φθ)dQ = Y TBY − 2Y TBΦ

∫
θdQ+

∫
θTΦTBΦθdQ (24)

= Y TBY − 2Y TBΦθ̄ +

∫
θTMθdQ. (25)

To handle the final integral, consider that

γ = Tr {M(M +A′)−1} (26)

= Tr {M
∫

(θ − θ̄)(θ − θ̄)T dQ} (27)

= −Tr {Mθ̄θ̄T }+ Tr {M
∫
θθT dQ} (28)

= −θ̄TMθ̄ +

∫
θTMθdQ, (29)

and thus ∫
log pθ(Y )dQ =

1

2

[
log detB− n log 2π − (Y − Φθ̄)TB(Y − Φθ̄)− γ

]
(30)

= log pθ̄(Y )− 1

2
γ. (31)

The KL between two multivariate Gaussians is a standard result, yielding

D(Q||P ) = 1

2

[
− log detA′ + log det(M +A′)− d′ + θ̄TA′θ̄ + Tr {A′(M +A′)−1}

]
(32)

=
1

2

[
− log detA′ + log det(M +A′) + θ̄TA′θ̄ − γ

]
, (33)

where we used that γ = d′ − Tr {A′(M +A′)−1}.
Putting together (31) and (33), we obtain

log p(Y ;A′) ≥ log pθ̄(Y )− 1

2
log det(A′−1M + I)− 1

2
∥θ̄∥2A′ =M(A′), (34)

which is the stated result up to taking C = log pθ̄(Y ).

B.3 FIRST ORDER OPTIMALITY CONDITION FORM

Consider the derivative ofM. We have,

∇M(A) = −1

2

[
∇∥θ̄∥2A +∇ log det(A+M)−∇ log detA

]
, (35)
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where we expanded log det(I + A−1M) = log det(A + M) − log detA. Taking the respective
derivatives and setting equal to zero at A, this leads to the condition

θ̄θ̄T = (I − (I +A−1M)−1)A−1. (36)

Post-multiplying by A and applying the push-through identity, we obtain

θ̄θ̄TA =M(A+M)−1. (37)

For the above to hold, it is necessary that the traces of both sides are equal. Thus,

∥θ̄∥2A = Tr {θ̄θ̄TA} = Tr {M(A+M)−1} = γ, (38)

which is the stated first order optimality condition, up to a cyclic permutation.

B.4 M-STEP FOR FEATURE-WISE REGULARISATION STRENGTHS

We can leverage the primal form expression for the effective dimension given in Appendix B.1 to
extend the above first order optimality condition to the feature-wise regulariser setting.

Consider a sub-vector of our weight vector contiguous between the ith and jth weights written as
θ̄i:j . Note that we only choose contiguous weights for notational convenience but it is not necessary
to do so in general.

The first order condition from Appendix B.3 is satisfied if for any i, j with i < j we have

α∥θ̄i:j∥2 = j − i−
j∑

k=i

[A]kk[(A+M)−1]kk := γi:j . (39)

We assume [A]kk = α for all i ≤ k < j. Thus, we may update the regulariser for each separate
weight sub-vector as α = γi:j/∥θ̄i:j∥2.

C ANALYSIS OF LOSSES AND LOSS GRADIENT ESTIMATOR VARIANCES

C.1 ON LOSS MINIMA

The losses L and L′ are strictly convex, thus to confirm they have the same unique minimum, it
suffices to consider the respective first order optimality conditions, ∇L(ζ) = 0 and ∇L′(ζ ′) = 0.
We have,

∇L(ζ) = ΦTB(Φζ − E) +A(ζ − θ0), (40)

and

∇L′(ζ ′) = ΦTBΦζ ′ +A(ζ ′ −A−1ΦTBE − θ0) (41)

= ΦTB(Φζ ′ − E) +A(ζ ′ − θ0) (42)

Thus ζ = ζ ′ almost surely. Moreover, L′(z) = L(z) +C for all z, for C a constant independent of z.

To determine the distribution of ζ, note that it is a linear transformation of zero-mean Gaussian
random variables, and thus itself a zero-mean Gaussian random variable. Rearranging the first order
optimality condition, we find that

ζ = H−1(ΦTBE +Aθ0). (43)

Thus

E[ζζT ] = H−1E[(ΦTBE +Aθ0)(ΦTBE +Aθ0)T ]H−1 (44)

= H−1
(
ΦTBE[EET ]BΦ +AE[θ0θ0]A+ 2ΦTBE[E(θ0)T ]A

)
H−1 (45)

= H−1(ΦTBΦ+A)H−1 = H−1HH−1 = H−1. (46)

And so ζ ∼ N (0, H−1) = Π0 as claimed.
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C.2 LOSS GRADIENT VARIANCE CONDITION

Taking j ∼ Unif({1, . . . , n}), the gradient estimators for the data-dependent terms of L and L′ are

ĝ = n∇∥ϕ(xj)z − εj∥2Bj
= nϕ(xj)

TBj(ϕ(xj)z − εj) (47)

and
ĝ′ = n∇∥ϕ(xj)z∥2Bj

= nϕ(xj)
TBjϕ(xj)z, (48)

respectively. Their variances are related as

Var(ĝ) = Var(nϕ(xj)TBj(ϕ(xj)z − εj)) (49)

= Var(nϕ(xj)TBjϕ(xj)z) + Var(nϕ(xj)TBjεj)

− 2Cov(nϕ(xj)TBjϕ(xj)z, nϕ(xj)
TBjεj) (50)

= Var(ĝ′) + Var(nϕ(xj)TBjεj)− 2Cov(nϕ(xj)TBjϕ(xj)z, nϕ(xj)
TBjεj) (51)

Evaluating the variance and covariance, we have

Var
(
nϕ(xj)

TBjεj
)
= nVar(ΦTBE) (52)

and
Cov(nϕ(xj)TBjϕ(xj)z, nϕ(xj)

TBjεj) = nCov(ΦTBΦz, ΦTBE), (53)

and thus
Varĝ − Varĝ′ = n

[
Var(ΦTBE)− 2Cov(ΦTBΦz,ΦTBE)

]
=: n∆. (54)

C.3 CONDITION AT CONVERGENCE

Now consider Tr∆ for z = ζ ∼ Π0, the optimum of both L and L′. From the first order optimality
condition,

ζ = H−1(ΦTBE +Aθ0). (55)

Proceeding to rearrange the condition at z = ζ,

Tr∆ = Tr {EΦTBE(ΦTBE − 2ΦTBΦζ)T } (56)

= Tr {EΦTBE(ΦTBE − 2ΦTBΦH−1(ΦTBE +Aθ0))T } (57)

= Tr {EΦTBE(ΦTBE − 2ΦTBΦH−1(ΦTBE +AE[θ0]))T } (58)

= Tr {EΦTBE(ΦTBE − 2ΦTBΦH−1ΦTBE)T }, (59)

= Tr {ΦTBE[EET ](BΦ− 2BΦH−1ΦTBΦ)}, (60)

= Tr {ΦTBΦ(I − 2H−1ΦTBΦ)} (61)

where we substituted in the definition of ζ, then used that E and θ0 are independent, and that
E[θ0] = 0, and finally that E[EET ] = B−1.

Writing M = ΦTBΦ and recalling that H = (M +A), we have

Tr∆ = Tr {M(I − 2(M +A)−1M)}, (62)

= Tr {M(I − 2(A−1M + I)−1A−1M)}, (63)

= Tr {M(I − 2(I − (A−1M + I)−1)}, (64)

= Tr {M(−I + 2(M +A)−1A)} (65)

= −Tr {M}+ 2Tr {M(M +A)−1A}, (66)

where we have used that (A−1M + I)−1A−1M = I − (A−1M + I)−1 for the fourth equality.
Now consider the isotropic prior case A = αI and recall the effective dimension is written as
γ = Tr {M(M +A)−1}. The above implies Tr∆ > 0 if and only if 2αγ > TrΦTBΦ.
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C.4 ANALYSING CONDITION AT CONVERGENCE

To gain some intuition for the condition at convergence, denote by λ1, . . . , λd′ the eigenvalues of M
(with multiplicity). We can use these to restate the condition as

2αγ = 2α

d′∑
j=1

λj
λj + α

>

d′∑
j=1

λj = Tr {M}. (67)

This formulation of effective dimension gives an interpretation of a soft count of the number of
dimensions for which λj is larger than α; in that sense, λj measures how well determined the
corresponding dimension of the weight vector θ is by the observed data. From here, note that

2αλj
λj + α

> min{λj , α}, (68)

and thus it is sufficient for Tr∆ > 0 to hold at convergence that α > λj for all j (but, of course, not
necessary), yielding the intuition that L′ is preferred when the problem is heavily regularised.

D DUAL FORM OF THE SAMPLE-THEN-OPTIMISE LOSS: MATHERON’S RULE

Both losses L and L′ result in a random variable ζ ∼ Π0 given by

ζ = H−1(ΦTBE +Aθ0). (69)

Recalling that H = A+ΦTBΦ and using the push-through identity, we can express ζ equivalently as

ζ = H−1((H − ΦTBΦ)θ0 +ΦTBE) (70)

= θ0 +H−1ΦTB(E − Φθ0) (71)

= θ0 +A−1(I +ΦTBΦA−1)−1ΦTB(E − Φθ0) (72)

= θ0 +A−1ΦTB(I +ΦA−1ΦTB)−1(E − Φθ0) (73)

= θ0 +A−1ΦT (B−1 +ΦA−1ΦT )−1(E − Φθ0) (74)

Now taking a sample of the posterior Gaussian process evaluated at input x to be G = ϕ(x)ζ and the
corresponding sample of the prior process to be G0 = ϕ(x)θ0, premultiplying the above expression
by ϕ(x) we obtain

G = G0 + ϕ(x)A−1ΦT (B−1 +ΦA−1ΦT )−1(E − Φθ0) (75)

which is Matheron’s rule.

E RESOLVING FEATURE SCALE INDETERMINACIES IN THE NN JACOBIAN
WITH THE G-PRIOR

Antorán et al. (2022c) show that for NNs with normalisation layers, the Jacobian features ϕ(·) =
∇wf(w̄, ·) corresponding to each NN layer are scaled arbitrarily. To illustrate this, we divide the NN
linearisation point into the concatenation of two weight vectors w̄ = [w̄0, w̄1]. We assume the layer
containing w̄0 is followed by a normalisation layer, but not that containing w̄1, which leads to the
invariance

f([kw̄0, w̄1], ·) = f([w̄0, w̄1], ·) (76)
for all k > 0.

While f is invariant to this scaling, the Jacobian feature embeddings ϕ(·) = ∇wf(w̄, ·) are not. We
separate the embeddings as

ϕ(x) = [ϕ0(·), ϕ1(·)] = [∇w0
f(w̄, ·),∇w1

f(w̄, ·)]. (77)

Antorán et al. (2022c) show that, given a reference pair ([w̄0, w̄1], [ϕ0(x), ϕ1(x)]), and for w̄0

normalised, scaling w̄0 by k results in the pair ([kw̄0, w̄1], [k
−1ϕ0(x), ϕ1(x)]). Thus, using a single

prior precision parameter, the regularisation strength applied to the weights multiplying ϕ0(x) relative
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to those multiplying ϕ1(x) will increase with k. The value of k, the scale of the linearisation point,
depends on exogenous factors such as learning rate or batch size—and importantly is independent of
the data, since it does not affect the output.

One way to resolve this is to assign the weights w̄0 and w̄1 separate regularisation parameters and
learn these using the EM procedure outlined in Section 2. However, instead, consider using the g-prior
normalised features ϕ′ introduced in Section 4.3, and specifically, the scaling vector corresponding
to normalised and non-normalised components s = [s0, s1]. For a reference pair ([w̄0, w̄1], [s0, s1])
and for w̄0 normalised, the k-scaled pair is ([kw̄0, w̄1] and

[diag(k−1ΦT
0 BΦ0k

−1)⊙− 1
2 , diag(ΦT

1 BΦ1)
⊙− 1

2 ] = [ks0, s1]

where ⊙ denotes an elementwise power. Since the k-scaled features are [k−1ϕ0(·), ϕ1(·)], when
applying the g-prior normalisation we recover a feature vector independent of k. This resolves the
aforementioned pathology.

F A PRACTICAL IMPLEMENTATION OF SAMPLE-BASED INFERENCE AND
HYPERPARAMETER LEARNING FOR LINEARISED NEURAL NETWORKS

Algorithm 1 provides a high level overview of the procedure used for our experiments. This appendix
expands on this, providing fully detailed algorithms for both sampled linearised Laplace applied to
classification networks and the kernelised version of the method that we use for tomographic image
reconstruction.

Image classification Algorithm 2 provides an algorithm for linearised Laplace inference using
the stochastic EM iteration presented in Section 3 for hyperparameter selection and the g-prior
normalisation described in Section 4.3. Therein, µ denotes the softmax function. The curvature of
the cross entropy loss at xi, denoted Bi, is given by Bi = diag(pi)− pipTi for pi = µ(f(w̄, xi)) our
neural network’s predictive probabilities. The notation ⊙ refers to the elementwise product and to the
elementwise power when used in an exponent. We refer to the Cholesky factorisation of a positive
definite matrix as its 1/2th power.

In order to limit computational cost, we sample the stochastic regularisation terms (θnj ), per (7), only
once at the start. Not resampling these at each E step results in the optima of the sampling objective
being close for successive iterations. This comes at the cost of a small bias in our estimator which we
find to be negligible in practise. We separate (θnj ) into a sum consisting of a prior sample from (θ0j )

and a data dependent term, denoted (θ′j). The former scales with α−1/2 while the latter with α−1 so
this allows us to update each term in closed form each time α changes. We initialise our samples at
(θ0j ) at the first EM iteration. We warm-start the posterior mode θ̄ at the previous solution between
iterations, initialising it to zero for the first iteration. We estimate the g-prior scaling vector s by
noting that it relates to θ′1 as s = α−1 (E[θ′1 ⊙ θ′1])⊙−1/2.

We optimise both our samples ζ and posterior mean θ̄ using stochastic gradient descent with a
Nesterov momentum parameter of 0.9. We find that Polyak averaging is very effective at reducing
gradient variance when optimising the sampling objective (per Dieuleveut et al., 2017). However, it
has two limitations 1) it slows down optimisation, increasing the number of steps needed 2) it doubles
the memory requirement needed to store posterior samples. This decreases the number of samples
that can be optimised in parallel on a single hardware accelerator. Instead we employ a linear learning
rate decay schedule, which we find to work nearly as well while not increasing computational burden.
The regularised classification loss L is non-quadratic and thus Polyak averaging is no longer optimal
(Bach, 2014). Thus here we also employ a linear learning rate decay schedule. For optimising both
the sampling and classification loss objectives we find that gradient clipping helps prevent oscillations
at the start of training and as a result speeds up convergence.

The key hyperparameters of our algorithm are the number of samples to draw for the EM iteration,
the number of EM steps to run, and SGD hyperparameters: learning rate, linear decay rate, number
of steps, batch-size and gradient clipping. Empirically, we find that at most 5 EM steps are necessary
for hyperparameter convergence and that as little as 3 samples can be used for the algorithm without
degrading performance. Choosing SGD hyperparameters is more complicated. However, we are aided
by the fact that lower loss values correspond to more precise posterior mean and sample estimates.
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Algorithm 2: Sampling-based linearised Laplace inference for image classification
Inputs: Linearised network h, linearisation point w̄, observations x1, . . . , xn, negative

log-likelihood function ℓ, initial precision α > 0, number of samples k

Function B(i):
pi ← µ(h(w̄, xi))
return diag(pi)− pipTi

for j = 1, . . . , k do
θ0j ∼ N (0, α−1I)

θ′j ← α−1
∑n

i=1 ϕ(xi)
T εj where εj ∼ N (0, B(i))

ζj ← θ0j

θ̄ ← 0

s← α−1
[
1
k

∑k
j=1 θ

′⊙2
j

]⊙−1/2

while α has not converged do
for j = 1, . . . , k do

ζj ← SGDz

(
∥Φ(s⊙ z)∥2B + α∥z − θ0j − (s⊙ θ′j)∥22, init=ζj

)
θ̄ ← SGDθ

(∑n
i=1 ℓ(yi, h((s⊙ θ), xi) + α∥θ∥22, init=θ̄

)
γ̂ ← 1

k

∑k
j=1

∑n
i=1 ∥(ζj ⊙ s)Tϕ(xi)TB(i)

1
2 ∥22

α′ ← γ̂/∥θ̄∥22
for j = 1, . . . , k do

θ0j ←
√

α
α′ θ

0
j

θ′j ← α
α′ θ

′
j

α← α′

Output: Optimised precision α and weight samples ζ1, . . . , ζk

Algorithm 3: Kernelised sampling-based linearised NN inference for CT reconstruction
Inputs: Linearised network h, linearisation point w̄, measurements Y , discrete Radon transform

U , U-Net Jacobian Φ, initial precision α > 0, number of samples k, noise precision B

Function Kvp(v, α, UΦ, s, B−1):
return UΦ(α−1diag(s⊙2))ΦTUT v +B−1v

s← (
∑

i<m(UiΦ)
⊙2)−1/2

while α has not converged do
P ← Compute-preconditioner(Kvp)
for j = 1, . . . , k do

ζ0j ← UΦ(s⊙ θ0j ) + Ej where Ej ∼ N (0,B−1) and θ0j ∼ N (0, A−1)

cj ← CG
(
Kvp, ζ0j , precond.=P

)
ζj ← ζ0j − UΦ(α−1diag(s⊙2))ΦTUTcj

δ ← U(Φw̄ − f(w̄))
c← CG (Kvp, Y+δ, precond.=P )
θ̄ ← s⊙ α−1ΦTUTc
γ̂ ← 1

k

∑k
j=1 ∥UΦ(s⊙ ζj)∥22

α′ ← γ̂/∥θ̄∥2
α← α′

Output: Optimised precision α
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As a result, we can tune these parameters on the train data, no validation set is required. The specific
hyperparameter values used in our experiments are provided in Appendix G.

A final thing to note is that due to the presence of normalisation layers and a dense final layer, for
our classification networks, the constant-in-θ terms cancel in the linearised model and we are left
with h(θ, x) = ϕ(x)θ (Antorán et al., 2022c). In our algorithm, this fact is only relevant to the
computation of the posterior mode θ̄ as the optima of L(h(θ, ·)).

Tomographic reconstruction Algorithm 3 is the kernelised version of algorithm 2 that we use for
tomographic reconstruction. This problem is described in detail in Appendix G.3.

Distinctly from the image classification setting, tomographic reconstruction is a regression problem
for which we use a Gaussian likelihood with fixed noise precision B = I . The linear model’s loss
function L is thus quadratic and the Laplace approximation is not needed. Both the sample loss and
the linear model’s loss can be optimised in closed form by solving a linear system of equations given
by the observation covariance, i.e. the kernel matrix, UΦ(α−1diag(s⊙2))ΦTUT + B−1 where the
linear operator U represents the discrete Radon transform and combines with the U-Net Jacobian to
build the feature embedding UΦ.

We solve against the kernel matrix using the preconditioned conjugate gradient (CG) method de-
scribed by Gardner et al. (2018). As a preconditioner, we compute a 400-dimensional randomised
eigendecomposition (alg. 5.6 in Halko et al., 2011) preconditioner, which we invert using the
Woodbury identity. We find the preconditioner to provide important speedups to CG convergence and
we re-estimate it after every hyperparameter update. Both computing the preconditioner and running
preconditioned CG optimisation only interact with the kernel matrix by computing its products with
vectors. Our algorithm defines our kernel vector product Kvp routine explicitly, as it is central to our
implementation. We find that the GPyTorch CG implementation does not benefit from warm-starting
the solution vector. Consequently, we re-draw prior and noise samples (θ0, E) at every E-step.

Similarly to image classification, the key hyperparameters are the number of samples to draw for
the EM iteration, the number of EM steps to run, and CG optimisation hyperparameters. Again, the
number of samples can be kept low (e.g. 2) and we find around 5 steps to suffice for convergence
of the prior precision α. The key conjugate gradients hyperparameters are the tolerance at which to
stop optimisation and the maximum number of optimisation steps if the tolerance is not reached. We
provide our choices in Appendix G.3 but note that our use of a large preconditioner results in CG
always hitting the desired low error tolerance within 10 steps and never stopping due to reaching the
maximum number of steps. In turn, this makes our kernelised EM algorithm notably faster than its
primal form SGD-based counterpart.

A particularity of this setting is that the U-Net does not have a dense final layer. As a result, the
constant-in-θ terms in the linearised function h do not cancel (see Section 4.1), leading to the
appearance of the target offset term δ when solving for the posterior mean.

G EXPERIMENTAL DETAILS

In this appendix we provide experimental details and hyperparameter settings omitted from the main
text.

G.1 MNIST EXPERIMENTS

MNIST m=10 way classification experiments were performed using the LeNet-style CNN archi-
tectures of increasing size employed by Antorán et al. (2022c): “LeNetSmall” (d′=14634), “LeNet”
(d′=29226) and “LeNetBig” (d′=46024). We note that these models contain batch normalisation
layers. Each model was trained with using SGD with momentum of 0.9 for 90 epochs with a learning
rate drop of a factor of 10 every 30 epochs. The MNIST dataset was downloaded from PyTorch
torchvision. We employ standard per-channel mean and std-dev standardisation preprocessing
and two pixel shift and crop data augmentation. For posterior mode optimisation and sampling, we do
not perform data augmentation as to avoid cold posterior effects (Izmailov et al., 2021). The details of
our SGD approaches to convex optimisation for obtaining posterior modes and samples are as follows
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• Posterior mode optimisation: The linearised NN weights are trained using SGD with a
Nesterov momentum coefficient of 0.9, and batch size 1000 for 40 epochs. We clip gradients
to a maximum norm of 1. We use an initial learning rate of 1e − 2 when using standard
isotropic or layerwise Gaussian priors, and 1 for the g-prior. We employ a linear decay
schedule that reduces the lr by a factor of 330 over the first 75% of the training procedure
and holds it constant afterwards.

• Sampling: We optimise 32 samples in parallel using SGD with Nesterov momentum
(=0.9) and a batch size of 1000 for 20 epochs. For standard Gaussian priors (isotropic and
layerwise), we use a learning rate of 2e−1, whereas for the g-prior, we find a higher learning
rate of 200 to work best.

Hyperparameter optimisation: We tuned the learning rate, decay schedule and gradient clipping
strength using a rough grid search over multiple orders of magnitude. We chose the settings that
reached the lowest loss values. These can be evaluated with just the train set. We chose the largest
batch size that could accommodate optimising 32 samples in parallel on a single hardware accelerator.
We note that posterior mode and sample optimisation converge in less than half of the total epochs
we use for their optimisation. The numbers of epochs chosen were set to be large enough to ensure
convergence and not tuned. A decrease in computational cost can likely be achieved by stopping
sample optimisation earlier.

Baseline methods. For the comparison of learning a single precision hyperparameter and layerwise
hyperparameters in Figure 3, we extend the M-step update to as αl = γl/∥θ̄l∥2

2 where l indexes each
layer’s attributes, as done in (Mackay, 1992; Tipping, 2001). For the MAP, diagonal covariance
and KFAC covariance baselines, we use the same pre-trained models when possible (i.e. not for the
ensembles or dropout baselines). Since all baselines share the same linearisation point, they also
share the same mean predictions. Differences in performance among baselines are thus only due to
differences in uncertainty estimation. The diagonal approximation to the covariance is constructed
by first computing the diagonal of the Hessian M and the inverting it. For the KFAC covariance
approximation, we exploit the equivalency between the Generalised Gauss Newton matrix (i.e. the
Hessian of the linear model h) and the Fisher information matrix for exponential family likelihoods
(i.e. the categorical). This allows us to formulate the Hessian as an expectation of likelihood gradients,
which in turn we approximate using a single sample per training observation, as in (Daxberger et al.,
2021a). For completeness, we also state the probit approximation for sampled predictive posteriors
over logits. For input x and samples ζi, . . . , ζk, the predictive probability for class i ∈ ∥1, . . . ,m∥ is
given by

softmax

f(w̄, x)⊙ (1 +
π

2k

∑
j<k

(ϕ(x)ζj)
⊙2)⊙−0.5


i

.

G.2 CIFAR100 CLASSIFICATION

CIFAR100 m=100 way classification experiments were performed using ResNet18 mod-
els (d′ ≈ 11M ) with specific architecture details matching the PyTorch torchvision
implementation. We train these models using SGD with momentum of 0.9 for 300 epochs. The
starting lr is 0.1 and we reduce it by a factor of 10 every 100 epochs. The CIFAR100 dataset was
also downloaded using torchvision and our data preprocessing and augmentation also follow
the default implementation from this library. For posterior mode optimisation and sampling, we do
not perform data augmentation. The SGD details used to solve the convex optimisation problems
required for obtaining posterior modes and drawing samples are as follows

• Posterior mode optimisation: The linearised NN weights are trained using SGD with
Nesterov momentum (=0.9) and a batch size of 2000 for 40 epochs. We employ a linear
decay learning rate schedule with an initial learning rate of 1e−1. It is decreased by a factor
of 330 over the first 75% of training, and then held constant. We also employ gradient
clipping with maximum norm= 0.1.

• Sampling: We optimise 6 samples in parallel using SGD with Nesterov momentum (=0.9)
and a batch size 100 for 20 epochs. All other details match those of posterior mode
optimisation.
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Upon convergence of the EM algorithm, we draw 64 further samples using the optimal prior precision
by following the optimisation procedure described above. We initialise these samples at prior samples
drawn with the optimised prior precision.

Hyperparameter optimisation: We tuned the learning rate, decay rate and gradient clipping strength
using a rough grid search over orders of magnitude. We also chose the largest batch size that for
which we could simultaneously optimise 6 samples in parallel on a single hardware accelerator.
Similarly to the MNIST experiments, we did not optimise the number of optimisation epochs and
instead chose large values that would ensure convergence. It is likely that our EM iteration can be
sped up by decreasing the duration of the convex optimisation routines.

Details for baselines and hyperparameters not mentioned explicitly in this subsection match those
given for MNIST in the previous subsection.

G.2.1 EFFICIENT κ-ADIC SAMPLING

Osband et al. (2022; 2021) introduced dyadic test input sampling (κ = 2) as a practical way of
evaluating joint predictions in discriminative tasks. This method samples κ = 2 random anchor
points from the test dataset, and then randomly resamples them to create a batch of size τ = 10. Test
log-likelihood is evaluated jointly for each batch as

log

∫
exp

∑
i≤τ

ℓ(yi, f(θ, xi))

 dΠ,

for f the model being evaluated and Π its posterior distribution over model parameters. This quantity
can be estimated with posterior samples ζ1, . . . , ζk ∼ Π as

log
1

k

∑
j≤k

exp

∑
i≤τ

ℓ(yi, f(ζj , xi))

 .

We extend this evaluation approach to larger κ and τ values without increasing computational cost.
We randomly sample κ integers {b1, . . . , bκ} such that they sum to τ , i.e

∑κ
i ki = τ . The joint

log-likelihood over the batch of size τ with κ unique datapoints can then be estimated as

log
1

k

∑
j≤k

exp

∑
l≤κ

blℓ(yl, f(ζj , xl))

 .

where the inner sum is over the κ distinct elements in the batch instead of the “total batch size” τ . This
is equivalent to the formulation proposed in Osband et al. (2022) for dyadic sampling, when κ = 2
and τ = 10. We note that it is not possible to achieve augmented dyadic sampling, as described in
(Osband et al., 2021), with this approach. However the authors mention that there is not a significant
difference in the relative performance of methods when using augmented dyadic sampling compared
to regular dyadic sampling. We introduce a final step however, which is to repeat the computation for
multiple shuffles (10) of the test dataset. This eliminates variance in our results from the choice of
the κ observations which get grouped together in each batch.

G.3 TOMOGRAPHIC RECONSTRUCTION

Problem setup Tomographic reconstruction consists in solving a linear inverse problem in imaging
where we observe a set of measurements y ∈ Rm, which we assume to be generated as y=Ux∗ + η
for U ∈ Rm×d the discrete Radon transform, x∗ ∈ Rd the image to reconstruct and η ∼ N (0, I)
random noise. We have m≪ d, making the problem underconstrained. Our specific tomographic
reconstruction task closely follows the one from Barbano et al. (2021). We perform a sparse-view
reconstruction of an image of a slice of a walnut from a sub-sampled set of measurements. Specifically,
from the full measurement set of (Der Sarkissian et al., 2019a), which containing scans at 1200
equidistant angles over [0, 360◦), we choose our measurement set by subsampling angles by a factor
of either 10x or 20x, leading to measurements of size m = 15360 or m = 7680. As in Barbano et al.
(2021); Antorán et al. (2022b); Barbano et al. (2023), we reduce the original 3D scan geometry to
the 2D slice of interest by selecting the relevant subset of measurement pixels. We assemble the
Radon operator U as a sparse matrix taking in an image of resolution (501px)2 and outputting a
measurement tensor coherent with the described geometry.
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Figure 8: Left: empirical coverage of test targets for posterior credible intervals of increasing width
for our U-net tomographic reconstruction experiment (Section 5.3). Right: confidence vs accuracy
plot (also known as a reliability diagram) for our CIFAR100 classification experiment (Section 5.2).

Methods To provide a reconstruction, we use the Deep Image prior (Ulyanov et al., 2020) which
trains the parameters w ∈ Rd′

of a fully convolutional U-Net autoencoder f : Rd′ → Rd, where
the input is fixed and thus absent from our notation, until a satisfactory reconstruction f(w̄) is
obtained. The U-Net network architecture is the one proposed in (Baguer et al., 2020). The
optimisation of the U-Net parameters follows Barbano et al. (2021), although we note that faster
optimisation strategies exist (Barbano et al., 2023). To estimate the uncertainty in this reconstruction,
we linearise the U-Net around w̄, as described in Section 4.1. This leaves us with a model affine
in the parameters and with design matrix UΦ ∈ Rm×d′

. We may now proceed with linear model
inference. While (Antorán et al., 2022b) use the traditional EM iteration described in Section 2, we
use the sample-based one from Section 3. For evaluation, we use the non-sparse reconstruction (using
1200 angles) provided by (Der Sarkissian et al., 2019a) as the ground truth image x∗. To evaluate
joint log-likelihoods we estimate the predictive covariance matrix for patches of neighbouring pixels
using samples. Covariance matrix estimates from samples are known to be unreliable. We use the
stabilised formulation of (Maddox et al., 2019): Σ̂ = 1

2k

[∑k
j=1 x̂

2
j + x̂j x̂

T
j

]
for (x̂j)kj=1 samples

from the predictive posterior over a patch. We then construct predictive distributions over pixels as
N (f(w̄), Σ̂).

Hyperparameters We employ a low CG tolerance of 1e− 3 and a maximum number of iterations
of 150, which is never reached in practise as the error tolerance level is always hit in less steps.

H CALIBRATION OF PREDICTIVE DISTRIBUTIONS

This appendix evaluates the calibration of the predictive distributions provided by the methods
under consideration in our CIFAR100 classification experiment (Section 5.2) and U-net image
reconstruction experiment (Section 5.3).

For classification, we separate our predicted probabilities into 10 equal width bins between 0 and 1.
For each bin, we plot the proportion of targets that coincide with the class for which the predicted
probability falls into the bin. This is shown on the right hand side of Figure 8. Consistent with the
results from the main text, KFAC overestimates uncertainty at all confidence levels whereas MAP
underestimates it. Both sample-based linearised Laplace and ensembling show significantly improved
calibration. While ensembles show a small amount of uncertainty overestimation consistently, our
method underestimates uncertainty for low predicted probabilities and overestimates it for large
predicted probabilities.

For image reconstruction regression, we first compute normalised residuals by subtracting our
predictions from the targets and dividing by the predictive standard deviation. Our predictive
distribution for these normalised residuals is the centered unit variance Gaussian. We consider
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posterior credible intervals centered at 0 and of increasing width and plot the proportion of test points
that fall within them in the left side plot of Figure 8. We find dropout inference to underestimate
the magnitude of the residuals across all credible interval widths. Linearised inference with a single
EM step, as in (Antorán et al., 2022b), consistently overestimates uncertainty. Our approach, which
performs 5 steps of EM, overestimates uncertainty, but to a much smaller degree, presenting the
best overall calibration. The latter two approaches consist of the same model but with different
regularisation strength. The difference between the two reveals the paramount importance of tuning
the prior precision hyperparameter well.

I ADDITIONAL EXPERIMENTS

This appendix contains additional experiments and baselines that supplement the experimental results
provided in the main text.

I.1 COMPARING PRIMAL AND DUAL EFFECTIVE DIMENSIONALITY ESTIMATORS

Our main-text experiments employ the kernelised effective dimension estimator introduced in (5).
A different unbiased estimator may be obtained in primal form following the derivation provided
in Appendix B.1. Figure 9 compares both estimators when applied to the 1d toy problem used to
generate Figure 1 from the main text. In particular, we use a 2 hidden layer MLP with layernorm after
every hidden layer and the “Matern” dataset of Antorán et al. (2020). We use 8 samples from the
exact linearised Laplace posterior to compute effective dimension estimates and repeat this procedure
1000 times to characterise the behaviour of each estimator. As a reference, we also compute the exact
effective dimension using eigendecomposition.

Both estimators present distributions centered at the true effective dimension value. However, the
prediction space (kernelised) estimator presents a much lower variance of 9.16 as opposed to 654.19
from the weight space estimator. Additionally, the weight space estimator distribution places a
substatial amount of probability mass on negative effective dimension values. From the form of (19),
we see that this is due to our 8-sample estimator overestimating posterior variance. On the other hand,
the kernelised estimator in (5) can only produce positive values.
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Figure 9: Histogram, with bin heights normalised to represent density estimates, of the effective
dimension estimates produced by the primal form (weight space) estimator (19) and the kernelised
(prediction space) estimator (5). Both distributions are roughly centered at the true effective dimension
but the kernelised estimator presents much lower variance.
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I.2 EVALUATING APPROACHES TO UPDATING HYPERPARAMETERS IN THE M-STEP

This section empirically motivates the fixed-point iteration M-step introduced by Mackay (1992), and
described in Section 3, by comparing it with alternative approaches to updating hyperparameters. In
particular, we compare Mackay’s update with the standard Laplace M-step evidence, denotedM
and given in (3) and Appendix B.2, and a Gaussian ELBO with optimised mean and covariance. The
latter two objectives differ in that the regulariser appears inside of the log-determinant term inM,
while the ELBO’s covariance does not change with the regulariser while performing the M-step. Both
of these objectives differ from the Mackay update in that they provide an objective which requires
gradient-based optimisation in the M-step. Instead, the Mackay update has a closed-form.
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Figure 10: Left: exact linear model evidence for a linearised 2 hidden layer MLP with layer
normalisation together with the lower bound presented in (3),M, and an ELBO where the Gaussian
posterior covariance is decoupled from the regulariser. All curves use an initial regulariser of α = 500
and have a marker placed at their optima. Right: values of the regularisation strength α obtained at
successive EM iterations while using the different update strategies under consideration for the M
step. Note that when we assume access to the exact evidence function, the regulariser converges in a
single step and no EM iteration is necessary.
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Figure 11: Exact linear model evidence for a linearised 2 hidden layer MLP with layer normalisation
together with the lower bound presented in (3),M (left and middle plots), and an ELBO, where the
Gaussian posterior covariance is decoupled from the regulariser (right hand side plot), at different EM
steps. We update the regularisation strength with Mackay’s fixed point iteration for the left side plot.
Note thatM curves are shown in this plot. We maximiseM in the middle plot and we maximise
the ELBO in the right hand side plot. All curves use an initial regulariser of α = 5 and we place a
vertical dashed line at each step’s update.

The plot on the left of Figure 10 compares the exact linearised Laplace evidence for a 2 hidden layer
MLP with layernorm trained on the toy dataset of Antorán et al. (2020) with the boundM (3) and
the decoupled ELBO. The initial regulariser is set to α = 500. The ELBO is only tight for regulariser
values very close to initialisation, resulting in very small M steps.M is tangent to the evidence at the
same point as the ELBO but presents a much better approximation as we move away from α = 500.
The optimum ofM is much closer to the optimum of the evidence. The Mackay update does not
use a lower bound but instead provides an updated value for α which is even closer to the optimum
of the evidence. The right hand side plot shows the change in the regularisation parameter across
successive M-steps using the update methods under consideration. The Mackay M-step converges
to the optima of the evidence in 2 steps. UsingM as an objective results in convergence after 5
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steps. On the other hand, the ELBO update requires around 100 steps. Figure 11 further illustrates
hyperparameter learning in the 1d toy setting by showing the successive lower bounds obtained
by each of the approaches under consideration at each M-step. Interestingly, the Mackay update
produces regulariser updates that almost exactly maximiseM.

Figure 12 compares the evidence lower bounds of the form ofM, given in (3), when using different
covariance matrix approximations in the MNIST classification setup presented in Section 5.1. In
particular, we consider the full-covariance Laplace evidence, which we note does not match the
exact model evidence due to the non-quadratic classification loss, the KFAC approximation to the
covariance (labelled KFAC GGN), a single-sample KFAC Fisher estimate of the covariance, the
KFAC empirical Fisher matrix (Immer et al., 2021a), and a diagonal Laplace covariance. We also
include a 16 sample estimate of the ELBO described above. In all cases, we initialise the regulariser
at an optima found by applying the EM algorithm while using the full covarianceM in the M-step. In
this way, we may use the deviation of different objectives’ optima from the optima ofM as estimates
of the bias in their corresponding approximations.

Figure 12 shows the KFAC and KFAC-Fisher approximations result in a systematic overestimation
of the evidence optima which grows with model size. This issue is even more pronounced for the
diagonal covariance approximation. On the other hand, we find the empirical Fisher to provide an
accurate approximation. A similar finding is reported by (Immer et al., 2021a). This is surprising,
given that the empirical Fisher is known to provide a heavily biased estimate of loss curvature and
thus perform poorly for optimisation tasks (Kunstner et al., 2019). The sample-based ELBO shows
close to no bias when using 16 samples. This result agrees well with our experiments from Section
5.2, where the sample-based EM algorithm behaves well even when using very few samples.
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Figure 12: Full covariance linearised Laplace evidenceM together with approximations to this curve
that rely on different covariance matrix approximations. We consider convolutional networks of
increasing size (left to right) trained on the MNIST dataset.

I.3 CIFAR100 CLASSIFICATION

Additional Baselines . In the main text, we report the test log-likelihood obtained by our method
as well as that of a point-estimated NN (MAP), an ensemble of 5 of point-estimate NNs (Ensemble
5), and linearised Laplace with a KFAC-approximated posterior covariance matrix (KFAC). Here,
we report further comparisons with other baselines standard-in-literature: a diagonal approximation
of the Laplace covariance matrix (diag), a Laplace approximation over a selected subset of the
full NN weight space (subnetwork*) (Daxberger et al., 2021b), and a Laplace approximation over
only the last-layer weights of the NN with a KFAC covariance matrix approximation (KFAC-LL*)
(Eschenhagen et al., 2021). Note that the last layer contains 51200 weights and thus its full Laplace
covariance matrix is too large to invert on our A100 GPUs. We distinguish the last two methods with
a star (*) to denote that they require cross-validation with a held-out set to tune the regularisation
strength hyperparameter. In particular, we use 50 held-out points from the test set, and evaluate
these methods on the remaining 9950 points. This gives these methods a slight advantage over
the approaches to uncertainty quantification considered in the main text. Similarly to the main
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text, we estimate the KFAC and sampling posterior distributions with 64 samples. We use exact
marginalisation, computing full Jacobians, for the diagonal covariance approximation.
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Figure 13: Performance under distribution shift for additional inference baselines applied to ResNet18
on the CIFAR100 dataset. We note that KFAC-LL and subnetwork inference require a held-out
validation set to tune hyperparameters and thus we mark them with a star (*).

Robustness to distribution shift We provide the test log-likelihood results obtained with all
methods under data corruption of increasing intensity in Figure 13. Following the standard setup in
the literature (Daxberger et al., 2021b;a; Eschenhagen et al., 2021), we employ the multi-class probit
approximation to map Gaussian posteriors over NN outputs to class probabilities for all methods
except ensembles and MAP. However, when combined with our sampling approach, we find the probit
approximation to overestimate uncertainty in-distribution. We illustrate this by plotting an additional
curve for sample-based inference with Monte-Carlo marginalisation of the Gaussian distribution
over NN outputs. This approach provides stronger in-distribution performance which comes very
close to that of ensembles, subnetwork inference (*), and KFAC-LL (*). The strong performance of
the latter two methods reveals the relevance of selecting a good regularisation strength parameter to
uncertainty quantification with Laplace-style methods. In the out-of distribution setting, the probit’s
increased uncertainty results in larger log-likelihood scores than Monte Carlo Marginalisation. KFAC-
LL performs very competitively both with ensembles in-distribution and with our approach in the
out-of-distribution setting.

Joint LL. We report marginal and joint test log-likelihood for the KFAC-LL and subnetwork inference
baselines in Table 3. We use the same κ-adic sampling setup as in Section 5.2, marginalising the
Gaussian posterior over network outputs with Monte Carlo for all methods. KFAC-LL is once again
quite competitive with our approach in terms of both marginal and joint LL.

Predictive uncertainty vs number of samples. In the main text, we report our method’s predictive
performance when drawing 64 samples. In Figure 14, we plot the degradation in test log-likelihood
for the standard and progressively corrupted CIFAR100 test sets when decreasing the number of
samples used for prediction. We provide results for both Monte Carlo and probit marginalisation. Our
results, show two main trends: 1. Monte Carlo marginalisation provides better results in-distribution
for all numbers of samples. This is coherent with our above observation that the probit approximation
results in uncertainty overestimation. On the other hand, Monte Carlo marginalisation is unbiased. 2.
The probit approximation benefits less from increased numbers of samples. This is expected, since
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Table 3: Comparison of methods’ marginal and joint prediction performance for ResNet18 on
CIFAR100. We include baselines that require validation-based tuning of the regularisation strength,
marking them with a star (*).

κ MAP Ensemble (5) KFAC Sampling KFAC-LL * subnetwork *
marginal LL 1 -1.40± 0.00 -0.90± 0.00 -1.12± 0.01 -1.07± 0.01 -1.06± 0.01 -1.21± 0.01

joint LL

2 -13.97± 0.01 -6.86± 0.01 -4.92± 0.04 -5.14± 0.04 -5.41± 0.05 -8.38± 0.07
3 -27.89± 0.03 -14.17± 0.03 -10.83± 0.12 -10.77± 0.09 -11.15± 0.12 -16.59± 0.13
4 -41.83± 0.03 -22.29± 0.04 -19.02± 0.22 -18.04± 0.18 -18.21± 0.18 -25.47± 0.18
5 -55.89± 0.02 -31.07± 0.09 -29.40± 0.40 -26.75± 0.26 -26.50± 0.26 -34.91± 0.30

the probit method discards covariances in the distribution over network outputs. The probit predictive
distribution has less degrees of freedom and can thus be estimated better with less samples.
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Figure 14: Predictive Performance for sample-based inference on the CIFAR100 in-distribution and
corrupted test sets while varying the number of samples used for estimating the predictive distribution.

I.4 TOMOGRAPHIC RECONSTRUCTION

Stability of stochastic EM in the m = 15360 setting Figure 15 shows the prior precision values,
effective dimension values and test log-likelihood values obtained at each EM step for the larger
120 angle (m = 15360) image reconstruction task. The regularisation strength converges faster in
this more data-rich setting than in the 60 angle setting considered in the main text (Figure 6 ), with
convergence occurring after 1 EM step instead of 2. We see a slightly larger sensitivity to the number
of samples in this larger setting. However, the difference in test LL obtained after running stochastic
EM with 2 and 256 samples remains smaller than 0.01 nats.

Further analysis of uncertainty calibration The rightmost plot in Figure 15 compares the joint
test log-likelihood obtained by our method and MC dropout on image patches of increasing size
when the observation dimension is set to m = 15360. Similarly to the results shown in the main text,
our method performs better across all patch sizes. Qualitatively, Figure 16 shows the sample-based
approach to yield uncertainty estimates with a much larger dynamic range; some pixel regions are
assigned large errorbars, while others are assigned small errorbars. MCDO produces less fine-grained
outputs and assigns relatively small errorbars to whole sections of the image.

Finally, Figure 17 and Figure 18, compare the reconstruction error and uncertainty histograms for
both uncertainty quantification methods under consideration for both the m = 7680 and m = 15360
settings. In both plots, sample-based linearised Laplace inference slightly overestimates uncertainty.
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Figure 15: Sample-based EM iteration convergence for tomographic reconstruction givenm = 15360.
The prior precision α (left), the effective dimension γ̂ (middle left), and the marginal test log-
likelihood (LL) (middle right) are plotted as a function of the EM step. The plot on the right shows
the joint test LL across image patches of increasing size for sampling inference and an MC dropout
baseline (MCDO).
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Figure 16: Original 501×501 pixel walnut image and reconstruction error for a m=15360 dimen-
sional observation, along with pixel-wise std-dev obtained with sampling lin. Laplace and MCDO.

MCDO systematically underestimates uncertainty for the pixels where the reconstruction error is
largest. Interestingly, our method shows to be slightly worsely calibrated in the more data-rich setting,
as the reconstruction error decreases faster than the predictive standard deviation.
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Figure 17: Histogram of the absolute pixelwise error computed between the reconstructed walnut
image given m = 7680 observations and the ground-truth for both lin.-UNet and MCDO-UNet. We
also include the histograms of both methods’ predictive standard deviations across pixels.
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Figure 18: Histogram of the absolute pixelwise error computed between the reconstructed walnut
image given m = 15360 observations and the ground-truth for both lin.-UNet and MCDO-UNet. We
also include the histograms of both methods’ predictive standard deviations across pixels.
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