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Abstract
When training classification models, it expects
that the learned features are compact within class-
es, and can well separate different classes. As
the dominant loss function for training classifica-
tion models, minimizing cross-entropy (CE) loss
maximizes the compactness and distinctiveness,
i.e., reaching neural collapse (NC). The recent
works show that binary CE (BCE) performs al-
so well in multi-class tasks. In this paper, we
compare BCE and CE in deep feature learning.
For the first time, we prove that BCE can also
maximize the intra-class compactness and inter-
class distinctiveness when reaching its minimum,
i.e., leading to NC. We point out that CE mea-
sures the relative values of decision scores in the
model training, implicitly enhancing the feature
properties by classifying samples one-by-one. In
contrast, BCE measures the absolute values of
decision scores and adjust the positive/negative
decision scores across all samples to uniformly
high/low levels. Meanwhile, the classifier bias-
es in BCE present a substantial constraint on the
decision scores to explicitly enhance the feature
properties in the training. The experimental result-
s are aligned with above analysis, and show that
BCE could improve the classification and leads
to better compactness and distinctiveness among
sample features. The codes have be released.

1. Introduction
Cross-entropy (CE) loss is the most commonly used loss for
classifications and feature learning. In a classification with
K categories, for any sample X(k) from category k, a model
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M extracts its feature h(k) = M(X(k)) ∈ Rd, which is
output from the penultimate layer in deep model. Then
a linear classifier with weight W = [w1, · · · ,wK ]T ∈
RK×d and bias vector b = [b1, · · · , bK ]T ∈ RK transforms
the feature intoK logits/decision scores, {wT

j h
(k)−bj}Kj=1,

which are finally converted into predicted probabilities by
Softmax, and computed the loss using cross-entropy,

Lce
(
z(k)

)
= log

(
1 +

K∑
`=1
` 6=k

ew
T
` h(k)−b`

ewT
k h(k)−bk

)
, (1)

where z(k) = Wh(k) − b ∈ RK .

For the multi-class classification, binary CE (BCE) loss
is deduced by decomposing the task into K binary tasks
and predicting whether the sample X(k) belongs to the jth
category, for ∀j ∈ [K] = {1, 2, · · · ,K},

Lbce
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= log
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+
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log
(

1 + ew
T
j h(k)−bj

)
, (2)

which has been widely used in the multi-label classification
(Kobayashi, 2023) and attracted increasing attentions in the
multi-class classification (Beyer et al., 2020; Fang et al.,
2023; Touvron et al., 2022; Wen et al., 2022; Wightman
et al., 2021; Zhou et al., 2023).

The pre-trained classification models can be used as fea-
ture extractors for downstream tasks that request well intra-
class compactness and inter-class distinctiveness across the
sample features, such as person re-identification (He et al.,
2021), object tracking (Cai et al., 2023), image segmenta-
tion (Guo et al., 2022), and facial recognition (Wen et al.,
2022), etc. For CE, a remarkable theoretical result is that
when it reaches its minimum, both the compactness and
distinctiveness on the training samples will be maximized,
which refers to neural collapse (NC) found by Papyan et al.
(2020). NC gives peace of mind in training classification
models by using CE, and it was extended to the losses sat-
isfying contrastive property by Zhu et al. (2021) and Zhou
et al. (2022b), including focal loss, and label smoothing loss.
However, while BCE in Eq. (2) is a linear combination of
CEs, it is not sufficient to guarantee that BCE satisfies the
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contrastive property, as this property is not a linear property,
and it remains unclear whether BCE can lead to NC.

Besides that, in the practical training of classification mod-
els, the classifiers {wk}Kk=1 play the role of proxy for each
category (Wen et al., 2022). Intuitively, when the distances
between the sample features and their class proxy are closer,
or the positive decision scores between them are larger, it
usually leads to better intra-class compactness. Similarly,
when the distances between sample features and the prox-
y of different classes are farther, or the negative decision
scores between them are smaller, it could results in better
inter-class distinctiveness. However, according to Eq. (1),
CE measures the relative value between the exponential
positive and negative decision scores using Softmax and
logarithmic functions, to pursue that the positive decision
score is greater than all its negative ones for each sample,
making it unable to explicitly and directly enhance the fea-
ture properties across samples. In contrast, BCE in Eq. (2)
respectively measures the absolute values of the exponential
positive decision score and the exponential negative ones
using Sigmoid and logarithmic functions, which makes it is
possible to explicitly and directly enhance the compactness
and distinctiveness of features in the training.

In this paper, we compare BCE and CE in deep feature
learning. We primarily address two questions: Q1. Can
BCE result in NC, i.e., maximizing the compactness and
distinctiveness in theoretical? Q2. In practical training of
classification models, does BCE perform better than CE in
terms of the feature compactness and distinctiveness? Our
contributions are summarized as follows.

(1) We provide the first theoretical proof that BCE can
also lead to the NC, i.e., maximizing the intra-class
compactness and inter-class distinctiveness.

(2) We find that BCE performs better than CE in enhanc-
ing the compactness and distinctiveness across sample
features, and, BCE can explicitly enhance the feature
properties, while CE only implicitly enhance them.

(3) We reveal that in training with BCE, the classifier bias-
es play a substantial role in enhancing the feature prop-
erties, while they almost do not work in that with CE.

(4) We conduct extensive experiments, and find that, com-
pared to CE, BCE can more quickly lead to NC on the
training dataset and achieves better feature compact-
ness and distinctiveness, resulting in higher classifica-
tion performance on the test dataset.

2. Related works
2.1. CE vs. BCE

The CE loss is the most popular loss used in the multi-
class classification and feature learning, which has been

evolved into many variants in different scenarios, such as
focal loss (Lin et al., 2017), label smoothing loss (Szegedy
et al., 2016), normalized Softmax loss (Wang et al., 2017),
and marginal Softmax loss (Liu et al., 2016), etc. The clas-
sification models are often applied to the downstream tasks,
such as image segmentation (Guo et al., 2022), person re-
identification (He et al., 2021), object tracking (Cai et al.,
2023), etc., which request well intra-class compactness and
inter-class distinctiveness among the sample features. For
the multi-class task, the BCE loss can be deduced by de-
composing the task into K binary tasks and adding the K
naive binary CE losses, which has been widely applied in
the multi-label classification (Kobayashi, 2023).

BCE and CE are expected to train the models to fit the
sample distribution. When Wightman et al. (2021) applied
BCE to the training of ResNets for a multi-class task, they
considered that the loss is consistent with Mixup (Zhang
et al., 2018) and CutMix (Yun et al., 2019) augmentation-
s, which mix multiple objects from different samples into
one sample. DeiT III (Touvron et al., 2022) adopted this
approach and achieved a improvement in the multi-class
task on ImageNet-1K by using BCE loss. Currently, though
CE loss dominates the training of multi-class and feature
learning models, BCE loss is also gaining more attention
and is increasingly being applied in the fields (Chun, 2024;
Fang et al., 2023; Hao et al., 2024; Mehta & Rastegari, 2023;
Wang et al., 2023; Xu et al., 2023). However, none of these
works reveals the essential advantages of BCE over CE.

2.2. Neural collapse

Neural collapse (NC) was first found by Papyan et al. (2020),
referring to admirable properties about the sample features
{h(k)

i } and classifiers {wk} at the terminal phase of training.

• NC1, within-class variability collapse. Each feature
h
(k)
i collapse to its class center h̄(k) = 1

nk

∑nk

i′=1 h
(k)
i′ ,

indicating the maximal intra-class compactness

• NC2, convergence to simplex equiangular tight frame.
The set of class centers {h̄(k)}Kk=1 form a simplex
equiangular tight frame (ETF), with equal and maxi-
mized cosine distance between every pair of feature
means, i.e., the maximal inter-class distinctiveness.

• NC3, convergence to self-duality. The class center
h̄(k) is ideally aligned with the classifier vector wk.

The current works about NC (Kothapalli, 2023) are focused
on the CE loss (Graf et al., 2021; Lu & Steinerberger, 2022;
Zhu et al., 2021) and mean squared error (MSE) loss (Han
et al., 2022; Tirer & Bruna, 2022; Zhou et al., 2022a). It
has been proved that the models will fall to NC when the
loss reaches its minimum. A comprehensive analysis (Zhou
et al., 2022b) for various losses, including CE, focal loss
(Lin et al., 2017), and label smoothing loss (Szegedy et al.,
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2016), shows that they perform equally as any global min-
imum point of them satisfies NC. The NC has also been
investigated in the imbalanced datasets (Fang et al., 2021;
Wang et al., 2024; Yang et al., 2022), out-of-distribution
data (Ammar et al., 2024), contrastive learning (Xue et al.,
2023), and models with fixed classifiers (Kim & Kim, 2024;
Yang et al., 2022). All these studies are conducted on CE or
MSE; and whether BCE can lead to NC remains unexplored.

3. Main results
In this section, we first theoretically prove that BCE can
maximize the compactness and distinctiveness when reach-
ing its minimums (Q1). Then, through in-depth analyzing
the decision scores in the training, we explain that BCE
can better enhance the compactness and distinctiveness of
sample features in practical training (Q2).

3.1. Preliminary

Let D =
⋃K
k=1

⋃nk

i=1

{
X

(k)
i

}
be a sample set, where X

(k)
i

is the ith sample of category k, nk denotes the sample num-
ber of this category, and h

(k)
i =M(X

(k)
i ). In classification

tasks, a linear classifier with vectors {wk}Kk=1 ⊂ Rd and
biases {bk}Kk=1 ⊂ R predicts the category for each sample
according to its feature. For the well predication results,
the CE or BCE loss is applied to tune the parameters of the
modelM and classifier parameters.

Following the previous works (Fang et al., 2021; Graf et al.,
2021; Han et al., 2022; Lu & Steinerberger, 2022; Tirer &
Bruna, 2022; Zhu et al., 2021) for neural collapse (NC), we
compare CE and BCE in training of unconstrained model
or layer-peeled model in this paper, i.e, treating the features⋃K
k=1

{
h
(k)
i

}nk

i=1
, classifier vectors {wk}Kk=1, and classifier

biases {bk}Kk=1 as free variables, without considering the
sophisticated structure or the parameters of the modelM.
Then, taking the regularization terms on the variables, the
CE or BCE loss is

fµ(W ,H, b) =
1∑K

k=1 nk

K∑
k=1

nk∑
i=1

Lµ
(
Wh

(k)
i − b

)
+
λW

2

∥∥W∥∥2
F

+
λH
2

∥∥H∥∥2
F

+
λb
2

∥∥b∥∥2
2
, (3)

where Lµ is presented in Eqs. (1-2), µ ∈ {ce, bce},

W =
[
w1,w2, · · · ,wK

]T ∈ RK×d, (4)

b = [b1, b2, · · · , bK ]T ∈ RK , (5)

H =
[
H1,H2, · · · ,HK

]
∈ Rd×(

∑K
k=1 nk), with

Hk =
[
h
(k)
1 ,h

(k)
2 , · · · ,h(k)

nk

]
∈ Rd×nk , ∀k ∈ [K], (6)

and λW , λH > 0, λb ≥ 0 are weight decay parameters for
the regularization terms.

3.2. Neural collapse with CE and BCE losses

On the balanced dataset, i.e., n = nk,∀k ∈ [K], Zhu et al.
(2021) proved that the CE loss can result in neural collapse
(NC), and in Theorem 3.1, Zhou et al. (2022b) extended the
proof to the losses satisfying the contrastive property (see
Definition C.1 in supplementary), such as focal loss and
label smoothing loss. Though BCE loss is a combination of
CE, there is no evidence to suggest it satisfies the contrastive
property, as this property is not a simple linear one. Despite
that, we prove that BCE can result in NC, i.e., Theorem 3.2.
The primary difference between BCE and CE losses lies in
the bias parameter b of their classifiers.
Theorem 3.1. (Zhou et al., 2022b) Assume that the feature
dimension d is larger than the category number K, i.e.,
d ≥ K − 1, and Lµ is satisfying the contrastive property.
Then any global minimizer (W ?,H?, b?) of fµ(W ,H, b)
defined using Lµ with Eq. (3) obeys the following properties,

‖w?‖ = ‖w?
1‖ = ‖w?

2‖ = · · · = ‖w?
K‖, (7)

h
(k)?
i =

√
λW
nλH

w?
k, ∀ k ∈ [K], i ∈ [n], (8)

h̃?i :=
1

K

K∑
k=1

h
(k)?
i = 0, ∀ i ∈ [n], (9)

b? = b?1K , (10)

where either b? = 0 or λb = 0. The matrix W ? forms a
K-simplex ETF in the sense that

1

‖w?‖22
(W ?)TW ? =

K

K − 1

(
IK −

1

K
1K1TK

)
, (11)

where IK ∈ RK×K denotes the identity matrix, and 1K ∈
RK denotes the all ones vector. z

Theorem 3.2. Assume that the feature dimension d is larger
than the category number K, i.e., d ≥ K − 1. Then any
global minimizer (W ?,H?, b?) of fbce(W ,H, b) defined
using Lbce with Eq. (3) obeys the properties (7) - (11), where
b? is the solution of equation

0 =− K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

))
+

1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

)) + λbb, (12)

and ρ = ‖W ?‖2F is the squared Frobenius norm of W ?.

Proof The detailed proof is presented in the supplemen-
tary, i.e., Theorem C.3, which similar to that of Lu & Steiner-
berger (2022); Zhou et al. (2022b); Zhu et al. (2021), studies
lower bounds for the BCE loss in Eq. (3) and finds the con-
ditions for achieving the lower bounds. z
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Theorem 3.2 broadens the range of losses that can lead to
NC, i.e., the contrastive property (Zhou et al., 2022b) is not
necessarily satisfied.

The decision scores. According to Theorems 3.1 and 3.2,
when CE or BCE reaches its minimum and results in NC,
the sample feature h

(k)
i will converge to its class center

h̄(k) = 1
n

∑n
i=1 h

(k)
i , indicating the maximum intra-class

compactness. Furthermore, the class center h̄(k) becomes
a multiple of the corresponding classifier wk, and the K
classifiers {wk}Kk=1 form an ETF, indicating the maximum
inter-class distinctiveness. Furthermore, the positive and
negative decision scores without the biases of all samples
will converge to fixed values, i.e., for ∀j 6= k ∈ [K],

s(kk,i)pos = wT
k h

(k)
i →

√
λW
nλH

ρ

K
and (13)

s(jk,i)neg = wT
j h

(k)
i → −

√
λW
nλH

ρ

K(K − 1)
. (14)

The classifier bias. Comparing Theorems 3.1 and 3.2,
one can find that the primary difference between CE and
BCE losses lies in their classifier biases. According to
Theorem 3.1, when λb > 0, the minimum point of CE
loss satisfies b = 0; when λb = 0, any point that satisfies
properties (7) - (11) and b = b?1 is a minimum point of
CE loss, which implies that the minimum points of CE loss
form a ridge line in term of b. In contrast, the classifier
bias b of the minimum points of BCE loss satisfy Eq. (12)
whenever λb = 0 or not. According to Lemma C.8 in the
supplementary, Eq. (12) has only one solution, indicating
that the BCE loss has only one minimum point in term of
b. This optimal classifier bias b = b?1 will separate the
positive and negative decision scores if it satisfies the Eq.
(168) (see Lemma C.9 in supplementary for details).

3.3. The decision scores in training with BCE and CE

Both CE and BCE can theoretically optimize the feature
properties, while they perform different in practice.

A geometric comparison for CE and BCE. In practical
training with CE or BCE, to minimize the loss, it is desirable
for their exponential function variables to be as small as
possible, and less than zero at least. For CE in Eq. (1), it is
desirable that, for ∀j 6= k ∈ [K],

wT
k h

(k) − bk︸ ︷︷ ︸
positive decision score

> wT
j h

(k) − bj ,︸ ︷︷ ︸
negative decision score

(15)

while, for BCE in Eq. (2), it is desirable that, for ∀j 6= k,

wT
k h

(k) − bk > 0 and wT
j h

(k) − bj < 0. (16)

In Fig. 1, we apply the distance of vectors to reflect their
inner product or similarity in the distance space. Without

w1

w2

w3

h(2)
h(2)

w2
b2'

w1b1' w3
b3'

(a) CE loss

w1

w2

w3

h(2)
h(2)

w2
b2'

w1b1' w3
b3'

(b) BCE loss

Figure 1. The feature distributions of CE and BCE losses in the
distance space. We respectively apply the blue, red, and green
shading to indicate the feature regions of three categories. The
pentagrams represent their classifiers, and the solid dot represents
a general feature h(2) in the second category. Since the distance
between two vectors is inversely proportional to their similari-
ty/inner product, CE loss requires the distance from the feature to
its classifier vector to be less than the distance to other classifier
vectors, while BCE loss requires the distance to be less than its
corresponding bias. Small b′k implies large bk in Eq. (16).

considering the bias b, the CE push feature h(k) closer to its
classifier wk compared to others {wj}j 6=k, implying a un-
bounded feature region for each category and unsatisfactory
intra-class compactness. In addition, any two unbounded
feature regions could share the same decision boundary,
indicating unsatisfactory inter-class distinctiveness. In the
training with CE, the bias bk acts as a compensation to ad-
just the distance/decision score between the features and
the classifiers, introducing indirect constraint across sample
features by Eq. (15). This constraint will vanish if bk = bj
for ∀k 6= j, which could be reached at the minima of CE.
Overall, the CE only requires the positive decision score to
be relatively greater than the negative ones for each sample,
to implicitly enhance the features’ properties by correctly
classifying samples one-by-one.

In contrast, for BCE, Eq. (16) requires the feature h(k) to
fall within a closed hypersphere centered at its classifier
wk with a “radius” of bk, meanwhile it requires that any
two hypersphere do not intersect, indicating well intra-class
compactness and inter-class distinctiveness. In other words,
BCE presents explicitly constraint across-samples in the
training. While Eq. (16) requires the positive decision
scores of all samples are uniformly larger than threshold
t = 0, and the all negative ones are uniformly smaller than
the unified threshold, i.e.,

min

K⋃
k=1

n⋃
i=1

{
wT
k h

(k)
i − bk

}
> t

≥ max

K⋃
k=1

n⋃
i=1

{
wT
j h

(k)
i − bj

}K
j=1
j 6=k

, (17)

while the unified threshold t might be not exactly zero in
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practice. In the training, the classifier biases {bk} would
be absorbed into the threshold. Then, in contrary, the final
biases could reflect the intra-class compactness and the inter-
class distinctiveness. Therefore, BCE can explicitly enhance
the compactness and distinctiveness across sample features
by learning well classifier biases.

The decision scores in practical training. In deep learn-
ing, gradient descent and back propagation are the most
commonly used techniques for the model training. We here
analyze the gradients in terms of the positive decision score
(wT

k h
(k)
i − bk) from category k,

∂fce(W ,H, b)

∂
(
wT
k h

(k)
i − bk

) =
ew

T
k h

(k)
i −bk∑

` ewT
` h

(k)
i −b`

− 1, (18)

∂fbce(W ,H, b)

∂
(
wT
k h

(k)
i − bk

) =
1

1 + e−wT
k h

(k)
i +bk

− 1. (19)

According to Eq. (18), in the training with CE, for any
two samples X(k)

i ,X
(k)
i′ with diverse initial positive deci-

sion scores, if their predicted probabilities are equal, i.e.,
ew

T
k h

(k)
i
−bk∑

` ew
T
`

h
(k)
i
−b`

=
ew

T
k h

(k)

i′ −bk∑
` e

wT
`

h
(k)

i′
−b`

, which is somewhat likely

to occur during the practical training, then their positive
scores will experience the same update of amplitude dur-
ing back propagation. Consequently, it will be difficult to
update the positive scores to the uniformly high level, im-
peding the enhancement of intra-class compactness within
the same category.

In contrast, according to Eq. (19), during training with BCE
loss, the large positive decision scores (wT

k h
(k)
i − bk) were

updated for the small amplitude 1 − 1

1+exp(−wT
k h

(k)
i +bk)

,

while the small ones were updated for the large update
amplitude, facilitating a more rapid adjustment of positive
scores across different samples to a uniformly high level, to
enhance the intra-class compactness of sample features.

A similar phenomenon can also occur with the negative
decision scores, resulting in unsatisfactory inter-class dis-
tinctiveness in the training with CE loss, while BCE could
adjust them in a uniform way and push them to a uniformly
low level, enhancing the inter-class distinctiveness.

The classifier bias in practice. During the model train-
ing, the classifier biases are also updated through the gradi-
ent descents, and the positive and negative decision scores
are constrained by approaching the stable point of the biases.
For CE, the gradient of bias bk is

∂fce

∂bk
=

1

nK

(
n−

K∑
j=1

n∑
i=1

ew
T
k h

(j)
i −bk∑

` ewT
` h

(j)
i −b`

)
+ λbbk

→ λbb. (20)

As approaching the stable point of the bias, i.e., the points

satisfying ∂fce
∂bk

= 0, Eq. (20) presents constraint on the
relative value of the exponential decision scores, while the
constraint will vanish as reaching the minimum of CE, and
the bias gradient ∂fce

∂bk
approaches λbb, according to Eq. (14).

At the minimum points, the update amplitude of bias is
ηλbb, where η denotes the learning rate. If λb = 0, the
update is zero, and the final bias can locate at any point on
the ridge line b = b1, where b is depended on some other
factors, such as the bias initial value, but not the relationship
between the bias and the decision scores. If λb > 0, one can
concluded b = 0; however, in practice, this theoretical value
might be not reached due to that ηλb will be very small at
the terminal phase of practical training. The above analysis
implies that the classifier biases of CE cannot provide con-
sistent and explicit constraints on the decision scores in the
practical training, and thus do not substantively affect the
final features’ properties.

In contrast, for BCE, the gradient of bias bk is

∂fbce

∂bk
=

1

nK

(
n−

K∑
j=1

n∑
i=1

1

1 + e−wT
k h

(j)
i +bk

)
+ λbbk

→ RHS of Eq. (12), (21)

which presents clear constraint on the absolute value of the
exponential decision scores for the all samples. The con-
straint evolve into Eq. (12) when BCE reaches its minimum
points. Therefore, as approaching the stable point, the clas-
sifier bias consistently and explicitly constrain the decision
scores, regardless λb = 0 or not, and it will separate the final
positive and negative decision scores if Eq. (168) holds. In
other words, the classifier biases in BCE play a substantial
role in enhancing the final features’ properties.

4. Experiments
4.1. Comparison of BCE and CE in NC

To compare CE and BCE in deep feature learning, we train
deep classification models, ResNet18, ResNet50 (He et al.,
2016), and DenseNet121 (Huang et al., 2017), on three
popular datasets, including MNIST (LeCun et al., 1998),
CIFAR10, and CIFAR100 (Krizhevsky et al., 2009). We
train the models using SGD and AdamW for 100 epochs
with batch size of 128. The initial learning rate is set to
0.01 and 0.001 for SGD and AdamW, which is respectively
decayed in “step” and “cosine” schedulers.

NC across models and datasets Similar to the works of
Zhu et al. (2021) and Zhou et al. (2022b), we do not apply
any data augmentation in the experiments of NC, and adopt
the metrics, NC1,NC2, and NC3 (see supplementary for
their definitions), to measure the properties of NC1, NC2,
and NC3 resulted by CE and BCE. The lower metrics reflect
the better NC properties.
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Figure 2. NC metrics of ResNet18 trained on CIFAR10 with CE and BCE using SGD and AdamW, respectively. The NC metrics approach
zero at the terminal phase of training, while the NC metrics of BCE decrease faster than that of CE in the first 20 epochs.

In the training, we set λW = λH = λb = 5×10−4, and no
weight decay is applied on the other parameters of modelM.
Fig. 2 shows the NC results of ResNet18 trained by CE and
BCE with two optimizers on CIFAR10, and the other results
are presented in the supplementary. From the figure, one can
find that all the three NC metrics consistently approach zero
in the training with different losses and optimizers, which
matches Theorem 3.1 and 3.2. Meanwhile, in the initial
training stage of the first 20 epochs, the NC metrics (the
red curves with dots) of BCE usually decrease faster than
that (the blue curves with diamonds) of CE, implying that
BCE is easier to result in NC. More numerical results are
presented in supplementary.

The bias decay factor λb. To illustrate the different ef-
fects of classifier biases of CE and BCE on the decision
scores, we conduct two groups of experiments by respec-
tively applying fixed and varying classifier bias decay factor
λb in the training of ResNet18 on MNIST: (1) with fixed
λb = 0 and default other hyper-parameters, setting the
mean of the initialized classifier biases to 0, 1, 2, 3, 4, 5, 6, 8,
and 10, respectively; (2) with varying λb = 0.5, 0.05, 5 ×
10−3, 5×10−4, 5×10−5, and 5×10−6, respectively, setting
the mean of initialized classifier biases to 10.

Fig. 3 shows the distributions of final classifier biases and
positive/negative decision scores (without bias) using violin
plots for the 60 trained models in these two groups of exper-
iments. One can find from Fig. 3(top), for the CE-trained
models with λb = 0, the final classifier bias values are al-
most entirely determined by their initial values, no matter
which optimizer was applied. For the CE-trained models in
Fig. 3(bottom), the means of the final classifier biases reach
to zero from the initial mean of 10 with appropriate lager
λb (≥ 5 × 10−3 for SGD and ≥ 5 × 10−4 for AdamW),
and they do not achieve the theoretical value when λb is
too small. As a comparison, for these CE-trained models,
their final positive and negative decision scores respectively
converge to around 5.64 and −0.63 (see supplementary for
details). In total, in CE-trained models, the classifier biases
hardly affect the decision scores, and thus almost does not
affect the final feature properties.

In contrast, for the BCE-trained models in Fig. 3, their final
positive and negative decision scores are always separated
by the final classifier biases, no matter what the initial mean

Table 1. The classification on the test set of CIFAR10 and CI-
FAR100. The accuracy (A) of most BCE-trained models is higher
than that of CE-trained ones, while BCE-trained models perform
consistently and significantly better than CE-trained models in
terms of uniform accuracy (AUni).

D M Loss
SGD AdamW

DA1 DA1+DA2 DA1 DA1+DA2
A AUni A AUni A AUni A AUni

C
IF

A
R

10

R18 CE 92.8 85.2 92.7 89.1 93.4 89.0 95.7 94.3
BCE 93.2 91.9 93.6 91.9 93.9 93.4 95.6 95.2

R50 CE 92.7 85.2 92.7 89.6 94.5 87.9 96.0 94.3
BCE 93.4 92.5 93.2 91.5 94.0 93.6 96.2 95.7

D121 CE 87.9 78.8 86.7 81.5 90.4 83.6 92.6 90.7
BCE 88.7 87.6 87.8 85.0 90.6 89.9 92.6 91.8

C
IF

A
R

10
0 R18

CE 71.2 43.2 71.8 56.7 71.7 49.2 76.5 64.4
BCE 72.2 63.3 72.3 62.9 73.2 66.3 76.7 70.0

R50
CE 71.6 44.2 70.3 55.2 75.0 48.8 78.6 67.8

BCE 71.8 64.1 71.9 62.8 75.3 68.8 78.5 72.7

D121
CE 60.8 32.9 57.2 39.8 63.7 38.8 69.0 57.2

BCE 61.1 53.5 58.4 47.7 63.6 57.3 69.4 63.5

of classifier biases, λb, or optimizer are, and clear correla-
tion exists between the biases and positive/negative decision
scores. These results imply that, in the training with BCE,
the classifier biases have a substantial impact on the sample
feature distribution, thereby enhancing the compactness and
distinctiveness across samples.

4.2. BCE outperforming CE in practice

To further demonstrate the advantages of BCE over CE,
we trained classification models using these two losses on
CIFAR10, CIFAR100, and ImageNet.

Results on CIFAR10 and CIFAR100. On the CIFARs,
we train ResNet18, ResNet50, and DeseNet121 by apply-
ing two different data augmentation techniques, (1) DA1:
random cropping and horizontal flipping, (2) DA2: Mixup
and CutMix, on CIFAR10 and CIFAR100 using SGD and
AdamW, respectively. In the experiments, we take a global
weight decay factor λ for the all parameters in the models,
including the classifiers and biases, and λ = 5× 10−4 for
SGD, λ = 0.05 for AdamW. The other hyper-parameters
are presented in the supplementary. To compare the results,
besides the classification accuracy (A), we define and apply
three other metrics, uniform accuracy (AUni), compactness
(Ecom), and distinctiveness (Edis), seeing Eqs. (45,49,50) in
supplementary for the definitions. While AUni is evolved
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Figure 3. The distributions of the final classifier bias and positive/negative decision scores for 60 ResNet18s trained on MNIST with fixed
weight decay factor λb (top) and varying λb (bottom), while λW = λH = 5× 10−4. The mean b̄ = 1

K

∑K
k=1 bk of initialized biases is

respectively set as 0, 1, 2, 3, 4, 5, 6, 8, 10 in the experiments with fixed λb = 0, and the bias mean is set as 10 in that with varying λb.

Table 2. The feature properties on test set of CIFAR10 and CI-
FAR100. The compactness (Ecom, %) and distinctiveness (Edis, %)
of BCE-trained models are usually better than that of CE-trained
models. See supplementary for the definitions of Ecom and Edis.

D M Loss
SGD AdamW

DA1 DA1+DA2 DA1 DA1+DA2
Ecom Edis Ecom Edis Ecom Edis Ecom Edis

R18 CE 85.4 25.5 81.5 20.9 85.5 26.9 89.3 33.1
BCE 90.6 30.5 84.4 23.9 91.4 32.5 91.8 36.7

R50 CE 83.5 17.8 85.6 20.3 85.5 23.3 95.3 37.8
BCE 89.9 23.2 86.9 21.6 89.1 27.2 91.7 35.7

D121 CE 78.7 31.2 76.7 28.1 74.6 30.7 82.0 31.9C
IF

A
R

10

BCE 84.6 33.2 80.9 29.7 83.0 33.7 83.7 31.9

R18 CE 72.3 27.0 71.3 25.8 69.2 29.0 71.4 30.7
BCE 73.3 26.2 72.9 26.9 72.7 29.3 74.2 29.1

R50 CE 70.8 20.0 71.0 18.7 68.9 25.8 72.3 36.5
BCE 73.3 22.0 74.0 21.8 75.2 27.8 76.3 32.5

D121 CE 71.2 31.0 72.8 31.7 64.7 29.8 70.0 34.0C
IF

A
R

10
0

BCE 73.2 29.5 73.6 30.5 70.9 30.1 72.6 32.6

from Eq. (17), it is calculated on the decision scores across
samples, simultaneously reflecting the feature compactness
and distinctiveness; as their name implies, Ecom and Edis
respectively measure the intra-class compactness and inter-
class distinctiveness among sample features.

Table 1 shows the classification results of the three models
(“R18”,“R50”, and “D121” respectively stand for ResNet18,
ResNet50, and DenseNet121) on the test set of CIFAR10
and CIFAR100. From the table, one can find that, BCE is
better than CE in term of accuracy (A) in most cases, and
in term of uniform accuracy (AUni), it performs consistently
and significantly superior to CE. Taking CIFAR10 for ex-
ample, among the twelve pairs of models trained by CE and

BCE, BCE slightly reduced the accuracy of only two pairs
of models, while the gain of uniform accuracy introduced
by BCE is 0.82% at least for the all models. For CIFAR100,
the gain of BCE in uniform accuracy could be more than
20%, and the classification accuracy of BCE is still high-
er than that of CE in most cases. These results illustrate
that BCE can usually achieve better classification results
than CE, which is likely resulted from its enhancement in
compactness and distinctiveness among sample features.

Furthermore, similar to BCE, the better data augmentation
techniques and optimizer can simultaneously improve the
classification results of models. For example, Mixup, Cut-
Mix, and AdamW increase A and AUni from 92.82% and
85.20% to 95.72% and 94.34%, respectively, for ResNet18
trained on CIFAR10. In addition, the higher performance
of BCE than CE with only DA1 implies that the superiority
of BCE is not resulted from the alignment with Mixup and
CutMix, which is not consistent with the statements about
BCE by Wightman et al. (2021).

As the uniform accuracy simultaneously reflect the intra-
class compactness and inter-class distinctiveness, the higher
uniform accuracy AUni of BCE-trained models implies their
better feature properties. Table 2 presents the compactness
(Ecom) and distinctiveness (Edis) of the trained models. One
can clearly observe that, in most cases, BCE improves the
compactness and distinctiveness of the sample features ex-
tracted by the models compared to CE, which is consistent
with our expectations and provides a solid and reasonable
explanation for the higher performance of BCE in tasks that
require feature comparison, such as facial recognition and

7



BCE vs. CE in deep feature learning

Table 3. The results of CE and BCE on ImageNet-1k.
ResNet50 ResNet101 DenseNet161
A AUni A AUni A AUni

CE 76.74 34.48 78.47 38.85 78.58 43.56
BCE 77.12 66.92 78.88 70.46 79.19 69.08

verification (Wen et al., 2022; Zhou et al., 2023).

Results on ImageNet. We trained ResNet50, ResNet101,
and DenseNet161 on ImageNet-1k by using CE and BCE,
respectively. As the classification on this dataset is a compli-
cated task, we did not train these three models from scratch
for saving the training time. Instead, we applied the two
losses to fine-tune the models that have been pretrained
for 90 epochs, and each fine-tuning runs 30 epochs using
AdamW optimizer. From the table, one can find that on the
medium-scale ImageNet-1k, BCE still shows a consistent
and clear advantage over CE.

Results on long-tailed datasets.
Table 4. The performance of
CE and BCE on CIFAR100-LT
with three different IF.

IF 10 50 100
CE 70.91 57.59 51.48

BCE 71.54 58.49 52.88

Though we theoretically
analyzed the advantages of
BCE over CE on only bal-
anced dataset, BCE also
has potential on the im-
balanced datasets. On the
long-tailed dataset CIFAR100-LT with imbalanced factor
(IF) of 10, 50, and 100, we trained ResNet32 using CE and
BCE, respectively, following the protocol in (Alshammar-
i et al., 2022). Table 4 shows the recognition results on
balanced test set. One can observe that BCE consistently
achieves better results on the imbalanced datasets than CE.

5. Discussion
K > d. When the category number K is greater than
the feature dimension d, analyzing the neural collapse with
CE or BCE becomes quite challenging. Lu & Steinerberg-
er (2022) proved that when K approaches infinity and CE
reaches its minimum, the features and classifiers weakly
converge to a uniform distribution on the hypersphere. Liu
et al. (2023) and Jiang et al. (2024) propose generalized
neural collapse to analyze CE with K > d. We speculate
that BCE will exhibit similar properties and results in this
context, and its classifier biases will still substantially con-
strain the positive and negative decision scores during the
training, thereby accelerating the convergence. Both Wen
et al. (2022) and Zhou et al. (2023) achieved better face
recognition results using BCE, where the category number
K is much greater than the feature dimension d.

NC with imbalanced data. On imbalanced datasets,
Fang et al. (2021) found that when the imbalance ratio ex-
ceeds a threshold, the classifiers for the tail classes trained
with CE will collapse to a single vector, while the results in
Table 4 lead us believe the BCE can amplify this threshold.

Transformer and other deep architectures. Though we
validate the conclusions of this paper using the classic convo-
lutional neural networks in the experiments, the advantages
of BCE, as indicated by our theoretical analysis, can also be
demonstrated in other deep network models such as Trans-
formers. DeiT III (Touvron et al., 2022) has already shown
the potential of BCE with Transformer on ImageNet classi-
fication, and in addition, LiVT (Xu et al., 2023) is another
Transformer model trained with BCE that has achieved ex-
cellent results in long-tailed recognition (LTR) tasks.

The losses for binary classification. When K = 2, we
denotes the two classes as 0 and 1. For ∀h(k) with k = 0
or 1, the CE in Eq. (1) requires only one decision score
z(k) = (w0 − w1)Th(k) − (b0 − b1) = wTh(k) − b to
classify the sample, and the CE degenerates the naive BCE,

Ln-bce(z
(k)) =

{
log
(
1 + exp(z(k))

)
, k = 0,

log
(
1 + exp(−z(k))

)
, k = 1,

(22)

which is also referred to Sigmoid loss in previous literatures.
In contrast, when K = 2, for ∀h(k), the BCE in Eq. (2) is

Lbce(z
(k)) = log

(
1 + e−z

(k)
k

)
+ log

(
1 + ez

(k)
1−k
)
, (23)

where z(k)j = wT
j h

(k) − bj , j, k ∈ {0, 1}. In total, when
K = 2, the naive BCE uses only one Sigmoid to measure
the relative values of the exponential positive and negative
decision scores, while the BCE analyzed in this paper uses
two Sigmoid to respectively measure the absolute values of
the exponential positive and negative scores.

6. Conclusions
This paper compares CE and BCE losses in deep feature
learning. Both the losses can maximize the intra-class com-
pactness and inter-class distinctiveness among sample fea-
tures, i.e., leading to neural collapse when reaching their
minima. In the training, CE implicitly enhances the feature
properties by correctly classifying samples one-by-one. In
contrast, BCE can adjust the positive and negative decision
scores across samples, and, in this process, the classifier
biases play a substantial and consistent role, making it ex-
plicitly enhance the intra-class compactness and inter-class
distinctiveness of features. Therefore, BCE has potential to
achieve better classification performance.
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Supplementary Material

A. Neural collapse and feature property
A.1. Neural collapse

The neural collapse was first found by Papyan et al. (2020), which refers to four properties about the sample features {h(k)
i }

and the classifier vectors {wk} at the terminal phase of training (Han et al., 2022), as list in Sec. 2.2. These four properties
can be formulized as follows.

• NC1, within-class variability collapse, Σ†BΣW → 0, where

ΣB =
1

K

K∑
k=1

(
h̄(k) − h̄

)(
h̄(k) − h̄

)T
(24)

ΣW =
1∑
knk

K∑
k=1

nk∑
i=1

(
h
(k)
i − h̄(k)

)(
h
(k)
i − h̄(k)

)T
(25)

h̄(k) =
1

nk

nk∑
i=1

h
(k)
i , (26)

h̄ =
1∑
knk

K∑
k=1

nk∑
i=1

h
(k)
i (27)

and † denotes the Mooer-Penrose pseudo-inverse;

• NC2, convergence to simplex equiangular tight frame,∥∥h̄(k) − h̄
∥∥
2
−
∥∥h̄(k′) − h̄

∥∥
2
→ 0, (28)〈

h̄(k) − h̄, h̄(k′) − h̄
〉∥∥h̄(k) − h̄

∥∥
2

∥∥h̄(k′) − h̄
∥∥
2

→
{

1, k = k′,
− 1
K−1 , k 6= k′;

(29)

• NC3, convergence to self-duality,

wk∥∥wk

∥∥
2

− h̄(k) − h̄∥∥h̄(k) − h̄
∥∥
2

→ 0; (30)

• NC4, simplification to nearest class center,

arg max
j

{
wjh− bj

}K
j=1
→ arg min

j

{
‖h− h̄(j)‖2

}K
j=1

. (31)

In Sec. 4, we applied three metrics,NC1,NC2,NC3, to measure the above properties, similar to that defined in (Zhou et al.,
2022b; Zhu et al., 2021):

NC1 :=
1

K
trace

(
ΣWΣ†B

)
, (32)

NC2 :=
∥∥∥ W̃W̃ T

‖W̃W̃ T ‖F
− 1√

K − 1

(
IK −

1

K
1K1TK

)∥∥∥
F
, (33)

NC3 :=
∥∥∥ WH̃

‖WH̃‖F
− 1√

K − 1

(
IK −

1

K
1K1TK

)∥∥∥
F
, (34)

12
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where

W̃ = [w1 − w̄,w2 − w̄, · · · ,wK − w̄]T ∈ RK×d, (35)

H̃ = [h̄(1) − h̄, h̄(2) − h̄, · · · , h̄(K) − h̄] ∈ Rd×K , (36)

w̄ =
1

K

K∑
k=1

wk. (37)

When definingNC2, Zhu et al. (2021) and Zhou et al. (2022b) did not subtract the classifier vectors with their mean, i.e., the
original NC2 is defined as

∥∥ WWT

‖WWT ‖F −
1√
K−1

(
IK − 1

K1K1TK
)∥∥
F

, with W = [w1,w2, · · · ,wK ]T ∈ RK×d.

As mentioned by Zhu et al. (2021) and Zhou et al. (2022b), due to the “ReLU” activation functions before the FC classifiers
in the deep models, the feature mean h̃i = 1

K

∑K
k=1 h

(k)
i will be non-negative, which conflicts with h̃i = 0 required by

Theorems 3.1 and 3.2. Then, the average features/class centers of K categories do not directly form an ETF, while the
globally-centered average features form ETF, i.e., NC2 properties described by Eqs. (28) and (29). As the proof of Theorems

3.1 and 3.2, in the neural collapse, the features of each category will be parallel to its classifier vector, i.e., h(k)
i =

√
λW

nλH
wk

in Eqs (129,130). Therefore, the classifier vectors {wk} should also subtract their global mean before form an ETF. In other
words, the third NC property should be

NC3’ :
wk − w̄∥∥wk − w̄

∥∥
2

− h̄(k) − h̄∥∥h̄(k) − h̄
∥∥
2

→ 0. (38)

As our analysis, when a model falling to the neural collapse, its classification accuracy A and uniform accuracy AUni must
be 100% on the training dataset.

A.2. Feature property

In the experiments, we applied four metrics to compare the performance of CE and BCE, i.e., classification accuracy A,
uniform accuracy AUni, feature compactness Ecom, and distinctiveness Edis. These metrics on the training data will be
maximized when the model, classifier, and loss in the neural collapse.

In a classification task, suppose a datasetD =
⋃K
k=1Dk =

⋃K
k=1

⋃nk

i=1

{
X

(k)
i

}
fromK categories, where X(k)

i denotes the
ith sample from the category k. For the sample X

(k)
i in D, a modelM converts it into its feature h

(k)
i =M(X

(k)
i ) ∈ Rd,

where d is the length of the feature vector. A linear, full connection (FC) classifier C =
{

(wk, bk)
}K
k=1

transform the feature

into K decision scores
{
wjh

(k)
i − bj

}K
j=1

. Then, the sample can be correctly classified if

wkh
(k)
i − bk = max

{
wjh

(k)
i − bj

}K
j=1

, (39)

which is equivalent to

k = arg max
`
{wT

` h
(k) − b`}. (40)

The the commonly used classification accuracy can be defined as

A(M, C) =
|D(M, C)|
|D| × 100%, (41)

where

D(M, C) =

K⋃
k=1

{
X(k) : k = arg max

`
{wT

` h
(k) − b`},X(k) ∈ Dk,h(k) =M(X(k))

}
, (42)

consisting of the all samples correctly classified byM and C in D.

13
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Eq. (39) implies a dynamic threshold tX separating the positive and negative decision scores. Inspired by Eq. (17), we
define uniform accuracy by using a unified threshold. Firstly, for given dataset D and modelM, classifier C with a fixed
threshold t, we denote a subset of D as

D(M, C; t) =

K⋃
k=1

{
X(k) ∈ Dk : wkh

(k) − bk > t ≥ max
{
wT
j h

(k) − bj
}K

j=1
j 6=k

,h(k) =M(X(k))
}

(43)

which is the biggest subset of D uniformly classified byM and C with t. Then the ratio

AUni(M, C; t) =
|D(M, C; t)|
|D| × 100%, (44)

is the corresponding uniform accuracy, and the maximum ratio with varying thresholds, i.e.,

AUni(M, C) = max
t∈R
AUni(M, C; t), (45)

is defined as the final uniform accuracy.

In practice, to calculate the uniform accuracy AUni, the sets of positive and negative decision scores for the all samples

Spos =

K⋃
k=1

{
wkh

(k)
i − bk : i = 1, 2, · · · , nk

}
, (46)

Sneg =

K⋃
k=1

K⋃
j=1
j 6=k

{
wjh

(k)
i − bj : i = 1, 2, · · · , nk

}
(47)

are first computed, and denote

spos-min = min(Spos) and sneg-max = max(Sneg). (48)

If spos-min ≥ sneg-max, the classification accuracy A and the uniform one AUni must be 100%, otherwise, N = 200 thresholds
{ti}Ni=1 are evenly taken from the interval [spos-min, sneg-max], and N = 200 uniform accuracy AUni(M, C; ti) are figured
out, while the best one max

{
AUni(M, C; ti)

}N
i=1

is chosen as the final uniform accuracy AUni. In this calculation, the final
results will be slightly different when different numbers (N ) of thresholds are taken in the score interval.

By Eqs. (17), a model with higher uniform accuracy, it would lead to more samples from category k, ∀k ∈ [K], whose
inner products (positive similarities/decision scores without bias) with the classifier vector wk are greater than bk + t,
implying higher intra-class compactness in each category, and requires more samples whose inner products (negative
similarities/decision scores without bias) with the classifier vectors of other categories are less than bj + t, implying higher
inter-class distinctiveness among all categories. For the intra-class compactness Ecom and inter-class distinctiveness Edis
among sample features, we define them as

Ecom =
1

2

[
1

K

K∑
k=1

(
1

n2k

nk∑
i=1

nk∑
i′=1

〈
h
(k)
i − h̄,h

(k)
i′ − h̄

〉
‖h(k)

i − h̄‖‖h(k)
i′ − h̄‖

)
+ 1

]
× 100%, (49)

Edis =
1

2

[
1− 1

K(K − 1)

K∑
k=1

K∑
k′=1
k′ 6=k

(
1

nk

1

nk′

nk∑
i=1

nk′∑
i′=1

〈
h
(k)
i ,h

(k′)
i′

〉
‖h(k)

i ‖‖h
(k′)
i′ ‖

)]
× 100%, (50)

where h̄ = 1
|D|
∑K
k=1

∑nk

i=1 h
(k)
i is the global feature center.

Due to the neural collapse, the compactness Ecom might be higher than 1
2 − 1

2(K−1) , and the distinctiveness Edis might be
lower than 1

2 + 1
2(K−1) , for the modelM and classifier C which have been well trained on the dataset D.
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B. Experimental settings and results
B.1. Experimental settings

Table 5. Experimental settings in our experiments.
Neural collapse Classification

setting-1 setting-2 setting-3 setting-4 setting-5 setting-6
H

yp
er

-p
ar

am
et

er

epochs 100 100 100 100 100 100
optimizer SGD AdamW SGD AdamW SGD AdamW
batch size 128 128 128 128 128 128
learning rate 0.01 0.001 0.01 0.001 0.01 0.001
learning rate decay step cosine step cosine step cosine
weight decay λ 7 7 5× 10−4 0.05 5× 10−4 0.05
weight decay λW 5× 10−4 5× 10−4 7 7 7 7
weight decay λH 5× 10−4 5× 10−4 7 7 7 7
weight decay λb 5× 10−4 5× 10−4 7 7 7 7
warmup epochs 0 0 0 0 0 0

D
at

a
A

ug
. random cropping 7 7 3 3 3 3

horizontal flipping 7 7 0.5 0.5 0.5 0.5
label smoothing 7 7 7 7 0.1 0.1
mixup alpha 7 7 7 7 0.8 0.8
cutmix alpha 7 7 7 7 1.0 1.0
mixup prob. 7 7 7 7 0.8 0.8
normalization mean = [0.4914, 0.4822, 0.4465], std = [0.2023, 0.1994, 0.2010]

In Sec. 4, we train ResNet18, ResNet50, and DenseNet121 on MNIST, CIFAR10, and CIFAR100, respectively. Table 5
shows the experimental settings. In default, we train the models using setting-1 and setting-2 in the experiments of neural
collapse, and apply setting-3, setting-4, setting-5, and setting-6 in the experiments of classification.
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Figure 4. The evolution of the three NC metrics in the training of ResNet18 (top), ResNet50 (middle), DenseNet121 (bottom) on MNIST
with CE and BCE using SGD and AdamW, respectively, with λW = λH = λb = 5× 10−4.

15



BCE vs. CE in deep feature learning

Table 6. The numerical results of the three models trained on MNIST, with λW = λH = λb = 5× 10−4.
MNIST

SGD AdamW
CE BCE CE BCE

R
es

N
et

18

ρ̂ 219.0960 407.1362 212.2180 357.9696
spos 5.6439± 0.1437 6.4008± 0.1236 5.6331± 0.0120 7.7460± 0.0113
sneg −0.6302± 0.2073 −3.4987± 0.1137 −0.6259± 0.0127 −2.1233± 0.0291

b̂ −0.0074± 0.0852 2.2170± 0.0308 0.0001± 0.0328 3.5134± 0.0337

α(b̂) — −0.0268 — −0.0086
A/AUni for training 100.00/100.00 100.00/100.00 100.00/100.00 100.00/100.00
A/AUni for testing 99.43/99.31 99.59/99.52 99.62/99.57 99.65/99.61

R
es

N
et

50

ρ̂ 217.7276 396.7711 212.2304 357.2365
spos 5.6383± 0.6400 6.5393± 1.6509 5.6389± 0.0380 7.7706± 0.0573
sneg −0.6271± 0.5978 −3.2512± 1.9658 −0.6266± 0.0220 −2.1029± 0.0429

b̂ 0.0039± 0.0733 2.4674± 0.0492 0.0001± 0.0328 3.5322± 0.0329

α(b̂) — −0.0217 — −0.0084
A/AUni for training 99.68/99.64 99.79/99.76 100.00/100.00 100.00/100.00
A/AUni for testing 98.98/98.79 99.01/98.88 99.60/99.57 99.53/99.52

D
en

se
N

et
12

1

ρ̂ 224.1426 414.7491 212.2337 355.5479
spos 5.5774± 0.1217 6.1977± 0.0987 5.6318± 0.1132 7.8030± 0.0377
sneg −0.6193± 0.1221 −3.6421± 0.1048 −0.6258± 0.3427 −2.0508± 0.0314

b̂ 0.0010± 0.0570 2.0705± 0.0264 0.0002± 0.0324 3.5767± 0.0344

α(b̂) — −0.0302 — −0.0081
A/AUni for training 100.00/99.99 100.00/100.00 99.63/99.62 100.00/100.00
A/AUni for testing 99.45/99.40 99.54/99.52 99.29/99.22 99.64/99.60
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Figure 5. The evolution of the three NC metrics in the training of ResNet18 (top), ResNet50 (middle), DenseNet121 (bottom) on CIFAR10
with CE and BCE using SGD and AdamW, respectively, with λW = λH = λb = 5× 10−4.
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Table 7. The numerical results of the three models trained on CIFAR10, with λW = λH = λb = 5× 10−4.
CIFAR10

SGD AdamW
CE BCE CE BCE

R
es

N
et

18

ρ̂ 221.7685 395.3918 212.4173 366.6813
spos 5.7103± 0.2252 6.5627± 0.2042 5.6393± 0.0568 7.5025± 0.0549
sneg −0.6386± 0.3574 −3.4557± 0.1939 −0.6265± 0.0066 −2.3582± 0.0225

b̂ −0.0085± 0.0430 2.2618± 0.0678 −0.0001± 0.0038 3.2905± 0.0080

α(b̂) — −0.0266 — −0.0105
A/AUni for training 99.99/99.98 100.00/100.00 100.00/100.00 100.00/100.00
A/AUni for testing 79.22/75.71 81.19/78.78 86.66/84.72 86.58/85.07

R
es

N
et

50

ρ̂ 220.8594 382.4440 212.3374 369.2447
spos 5.7365± 8.2056 6.5614± 4.3923 5.6386± 0.1062 7.4351± 0.2787
sneg −0.6439± 14.1340 −3.5695± 7.0134 −0.6266± 0.0150 −2.4493± 0.2165

b̂ 0.0045± 0.1430 2.4002± 0.1496 −0.0000± 0.0053 3.2051± 0.0309

α(b̂) — −0.0242 — −0.0114
A/AUni for training 99.61/99.52 99.65/99.32 99.99/99.99 100.00/100.00
A/AUni for testing 76.28/73.08 78.41/76.35 85.73/84.33 85.76/84.98

D
en

se
N

et
12

1

ρ̂ 225.0609 392.8198 212.7966 360.5613
spos 5.7225± 1.7228 6.2376± 0.8437 5.6150± 0.2851 7.6743± 0.1239
sneg −0.6348± 0.8664 −3.6171± 1.6284 −0.6240± 0.0330 −2.1715± 0.0604

b̂ 0.0012± 0.0364 2.0875± 0.1229 0.0003± 0.0061 3.4612± 0.0203

α(b̂) — −0.0318 — −0.0090
A/AUni for training 99.40/99.03 99.72/99.62 99.87/99.86 100.00/100.00
A/AUni for testing 77.30/74.41 79.16/77.95 81.54/80.15 82.34/81.70
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Figure 6. The evolution of the three NC metrics in the training of ResNet18 (top), ResNet50 (middle), DenseNet121 (bottom) on
CIFAR100 with CE and BCE using SGD and AdamW, respectively, with λW = λH = λb = 5× 10−4.
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Table 8. The numerical results of the three models trained on CIFAR100, with λW = λH = λb = 5× 10−4.
CIFAR100

SGD AdamW
CE BCE CE BCE

R
es

N
et

18

ρ̂ 954.3918 1732.6035 846.4734 1708.9231
spos 8.3613± 0.4316 3.5152± 0.2392 7.5183± 0.0997 4.0202± 0.0696
sneg −0.0848± 1.3897 −6.5934± 1.2718 −0.0754± 0.2580 −5.6834± 0.0438

b̂ 0.0004± 0.2356 0.8407± 0.0678 0.0005± 0.0097 1.1317± 0.0007

α(b̂) — −0.2672 — −0.2147
A/AUni for training 99.95/99.81 99.98/99.97 99.98/99.96 99.98/99.97
A/AUni for testing 34.61/17.99 42.06/30.61 56.58/47.29 60.48/43.04

R
es

N
et

50

ρ̂ 36.2794 289.5987 838.0098 1710.3754
spos 0.5404± 9.8551 −4.6656± 16.0695 7.3906± 0.3560 3.9356± 1.5798
sneg 0.6182± 11.4828 −6.2663± 29.8421 −0.0745± 0.1935 −5.7441± 1.1971

b̂ 0.0006± 0.0592 0.3210± 0.0241 0.0005± 0.0073 1.1239± 0.0044

α(b̂) — −0.4090 — −0.2160
A/AUni for training 2.52/0.05 7.67/0.44 99.83/99.76 99.77/99.62
A/AUni for testing 2.48/0.06 7.16/0.39 55.51/50.77 53.55/49.18

D
en

se
N

et
12

1

ρ̂ 894.4895 1597.8596 900.5263 1761.0126
spos 8.4473± 0.8321 3.0569± 1.6496 8.1030± 0.4805 4.0875± 0.2246
sneg −0.0842± 1.6340 −6.6552± 2.6035 −0.0800± 0.4365 −5.8613± 0.7152

b̂ −0.0012± 0.2239 0.8313± 0.0983 0.0016± 0.0948 1.1306± 0.0145

α(b̂) — −0.2714 — −0.2141
A/AUni for training 99.15/94.38 99.38/99.23 99.80/99.78 99.98/99.97
A/AUni for testing 37.48/24.20 39.93/35.19 50.31/37.87 52.41/49.81

B.2. Experimental results of neural collapse

In this section, we show the experimental results of neural collapse. Most of these results are calculated on the training data
of the three datasets.

NC metrics, the final classifier bias, and the final decision scores. Figs. 4 - 6 shows the evolution of the three NC
metrics in the training of ResNet18, ResNet50, DenseNet121 on MNIST, CIFAR10, and CIFAR100 with CE and BCE.
In the training on MNIST and CIFAR10, the NC metrics of both CE and BCE approach zero at the terminal phase of
training, and that of BCE decrease faster than that of CE at the first 20 epochs. In the training on CIFAR100, which is a
more challenging dataset than MNIST and CIFAR10, the NC metrics of models trained by SGD do not decrease to zero,
while that of models trained by AdamW approach zero, and the NC metrics of BCE decrease faster than that of CE in most
cases. Table 6 - 8 present the numerical results of the final models at the 100th epoch. In these tables, ρ̂ = ‖Ŵ ‖2F , where
Ŵ = [ŵ1, ŵ2, · · · , ŵK ]T ∈ RK×d is the final trained classifier weight; “spos” rows list the mean and standard deviations
of the final positive decision scores without biases, i.e.,

Mean(spos) =
1

nK

K∑
k=1

n∑
i=1

ŵkh
(k)
i , (51)

Std(spos) =

√√√√√ K∑
k=1

n∑
i=1

(
ŵkh

(k)
i −Mean(spos)

)2
nK

, (52)

“sneg” rows list that of the final negative decision scores without biases, i.e.,

Mean(sneg) =
1

nK(K − 1)

K∑
k=1

K∑
j=1
j 6=k

n∑
i=1

ŵjh
(k)
i , (53)

Std(sneg) =

√√√√√√ K∑
k=1

K∑
j=1
j 6=k

n∑
i=1

(
ŵjh

(k)
i −Mean(sneg)

)2
nK(K − 1)

, (54)
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and “b̂” rows list that of the final classifier bias b̂ = [b̂1, b̂2, · · · , b̂K ]T ∈ RK , i.e.,

Mean(b̂) =
1

K

K∑
k=1

b̂k, (55)

Std(b̂) =

√√√√∑K
k=1

(
b̂k −Mean(b̂)

)2
K

. (56)

“α(b̂)” rows list the value of function α(b) at point Mean(b̂), where

α(b) = − K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) +
1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

)) + λbb, (57)

is the function at the RHS of Eq. (12).

Besides the classification accuracy A and uniform accuracy AUni of the final models on the training data, Tables 6, 7, and 8
have also presented that on the testing data.

Table 9. The numerical results of ResNet18 trained on MNIST with fixed weight decay λb for the classifier bias.
Loss Opt. b̄ ρ̂ spos sneg b̂ α(b̂)

CE

SG
D

0 218.9428 5.6648± 0.1673 −0.6323± 0.2360 −0.0179± 0.1228 —
1 218.8023 5.6337± 0.1473 −0.6290± 0.2097 0.9821± 0.1149 —
2 218.3450 5.6456± 0.1556 −0.6318± 0.2213 1.9821± 0.1122 —
3 218.3319 5.6399± 0.1521 −0.6295± 0.2132 2.9821± 0.1163 —
4 219.2994 5.6628± 0.1600 −0.6321± 0.2281 3.9820± 0.1307 —
5 219.5797 5.6611± 0.1780 −0.6329± 0.2411 4.9820± 0.1279 —
6 220.0522 5.6458± 0.1598 −0.6301± 0.2245 5.9820± 0.1312 —
8 219.4256 5.6410± 0.1608 −0.6311± 0.2284 7.9821± 0.1194 —
10 219.2911 5.6411± 0.1601 −0.6300± 0.2152 9.9821± 0.1250 —

A
da

m
W

0 212.2146 5.6360± 0.0250 −0.6262± 0.0189 −0.0180± 0.0486 —
1 212.2138 5.6355± 0.0353 −0.6262± 0.0194 0.9828± 0.0493 —
2 212.2151 5.6336± 0.0258 −0.6260± 0.0189 1.9821± 0.0487 —
3 212.2152 5.6336± 0.0264 −0.6260± 0.0189 2.9825± 0.0486 —
4 212.2161 5.6307± 0.0274 −0.6257± 0.0191 3.9823± 0.0491 —
5 212.2143 5.6308± 0.0264 −0.6257± 0.0189 4.9809± 0.0486 —
6 212.2143 5.6323± 0.0264 −0.6258± 0.0189 5.9822± 0.0486 —
8 212.2163 5.6347± 0.0262 −0.6261± 0.0189 7.9812± 0.0486 —
10 212.2151 5.6340± 0.0263 −0.6260± 0.0189 9.9829± 0.0486 —

BCE

SG
D

0 393.2500 7.1748± 0.1277 −2.8219± 0.1379 3.0789± 0.0489 −0.0120
1 374.9337 7.7515± 0.1578 −2.2877± 0.1468 3.6658± 0.0709 −0.0070
2 362.5949 8.1822± 0.1525 −1.9121± 0.1604 4.1078± 0.1053 −0.0045
3 355.2978 8.5608± 0.1634 −1.6192± 0.1568 4.4557± 0.0981 −0.0030
4 354.6479 8.8711± 0.1473 −1.3347± 0.1725 4.7949± 0.1094 −0.0019
5 355.9634 9.2305± 0.1503 −1.0452± 0.1960 5.1493± 0.1192 −0.0009
6 361.1938 9.5688± 0.1355 −0.7519± 0.1688 5.5084± 0.0869 −0.0002
8 385.6802 10.3761± 0.1400 −0.0997± 0.2436 6.3418± 0.0989 0.0007
10 426.3013 11.5173± 0.1430 0.7786± 0.3075 7.4858± 0.1021 0.0010

A
da

m
W

0 350.4272 9.3081± 0.0352 −1.0348± 0.0321 5.2388± 0.0609 −0.0006
1 350.4283 9.3015± 0.0345 −1.0340± 0.0321 5.2389± 0.0609 −0.0006
2 350.4292 9.3029± 0.0357 −1.0342± 0.0321 5.2388± 0.0609 −0.0006
3 350.4275 9.3028± 0.0364 −1.0342± 0.0321 5.2388± 0.0609 −0.0006
4 350.4248 9.3039± 0.0362 −1.0343± 0.0320 5.2388± 0.0609 −0.0006
5 350.4250 9.3100± 0.0358 −1.0350± 0.0320 5.2388± 0.0608 −0.0006
6 350.4302 9.3063± 0.0345 −1.0346± 0.0321 5.2388± 0.0608 −0.0006
8 350.4304 9.3094± 0.0356 −1.0349± 0.0321 5.2389± 0.0609 −0.0006
10 350.4330 9.3109± 0.0369 −1.0351± 0.0321 5.2388± 0.0609 −0.0006

The failures in the experiments of neural collapse. According to the above figures and tables, one can find the models
trained with SGD are easily to fail in the experiments of neural collapse, including the ResNet50 trained on MNIST,
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ResNet50 and DenseNet121 trained on CIFAR10, and the three models trained CIFAR100. The standard deviations of
positive/negative decision scores produced by these models are usually larger than 0.5. These failed models in the neural
collapse can be roughly classified into two types:

• The two ResNet50 trained on CIFAR100 with SGD. They are completely failed models. The standard deviations of
the decision scores are very high, even more than 20, and, for the BCE-trained model, the means of the positive and
negative decision scores are relatively close, while for the CE-trained model, the mean of positive scores is even less
than that of negative ones, indicating that most of the samples were not correctly classified. The classification accuracy
A on the training dataset are only 2.52% and 7.67% with CE and BCE. The ResNet50 trained on CIFAR10 with SGD
and CE. On the training dataset, there exists a clear gap between the means of positive and negative decision scores,
while the standard deviations are still very high. In correspond to the decision score results, its classification accuracy
A is 99.61%, almost 100%, while the uniform classification accuracy AUni is only 0.01%. In other words, the almost
all samples have been correctly classified, while the intra-class compactness and inter-class distinctiveness are very bad.
As a comparison, the BCE-trained ResNet50 on CIFAR10 with SGD achieves high classification performance and
uniform classification performance.

In contrast, on the testing dataset, the CE-trained ResNet50 achieves relatively high classification accuracy and
uniform classification accuracy, 76.28% and 72.51%. The generalization of uniform classification performance of
models is still an unresolved issue.

Fig. presents the feature distributions of these two ResNet50 on the training and testing data of CIFAR10.

• The other failed models trained with SGD, including the ResNet50 trained on MNIST and CIFAR10, DenseNet121
trained on CIFAR10, ResNet18 and DenseNet121 trained on CIFAR100. These models have achieved almost 100%
classification accuracy and uniform accuracy on the training dataset. However, according to the standard deviations of
decision scores and the NC metrics, we conclude that they do not reach the state of neural collapse.

These failures in the experiments of neural collapse reveal more relationships among classification and neural collapse.
In the training, zero classification error appears before zero uniform classification error, which appears before the neural
collapse, or, in contrary, the model reaching the neural collapse has the uniform accuracy of 100%, and the model with the
uniform accuracy of 100% has also the accuracy 100% on the classification. Both the reverses are not true.

The bias decay parameter λb. In Sec. 4, we conducted experiments with fixed λb = 0 and varying λb = 0.5, 0.05, 5×
10−3, 5× 10−4, 5× 10−5, 5× 10−6 to further compare CE and BCE in neural collapse. Fig. 3 have visually shown the
results, and we here present the numerical results in Tables 9 and 10. In our experiments, the classifier weight W and
bias b are initialized using “kaiming uniform”, i.e., He initialization (He et al., 2015). The initialized classifier bias is with
zero-mean, i.e., 1

K

∑K
k=1 bk ≈ 0, and we add them with 0, 1, 2, 3, 4, 5, 6, 8, 10, respectively, to adjust their average value in

the experiments with fixed λb.

The batch size. In the proof of Theorem 3.1 and 3.2, it applied the feature matrix H including the features of all samples,
to explore the the lower bounds for the CE and BCE losses, i.e.,

H =
[
h
(1)
1 , h

(1)
2 , · · · , h(1)n , h

(2)
1 , h

(2)
2 , · · · , h(2)n , · · · , h(K)

1 , h
(K)
2 , · · · , h(K)

n

]
. (58)

However, batch algorithm was applied in the practical training of deep models, and the batch size would affect the
experimental numerical results. To verify this conclusion, a group of experiments were conducted with varying batch size.
We trained ResNet18 on MNIST using SGD and AdamW using setting-1 and setting-2, while the initial learning rates were
adjusted according to the batch size, 0.01× batch size

128 for SGD and 0.001× batch size
128 for AdamW. Fig. 7 visually shows the

distributions of the final classifier bias and the positive/negative decision scores, and Table 11 lists the final numerical results.
From these results, one can find that the bias results still conform to our analysis when batch size ≤ 1024, i.e., the classifier
bias converges to zero in the training with CE loss and λb > 0, and the clssifier bias separates the positive and negative
decision scores in the training with BCE loss.

The decision score results are very different from that in the experiments with fixed batch size. For examples, in the training
with CE loss and fixed batch size = 128, the positive and negative decision scores converge to about 5.64 and −0.63,
respectively, and the value of ρ̂ = ‖Ŵ ‖2F converge to about 219 and 212 in the training by SGD and AdamW, respectively,
as shown in Tables 9 and 10. In contrast, these values varies as the batch size in the experiments with varying batch sizes.
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Table 10. The numerical results of ResNet18 trained on MNIST with varying weight decay λb for the classifier bias.
Loss Opt. λb ρ̂ spos sneg b̂ α(b̂)

CE

SG
D

5× 10−1 218.6677 5.6511± 0.1144 −0.6304± 0.1854 −0.0000± 0.0002 —
5× 10−2 218.6658 5.6662± 0.1176 −0.6321± 0.2031 −0.0000± 0.0017 —
5× 10−3 218.5622 5.6427± 0.1076 −0.6296± 0.1917 0.0013± 0.0156 —
5× 10−4 219.4882 5.6527± 0.1287 −0.6322± 0.2352 4.0998± 0.0796 —
5× 10−5 219.0555 5.6526± 0.1407 −0.6310± 0.2192 9.1337± 0.1038 —
5× 10−6 219.2227 5.6426± 0.1507 −0.6307± 0.2209 9.8940± 0.1111 —

A
da

m
W

5× 10−1 212.2359 5.6329± 0.0340 −0.6259± 0.0037 −0.0000± 0.0001 —
5× 10−2 212.2369 5.6372± 0.0335 −0.6264± 0.0037 0.0000± 0.0010 —
5× 10−3 212.2328 5.6382± 0.0186 −0.6265± 0.0038 0.0000± 0.0083 —
5× 10−4 212.2152 5.6339± 0.0257 −0.6260± 0.0128 0.0010± 0.0324 —
5× 10−5 212.2158 5.6316± 0.0221 −0.6257± 0.0174 3.4803± 0.0448 —
5× 10−6 212.2147 5.6330± 0.0256 −0.6259± 0.0186 8.9169± 0.0480 —

BCE

SG
D

5× 10−1 472.0906 4.2473± 0.1306 −5.6495± 0.1260 0.0036± 0.0000 −0.1683
5× 10−2 471.6918 4.2916± 0.1134 −5.5975± 0.1029 0.0362± 0.0003 −0.1640
5× 10−3 452.0422 4.6706± 0.1199 −5.1987± 0.0936 0.4031± 0.0037 −0.1269
5× 10−4 358.9137 9.0244± 0.1190 −0.7897± 0.1281 4.8403± 0.0604 −0.0018
5× 10−5 414.4364 11.0715± 0.1306 0.5388± 0.2787 7.0401± 0.0959 0.0008
5× 10−6 424.8451 11.4847± 0.1327 0.7536± 0.3067 7.4372± 0.0973 0.0010

A
da

m
W

5× 10−1 483.3321 4.2399± 0.0308 −5.6315± 0.0215 0.0036± 0.0000 −0.1636
5× 10−2 482.1844 4.2698± 0.0306 −5.5977± 0.0213 0.0358± 0.0003 −0.1598
5× 10−3 470.6640 4.5928± 0.0281 −5.2753± 0.0201 0.3577± 0.0033 −0.1256
5× 10−4 356.5036 7.7870± 0.0130 −2.0822± 0.0285 3.5514± 0.0330 −0.0083
5× 10−5 347.1199 9.0726± 0.0303 −1.1593± 0.0304 4.9903± 0.0537 −0.0012
5× 10−6 350.0225 9.2915± 0.0372 −1.0489± 0.0319 5.2119± 0.0599 −0.0006

Table 11. The numerical results of ResNet18 trained on MNIST with varying batch size and λW = λH = λb = 5× 10−4.
Loss Opt. batch size ρ̂ spos sneg b̂ α(b̂)

CE

SG
D

16 100.9731 6.7176± 0.3270 −0.7538± 0.1950 −0.0074± 0.0523 —
32 130.1404 6.3375± 0.2425 −0.7110± 0.1709 −0.0074± 0.0478 —
64 168.6290 6.0159± 0.1562 −0.6737± 0.2052 −0.0074± 0.0547 —
128 219.0960 5.6439± 0.1437 −0.6302± 0.2073 −0.0074± 0.0852 —
256 285.6314 5.3200± 0.1586 −0.5936± 0.2070 −0.0074± 0.1259 —
512 379.3403 4.9776± 0.2735 −0.5535± 0.2921 −0.0073± 0.2526 —
1024 522.5523 4.6562± 1.3926 −0.5173± 0.8343 −0.0073± 1.0641 —
2048 473.7898 3.5759± 2.6771 −0.3972± 2.0373 −0.0072± 1.8399 —

A
da

m
W

16 87.6451 6.5511± 0.0110 −0.7279± 0.0089 0.0003± 0.0211 —
32 118.0328 6.2558± 0.0101 −0.6951± 0.0104 0.0003± 0.0253 —
64 158.4980 5.9506± 0.0106 −0.6612± 0.0117 0.0002± 0.0293 —
128 212.2180 5.6331± 0.0120 −0.6259± 0.0127 0.0001± 0.0328 —
256 282.9370 5.3168± 0.0148 −0.5908± 0.0133 0.0000± 0.0357 —
512 375.4274 4.9968± 0.0209 −0.5552± 0.0140 −0.0001± 0.0380 —
1024 496.6912 4.6627± 0.0631 −0.5199± 0.0238 −0.0190± 0.0472 —
2048 668.3063 4.3236± 0.3703 −0.4906± 0.2909 −0.0153± 0.2964 —

BCE

SG
D

16 199.6890 6.1841± 0.3002 −5.9379± 0.2665 0.7828± 0.0223 −0.0660
32 255.9898 6.1508± 0.2184 −5.2761± 0.1932 1.1506± 0.0214 −0.0546
64 324.7408 6.2846± 0.1600 −4.4319± 0.1295 1.6456± 0.0254 −0.0399
128 407.1362 6.4008± 0.1236 −3.4987± 0.1137 2.2170± 0.0308 −0.0268
256 501.1286 6.6422± 0.1347 −2.5493± 0.1501 2.8605± 0.0740 −0.0167
512 631.7796 6.6413± 0.2725 −1.9155± 0.2544 3.2338± 0.1859 −0.0127
1024 816.6544 6.3274± 0.4653 −1.5393± 0.4515 3.3466± 0.3554 −0.0119
2048 351.9647 1.7449± 2.4487 −0.5243± 1.6982 2.6332± 1.5391 0.0077

A
da

m
W

16 189.2794 6.5169± 0.0240 −5.3841± 0.0215 1.2651± 0.0119 −0.0457
32 242.1592 6.7110± 0.0169 −4.5302± 0.0202 1.7885± 0.0167 −0.0322
64 300.8807 7.1079± 0.0118 −3.4518± 0.0229 2.5261± 0.0234 −0.0188
128 357.9696 7.7460± 0.0113 −2.1233± 0.0291 3.5134± 0.0337 −0.0086
256 455.2137 7.6247± 0.0112 −1.6013± 0.0256 3.8010± 0.0325 −0.0068
512 590.9918 7.2831± 0.0271 −1.3210± 0.0270 3.8500± 0.0375 −0.0064
1024 790.8874 6.6204± 0.1011 −1.3148± 0.1126 3.5830± 0.0899 −0.0089
2048 1019.6438 5.9625± 0.2969 −1.2607± 0.2750 3.3303± 0.2111 −0.0122
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Figure 7. The distributions of the final classifier bias and positive/negative decision scores for ResNet18 trained on MNIST with different
batch sizes, while λW = λH = λb = 5× 10−4.

In addition, the positive/negative decision scores did not converge to the theoretical values in Eq. (14) in our experiments;
we believe it is resulted from the difference between the batch algorithm and the proof of Theorems. We roughly replaced n
with batch size

K in computing α(b̂).

B.3. Experimental results of classification

In the experiments of classification in Sec. 4.2, we train the models for 100 epochs. In each training, the model with best
classification accuracy A is chosen as the final model, which was used to compute the uniform accuracy AUni presented in
Table 1. In Table 12 and 13, we list their numerical results on the training and test dataset of CIFAR10 and CIFAR100. In
these experiments, though the classification accuracy A of some models on the training datasets have reached 100%, neural
collapse has not caused during the training. An obvious evidence is that both positive and negative decision scores have not
converged, with large standard deviations, whether on the training set or testing set. The small standard deviations of the
final classification bias might be more resulted from their initialization.

From Tables 12 and 13, one can find that, the gaps between the means of positive and negative decision scores of BCE-trained
models are usually larger than that of CE-trained models, while in some cases, the standard deviations of the positive/negative
decision scores of BCE-trained models are higher than that of CE-trained models. However, without any modification, the
standard deviations and the gap between the positive and negative means cannot be precisely used to evaluate the intra-class
compactness and inter-class distinctiveness. The decision score is calculated by the norm of the classifier vector and the
feature vector, with the angle between them. The diverse ρ̂ of CE-trained and BCE-trained models indicates different norms
of the classifier vectors.
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Table 12. The numerical results of ResNet18, ResNet50, DenseNet121 trained on CIFAR10 for classification.

MOp. DA Loss classifier on training data on testing data
ρ̂ b̂ spos sneg A AUni spos sneg

R
es

N
et

18 SG
D 1 CE 34.86 −0.01± 0.03 14.9± 3.54 −1.68± 2.64 99.98 97.55 13.9± 4.73 −1.56± 2.89

BCE 52.33 2.89± 0.03 12.9± 2.75 −9.70± 2.67 100.00 99.99 11.3± 4.93 −9.25± 3.30

1&2 CE 12.59 −0.01± 0.02 3.23± 0.38 −0.37± 0.62 98.02 95.99 3.09± 0.61 −0.35± 0.70
BCE 19.66 2.84± 0.02 3.86± 0.45 −0.86± 0.66 98.71 98.01 3.66± 0.80 −0.84± 0.77

A
da

m
W 1 CE 85.52 −0.00± 0.01 12.3± 3.60 −12.4± 4.12 99.99 99.57 10.9± 5.52 −12.1± 4.58

BCE 113.9 2.16± 0.02 16.3± 2.95 −20.0± 4.50 100.00100.00 14.2± 6.37 −19.0± 5.75

1&2 CE 36.26 −0.01± 0.01 2.54± 0.18 −1.13± 0.38 99.96 99.88 2.41± 0.52 −1.12± 0.50
BCE 44.16 2.14± 0.01 3.57± 0.20 −1.74± 0.38 99.96 99.94 3.34± 0.81 −1.72± 0.56

R
es

N
et

50 SG
D 1 CE 18.74 0.00± 0.03 17.4± 3.16 −2.00± 3.30 99.99 98.09 16.1± 4.56 −1.86± 3.73

BCE 29.07 2.83± 0.04 13.7± 2.33 −12.4± 3.07 99.99 99.98 11.9± 5.08 −11.8± 3.83

1&2 CE 8.18 0.00± 0.04 3.28± 0.35 −0.39± 0.56 98.25 96.65 3.14± 0.63 −0.37± 0.66
BCE 13.86 2.65± 0.03 3.68± 0.45 −1.08± 0.61 98.79 98.24 3.47± 0.85 −1.06± 0.75

A
da

m
W 1 CE 143.9 0.01± 0.02 16.7± 5.64 −18.6± 6.76 100.00 98.95 14.9± 7.87 −18.2± 7.23

BCE 153.4 2.20± 0.01 21.9± 6.82 −28.5± 9.09 99.97 99.96 19.4± 10.1 −27.2± 10.4

1&2 CE 79.80 0.00± 0.01 2.44± 0.25 −1.16± 0.33 99.96 99.89 2.28± 0.57 −1.16± 0.44
BCE 102.6 2.14± 0.00 3.35± 0.24 −1.58± 0.44 99.95 99.94 3.16± 0.72 −1.55± 0.56

D
en

se
N

et
12

1

SG
D 1 CE 48.02 0.00± 0.02 10.5± 2.37 −1.16± 2.18 99.30 93.29 9.57± 3.41 −1.06± 2.41

BCE 64.94 2.93± 0.03 9.06± 1.76 −6.05± 1.74 99.45 99.24 7.75± 3.63 −5.71± 2.32

1&2 CE 14.99 0.00± 0.02 2.89± 0.67 −0.32± 0.67 91.20 86.80 2.77± 0.80 −0.30± 0.71
BCE 19.60 2.86± 0.02 3.69± 0.88 −0.65± 0.73 92.38 90.28 3.52± 1.08 −0.62± 0.80

A
da

m
W 1 CE 139.4 0.00± 0.01 10.2± 3.06 −10.6± 4.44 99.97 98.48 8.70± 5.00 −10.4± 4.86

BCE 156.6 2.17± 0.01 13.1± 2.78 −15.1± 4.22 99.97 99.97 10.9± 5.93 −14.4± 5.13

1&2 CE 39.93 0.00± 0.01 2.31± 0.28 −1.28± 0.48 98.83 98.10 2.14± 0.64 −1.26± 0.58
BCE 40.53 2.18± 0.01 3.40± 0.42 −1.65± 0.52 98.81 98.51 3.13± 0.94 −1.60± 0.67

Table 13. The numerical results of ResNet18, ResNet50, DenseNet121 trained on CIFAR100 for classification.

MOpt. DA Loss classifier on training data on testing data
ρ̂ b̂ spos sneg A AUni spos sneg

R
es

N
et

18 SG
D 1 CE 317.6 0.00± 0.02 15.8± 3.15 −0.18± 3.04 99.79 76.32 13.0± 5.06 −0.15± 3.06

BCE 408.8 2.89± 0.02 9.39± 2.87 −10.0± 2.94 99.94 99.69 5.28± 5.95 −9.64± 3.06

1&2 CE 138.8 0.00± 0.02 5.82± 1.33 −0.07± 0.98 88.26 73.67 5.09± 1.67 −0.06± 1.00
BCE 163.7 2.89± 0.01 3.42± 1.44 −3.22± 0.99 88.56 80.23 2.64± 1.90 −3.19± 1.02

A
da

m
W 1 CE 1007. 0.00± 0.02 12.5± 4.18 −13.4± 5.16 99.98 92.02 7.47± 7.81 −13.1± 5.19

BCE 1372. 2.14± 0.02 15.3± 4.85 −21.2± 6.34 99.98 99.97 7.05± 10.2 −19.7± 6.47

1&2 CE 476.9 0.00± 0.02 4.49± 0.82 −2.04± 0.99 99.25 95.86 3.15± 1.77 −2.14± 1.09
BCE 576.1 2.18± 0.02 3.67± 0.80 −4.13± 0.84 99.18 98.25 2.22± 1.84 −4.01± 0.96

R
es

N
et

50 SG
D 1 CE 258.8 0.00± 0.01 17.7± 3.12 −0.19± 3.56 99.90 79.70 14.5± 5.17 −0.16± 3.58

BCE 328.3 2.87± 0.01 10.0± 2.82 −11.6± 3.40 99.86 99.62 5.37± 6.20 −10.9± 3.46

1&2 CE 102.7 0.00± 0.01 5.97± 1.41 −0.07± 1.07 87.46 72.45 5.29± 1.71 −0.06± 1.05
BCE 118.4 2.86± 0.01 3.59± 1.48 −3.33± 0.98 89.17 81.80 2.75± 1.96 −3.29± 1.02

A
da

m
W 1 CE 2157. 0.00± 0.01 13.9± 5.49 −19.4± 7.18 99.98 87.42 8.29± 9.45 −19.2± 7.20

BCE 2863. 2.15± 0.02 17.6± 4.92 −25.7± 7.34 99.98 99.97 8.49± 11.2 −23.5± 7.67

1&2 CE 1334. 0.00± 0.02 4.42± 0.67 −1.96± 0.87 99.69 97.86 3.06± 1.90 −2.25± 1.07
BCE 1440. 2.18± 0.02 3.81± 0.82 −4.27± 0.80 99.67 99.22 2.28± 1.96 −4.21± 0.93

D
en

se
N

et
12

1

SG
D 1 CE 337.9 −0.00± 0.02 12.9± 3.33 −0.12± 2.83 92.46 56.75 10.5± 4.75 −0.10± 2.82

BCE 383.8 2.95± 0.02 6.03± 2.64 −7.83± 2.81 92.85 87.12 3.36± 4.28 −7.34± 2.91

1&2 CE 143.2 −0.00± 0.02 4.62± 1.67 −0.04± 1.01 67.23 47.68 4.26± 1.84 −0.04± 1.01
BCE 161.5 2.90± 0.01 2.14± 1.68 −2.95± 1.04 68.15 56.43 1.74± 1.85 −2.93± 1.05

A
da

m
W 1 CE 1090. −0.00± 0.01 9.39± 3.69 −12.3± 4.98 99.89 83.67 4.74± 6.83 −12.1± 4.99

BCE 1146. 2.17± 0.01 9.78± 2.72 −16.0± 4.77 99.86 99.55 3.66± 7.20 −14.6± 5.03

1&2 CE 430.2 −0.00± 0.01 3.82± 1.13 −2.00± 1.00 91.18 80.57 2.85± 1.83 −2.07± 1.06
BCE 474.5 2.20± 0.01 2.70± 1.16 −3.85± 0.89 90.66 85.83 1.79± 1.83 −3.82± 0.97
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C. Proof of Theorem 3.2
Zhou et al. (2022b) have proved that the loss satisfying contrastive property can cause neural collapse. CE loss, focal loss,
and label smoothing loss satisfy this property, while BCE does not, and we proof that BCE can also result in the neural
collapse in this paper.
Definition C.1. (Contrastive property (Zhou et al., 2022b)). A loss function L(z) satisfies the contrastive property if there
exists a function φ such that L(z) can be lower bounded by

L(z) ≥ φ
( K∑

j=1
j 6=k

(
zj − zk

))
(59)

where the equality holds only when zj = z` for ∀j, ` 6= k, and the function φ(x) satisfies

x? = arg min
x
φ(x) + c|x| (60)

is unique for ∀c > 0, and x? ≤ 0. z

Theorem C.2. (Zhou et al., 2022b) Assume that the feature dimension d is larger than the category number K, i.e.,
d ≥ K − 1, and L is satisfying the contrastive property. Then any global minimizer (W ?,H?, b?) of f(W ,H, b) defined
using L with Eq. (3) obeys the following properties,

‖w?‖ = ‖w?
1‖ = ‖w?

2‖ = · · · = ‖w?
K‖, (61)

h
(k)?
i =

√
λW
nλH

w?
k, ∀ k ∈ [K], i ∈ [n], (62)

h̃?i :=
1

K

K∑
j=1

h
(k)?
i = 0,∀ i ∈ [n], (63)

b? = b?1K , (64)

where either b? = 0 or λb = 0. The matrix W ?T forms a K-simplex ETF in the sense that

1

‖w?‖22
W ?TW ? =

K

K − 1

(
IK −

1

K
1K1TK

)
, (65)

where IK ∈ RK×K denotes the identity matrix, 1K ∈ RK denotes the all ones vector. z

Neural collapse for BCE loss

Lbce(Wh
(k)
i − b,yk) = log

(
1 + exp(−wT

k h
(k)
i + bk)

)
+

K∑
j=1
j 6=k

log
(
1 + exp(wT

j h
(k)
i − bj)

)
. (66)

Theorem C.3. Assume that the feature dimension d is larger than the number of classes K, i.e., d ≥ K − 1. Then any
global minimizer (W ?,H?, b?) of

min
W ,H,b

fbce(W ,H, b) := gbce(WH − b1T ) +
λW

2
‖W ‖2F +

λH
2
‖H‖2F +

λb
2
‖b‖22 (67)

with

gbce(WH − b1T ) :=
1

N

K∑
k=1

n∑
i=1

Lbce(Wh
(k)
i − b,yk), (68)

obeys the following

‖w?‖ = ‖w?
1‖ = ‖w?

2‖ = · · · = ‖w?
K‖, and b? = b?1, (69)

h
(k)?
i =

√
λW
nλH

w?
k, ∀ k ∈ [K], i ∈ [n], and h̃?i :=

1

K

K∑
j=1

h
(k)?
i = 0,∀ i ∈ [n], (70)
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and the matrix 1
‖w?‖2W

?T forms a K-simplex ETF in the sense that

1

‖w?‖22
W ?TW ? =

K

K − 1

(
IK −

1

K
1K1TK

)
, (71)

where b? is the solution of equation

λbb =
K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) − 1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

)) . (72)

Proof According to Lemma C.4, any critical point (W ,H, b) of f(W ,H, b) satisfies

W TW =
λH
λW

HTH. (73)

Let ρ = ‖W ‖2F for any critical point (W ,H, b). Then, according to Lemma C.6, for any c1, c2 ≥ 0,

fbce(W ,H, b)

≥
[
λW −

(
2K − 1

N(1 + c2)
− 1

N(1 + c1)

)√
nλW
λH

]
ρ− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C (74)

where

C =
c1

1 + c1
log

(
1 + c1
c1

)
+

log(1 + c1)

1 + c1
+
K − 1

1 + c2

[
c2 log

(
1 + c2
c2

)
+ log(1 + c2)

]
. (75)

According to Lemma C.7, the inequality (74) achieves its equality when

‖w1‖ = ‖w2‖ = · · · = ‖wK‖, and b = b?1, (76)

h
(k)
i =

√
λW
nλH

wk, ∀ k ∈ [K], i ∈ [n], and h̃i =
1

K

K∑
k=1

h
(k)
i = 0,∀ i ∈ [n], (77)

WW T =
ρ

K − 1

(
IK −

1

K
1K1TK

)
, (78)

c1 = exp

(√
λW
nλH

ρ

K
− b?

)
, and c2 = exp

(
b? +

√
λW
nλH

ρ

K(K − 1)

)
, (79)

where b? is the solution of equation

λbb =
K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) − 1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

)) . (80)

According to Lemma C.8, the equation (80) in terms of b has only one solution b?.

Given λW , λH , λb > 0, fbce(W ,H, b) is convex function, which achieves its minimum with finite W ,H, b. Therefore, the
right side of inequality (74) is a consistent when λW , λH , λb are fixed and Eqs. (76, 77, 78, 79) hold, which finishes the
proof. z

Lemma C.4. Any critical point (W ,H, b) of Eq. (67) obeys

W TW =
λH
λW

HHT , and ‖W ‖2F =
λH
λW
‖H‖2F . (81)

Proof See Lemma D.2 in reference (Zhu et al., 2021). z
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Lemma C.5. For any h
(k)
i with c1, c2 > 0, the BCE loss is lower bounded by

Lbce(Wh
(k)
i ,yk) ≥ 1

1 + c1

(
−wT

k h
(k)
i + bk

)
+

1

1 + c2

K∑
j=1
j 6=k

(
wT
j h

(k)
i − bj

)
+ C, (82)

where

C =
c1

1 + c1
log

(
1 + c1
c1

)
+

log
(
1 + c1

)
1 + c1

+
K − 1

1 + c2

[
c2 log

(
1 + c2
c2

)
+ log

(
1 + c2

)]
. (83)

The inequality becomes an equality when

wT
j h

(k)
i − bj = wT

` h
(k)
i − b`, ∀ j, ` 6= k, (84)

and

c1 = exp
(
wT
k h

(k)
i − bk

)
, (85)

c2 = exp
(
bj −wT

j h
(k)
i

)
, j 6= k. (86)

Proof By the concavity of the log(1 + ex), we have,

K∑
k=1

log
(
1 + exp(xk)

)
≥ K log

(
1 + exp

(∑K
k=1 xk
K

))
, ∀xk ∈ R. (87)

Then,

Lbce(Wh
(k)
i + b,yk) (88)

= log
(
1 + exp(−wT

k h
(k)
i + bk)

)
+

K∑
j=1
j 6=k

log
(
1 + exp(wT

j h
(k)
i − bj)

)
(89)

≥ log
(
1 + exp(−wT

k h
(k)
i + bk)

)
+
(
K − 1

)
log

[
1 + exp

(∑K
j=1
j 6=k

(
wT
j h

(k)
i − bj

)
K − 1

)]
(90)

= log

(
c1

1 + c1

1 + c1
c1

+
1 + c1
1 + c1

exp
(
−wT

k h
(k)
i + bk

))

+
(
K − 1

)
log

[
c2

1 + c2

1 + c2
c2

+
1 + c2
1 + c2

exp

(∑K
j=1
j 6=k

(
wT
j h

(k)
i − bj

)
K − 1

)]
(91)

≥ c1
1 + c1

log

(
1 + c1
c1

)
+

1

1 + c1
log

((
1 + c1

)
exp

(
−wT

k h
(k)
i + bk

))

+
(
K − 1

){ c2
1 + c2

log

(
1 + c2
c2

)
+

1

1 + c2
log

[(
1 + c2

)
exp

(∑K
j=1
j 6=k

(
wT
j h

(k)
i − bj

)
K − 1

)]}
(92)

=
1

1 + c1

(
−wT

k h
(k)
i + bk

)
+

1

1 + c2

K∑
j=1
j 6=k

(
wT
j h

(k)
i − bj

)

+
c1

1 + c1
log

(
1 + c1
c1

)
+

log
(
1 + c1

)
1 + c1

+
K − 1

1 + c2

[
c2 log

(
1 + c2
c2

)
+ log

(
1 + c2

)]
︸ ︷︷ ︸

C

. (93)

The first inequality is derived from the concavity of log(1 + ex), i.e., Eq. (87), which achieves the equality if and only if

wT
j h

(k)
i − bj = wT

` h
(k)
i − b`, ∀ j, ` 6= k ∈ [K]. (94)
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The second inequality is derived from the concavity of log(x),

log
(
tx1 + (1− t)x2

)
≥ t log(x1) + (1− t) log(x2), ∀x1, x2 ∈ R and t ∈ [0, 1], (95)

which achieves its equality if and only if x1 = x2, or t = 0, or t = 1. Then, the second inequality holds for any c1, c2 ≥ 0,
and it becomes an equality if and only if

1 + c1
c1

= (1 + c1) exp
(
−wT

k h
(k)
i + bk

)
or c1 = 0 or c1 = +∞, and (96)

1 + c2
c2

= (1 + c2) exp

(∑K
j=1
j 6=k

(
wT
j h

(k)
i − bj

)
K − 1

)
or c1 = 0 or c1 = +∞. (97)

It is trivial when c1 = 0 or c1 = +∞ or c2 = 0 or c2 = +∞. Then, we get

c1 = exp
(
wT
k h

(k)
i − bk

)
, (98)

c2 = exp

(∑K
j=1
j 6=k

(
bj −wT

j h
(k)
i

)
K − 1

)
(94)
= exp

(
bj −wT

j h
(k)
i

)
, j 6= k, (99)

which are desired. z

Lemma C.6. Let

W =
[
w1,w2, · · · ,wK

]T ∈ RK×d, (100)

H =
[
h
(1)
1 , · · · , h(1)n , · · · , h(K)

1 , · · · , h(K)
n

]
∈ Rd×N (101)

with N = nK. Then, for any critical point (W ,H, b) of Eq. (67) and any c1, c2 ≥ 0, we have

fbce(W ,H, b)

≥
[
λW −

(
1

N(1 + c2)
+

1

N(1 + c1)

)√
nλW
λH

]
ρ− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C (102)

with C = c1
1+c1

log
(
1+c1
c1

)
+ log(1+c1)

1+c1
+ K−1

1+c2

[
c2 log

(
1+c2
c2

)
+ log(1 + c2)

]
.

Proof According to Lemma C.4, Eq. (82) holds for any c1, c2 > 0 and any h
(k)
i with k ∈ [K], i ∈ [n]. We take the same

c1 and c2 for all h(k)
i , then

(1 + c1)(1 + c2)
[
gbce(WH + b1T )− C

]
(103)

= (1 + c1)(1 + c2)

[
1

N

K∑
k=1

n∑
i=1

Lbce(Wh
(k)
i + b,yk)− C

]
(104)

≥ 1

N

K∑
k=1

n∑
i=1

[(
1 + c2

)(
−wT

k h
(k)
i + bk

)
+
(
1 + c1

) K∑
j=1
j 6=k

(
wT
j h

(k)
i − bj

)]
(105)

=
1 + c1
N

K∑
k=1

n∑
i=1

K∑
j=1
j 6=k

(
wT
j h

(k)
i − bj

)
− 1 + c2

N

K∑
k=1

n∑
i=1

(
wT
k h

(k)
i − bk

)
(106)

=
1 + c1
N

K∑
k=1

n∑
i=1

( K∑
j=1

(
wT
j h

(k)
i − bj

)
−wT

k h
(k)
i + bk

)
− 1 + c2

N

K∑
k=1

n∑
i=1

(
wT
k h

(k)
i − bk

)
(107)

=
1 + c1
N

K∑
k=1

n∑
i=1

K∑
j=1

(
wT
j h

(k)
i − bj −wT

k h
(k)
i + bk

)
+

1 + c1
N

K∑
k=1

n∑
i=1

K∑
j=1
j 6=k

(
wT
k h

(k)
i − bk

)
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− 1 + c2
N

K∑
k=1

n∑
i=1

(
wT
k h

(k)
i − bk

)
(108)

=
1 + c1
N

[ K∑
k=1

n∑
i=1

K∑
j=1

(
wT
j h

(k)
i − bj

)
−

K∑
k=1

n∑
i=1

K∑
j=1

(
wT
k h

(k)
i − bk

)]

+

(
1 + c1
N

(
K − 1

)
− 1 + c2

N

) K∑
k=1

n∑
i=1

wT
k h

(k)
i −

(
1 + c1
N

(
K − 1

)
− 1 + c2

N

) K∑
k=1

n∑
i=1

bk (109)

=
1 + c1
N

n∑
i=1

[ K∑
k=1

( K∑
j=1

wT
k h

(j)
i −KwT

k h
(k)
i

)
−

K∑
k=1

K∑
j=1

bj +

K∑
k=1

K∑
j=1

bk︸ ︷︷ ︸
0

]

+

(
1 + c1
N

(
K − 1

)
− 1 + c2

N

) K∑
k=1

n∑
i=1

wT
k h

(k)
i −

(
1 + c1
K

(
K − 1

)
− 1 + c2

K

) K∑
k=1

bk (110)

=
1 + c1
n

n∑
i=1

K∑
k=1

wT
k

(
h̃i − h

(k)
i

)
+

(
1 + c1
N

(
K − 1

)
− 1 + c2

N

) K∑
k=1

n∑
i=1

wT
k h

(k)
i

−
(

1 + c1
K

(
K − 1

)
− 1 + c2

K

) K∑
k=1

bk (111)

where h̃i = 1
K

∑K
k=1 h

(k)
i .

According to the AM-GM inequality, we have

uTv ≥ − c
2
‖u‖22 −

1

2c
‖v‖22, ∀ u, v ∈ Rd, ∀ c ≥ 0. (112)

Then,

(1 + c1)(1 + c2)
[
gbce(WH + b1T )− C

]
≥ − 1 + c1

n

(
c3
2

n∑
i=1

K∑
k=1

‖wk‖22 +
1

2c3

n∑
i=1

K∑
k=1

∥∥∥h̃i − h
(k)
i

∥∥∥2
2

)

−
(

1 + c1
N

(
K − 1

)
− 1 + c2

N

)(
c4
2

K∑
k=1

n∑
i=1

‖wk‖22 +
1

2c4

K∑
k=1

n∑
i=1

∥∥h(k)
i

∥∥2
2

)

−
(

1 + c1
K

(
K − 1

)
− 1 + c2

K

) K∑
k=1

bk (113)

= − 1 + c1
n

[
c3
2

n∑
i=1

K∑
k=1

‖wk‖22 +
1

2c3

n∑
i=1

( K∑
k=1

∥∥∥h(k)
i

∥∥∥2
2
−K

∥∥h̃i∥∥22)]

−
(

1 + c1
N

(
K − 1

)
− 1 + c2

N

)(
c4
2

K∑
k=1

n∑
i=1

‖wk‖22 +
1

2c4

K∑
k=1

n∑
i=1

∥∥h(k)
i

∥∥2
2

)

−
(

1 + c1
K

(
K − 1

)
− 1 + c2

K

) K∑
k=1

bk (114)

= − 1 + c1
n

(
c3
2

n∑
i=1

K∑
k=1

‖wk‖22 +
1

2c3

n∑
i=1

K∑
k=1

∥∥∥h(k)
i

∥∥∥2
2

)

−
(

1 + c1
N

(
K − 1

)
− 1 + c2

N

)(
c4
2

K∑
k=1

n∑
i=1

‖wk‖22 +
1

2c4

K∑
k=1

n∑
i=1

∥∥h(k)
i

∥∥2
2

)
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−
(

1 + c1
K

(
K − 1

)
− 1 + c2

K

) K∑
k=1

bk +
1 + c1
2nc3

n∑
i=1

K‖h̃i‖22 (115)

= − 1 + c1
n

(
nc3
2
‖W ‖2F +

1

2c3

∥∥H∥∥2
F

)
−
(

1 + c1
N

(
K − 1

)
− 1 + c2

N

)(
nc4
2
‖W ‖2F +

1

2c4

∥∥H∥∥2
F

)
−
(

1 + c1
K

(
K − 1

)
− 1 + c2

K

) K∑
k=1

bk +
1 + c1
2nc3

n∑
i=1

K
∥∥h̃i∥∥22 (116)

and the inequality becomes an equality if and only if

c3wk = h
(k)
i − h̃i, ∀ k ∈ [K], i ∈ [n], and (117)

c4wk = −h(k)
i , ∀ k ∈ [K], i ∈ [n], (118)

which can be achieved only when h̃i = 0.

Let ρ = ‖W ‖2F . Then, by using Lemma C.4, we have ‖H‖2F = λW

λH
ρ, and

fbce(W ,H, b)

= gbce(WH + b1T ) +
λW

2
‖W ‖2F +

λH
2
‖H‖2F +

λb
2
‖b‖22 (119)

≥ − 1

n(1 + c2)

(
nc3
2
‖W ‖2F +

1

2c3

∥∥H∥∥2
F

)
−
(

K − 1

N(1 + c2)
− 1

N(1 + c1)

)(
nc4
2
‖W ‖2F +

1

2c4

∥∥H∥∥2
F

)
−
(

K − 1

K(1 + c2)
− 1

K(1 + c1)

) K∑
k=1

bk +
1

2nc3(1 + c2)

n∑
i=1

K
∥∥h̃i∥∥22 + C

+
λW

2
ρ+

λH
2

λW
λH

ρ+
λb
2
‖b‖22 (120)

= − 1

n(1 + c2)

(
nc3
2
ρ+

1

2c3

λW
λH

ρ

)
−
(

K − 1

N(1 + c2)
− 1

N(1 + c1)

)(
nc4
2
ρ+

1

2c4

λW
λH

ρ

)
−
(

K − 1

K(1 + c2)
− 1

K(1 + c1)

) K∑
k=1

bk +
1

2nc3(1 + c2)

n∑
i=1

K
∥∥h̃i∥∥22 + C + λW ρ+

λb
2
‖b‖22 (121)

=

[
λW −

1

n(1 + c2)

(
nc3
2

+
1

2c3

λW
λH

)
−
(

K − 1

N(1 + c2)
− 1

N(1 + c1)

)(
nc4
2

+
1

2c4

λW
λH

)]
ρ

+
λb
2
‖b‖22 −

(
K − 1

K(1 + c2)
− 1

K(1 + c1)

) K∑
k=1

bk +
1

2nc3(1 + c2)

n∑
i=1

K
∥∥h̃i∥∥22 + C (122)

=

[
λW −

1

n(1 + c2)

(
nc3
2

+
1

2c3

λW
λH

)
−
(

K − 1

N(1 + c2)
− 1

N(1 + c1)

)(
nc4
2

+
1

2c4

λW
λH

)]
ρ

+
λb
2

K∑
k=1

[
bk −

1

λb

(
K − 1

K(1 + c2)
− 1

K(1 + c1)

)]2
− 1

2λb

K∑
k=1

(
K − 1

K(1 + c2)
− 1

K(1 + c1)

)2

+
1

2nc3(1 + c2)

n∑
i=1

K
∥∥h̃i∥∥22 + C (123)

≥
[
λW −

1

n(1 + c2)

(
nc3
2

+
1

2c3

λW
λH

)
−
(

K − 1

N(1 + c2)
− 1

N(1 + c1)

)(
nc4
2

+
1

2c4

λW
λH

)]
ρ
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+
λb
2

K∑
k=1

[
bk −

1

λb

(
K − 1

K(1 + c2)
− 1

K(1 + c1)

)]2
− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C (124)

≥
[
λW −

1

n(1 + c2)

(
nc3
2

+
1

2c3

λW
λH

)
−
(

K − 1

N(1 + c2)
− 1

N(1 + c1)

)(
nc4
2

+
1

2c4

λW
λH

)]
ρ

− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C, (125)

where the inequality (124) achieves its equality if and only if

h̃i = 0, ∀i ∈ [n], (126)

and the inequality (125) becomes an equality whenever either

λb = 0 or bk =
1

λb

(
K − 1

K(1 + c2)
− 1

K(1 + c1)

)
, ∀k ∈ [K]. (127)

Due to λb > 0 and c1, c2 are same for any k ∈ [K], therefore

bk = bj , ∀k, j ∈ [K]. (128)

Based on Eqs. (117) and (126), we have

c3wk = h
(k)
i ⇒ c23 =

∑n
i=1

∑K
k=1 ‖h

(k)
i ‖22∑n

i=1

∑K
k=1 ‖wk‖22

=
‖H‖2F
n‖W ‖2F

=
λW
nλH

⇒ c3 =

√
λW
nλH

; (129)

similarly, from Eq. (118), we get

c4wk = −h(k)
i ⇒ c24 =

∑n
i=1

∑K
k=1 ‖h

(k)
i ‖22∑n

i=1

∑K
k=1 ‖wk‖22

=
‖H‖2F
n‖W ‖2F

=
λW
nλH

⇒ c4 = −
√

λW
nλH

. (130)

Plugging them into Eq. (122), we get

fbce(W ,H, b)

≥
[
λW −

1

n(1 + c2)

(
nc3
2

+
1

2c3

λW
λH

)
−
(

K − 1

N(1 + c2)
− 1

N(1 + c1)

)(
nc4
2

+
1

2c4

λW
λH

)]
ρ

− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C (131)

=

[
λW −

(
1

n(1 + c2)
− K − 1

N(1 + c2)
+

1

N(1 + c1)

)(
n

2

√
λW
nλH

+
1

2

√
nλH
λW

λW
λH

)]
ρ

− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C (132)

=

[
λW −

(
1

n(1 + c2)
− K − 1

N(1 + c2)
+

1

N(1 + c1)

)√
nλW
λH

]
ρ

− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C (133)

=

[
λW −

(
1

N(1 + c2)
+

1

N(1 + c1)

)√
nλW
λH

]
ρ− 1

2Kλb

(
K − 1

1 + c2
− 1

1 + c1

)2

+ C (134)

which is desired. z
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Lemma C.7. Under the same assumptions of Lemma C.6, the lower bound in Eq. (102) is achieved for any critical point
(W ,H, b) of Eq. (67) if and only if the following hold

‖w1‖ = ‖w2‖ = · · · = ‖wK‖, and b = b?1, (135)

h
(k)
i =

√
λW
nλH

wk, ∀ k ∈ [K], i ∈ [n], and h̃i =
1

K

K∑
k=1

h
(k)
i = 0,∀ i ∈ [n], (136)

WW T =
ρ

K − 1

(
IK −

1

K
1K1TK

)
, (137)

c1 = exp

(√
λW
nλH

ρ

K
− b?

)
, and c2 = exp

(
b? +

√
λW
nλH

ρ

K(K − 1)

)
, (138)

where b? is the solution of equation

λbb =

[
K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) − 1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

))
]
. (139)

Proof With the proof of Lemma C.6, to achieve the lower bound, it needs at least Eqs. (117), (118), and (126) to hold, i.e.,

h̃i =
1

K

K∑
k=1

h
(k)
i = 0, ∀ i ∈ [n], and

√
λW
nλH

wk = h
(k)
i , ∀ k ∈ [K], i ∈ [n], (140)

and further implies

K∑
k=1

wk =

√
nλH
λW

K∑
k=1

h
(k)
i = 0. (141)

Then,

c1 = exp
(
wT
k h

(k)
i − bk

)
= exp

(√ λW
nλH

∥∥wk

∥∥2
2
− bk

)
, ∀k ∈ [K], (142)

c2 = exp
(
bj −wT

j h
(k)
i

)
= exp

(
bj −

√
λW
nλH

wT
kwj

)
, ∀j 6= k ∈ [K], (143)

Since that c1, c2 are chosen to be the same for any j 6= k ∈ [K], therefore,√
λW
nλH

∥∥wk

∥∥2
2
− bk =

√
λW
nλH

∥∥wj

∥∥2
2
− bj , ∀k, j ∈ [K], (144)√

λW
nλH

wT
kwj − bj =

√
λW
nλH

wT
kw` − b`, ∀j 6= ` ∈ [K],∀k ∈ [K], (145)

With the proof of Lemma C.5, to achieve the lower bound, it needs at least Eqs. (94) to hold, then,√
λW
nλH

∥∥wk

∥∥2
2
− bk

(141)
= −

√
λW
nλH

K∑
j=1
j 6=k

wT
j wk − bk (146)

(145)
= −

√
λW
nλH

K∑
j=1
j 6=k

wT
kw` − bk +

∑
j=1
j 6=k

(b` − bj) (147)
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= −(K − 1)

√
λW
nλH

wT
kw`︸ ︷︷ ︸
` 6=k

−2bk + (K − 1)b` −Kb̄ (148)

(144,145)
=⇒ −2bk + (K − 1)b` −Kb̄ = −2b` + (K − 1)bj −Kb̄ (149)
⇐⇒ bk = b`, ∀` 6= k ∈ [K], (150)

which is conforming to Eq. (128) when λb > 0. Then, combining with Eqs. (144) and (141),

∥∥wk

∥∥2
2

=
∥∥wj

∥∥2
2

=
‖W ‖2F
K

=
ρ

K
, ∀k, j ∈ [K], (151)

∥∥wk

∥∥2
2

= −(K − 1)

K∑
j=1
j 6=k

wT
kwj ⇒ wT

kwj = − 1

K − 1

ρ

K
, ∀j 6= k ∈ [K]. (152)

Therefore,

WW T =
ρ

K − 1

(
IK −

1

K
1K1TK

)
. (153)

Plugging (151) and (152) into (142) and (143)

c1 = exp
(√ λW

nλH

ρ

K
− b
)
, (154)

c2 = exp
(
b+

√
λW
nλH

ρ

K(K − 1)

)
, (155)

where b = bk = bj . When λb > 0, substitute Eqs. (154) and (155) into (127), we have

b =
1

λb

(
K − 1

K(1 + c2)
− 1

K(1 + c1)

)
(156)

=
1

λb

[
K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) − 1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

))
]
. (157)

When λb = 0, substitute Eq. (140) into

∂fbce

∂bk
=

1

nK

(
n−

K∑
j=1

n∑
i=1

1

1 + e−wkh
(j)
i +bk

)
= 0, ∀k ∈ [K], (158)

we have

0 =
K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) − 1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

)) , (159)

by combining with Eqs. (151) and (152). z

Lemma C.8. The equation

λb b =
K − 1

K

(
1 + exp

(
b+

√
λW

nλH

ρ
K(K−1)

)) − 1

K

(
1 + exp

(√
λW

nλH

ρ
K − b

)) (160)

has only one solution.
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Proof A number b? is a solution of equation (160) if and only if it is a solution of

β1(b)︷ ︸︸ ︷
λbKb+

1

1 + exp
(√

λW

nλH

ρ
K − b

) =

β2(b)︷ ︸︸ ︷
K − 1

1 + exp
(
b+

√
λW

nλH

ρ
K(K−1)

) . (161)

When λb > 0,

β1(b)→ −∞, β2(b)→ K − 1 as b→ −∞ (162)
β1(b)→ +∞, β2(b)→ 0 as b→ +∞, (163)

and if λb = 0,

β1(b) = 0, β2(b)→ K − 1 as b→ −∞ (164)
β1(b)→ +∞, β2(b)→ 0 as b→ +∞. (165)

Therefore, the curves of β1(b) and β2(b) must intersect at least once in the plane, i.e., the equations (160) and (161) have
solutions.

In addition,

dβ1(b)

db
= λbK +

exp
(√

λW

nλH

ρ
K − b

)
(

1 + exp
(√

λW

nλH

ρ
K − b

))2 > 0, (166)

dβ2(b)

db
= −

(K − 1) exp
(
b+

√
λW

nλH

ρ
K(K−1)

)
(

1 + exp
(
b+

√
λW

nλH

ρ
K(K−1)

))2 < 0, (167)

i.e., β1(b) is strictly increasing, while β2(b) is strictly decreasing. Therefore, they can intersect at only one point. z

Lemma C.9. When the class number K > 2 and

λb

√
λW
nλH

ρ

K − 1
+

1

2(K − 1)
>

1

1 + exp
(√

λW

nλH

ρ
K−1

) , (168)

the final critical bias b? could uniformly separate the all positive decision scores{
w?T
k h

(k)?
i : k ∈ [K], i ∈ [n]

}
(169)

and the all negative decision scores {
w?T
j h

(k)?
i : k, j ∈ [K], i ∈ [n], k 6= j

}
, (170)

where

W ? =
[
w?

1 ,w
?
2 , · · · ,w?

K

]T
(171)

H? =
[
h
(1)?
1 , · · · ,h(1)?

n , · · · ,h(K)?
1 , · · · ,h(K)?

n

]
(172)

b? = (b?, b?, · · · , b?)T = b?1K (173)

form the critical point of function f(W ,H, b) in Eq. (67).

Proof According to Lemma C.7, for the critical point (W ?,H?, b?), we have

w?T
k h

(k)?
i =

√
λW
nλH

ρ

K
, ∀k ∈ [K], i ∈ [n] (174)

w?T
j h

(k)?
i = −

√
λW
nλH

ρ

K(K − 1)
, ∀k, j ∈ [K], i ∈ [n], k 6= j. (175)
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Let bneg = −
√

λW

nλH

ρ
K(K−1) , bpos =

√
λW

nλH

ρ
K . Then, the critical b? separating the all positive and negative score if and

only if

bneg = −
√

λW
nλH

ρ

K(K − 1)
< b? <

√
λW
nλH

ρ

K
= bpos (176)

which, according to the proof of Lemma C.8, is equivalent to

β1(bneg) < β2(bneg) and β1(bpos) > β2(bpos). (177)

Due to

β1(bneg) < β2(bneg)⇔ −λb
√

λW
nλH

ρ

K − 1
+

1

1 + exp
(√

λW

nλH

ρ
K−1

) < K − 1

2

⇐ 1

1 + e0
<
K − 1

2
⇐ 2 < K (178)

β1(bpos) > β2(bpos)⇔ λb

√
λW
nλH

ρ+
1

2
>

K − 1

1 + exp
(√

λW

nλH

ρ
K−1

) (179)

⇔ λb

√
λW
nλH

ρ

K − 1
+

1

2(K − 1)
>

1

1 + exp
(√

λW

nλH

ρ
K−1

) , (180)

it completes the proof. z
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D. More discussion about decision scores in the training
In the training, the decision scores are updated along the negative direction of their gradients during the back propagation
stage, i.e.,

wT
k h

(k) ← wT
k h

(k) − η ∂fµ(W ,H, b)

∂
(
wT
k h

(k)
) , ∀k ∈ [K], (181)

wT
j h

(k) ← wT
j h

(k) − η ∂fµ(W ,H, b)

∂
(
wT
j h

(k)
) , ∀j 6= k ∈ [K], (182)

where η is the learning rate, and µ ∈ {ce, bce}.
In the training with CE, the updating formulas are

wT
k h

(k) ← wT
k h

(k) + η

(
1− ew

T
k h(k)−bk∑

` ewT
` h(k)−b`

)
, (183)

wT
j h

(k) ← wT
j h

(k) − η ew
T
j h(k)−bj∑

` ewT
` h(k)−b`

. (184)

Then, for the samples with diverse initial decision scores, it is difficult to update their decision scores to the similar level, if
they own the similar predicted probabilities belong to each categories.

In the training with BCE, the updating formulas are

wT
k h

(k) ← wT
k h

(k) + η

(
1− 1

1 + e−wT
k h(k)+bk

)
, (185)

wT
j h

(k) ← wT
j h

(k) − η 1

1 + e−w
T
j h(k)+bj

. (186)

Then, for the sample with small positive decision score wkh
(k), its predicted probability 1

1+e−wT
k

h(k)+bk
to its category will

be also small, and the score updating amplitude η
(

1− 1

1+e−wT
k

h(k)+bk

)
will be large; in contrary, for the sample with large

positive score wT
k h

(k), the probability 1

1+e−wT
k

h(k)+bk
will be also large, and the updating amplitude η

(
1− 1

1+e−wT
k

h(k)+bk

)
will be small. This property helps to update the all positive decision scores to be in uniform high level.

Similarly, for the sample with large negative decision score wT
j h

(k), its predicted probability 1

1+e
−wT

j
h(k)+bj

to other

category will be also large, so is the score updating amplitude η 1

1+e
−wT

j
h(k)+bj

; in contrary, for the sample with small

negative score wT
j h

(k), the probability 1

1+e
−wT

j
h(k)+bk

will be small, so is the updating amplitude η
(

1− 1

1+e
−wT

j
h(k)+bk

)
.

This property helps to update the all negative decision scores to be in uniform low level.
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