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ABSTRACT

Objects with large base areas become ungraspable when they exceed the end-
effector’s maximum aperture. Existing approaches address this limitation through
extrinsic dexterity, which exploits environmental features for non-prehensile manip-
ulation. While grippers have shown some success in this domain, dexterous hands
offer superior flexibility and manipulation capabilities that enable richer environ-
mental interactions, though they present greater control challenges. Here we present
ExDex, a dexterous arm-hand system that leverages reinforcement learning to en-
able non-prehensile manipulation for grasping ungraspable objects. Our system
learns two strategic manipulation sequences: relocating objects from table centers
to edges for direct grasping, or to walls where extrinsic dexterity enables grasping
through environmental interaction. We validate our approach through extensive
experiments with dozens of diverse household objects, demonstrating both superior
performance and generalization capabilities with novel objects. Furthermore, we
successfully transfer the learned policies from simulation to a real-world robot sys-
tem without additional training, further demonstrating its applicability in real-world
scenarios. Project website: https://exdex1.github.io/ExDex/.

 Edge

Wall

ExDex

Figure 1: Our framework ExDex is demonstrated through two representative tasks: Wall, where
objects are pushed against the wall so that they can be flipped up and grasped. And Edge, where
objects are repositioned to table edges, allowing the hand to maneuver into optimal grasping poses.

1 INTRODUCTION

Humans naturally manipulate objects with their multi-finger dexterous hands through a rich repertoire
of strategies. Beyond direct grasping, humans demonstrate remarkable abilities to exploit environmen-
tal features for manipulation. For instance, when encountering large, flat objects placed in the middle
of a table that are challenging to grasp directly, humans intuitively leverage environmental constraints
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like walls or table edges. They seamlessly combine non-prehensile actions such as pushing, sliding,
and pivoting with dexterous manipulation to achieve reliable grasps. This adaptive exploitation of
environmental affordances enables humans to handle objects that would otherwise be ungraspable
through direct manipulation alone. Such environment-aware manipulation strategies significantly
expand the range of objects that can be successfully manipulated, demonstrating the sophisticated
interplay between dexterous control and environmental interaction.

Replicating human-like extrinsic dexterity in multi-finger robotic hands remains an unexplored yet
crucial problem in robotics. Traditional approaches for dexterous manipulation primarily rely on
trajectory optimization with simplified contact models (Chen et al., 2024; Mordatch et al., 2012).
However, these methods often fail in contact-rich scenarios due to the complexity of modeling
dynamic contact interactions and the uncertainty in physical parameters. While imitation learning
has demonstrated promising results in direct dexterous manipulation tasks (Chen et al., 2022d; Shaw
et al., 2023; Wang et al., 2024), it faces significant limitations when applied to extrinsic dexterity.
The collection of high-quality demonstration data through human teleoperation becomes particularly
challenging for dynamic contact-rich manipulations, as operators struggle to precisely control multiple
fingers while maintaining stable environmental contacts. Recent years have witnessed remarkable
progress in applying reinforcement learning to robotic systems (OpenAI et al., 2019; Yang et al.,
2024; Pitz et al., 2023; Handa et al., 2022). Reinforcement learning (RL) provides a powerful
framework for training robots in simulated environments before transferring learned policies to
real-world applications. By leveraging large-scale parallel simulation, RL enables extensive training
without relying on explicit contact modeling or expert demonstrations. This approach is particularly
effective for contact-rich manipulation tasks, as it autonomously explores dexterous strategies through
reward-driven optimization. Furthermore, large-scale RL training facilitates the emergence of stable
and natural behaviors, which are essential for robust real-world deployment. These advantages make
RL especially well-suited for mastering complex non-prehensile manipulation strategies that require
adaptive control and dynamic environmental interactions.

While existing researches often simplify the problem by placing objects near external contacts
and utilize end-to-end reinforcement learning policies training (Zhou & Held, 2023; Chen et al.,
2023a), they overlook the complexity of strategic object repositioning and environmental interaction.
Effectively leveraging extrinsic dexterity to manipulate ungraspable objects demands a hierarchical
framework combining non-prehensile manipulation skills with long-term task planning. However,
training individual manipulation skills through reinforcement learning alone presents significant
challenges. The high-dimensional action space of multi-finger dexterous hands, combined with the
contact-rich nature of environmental interactions, makes each subtask difficult to learn. Moreover, the
challenge extends to high-level strategic planning. Optimal object relocation requires consideration
of multiple factors: the current object position, available external contacts, robot arm configuration,
and kinematic constraints. Simply choosing the nearest point that is convenient to utilize the external
environment is insufficient, and often leads to suboptimal or failed manipulations. Instead, the
system must evaluate potential target locations while considering the robot’s reachability, joint limits,
and possible collision-free paths. This intricate planning requirement makes high-level strategic
planning particularly challenging, as it must simultaneously account for all these constraints to ensure
successful manipulation.

To overcome these challenges, we present ExDex, a framework for dexterous manipulation of ungras-
pable objects using extrinsic dexterity with multi-finger hands, focusing particularly on leveraging
walls and table edges. We introduce a hierarchical learning approach combining a high-level planner
for identifying optimal environmental contacts with a low-level controller for precise non-prehensile
manipulation. The high-level planner generates target positions and transition signals, while the
low-level controller executes pushing policies to achieve these poses, followed by grasping policies
selected by transition signals based on the external environment. The experiments in both simulation
and real-world settings validate our framework’s effectiveness, and the results demonstrate successful
generalization to unseen objects and zero-shot transfer to physical systems.

In summary, our main contribution encompasses:

• First exploration of extrinsic dexterity with multi-finger dexterous manipulation in both
simulation and real-world scenarios.
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• Novel hierarchical framework combining high-level planning and low-level control for
occluded grasp tasks.

• Extensive experimental validation demonstrating system effectiveness across simulated and
physical environments.

2 RELATED WORKS

2.1 DEXTEROUS MANIPULATION

Multi-finger dexterous manipulation remains a significant challenge in robotics. Traditional trajectory
optimization methods based on dynamic models (Chen et al., 2024; Mordatch et al., 2012; Bai &
Liu, 2014; Kumar et al., 2014) often fall short due to simplified contact assumptions, especially in
complex, contact-rich tasks. Recent research has demonstrated remarkable success with imitation
learning (Shaw et al., 2023; Wang et al., 2024; Chen et al., 2022c; Radosavovic et al., 2021; Arunacha-
lam et al., 2023; Handa et al., 2020; Sivakumar et al., 2022; Qin et al., 2023; 2022b; Cui et al., 2022;
Haldar et al., 2023; Qin et al., 2022a; Arunachalam et al., 2022; Zhong et al., 2025). 3D-ViTac (Huang
et al., 2024) achieves precise manipulation using tactile feedback, while DexCap (Wang et al., 2024)
enables complex bimanual tasks through in-the-wild data collection using data gloves. However,
these approaches face limitations due to the high cost of human demonstration data and collecting
data for highly dynamic actions (such as flipping objects from wall edges). Recently, reinforcement
learning (RL) has been widely adopted for dexterous hand manipulation tasks, spanning in-hand
object reorientation (Chen et al., 2021; 2022a; Yin et al., 2023; Qi et al., 2023b;a; Dasari et al., 2023;
OpenAI et al., 2019; Yang et al., 2024; Pitz et al., 2023; Handa et al., 2022; Khandate et al., 2023),
bimanual manipulation (Huang et al., 2023; Lin et al., 2024; Chen et al., 2022b), pre-grasping (Zhou
& Held, 2023; Ding et al., 2024), hand long-horizon manipulation (Chen et al., 2023b; Huang et al.,
2023). We develop policies that adapt to the dynamic motion control of real robots using RL. To
our knowledge, this work represents the first exploration of extrinsic dexterity with dexterous hands
demonstrated in both simulation and real-world environments.

2.2 EXTRINSIC DEXTERITY

External environmental resources such as contacts, gravity, and dynamic motions(Dafle et al., 2014)
enable robot hands to grasp and manipulate objects even without suitable contact points. Previous
work has demonstrated the utility of environmental interactions, including external contacts for
object grasping(Zhou & Held, 2023; Ma et al., 2024; Ding et al., 2024; Chen et al., 2023a) and
reorientation (Stepputtis et al., 2018), as well as leveraging gravity (Dong et al., 2023) or dynamic
motions (Ha & Song, 2022; Dafle et al., 2014) to improve grasping postures. However, except for
Chen et al. (2023a), these works primarily employ grippers or underactuated multi-finger hands.
We instead utilize a five-fingered dexterous hand, leveraging its greater degrees of freedom and
flexibility for enhanced grasping capabilities and improved policy generalization across multiple
objects. Zhou & Held (2023) present the closest approach to ours, learning a closed-loop RL
policy with restrictive assumptions, like objects being initially positioned near walls and walls being
sufficiently low for grippers to access objects from above. In contrast, our approach accommodates
objects anywhere in the workspace. Moreover, most previous work has not explored how to leverage
the high degrees of freedom of dexterous hands for extrinsic dexterity. While UniDexFPM (Wu et al.,
2024) investigated dexterous hand pre-grasp manipulation in tabletop environments, their results
were limited to simulation without physical robot validation. We propose a hierarchical framework
with a high-level planner predicting target external contacts and a low-level controller learning a
series of non-prehensile manipulation skills for object relocating and retrieval.

3 TASK FORMULATION

In this paper, we address the challenge of grasping ungraspable objects that have large, flat base
surfaces using a dexterous multi-finger hand. The task objective is to employ a sequence of non-
prehensile manipulations to reposition objects near environmental features that can assist in successful
grasping. We formulate this task as a finite horizon Markov Decision Process (MDP), defined by
the 5-tuple (S,A, R, P, γ). Here, S and A represent the state and action spaces respectively. The
stochastic dynamics P : S × A × S → [0, 1] determine the probability of transitioning to state s′

given current state s and action a. R : S ×A× S → R defines the reward function, and γ ∈ (0, 1)
is the discount factor. Our objective is to train a policy π that maximizes the expected cumulative
reward Eπ[

∑T−1
t=0 γtR] in an episode with T time steps.
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Figure 2: Illustration of the ExDex system design. (A) Training: Our system is trained in three
stages: In Stage 1, we train a prediction model πpre through supervised learning. Stage 2 focuses on
training three low-level policies via reinforcement learning: πpush, πwall, and πedge. In Stage 3, we
jointly finetune these policies to ensure better transitions between consecutive skills. (B) Inference:
Firstly, πpre is used to predict the target position Pt and a signal s. πpush then moves the object to the
predicted Pt, followed by the policy (πwall or πedge) selected by the signal s to complete the grasp.

4 METHOD

In this section, we introduce our system for dexterous non-prehensile manipulation for ungraspable
objects. The overview of the system is shown in Figure 2. Our framework consists of three parts: the
High-level Planner Design (Section 4.1), Low-level Policy Training (Section 4.2) and Joint Finetuning
(Section 4.3). The details of our sim-to-real policy transfer are introduced in Section 4.4.

4.1 HIGH-LEVEL PLANNER DESIGN

The first step in extrinsic dexterity is relocating objects to environments that can be leveraged for
manipulation, such as walls or table edges. Therefore, planning a desired location where external
conditions can be effectively utilized is crucial for successful extrinsic dexterity. To achieve this,
we train a prediction model πpre through supervised learning to predict target positions for object
relocation. The model takes environmental point cloud data p as input and outputs three-dimensional
target position Pt = (Px, Py, Pz)t and a signal s. The predicted Pt serves as the target location to
guide the low-level policy πpush to achieve object relocation. Subsequently, the signal s helps to pick
a low-level policy from πwall and πedge automatically to grasp the object after pushing.

4.2 LOW-LEVEL POLICY TRAINING

We train three specialized policies using model-free reinforcement learning: (1) A πpush policy that
pushes objects to the target position Pt based on the predicted target position Pt from the high-level
planner; (2) A πwall policy for grasping objects near walls starting from Pt; and (3) A πedge policy for
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retrieving objects from table edges at Pt. The following subsections detail the observation and action
space, reward design, and training strategy.

4.2.1 OBSERVATION AND ACTION SPACE

The observation space S = {qt, {F f,i
t }5i=1, p

obj
t , vobj

t , Pt, cp} consists of several components: robot
state (proprioceptive arm and hand joint positions qt ∈ R18, and five fingertip poses {F f,i

t }5i=1 ∈
R15), object position pobj

t ∈ R3 and velocity vobj
t ∈ R6, target information (predicted position

Pt ∈ R3 from high-level planner), and contact information (hand-designed contact position cp ∈ R3

that maintains a fixed relative position to the object center).

The action space at = {aarm
t , ahand

t } consists of two components: hand joint positions ahand
t ∈ R6 and

relative arm joint positions aarm
t ∈ R6. For the hand, the policy directly outputs absolute joint angles

ahand
t as target positions. For the arm, the policy generates relative position changes aarm

t , which are
added to the current joint angles to obtain target positions. The PD controller then converts these
target positions into joint torques for both the arm and hand.

4.2.2 REWARD DESIGN

To reduce the complexity of reward shaping, we unify our reward function into three components
with a staged reward mechanism. The next stage reward is only calculated when specific conditions
are met. Here we use P (·) to represent condition probabilities. Specifically:

r = rmotion + rpregrasp · P (a) + rgrasp · P (b) (1)

In the following, we describe each reward component in detail. All reward terms share the same goal
of minimizing distances between their arguments, thus we denote these proximity-based functions as
T (·, ·), which output larger values as their arguments become closer. The specific implementation of
P (·), T (·, ·) and hyperparameter can be found in Appendix G.1.

Motion reward rmotion. The motion reward guides either object movement to a target pose or
fingertip positioning for manipulation. For πpush and πwall, it encourages the object to reach specific
target positions: rmotion = T (P obj

t , P target
t ). In πpush, P target

t is set to the position Pt predicted by the
high-level planner, while in πwall, P

target
t is a pre-defined pose above the object to facilitate extrinsic

dexterity. For πedge, the reward guides fingertip positioning: rmotion = T ({F f,i
t }5i=1, P

target
t ),

encouraging the thumb to stay above the object while positioning the other four fingers beneath it.

Pre-grasp reward rpregrasp. The pre-grasp reward encourages the hand to achieve an advantageous
pre-grasp pose after object repositioning: rpregrasp = T (F f,3

t , cp), where F f,3
t is the position of the

middle fingertip, and cp is a relative fixed point on the object.

Grasp reward rgrasp. Once reaching the pre-grasp position, the grasp reward promotes stable
grasping by optimizing fingertip positions relative to the object: rgrasp = T (Pm

t , P obj
t ), where

Pm
t =

F f,1
t +F f,3

t

2 represents the midpoint of the thumb (F f,1
t ) and middle fingertip (F f,3

t ) positions.

4.2.3 TRAINING STRATEGY

We employ PPO (Schulman et al., 2017) to train low-level policies, leveraging its stability and sample
efficiency. The training process is accelerated through parallel simulations in IsaacGym, enabling
simultaneous training across 4096 environments. To improve policy robustness, we incorporate
comprehensive domain randomization techniques, including variations in robot and object properties
(Appendix G.3). Furthermore, we adopt a curriculum learning strategy to enhance training efficiency.
Training begins with some similar objects (Figure 3 (a-pretrain)) at a fixed initial pose. As the success
rate improves, we gradually increase task complexity by introducing objects with a larger difference
in size (Figure 3 (a-finetune)) and randomizing their initial poses. This progressive learning approach
helps policies develop robust manipulation skills while maintaining stable training dynamics.

4.3 JOINT FINETUNING

Sequentially executing trained policies often leads to poor performance in long-horizon manipulation
tasks. This is primarily because the terminal state of the previous policy may not align well with
the initial state distribution of the subsequent policy. This challenge, known as the skill chaining
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problem (Chen et al., 2023b; Konidaris & Barto, 2009; Sutton et al., 1999), requires special consid-
eration in policy training. To address this issue, we jointly finetune our policies with the following
order. Firstly, to enhance the robustness of πpush against potential biases in the high-level planner’s
predictions, we introduce Gaussian noise with a specified standard deviation to the target position Pt

in the observation. Then, to better align the transition states between sequential non-prehensile skills,
we replace the initial states of both πwall and πedge with terminal states obtained from πpush rollouts.
Finally, to improve the capability of the high level planner πpre to predict the target position with a
higher likelihood of success, and reduce the prediction of Pt that the robotic arm cannot reach, we
refine it with the predicted Pt recorded from successful rollouts for each task. This approach ensures
smoother transitions between different manipulation phases, enhancing the overall task performance.

4.4 SIM-TO-REAL TRANSFER

When applying the RL policy to the real-world, some environment states can not be estimated
accurately like object velocity and fingertip positions. Therefore, we follow the teacher-student
distilling framework (Chen et al., 2022a; 2021) to zero-shot transfer our simulation policy into the
real dexterous arm-hand system. Specifically, we rollout our policies in simulation sequentially to
collect the whole teacher demonstration trajectories. For distillation from demonstration, we employ a
transformer-based imitation learning network to predict the target arm-hand joint angles. To mitigate
the observation gap between simulation and real-world, the distilled student policy only takes the low
dimension state observation including proprioception and object 6d pose as input. To obtain object 6d
pose, we use the Segment Anything model (Kirillov et al., 2023) to get the initial mask of the object,
followed by FoundationPose (Wen et al., 2023) for pose estimation and tracking. We also build a
digital twin framework for sim-to-real transfer. More details about the teacher-student distillation and
digital twin can be found in Appendix H.

5 EXPERIMENT

In this section, we comprehensively evaluate the performance of our proposed framework in simula-
tion and real-world settings to address these questions: (1) Can our high-level planner generate an
optimal object relocating strategy given different external environments? (Section 5.2) (2) Is the dex-
terous hand motion learned by our low-level polices necessary for our tasks? (Section 5.3) (3) Is our
reward design suitable for the non-prehensile manipulation skill training? (Section 5.3) (4) Can our
joint finetuning strategy improve the generalizability and robustness of our framework? (Section 5.3)
(5) Can our framework learned in simulation be applied to a real-world system? (Section 5.4)

First, we introduce the main setup of our experiments including the dataset, evaluation metric
and several baselines for comparison with our method. Then we evaluate the effectiveness of our
framework separately from high-level and low-level parts through quantitative and qualitative results.
Finally, we provide details of how we conduct real-world experiments and the performance of our
method. Our simulation and real-world settings are shown in Figure 3. All simulation results in tables
are evaluated in 3 different seeds, and the real-world results are evaluated in 10 trials for each object.
Besides, we present more results of environment generalizability and failure case in Appendix B, E.

5.1 SETUP

Dataset. In simulation environments, we only use boxes with various physics properties as the
training asset. We evaluate the generalizability of our framework on 21 other objects with diverse
geometries. In the real-world scenario, we conduct an evaluation on 10 objects with different sizes,
shapes and physical properties. The objects used in simulation and real-world are shown in Figure 3.

Evaluation and Metric. We evaluate the performance of our framework in a scene (Figure 3(c)),
containing three tasks utilizing external contacts: Wall, FrontEdge and LeftEdge. FrontEdge and
LeftEdge are variants of Edge task but use different directions.Objects are initially placed randomly
in the center of the table. We train individual policies for each task as follows. For the Wall task, the
policy is trained to first push the object to a wall-adjacent position before utilizing the wall to assist in
grasping. For the FrontEdge and LeftEdge task, we follow the training paradigm of Edge task, where
the object is pushed to the respective table edge prior to maneuvering the hand to an appropriate
position for grasping. We introduce the following metrics for evaluation: (1) Target Transition Error
(TTE) is the Euclidean distance (cm) between predicted and ground truth target positions. (2) Success
Rate (SR) is the percentage of successful grasping after a series of non-prehensile manipulation. We
define success as the object being grasped steadily above a height threshold (10 cm).

6
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(a) Objects in Simulation

(b) Objects in Real-World

(c) Real-World Setups
Pretrain Finetune

4.374 cm

5.832 cm
... ... ......

... ... ...

... ... ...

16 cm 19 cm

Evaluation

...

...

15 cm

20 cm

4.5 cm2 cm

EdgeWall

Figure 3: Overview of the environment setups. (a) Object sets used in simulation. Policies are
first trained on the pretrain set, then finetuned on the finetune set, and finally tested for zero-shot
generalization on the evaluation set. (b) Real-world test objects. (c) Workspace of the real-world. We
use an Inspired Hand mounted on a UR5e robot, equipped with a RealSense D455 camera.

Baseline. We compare our methods with the following baselines and ablations. (1) Random Target.
Our low-level policies guided by random Pt selection instead of our high-level planner. (2) Arm-
Only. Our low-level policies trained with arm control only. The hand joint angle is fixed. (3)
Heuristic. Using predefined action primitives as low-level policies. (4) Ours w/o MR. Our low-level
policies trained without motion reward. (5) Ours w/o ST. Our low-level policies trained without
stage reward mechanism. (6) Ours w/o JH. Our low-level policies without joint finetuning for the
high-level planner. (7) Ours w/o JL. Our low-level policies without joint finetuning for the low-level
policies. We present more baseline results including learning-based method (Zhou & Held, 2023)
and model-based planning MPPI (Pezzato et al., 2025) in Appendix C.

5.2 HIGH-LEVEL PLANNER
Table 1: Quantitative comparison of the high-level planner.

Task Random Target Ours
TTE SR TTE SR

Wall Seen 45.19±1.94 66.21±0.96 0.41±0.00 83.25±0.34

Unseen 45.15±1.90 54.50±1.47 0.41±0.01 54.94±1.57

FrontEdge Seen 31.63±2.77 88.23±1.04 3.16±0.03 89.43±0.68

Unseen 31.75±2.87 60.11±2.21 2.85±0.06 68.00±3.55

LeftEdge Seen 31.23±1.23 74.28±0.12 2.58±0.01 76.75±2.41

Unseen 31.32±1.24 57.22±2.70 2.97±0.07 54.39±2.27

To evaluate the generalizability of the high-level planner for different external contacts, we compare
the relocating strategy of our high-level planner with Random Target, which randomly produces Pt by
the wall or table edge. The quantitative results in Table 1 shows that our high-level planner generates
superior relocating positions with lower target transition error (TTE) across all tasks and objects,
which facilitates the continual non-prehensile manipulation skills with a higher success rate (SR).

5.3 LOW-LEVEL CONTROLLER

(a) ArmOnly (b) Heuristic (c) Ours
throw catch grabgrab

Figure 4: Comparison of Arm-Only, Heuristic, and Ours
for Wall task. (a) Arm-Only. (b) Heuristic. (c) Ours.

Dexterous hand motion. We compare
our method with Arm-Only and Heuristic
to validate the importance of dexterous
hand motion for non-prehensile manip-
ulation. As evidenced in Table 2, our
approach demonstrates consistent superi-
ority over both baseline methods across
all task configurations. The most notable
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performance gap emerges in the Wall task, where Arm-Only and Heuristic exhibit fundamental limi-
tations due to their constrained manipulation strategies. Arm-Only can only pivot the object upright
like Figure 4(a), causing failure in unseen non box-shaped objects. Heuristic follows a circular arc
trajectory centered on the midpoint of the contact line between the corner and the object. However, it
can only rotate the object to squeeze up against the wall, which prevents stable grasping (Figure 4(b)).
Our method overcomes these limitations through the learned dexterous hand motion. Specifically, our
RL policy πwall leverages finger motions to lift and dynamically catch the object mid-air (Figure 4(c)),
demonstrating superior dexterity. This advantage extends to FrontEdge and LeftEdge task, where our
approach maintains robust performance across both seen and unseen objects.

Table 2: Quantitative success rate (SR) comparison of the low-level controller.

Method Wall FrontEdge LeftEdge
Seen Unseen Seen Unseen Seen Unseen

ArmOnly. 16.27±0.18 2.50±1.22 29.95±0.25 26.39±2.74 14.28±2.39 19.61±0.70

Heuristic. 8.03±0.30 2.72±0.61 73.70±0.61 56.61±1.86 63.91±1.22 48.61±0.98

w/o MR. 0.00±0.00 0.17±0.14 0.00±0.00 1.00±0.14 0.00±0.00 0.01±0.02

w/o ST. 0.01±0.02 0.22±0.21 2.28±0.24 5.44±0.42 0.56±0.31 1.36±0.14

w/o JL. 49.47±3.67 19.39±2.91 74.56±3.31 32.61±2.21 48.18±0.47 12.94±0.55

w/o JH. 83.88±0.33 54.28±0.97 82.02±0.92 63.22±3.80 73.33±2.70 53.44±3.91

Ours 83.25±0.34 54.94±1.57 89.43±0.68 68.00±3.55 76.75±2.41 54.39±2.27

Reward Design. To investigate the importance of our reward design in low-level policy learning,
we conduct ablation studies on two key components: (1) the motion reward (Ours w/o MR), which
guide the object toward the target pose, and (2) the stage reward mechanism (Ours w/o ST), which
dynamically adjust different reward components during training. As shown in Table 2, removing the
motion reward (Ours w/o MR) leads to near zero success rate across all tasks, demonstrating that
precise motion reward guidance is essential for low-level policy training. Similarly, ablating the stage
reward mechanism (Ours w/o ST) causes a drastic performance drop, which confirms that dynamic
reward adjustment is critical for smooth transitions between task stages.

Joint Finetuning. To assess the effectiveness of our joint finetuning approach in enhancing the
framework’s generalization capability and robustness, we conducted systematic ablation studies exam-
ining both the high-level planner (Ours w/o JH) and low-level controller (Ours w/o JL) components.
The experimental results in Table 2 reveal that removing joint finetuning for the low-level controller
results in substantial performance degradation, particularly on unseen objects. Specifically, SR drops
approaching 40% in these cases, clearly demonstrating that our joint finetuning approach effectively
bridges the gap of the state mismatch of chaining low-level policies. While the baseline configuration
without high-level planner finetuning (Ours w/o JH) maintains reasonable performance across all
tasks, our analysis shows that incorporating target positions from successful demonstrations to refine
the high-level planner yields consistent slight performance improvements. This suggests that both
components of our joint finetuning strategy contribute to the framework’s overall effectiveness.

5.4 REAL-WORLD EXPERIMENT

Table 3: Results for Real-world Experiments using teacher-student distillation

Size (cm3) 16.5x15.1x6.2 17.3x17.3x7.5 23x16.2x5 20.7x16.5x7 19x14x4

Wall 10/10 10/10 9/10 8/10 8/10

Size (cm3) 21x13x4.4 22x16x4.4 24.7x23.8x4 20.7x16.5x7 23.5x23.5x2.3

FrontEdge 7/10 9/10 9/10 6/10 8/10

Size (cm3) 21x13x4.4 22x16x4.4 24.7x23.8x4 20.7x16.5x7 23.5x23.5x2.3

LeftEdge 5/10 7/10 8/10 5/10 7/10

Hardware Setup. We set up the identical scenario in the real-world as in the simulation, one
multi-finger Inspire Hand mounted on a UR5e robot for our experiments, as shown in Figure 3. To
obtain the real-time visual observation for object pose estimation and environment state extraction,
we use a single RealSense D455 depth camera.
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(A) Wall

(B) FrontEdge

(C) LeftEdge

Figure 5: Real-world experiment demonstrations. The snapshots show successful executions of our
framework on various objects. (a) Wall tasks. (b) FrontEdge tasks. (c) LeftEdge tasks.

Evaluation and Metric. We evaluate our framework in real-world scenarios following the same
protocols as our simulation experiments. For all tasks, objects are initially placed randomly in the
center of the table. We use the success rate (SR) as our evaluation metric, following the same criteria
defined in Section 5.1, where a grasp is considered successful if the object is lifted steadily above a
specified height threshold (20cm).

Object set. To evaluate the sim-to-real transfer capability of our framework, we conduct experiments
on a diverse set of real-world objects that vary significantly in their physical properties. Our test
objects, illustrated in Figure 3, include items with different geometries, sizes, and masses. Moreover,
we deliberately include several deformable objects, which present additional challenges for non-
prehensile manipulation due to their changing dynamics during interaction.

Sim-to-real performance. As shown in Table 11, our policies achieve robust performance on
real-world objects, with success rates exceeding 80% for most tasks, demonstrating effective sim-to-
real transfer capability. More importantly, our framework maintains high success rates even when
handling objects that differ significantly from the simulation training set in terms of size and physical
properties. This robust performance extends to challenging scenarios involving deformable objects,
whose dynamics are particularly difficult to model accurately in simulation. The detailed visualization
of our real-world experiments is shown in Figure 5.

6 CONCLUSION

In this work, we investigate the challenging problem of manipulating ungraspable objects using
extrinsic dexterity with a multi-finger hand. We present a hierarchical framework that combines
strategic planning with dexterous manipulation skills. Our framework features a high-level planner
that intelligently selects optimal external contacts and predicts target positions, coupled with a
low-level controller that executes precise non-prehensile manipulation skills. Through extensive
experiments in simulation, we demonstrate our framework’s superior performance across different
external contacts and various objects. Moreover, the successful transfer of our policies from simulation
to a real-world robot system validates the practical applicability of our method.

9
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A LIMITATION

There are several limitations of our work. (1) Limited operation space. Our current implementation
relies on a fixed-base robot, which constrains the workspace to a corner region of the table. A
potential solution would be to integrate our framework with a mobile manipulator. (2) Clutter scene
generalizability. All of our experiments are conducted on a clean table which only contains wall or
target objects. Future work could focus on enhancing both our prediction model and pushing policy
to enable robust object repositioning in cluttered environments.

B ENVIRONMENT CONFIGURATION GENERALIZABILITY

(a) Original Wall and Table (b) Original Wall and Circle Table

(c) Arcurate Wall and Original Table (d) Wavy-shaped Wall and Original Table

Figure 6: Different environment configuration

To assess the generalizability of our framework across diverse environmental configurations, we
conduct experiments involving various contact geometries, including arcuate walls, wavy-shaped
walls, and circular tables as illusrtrated in Figure 6. The experimental results, presented in the Table 4,
demonstrate our framework’s robust performance across these geometrically varied contact scenarios,
confirming its adaptability to different environmental configurations.

Table 4: Evaluation of generalizability for different environment configurations.

Environment configuration Seen Unseen

arcurate wall 81.28 51.00
wavy-shaped wall 70.76 47.17
circle table 93.55 63.83

C MORE BASELINE RESULTS

Zhou et al.’s method. Zhou & Held (2023) trains an RL policy for the Wall task using a parallel
gripper. Its reward function includes two items to guide the parallel gripper to pivot the object up
leveraging the wall contact. The first item encourages the end-effector to align with the target grasp
pose predefined in the object frame, while the second item encourages the object to be rotated up
by penalizing when the six manually defined points on the end-effector locate lower than the table
surface. We adapts the reward function into our experiment settings with several modifications.
Specifically, the target grasp pose in the first item is redefined by five fingers target positions and
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palm rotation. Besides, for the penalty item, we replace the six predefined points with five fingertip
positions, penalizing when the five fingertips of the target grasping pose locate below the table.

Table 5: Experimental results of Learning-based method

Method Wall
Seen Unseen

Zhou & Held (2023) 42.30 14.17

This method achieves success rates of 42.30% and 14.17% on seen and unseen objects respectively,
both lower than our method, as shown in Table 5. We observed that our policy picks up the object to
a certain height and then inserts the finger under the object, while the policy trained by Zhou & Held
(2023) tends to find a lower energy strategy, that is, to gently pick the object just enough to insert
the fingers under it, so that the object takes less time to take off, resulting in a greater probability of
failure to insert after picking up.

MPPI. We employ a model-based planning controller named Model Predictive Path Integral
(MPPI) with IsaacGym serving as the underlying dynamics model. Our implementation leverages
a dual-threaded architecture, consisting of two parallel IsaacGym simulations: the Planner and the
World.

• Planner Thread: This thread generates noise sequences by exploiting IsaacGym’s large-scale
parallel simulation capabilities. These sequences are weighted via importance sampling,
where the weights are derived from a state-dependent cost function. We define the cost
function as follows, which is the negation of our reward function.

r = −(rmotion + rpregrasp · P (a) + rgrasp · P (b)) (2)

• World Thread: This thread executes the approximately optimal control sequence, computed
as the weighted average of the sampled trajectories. For each trajectory, the method weights
it higher when it has a lower cost (a higher reward). To ensure real-time asynchronous
coordination, the Planner periodically updates its state from the World, while the World
executes the action sequences computed by the Planner.

Table 6: Experimental results of model-based planning

Method Wall Front Edge

MPPI (Pezzato et al., 2025) 22.38 7.62

We integrate the MPPI method into the relocation stage πpush of our framework for both Wall and
Edge task. Due to the difficulty in inserting the finger under the object in the Wall task which leads
to the failure on all objects, we simplify the metric and consider it a success as long as the object is
rotated up to the center point by 2cm. For the Edge task, we extend the time limit of the grasping stage
from 450 steps to 1000 steps. We evaluate its performance only on the test set for fair comparison,
for our policy is trained on the training set while the MPPI is not. The results are shown in Table 6

D MORE OBJECTS OF TEST SET

Figure 7: More Objects of test set with greater geometric difference.
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E FAILURE CASE

To reveal the application of our system for diverse objects, we manually categorize these objects
into four classes (Flat, Box, Cylinder + Bottle and Irregular) based on the size and geometry and do
failure case analysis on each class for the Wall and FrontEdge task (Table 7). We list 6 failure cases
for Wall task and 5 failure cases for FrontEdge task respectively. Besides, we test 10 times for each
object and average the failure times for each case.

For the Wall task, cylindrical and bottle-like objects demonstrate particularly challenging dynamics,
as evidenced by their timeout rates (3.0 instances) and pose deviation failures (1.6 instances). Box-
shaped objects exhibit notable difficulties with upright posture maintenance (2.5 instances), while
showing relative robustness in other failure categories. Flat objects present moderate performance
across most metrics, with timeout being the most prevalent issue (1.4 instances). Irregular objects
display a unique profile with significant pickup failure rates (1.4 instances), suggesting specific
handling challenges for this category.

For the FrontEdge task, Flat objects, due to their large planar areas with very small thickness, show
pronounced vulnerability to contact knock-off events (3.6 instances) and edge push-off failures (1.4
instances). Cylindrical objects fail most in contact knock-off and timeout cases (1.8 instances each).
Box-shaped objects demonstrate remarkable robustness in this configuration, with minimal failures
across all measured parameters. Irregular objects continue to present handling difficulties, particularly
with timeout (2.2 instances) and grasp slippage (1.2 instances) failures.

Table 7: Failure case on test set in 4 classes for Wall and FrontEdge task

Wall Pose Deviation Pickup Timeout Upright Posture Edge Slippage Collision Ejection
Flat 0.8 0.2 1.4 0.2 0.4 0
Box 0.17 0 1.83 2.5 0.17 0.5
Cylindrical 1.6 0.4 3 0.2 0 0.2
Irregular 1 1.4 1 0.2 0.2 0

FrontEdge Contact Knock-off Edge Push-off Timeout Grasp Slippage Push Failure
Flat 3.6 1.4 0.8 0 1.2
Box 0.17 0 0.17 0.33 0
Cylindrical 1.8 0.4 1.8 0.8 0
Irregular 0.6 0.8 2.2 1.2 0.4

F OVERALL SUCCESS RATE

Given various environment constraints, determining which constraint an object can utilize to reach
a higher success rate is precisely one of the goals we intend to achieve by designing the high-level
planner πpre, which outputs a signal s to choose a low-level policy from πwall and πedge as we
mentioned in Sec 4.1. During the joint finetuning (Sec 4.3) process, we collect 3000 data respectively
for the Wall and Edge tasks and use the successful ones to finetune πpre. Specifically, if the success
rate of manipulating a specific object at the table edge is higher, more data at the table edge would be
collected, leading πpre to be more inclined to output the table edge signal when encountering that
object. Since the data for training and finetuning πpre only includes our original wall and edge, we
test the overall success rates of each object when those two constraints are present, relying on πpre to
select which environment to utilize, and sort them into the four categories.

Table 8: The overall success rates.

Category Success rate

Flat 55.75
Box 74.46
Cylindrical 54.25
Irregular 40.94
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Table 8 shows that the overall success rate is almost consistent with the average success rate of
individual Wall task and Edge task, rather than the maximum value among them. We find that when
randomly placing an object on the table, πpre predicts the signal s with equal probability for the Wall
and Edge task. Specifically, when predicting s, πpre is more inclined to refer to the distance between
the object and the environment, and also the configuration of the robot arm. For instance, due to the
configuration limitations of the robot arm, when pushing the object which is close to the table edge to
the wall, certain points in the movement path of the end effector are unattainable for the end of the
ur5e robot arm we use.

G TRAINING DETAILS

G.1 REWARD DESIGN

Pt
obj cp
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objcp
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(b) cp position for each task
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(a) Three parts of the reward function

(c) Importance of cp 

√

×

Figure 8: Illustration for reward design. (a)
Three parts of the reward function. (b) cp posi-
tion for each task. (c) Importance of cp.

In Equation 2 , we divide the reward func-
tion into three parts: rmotion, rpregrasp, and rgrasp.
rmotion guides the policy toward its ultimate goal
and remains active throughout the entire task ex-
ecution. rpregrasp encourages the dexterous hand
to move towards the object for pre-grasp fol-
lowing the trajectory we expect (first moving
towards cp, and then moving towards the object
center P obj

t ). rgrasp is designed to facilitate suc-
cessful object grasping after pre-grasp. These
three parts of the reward function are illustrated
in Figure 8(a).

In this section, we explain items that are related
to the reward function in detail, then describe
our reward design for each task respectively.

G.1.1 REWARD ITEMS

Contact point cp. The contact point cp ∈ R3

is defined as a fixed spatial offset from the cen-
ter point of all objects, maintaining a constant
distance along the object’s width axis as show
in Figure 8(a) without manually designed for each object. To be specific, given an object with its
center point P obj

t = (x, y, z), the contact point is computed as cp = P obj
t + d · ŵ, where d = 7cm

represents the fixed offset distance and ŵ denotes the unit vector along the object’s width dimension.
In the pre-grasp stage, we hope that the hand approaches the object from its side for both πwall and
πpush, instead of above where actually obtains a higher rmotion. The specific position of cp and its
importance are shown in Figure 8 (b, c).

Distance function T (·, ·). The distance function T (·, ·) is formulated as T (a, b) = e−∥a−b∥2 .
T (a, b) is used to measure the distance between its arguments, and increases as the distance difference
between a and b decreases.

G.1.2 WALL

For πwall, we expect that the hand first approaches the object from its side guided by rpregrasp, and then
grasp it between the thumb and other fingers guided by rgrasp. Therefore, we set P (a) = 1, P (b) = 0
in the pre-grasp stage and switch to P (a) = 0, P (b) = 1 in the grasp stage. The switch occurs
when ∥F f,3

t − cp∥2 < 3cm which indicates sufficient proximity between the middle finger F f,3
t and

contact point cp. Besides, rmotion continuously compute the distance between the object P obj
t and a

point P target
t = P obj

t + [0, 0, 10]T (cm). Notice that this point is located above the object, which is
designed to guide the robot to rotate up the object. The specific representation of the reward function
for πwall is:

{
r = T (P obj

t , P target
t ) + T (F f,3

t , cp), ∥F f,3
t − cp∥2 ≥ 3cm

r = T (P obj
t , P target

t ) + T (Pm
t , P obj

t ), ∥F f,3
t − cp∥2 < 3cm

(3)
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G.1.3 EDGE

For πedge, the object is already pushed to expose a graspable side at the table edge, so there is no need
for the finger to get to cp, leading P (a) ≡ 0. Also, the object P obj

t no longer needs to be moved to
any other position, allowing the policy to focus exclusively on vertical finger coordination, keeping
the thumb above the object while the other fingers below the object. The motion reward is formulated
as: rmotion = T ({F f,i

t }5i=1, P
target
t ) = e−

∑5
i=1 ∥F f,i

t −P target
t ∥2 , where target heights are:

P target
t =

{
P obj
t + [0, 0, 0.15](cm), for thumb finger

P obj
t − [0, 0, 0.05](cm), for other fingers

(4)

We set P (b) = 1 if the middle finger moves below the object to activate the grasp stage, encouraging
the midpoint of the thumb and middle finger Pm

t to get close to the object center point P obj
t .

Otherwise, we maintain P (b) = 0.

{
r = T ({F f,i

t }5i=1, P
target
t ), F f,3

t,z ≥ P obj
t,z

r = T ({F f,i
t }5i=1, P

target
t ) + T (Pm

t , P obj
t ), F f,3

t,z < P obj
t,z

(5)

G.1.4 PUSH

For πpush, staged reward and grasping are unnecessary, resulting in P (a) ≡ 1 and P (b) ≡ 0. rpregrasp

guides the hand to push the object from its side, and rmotion narrows the gap between the object P obj
t

and target position Pt predicted by our high-level planner.

r = T (P obj
t , Pt) + T (F f,3

t , cp) (6)

G.2 OBJECT ASSETS

For constructing the object assets depicted in Figure 3(a), we procedurally generate randomized
boxes for pretraining and finetuning by applying domain randomization to their sizes and masses as
shown in Table 9. To diversify our evaluation objects, we carefully selected large, flat-shaped models
from existing datasets (Xiang et al., 2020; Calli et al., 2015) and 3D model websites (Google; Google
LLC; CGTrader, Inc.).

G.3 DOMAIN RANDOMIZATION

We apply domain randomization in the simulation environment to improve the robustness of our
policy. The detailed parameters are illustrated in Table 9.

G.4 HYPERPARAMETERS OF THE PPO
Table 10 shows the hyperparameters of the PPO.

G.5 COMPUTE RESOURCES DETAILS

Our implementation utilizes PyTorch as the deep learning framework. All experiments were conducted
on a Ubuntu 20.04 system equipped with a single NVIDIA GeForce RTX 4090 GPU (24GB memory),
used for both training and inference phases. Each policy was trained for 100,000 epochs on average,
requiring approximately 8 hours of computation time per policy.

H SIM-TO-REAL DETAILS

H.1 TEACHER-STUDENT DISTILLATION.
We collect 1000 demonstration trajectories with the teacher RL policies in simulation for each task.
Here we manually design some rules to remove the unnatural or dangerous behaviors that emerge from
exploiting the simulator dynamics, but don’t transfer well to real-world. We use a transformer-based
network to imitate the curated demonstration. The network architecture is as followed.

The network takes as input a sequence of concatenated state observations (dimension: 13) spanning
10 historical frames. An initial feature extraction module processes each frame independently through
two linear layers (128 and 512 units respectively), each followed by ReLU activation and layer
normalization. The extracted features are augmented with learnable positional encodings to preserve
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Table 9: Domain randomization of Wall, FrontEdge and LeftEgde task. The units of measurement
are as follows: length in meters (m), mass in kilograms (kg), and angles in radians (rad).

Parameter Type Distribution Initial Range

Robot
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.7, 1.3]
Joint Lower Limit Scaling loguniform [0.0, 0.01]
Joint Upper Limit Scaling loguniform [0.0, 0.01]

Joint Stiffness Scaling loguniform [0.0, 0.01]
Joint Damping Scaling loguniform [0.0, 0.01]

Object
Mass Scaling uniform [0.34, 1.26]

Friction Scaling uniform [0.5, 1.0]
SizeX Scaling uniform [0.15, 0.20]
SizeZ Scaling uniform [0.02, 0.06]

PositionX Scale Scaling uniform [-0.10, 0.10]
PositionY Scale Scaling uniform [-0.15, 0.15]
Rotation Scale Scaling uniform [-0.5, 0.5]
Position Noise Additive gaussian [0.0, 0.02]
Rotation Noise Additive gaussian [0.0, 0.2]

Observation
Obs Correlated. Noise Additive gaussian [0.0, 0.001]

Obs Uncorrelated. Noise Additive gaussian [0.0, 0.002]
Action
Action Correlated Noise Additive gaussian [0.0, 0.015]

Action Uncorrelated Noise Additive gaussian [0.0, 0.05]
Environment

Gravity Additive normal [0, 0.4]

Table 10: Hyperparameters of PPO.

Hyperparameters Value
Num mini-batches 4
Num opt-epochs 5

Num episode-length 8
Hidden size [1024, 512, 256]
Clip range 0.2

Max grad norm 1
Learning rate 5e-4
Discount (γ) 0.99

GAE lambda (λ) 0.95
Init noise std 1.0

Desired kl 0.008
Ent-coef 0

temporal information. The temporal dynamics are modeled through a 3-layer transformer encoder
(dmodel=512, nheads=2), where each layer contains: Multi-head self-attention for capturing frame
dependencies; Position-wise feed-forward network; Residual connections and layer normalization.
Following the transformer encoder, we employ global average pooling across the temporal dimension
and process the features through two residual blocks for enhanced representation learning. The final
action predictor consists of a carefully designed MLP with progressively decreasing layer widths
(256 → 128 units), each followed by ReLU activation, layer normalization, and dropout (p=0.1). The
network outputs 8 consecutive action frames (dimension: 12 per frame) through a tanh-activated
linear layer, ensuring actions remain within valid bounds.

We supervise the output action apred with negative log product loss with L2 regularization:
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L(apred,agt) = −
N∑
i=1

log
(
1− |a(i)

pred − a
(i)
gt |1

)
+ λ||apred||22 (7)

H.2 DIGITAL TWIN.
Table 11: Results for the real-world experiments

box-w1 box-w2 box-w3 bag-w1 container handbag

Wall 6/10 8/10 7/10 9/10 9/10 9/10
box-e1 box-e2 bag-e1 bag-e2 plate handbag

Edge 10/10 7/10 10/10 8/10 5/10 9/10

Before leveraging the teacher-student distillation, we achieve zero-shot sim-to-real transfer by imple-
menting a digital twin framework that bridges our simulation policy with the real dexterous arm-hand
system. The framework operates through two parallel threads that enable real-time asynchronous
communication between the simulation and real-world environments. The real-world thread con-
tinuously collects observations, including arm-hand proprioception and object pose information.
Meanwhile, the simulation thread processes these observations to generate control actions, executes
them in simulation and uses the resulting joint angles as target joint angles for PD control in the
real robot system. The simulation environment is continuously synchronized with real-world by
updating robot joint angles and object poses from real-world observations. Through the constant
synchronization of simulation and real-world, we evaluate our RL polices following the similar setup
as mentioned in Section 5.4. The results in Table 11 shows that our digital twin framework achieves
robust performance on real-world objects, with success rates exceeding 80% for most objects.
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