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Abstract

In this paper, we investigate a neural network-based learning approach towards
solving an integer-constrained programming problem using very limited training.
Specifically, we introduce a symmetric and decomposed neural network structure,
which is fully interpretable in terms of the functionality of its constituent compo-
nents. By taking advantage of the underlying pattern of the integer constraint, as
well as of the affine nature of the objective function, the introduced neural network
offers superior generalization performance with limited training, as compared to
other generic neural network structures that do not exploit the inherent structure
of the integer constraint. In addition, we show that the introduced decomposed
approach can be further extended to semi-decomposed frameworks. The intro-
duced learning approach is evaluated via the classification/symbol detection task
in the context of wireless communication systems where available training sets
are usually limited. Evaluation results demonstrate that the introduced learning
strategy is able to effectively perform the classification/symbol detection task in a
wide variety of wireless channel environments specified by the 3GPP community.

1 Introduction

Integer-constrained optimization has wide applications in many fields, including industrial production
planning, vehicle scheduling in transportation networks, and resource allocation for cellular networks
where the variables often represent finite decisions and countable quantities [1, 2]. In this paper, we
consider developing a neural network (NN)-based solver for the integer-constrained programming
problem of the following form:

minimize
x

f (Hx− y)

subject to xn ∈ A
, (1)

whereH ∈ RQ×N ; y ∈ RQ×1 contains observed values; f(·) is the objective function; x ∈ RN×1
is the unknown vector to be estimated (xn is the nth element of x); A is the set of the limited
integer values each xn can take. Without loss of generality (WLOG), A is set to be {−2M −
1,−2M + 1, · · · ,−1, 1, · · · , 2M − 1, 2M + 1}. This integer-constrained definition of set A can be
generalized to any arbitrary integers. Unlike unfolding an optimization-based algorithm to a deep
neural network [3], our approach is motivated by the intrinsic geometry of the integer-constraint A,
and the embedded affine-mappingH in the argument of the objective function.

Integer-constrained optimization problems are generally NP-hard [2] due to the non-convex nature
of the set AN . An exhaustive search can be prohibitively expensive, especially when N is large.
Therefore, rather than focusing on conventional optimization-based approaches, we consider a data-
driven or learning-based classification/detection framework where the structural information that is
inherent in the constraint can be utilized to improve the learning “efficiency” in terms of the training
data overhead and “effectiveness” in terms of the generalization performance.
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The methodology of our introduced neural network based solver is as follows:

• We first define a probability residual-model for r =Hx−y where r is generated according
to a distribution P (r) which is determined based on the objective function f(·)1.

• Then, we generate K tuples of (x, r) according to the distributions U(AN ) and P (r)
respectively, whereU(AN ) represents the uniform distribution defined onAN . The resulting
tuples can be organized as

{(
x(1), r(1)

)
,
(
x(2), r(2)

)
, · · · ,

(
x(K), r(K))

)}
.

For a fixed H , y is generated using x and r via the residual relation y = Hx −
r. For the purpose of training a neural network, we have K tuples of (x,y):{(
x(1),y(1)

)
,
(
x(2),y(2)

)
, · · · ,

(
x(K),y(K))

)}
.

• We train a neural network N using the K tuples defined, where y(k) is the input to N and
x(k) is the associated output.

• After N is trained, we feed the observation vector y to N to generate a solution, x̂, of (1).

To provide a meaningful and practical solution for a large dimensional x, we develop a parallel
solver in which N independent neural networks simultaneously estimate each entry of x. This is
accomplished by leveraging the concept of marginal estimation, tailored specifically to our chosen
probability model for the residue r. This decomposed approach can also be extended to obtain
a semi-decomposed framework, thus providing a middle ground between this fully decomposed
approach and a fully joint approach. By incorporating structural information such as the affine
mappingH as well as the step size between elements in A into our neural network design, superior
generalization performance is achieved with very limited training samples.

In summary, the key contributions of this paper are summarized as follows:

• The introduced neural network architecture is symmetric and its structure is fully inter-
pretable. The neural network aims to learn the marginal probability distribution function
(PDF) of each variable.

• With a limited amount of training, the introduced learning approach can achieve better
generalization performance than that of generic neural networks having an arbitrary structure.

• A theoretical upper-bound for the generalization error of the introduced neural network.

2 Structure-Aware Learning

Based on the probability model presented in the training set ,we first consider the joint posterior
probability distribution. According to Bayes’s rule, the joint posterior probability distribution is,

p (x1, x2, · · · , xN |y) = p (x1|y) p (x2|x1,y) · · · p (xN |x1, · · · , xN−1,y)

To facilitate a decomposed approach for the maximum a posteriori estimation (MAP), we utilize the
following naive Bayesian approximation:

arg max
x1,x2,··· ,xN

p(x1, x2, · · · , xN |y) ≈ arg max
x1,x2,··· ,xN

p(x1|y)p(x2|y) · · · p(xN |y),

i.e., the joint MAP estimator can be approximated as the product of the marginal MAP estimators.

2.1 Binary Integer Constraint

We first assume that the integer constraint is only restricted to a binary set, i.e., A = {−1, 1}. We can
easily learn a neural network to approximate p(xn|y), where the input of the neural network is y and
the output is the probability mass of xn. Alternatively, the output can be denoted as the likelihood
ratio (LR) between hypotheses {H0 : xn = 1} and {H1 : xn = −1} as

L+− (y) :=
p (xn = 1|y)
p (xn = −1|y)

. (2)

1For instance, the Gaussian distribution can be used for P (r) for L2-norm minimization.
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Figure 1: The neural network structure for the posterior estimation of general integer constraint.

2.2 General Integer Constraint

Next, we consider the extension of the binary constraint to a general integer constraint, i.e., A =
{−2M − 1,−2M + 1, · · · ,−1, 1, · · · , 2M − 1, 2M + 1}. Leveraging the pattern of this integer
constraint, the neural network Nn is designed as shown in Fig. 1, where the “atomic decision neural
network” (ADNN) is the same as the binary integer classifier/ MAP estimator introduced in Section
2.1. We see that the input of each ADNN is a “shifted” version of the observed signal vector y, that
is shifted in the direction of hn, (i.e., the nth column ofH). The output ratio represents an estimate
of the LR between the hypotheses {H(−2m)

0 : xn = −2m + 1} and {H(−2m)
1 : xn = −2m − 1},

denoted as L(2m)
+− . Intuitively, this shifting process is motivated by the fact that

L
(2m)
+− (y) = L+− (y + 2mhn) . (3)

Once the LRs representing all the pairwise boundary decision probabilities in A are obtained, the
posterior marginal estimation of xn can be constructed as follows:

p(xn = −2m+ 1|y) = p (xn = −2M − 1|y)
m∏

m′=M

L
(−2m′)
+− (y) .

This chain connection corresponds to the last layer of the neural network structure depicted in Fig. 1.
According to the discussion in Section 2.1, we know the ADNN training set is based on a binary integer
target. In order to create a similar training set for the ADNN with an arbitrary integer constraint, we
introduce the following training set,

{(
+1, ỹ

(1)
+

)
,
(
−1, ỹ(1)

−

)
, · · · ,

(
+1, ỹ

(K)
−

)
,
(
−1, ỹ(K)

−

)}
,

where ỹ(k)
+ = y(k) − x(k)n hn + hn, ỹ(k)

− = y(k) − x(k)n hn − hn.

2.3 Generalization Performance Characterization

By employing the ADNN, we can approximate the posterior PDF for any combination of variables.
Accordingly, we can analyze how the binary decision error of the ADNN can impact the classification
performance of the entire neural network. Theorem 1 introduces an upper bound on the generalization
error (probability of symbol error) of the entire neural network depicted in Fig. 1.

Theorem 1 Let HA be the class of all atomic decision neural networks (ADNNs) and NA be a
particular ADNN. With cross-entropy used as the loss function `(·), the generalization error is
bounded as follows:

Pr(e) ≤

(1− 1

4M

)2RK(HA) +

√
log
(
1
δ

)
2K

− L (NA)

ρ
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with probability at least δ, δ ∈ (0, 1), where RK is the empirical Rademacher complexity,
LK(NA) = 1

K

∑
k 1(xk = +1) log(1 − αk) + 1(xk = −1) log(1 − βk), 1 represents the in-

dicator function, 1− αk and 1− βk is the ADNN outputs for xk = +1 and xk = −1 respectively.

3 Case Study – Symbol Detection in MIMO Systems

For performance evaluation of the introduced structured neural network structure, we consider the task
of classification/symbol detection in a multi-input-multi-output (MIMO) wireless communications
system. This task of symbol detection in a wireless communications context can be viewed as a
multi-label classification problem with the constraint of limited training set availability, due to the
physical implementation limitations of a real-world communications system. In this task,H is the
wireless transmission channel which often satisfies a certain probability distribution and y is the
signal at the receiver. The introduced solver is then utilized to detect the transmit symbol of interest,
x, based on different objective functions f .

3.1 Comparison with generic neural network architectures

Three alternate neural network structures are developed as our benchmark for the generalization
performance comparison. Together with our introduced neural network structure, these four networks
are respectively denoted as A-Net, B-Net, C-Net and D-Net as shown in the Appendix.

Table 1: The testing and training success rate of the four neural networks (one trial is counted as
success when the global optimum is found) for f =

√∑
n x

2
n and f =

∑
n log(1 + x2n/ν), where

the training set size K is set as 30, whereas the testing set size is 30000. (The notation ∼ represents
“from to”)

f(·) = ‖ · ‖2 f(·) =
∑
n log(1 + (·)2n/ν)

Method Train Success Rate Test Success Rate Train Success Rate Test Success Rate
A-Net > 0.99 0.80 ∼ 1.00 > 0.99 0.71 ∼ 0.90
B-Net > 0.99 0.70 ∼ 0.99 > 0.99 0.23 ∼ 0.50
C-Net > 0.99 0.30 ∼ 0.89 > 0.99 0.63 ∼ 0.75
D-Net > 0.99 < 0.43 > 0.99 < 0.3

3.2 Comparison with State-of-the-Art Methods

For a complete comparison with state-of-the-art, the performance of the introduced structure-aware
decomposition-based neural network (A-Net) is compared with benchmark conventional optimization
methods. These include gradient-free optimization methods implemented from the open-source
‘NLOpt’ package [4], genetic algorithm [5, 6] and DetNet [7], based on unfolding iteration-based
optimization algorithms. The results from this comparison are available in Table 2 in the Appendix.

4 Conclusion

In this paper, a neural network based-approach to solve an integer-constrained programming problem
was presented. The introduced neural network architecture leverages the following two features
of the optimization problem (1) : (i) the lattice structure of the integer constraint A (ii) the affine
mapping inside the composition-type objective function f(Hx − y). Furthermore, the objective
function is translated to its corresponding probabilistic model to build the data for the neural network
training. In addition, a generalization performance bound of the neural network was also derived.
Experimental results verified the superior generalization ability of this method with limited training.
It was also observed that the introduced learning-based solver outperforms most of the state-of-the
art generic integer-constraint solvers. The introduced structure-aware neural network-based method
is a promising direction towards solving NP-hard integer-constrained optimization problems.
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Appendix

Proof of Theorem 1

By employing the ADNN, the posterior probability density function (PDF) can be approximated
for any combination of variables. Accordingly, we can analyze how the binary decision error of the
ADNN impacts the classification performance of the entire neural network.
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Lemma 1 Assume that the binary decision error of the ADNN is characterized by the Type-I error α
and the Type-II error β, defined as:

α = Pr (L+−(y) < 1|xn = +1)

β = Pr (L+−(y) > 1|xn = −1) .
Then, the decision error for the entire neural network shown in Fig. 1 is bounded by

Pr(e) ≤
((

1− 1

4M

)
(α+ β)

)ρ
, (4)

where ρ ∈ [0, 1], M is defined in the description of the set A.

The above lemma can be directly obtained by applying the union bound [8] to the probability of
symbol error Pr(e). As an example of a numerical evaluation of this result, assume that α = 0.05,
β = 0.05, M = 1 and ρ = 1. Then, the probability of error is upper bounded by Pr(e) < 0.075
which is only marginally higher than either α or β, the binary decision errors of the individual ADNN.
This result also indicates to what extent the performance of the algorithm would degrade with an
increase in the size of the integer constraint. Asymptotically, as M becomes infinitely large, the
probability of the decision error for the entire neural network will tend to (α+ β)ρ.

Having derived the relation between the probability of decision error for the atomic decision neural
network (ADNN) and that for the entire neural network, we can further characterize the generalization
performance of the introduced neural network by utilizing the following well-known result from
PAC-Bayes learning theory. For any neural network, [9] gives the following generalization bound,

Lemma 2 For any training setK having a sample sizeK, a corresponding neural networkN trained
on K satisfies the following generalization bound, with probability at least (1− δ) for δ ∈ (0, 1),

L (N ) ≤ LK (N ) + 2RK (H) +

√
log
(
1
δ

)
2n

. (5)

We define each term in Equation (5) as follows. For a given loss function `, the risk of N , L(N ), is
defined as:

L(N ) := E(`(x,N (y)), (6)
Here the expectation is taken over the joint distribution of the input-output space. Since this joint
distribution is unknown, we instead calculate the empirical risk LK(N ) based on the training dataset
as:

LK(N ) :=
1

K

∑
k

`(xk,N (yk)). (7)

The Rademacher complexityRK(H) is a measure of the richness of the class of neural networksH
such that N ∈ H, and is defined as [9]:

RK(H) := EεK ,K

[
1

K
sup
N∈H

∣∣∣∣∣
K∑
k=1

εk` (xk,N (yk))

∣∣∣∣∣
]
, (8)

where εK := [ε1, ε2, · · · , εk, · · · , εK ] is a vector of i.i.d. Rademacher random variables, such that
each εk ∈ {−1,+1} with probabilities {− 1

2 ,+
1
2}, respectively..

Lemma 3 LetH represent the class of all feed-forward neural network-based classifiers with weights
w satisfying the norm constraint ‖w‖ ≤ B, i.e.,:

H := {〈w, ·〉 : ‖w‖ ≤ B}.
Then, the Rademacher complexity forH is bounded by [9] as:

RK (H) ≤
J∏
j=1

(LjBj) ·
(
B0R√
K

+
2R

K

√
J log 2

)
, (9)

where J is the number of layers except the input layer, Bj is the radius of the weights at the jth layer;
the intermediate activation functions are assumed to be Lipschitz-continuous with Lipschitz constant

Lj and R is the radius of the input training data, i.e. R :=
√

1
K

∑K
k=1 ‖yk‖

2.
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Note that the loss function `(·) used in the definition of LK(N ) in Lemma 2 is characterized in terms
of the Type-I and Type-II errors α and β respectively defined in Lemma 1. Combining this relation
and the known upper bound onRK(H) from Lemma 3, we can arrive at Theorem 1.

We provide a sketch of the proof for Theorem 1 as follows: Using cross-entropy as the loss function
`(·), we begin by substitutingLK(NA) = 1

K

∑
k 1(xk = +1) log(1−αk)+1(xk = −1) log(1−βk)

into (5), where 1 represents the indicator function, 1 − αk and 1 − βk is the ADNN outputs for
xk = +1 and xk = −1 respectively. Recalling from Lemma 1 that the decision errors encountered
during the testing stage are defined as α and β, we have

1

K

∑
k

1(xk = +1) log(1− αk) + 1(xk = −1) log(1− βk)

≤ 1

2
log(1− α) + 1

2
log(1− β).

Since α ≤ 1 and β ≤ 1, we can arrive at the inequality in Theorem 1 by using the bound: α ≤
− log(1− α) and β ≤ − log(1− β).

Supplementary Results
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Figure 2: The benchmark neural network structures for symbol detection performance evaluation

Table 2: Performance comparison with non-linear optimization solvers.

Methods Symbol Detection Success Rate
‖ · ‖2

∑
n log(1 + (·)2n/ν)

Sbplx [10] 0.87 0.85
Nelder-Mead [11] 0.89 0.84

PRAXIS [12] 0.76 0.74
COBYLA [13] 0.92 0.92
DIRECT [14] 0.85 0.82

DIRECT-L [15] 0.83 0.78
Genetic Algorithm [5, 6] 0.71 0.74

DetNet [7] 0.36 0.32
A-Net 1.00 0.90
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