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Abstract

We revisit the classical model of nonuniform PAC learning, introduced by Benedek
and Itai [1994], where generalization guarantees may depend on the target concept
(but not on the marginal distribution). In this work, we study a complementary
variant, which we call marginal-nonuniform learning. In this setting, guarantees
may depend on the marginal distribution over the domain, but must hold uniformly
over all concepts. This captures the intuition that some data distributions are
inherently easier to learn from than others, allowing for a flexible, distribution-
sensitive view of learnability. Our main result is a complete characterization of the
achievable learning rates in this model, revealing a trichotomy: exponential rates
of the form e−n arise precisely when the hypothesis class is finite; linear rates of
the form d/n are achievable when a recently introduced combinatorial parameter,
the VC-eluder dimension d, is finite; and arbitrarily slow rates may occur when
d = ∞. Additionally, in the original (concept-)nonuniform model, we show that
for all learnable classes linear rates are achievable. We conclude by situating
marginal-nonuniform learning within the landscape of universal learning, and by
discussing its relationship to other distribution-dependent learning paradigms.

1 Introduction

We study the possible learning rates for binary classification in a variant of nonuniform learning
introduced by Benedek and Itai [1994]. In standard PAC learning, generalization guarantees take the
form of a uniform rate: the learning rate applies simultaneously to all target concepts and all marginal
distributions over the data domain. In contrast, the concept-nonuniform1 model of Benedek and Itai
[1994] allows the rate to depend on the target concept f∗, while still requiring it to hold uniformly
over all marginal distributions.

In this work, we study the complementary variant: marginal-nonuniform learning, in which the
learning rate may depend on the marginal distribution P over the domain, but must hold uniformly
over all target concepts once the marginal is fixed. This model captures the intuition that some
data distributions may be inherently easier to learn from than others, while still requiring a single
algorithm to generalize well for all possible labelings under a fixed marginal.

Together, these choices give rise to four basic notions of PAC learnability, depending on whether
the learning rate is uniform or nonuniform over concepts and distributions. This taxonomy was
introduced by Ben-David, Benedek, and Mansour [1995], who studied learnability in all four cases.

1In the literature this is simply known as nonuniform learning. We use the term concept-nonuniform to
distinguish it from marginal-nonuniform learning studied here.
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In the marginal-nonuniform setting, they exhibited examples showing that different rates can arise
depending on the hypothesis class.

In this work, we go further and provide a complete characterization of the achievable rates in the
marginal-nonuniform regime. Our main result reveals a clean trichotomy: exponential rates of the
form e−n arise precisely when the hypothesis class is finite; linear rates of the form d/n are achievable
when a recently introduced combinatorial parameter—the VC-eluder dimension d—is finite; and
arbitrarily slow rates may occur when d = ∞.

(Concept-)nonuniform learning is well-known [Benedek and Itai, 1994, Vapnik, 1998, Lugosi and
Zeger, 1996, Shalev-Shwartz and Ben-David, 2014] and inspired various practical learning paradigms,
such as, structural risk minimization [Vapnik, 1998], Occam’s razor [Blumer, Ehrenfeucht, Haussler,
and Warmuth, 1987], and the minimum description length principle [Rissanen, 1978]. Concept-
nonuniform learning allows to consider a broader family of learnable classes than uniform learning,
where the latter is characterized by the finiteness of the VC dimension. Moreover, nonuniformity
allows to distinguish easy to learn concepts from hard to learn ones and through that potentially
achieve better learning rates with smaller constants for specific concepts, which would not be possible
with worst-case uniform rates. Similarly, marginal-nonuniform learning allows to distinguish between
easy to learn marginal distributions and hard to learn ones. For example, linear classifiers are learnable
with lower sample complexity for distributions supported on a subspace of smaller dimension.

Further related work. Marginal-nonuniform learning is related to learning with a single fixed
(and potentially even known) distribution, see Benedek and Itai [1991] and to recent results on
learnability for (families of) fixed distributions [Lechner and Ben-David, 2024, Hopkins, Kane,
Lovett, and Mahajan, 2025]. Moreover, our work continues the line of work on universal learning
and their learning rates [Bousquet, Hanneke, Moran, van Handel, and Yehudayoff, 2021, Blanchard,
2022, Hanneke, Karbasi, Moran, and Velegkas, 2024, Attias, Hanneke, Kalavasis, Karbasi, and
Velegkas, 2024]. Recently, Hanneke and Xu [2024] studied the possible universal rates for (worst-
case) empirical risk minimizers (ERMs) in contrast to the optimal learners proposed by Bousquet et al.
[2021]. Interestingly, one of the parameters introduced by Hanneke and Xu [2024]—the VC-eluder
dimension—is also characterizing learnability in our marginal-nonuniform setting. Indeed, one of our
main results is that the VC-eluder dimension d = VCE(H) characterizes the exact fine-grained rate
d/n of marginal-nonuniform learning. Here, fine-grained learning rates were introduced by Bousquet,
Hanneke, Moran, Shafer, and Tolstikhin [2023] allowing to state parameter dependent rates like
VC(H)/n, instead of simply 1/n, with sharper control over the tails of the learning curves. For a
discussion on the relationship of the VC-eluder dimension with relevant parameters from universal
learning, see Hanneke and Xu [2024]. Separations between distribution independent and distribution
dependent learning, as we study here, were considered before by Feldman [2017] in the statistical
query setting.

Overview of main contributions.

1. We initiate the study of marginal-nonuniform learning rates and provide a complete charac-
terization of the rates that can arise in this setting, depending on natural parameters of the
hypothesis class. Our main result is a trichotomy of possible rates (Theorem 3) along with a
fine-grained characterization of the linear regime (Theorem 8).

2. Our characterization reveals that the family of hypothesis classes that are marginal-
nonuniformly learnable with a linear rate coincides with the family that are uniformly
learnable with a linear rate—that is, the PAC learnable classes. At first glance, this may
seem to suggest that allowing the constants to depend on the marginal offers no additional
power. However, a closer look shows that the linear rate in marginal-nonuniform learning
depends on the VCE(H) dimension, whereas the rate in uniform PAC learning depends on
the VC(H) dimension. Since VCE(H) ≤ VC(H) always, and the gap can be arbitrarily
large (e.g., when VCE(H) = 1 but VC(H) is unbounded), this distinction is significant.

3. We revisit known results on concept-nonuniform learnability and provide an improvement
over the previously established logn/n rate [Lugosi and Zeger, 1996], showing that a linear
rate of 1/n is achievable and optimal in this setting.
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4. We discuss the relationships between the possible learning rates across all four learning
settings; see Figure 1 and Section 5. We also highlight open problems from both the existing
literature and our own work (Section 6).

2 Preliminaries and main results

Let X be a domain and H ⊆ {0, 1}X a hypothesis space. We denote by ∆(X) the set of all
distributions on X and call them marginal distributions (in contrast to distributions on X × {0, 1}).
For every P ∈ ∆(X) and f∗, h ∈ H let erP,f∗(h) = Prx∼P (f

∗(x) ̸= h(x)) be the expected error
of hypothesis h under the distribution P with points labeled by f∗. This is a strict version of the
realizability assumption, see Section 6 for a discussion. Fix P, f∗. Let ĥn = A(Sn) be the output
hypothesis of a learning algorithm A taking a sample Sn = ((xi, yi))

n
i=1 of size n with xi iid from

P and yi = f∗(xi). We write E[·] = ESn
[·] as the expectation over such a sample Sn. We denote by

S≤ℓ the subsequence of length ℓ ∈ N of S.

The version space induced by Sn is VS(Sn,H) = {h ∈ H | h(xi) = yi for all i ∈ [n]}. A set
S ⊆ X is shattered if for all y : S → {0, 1} there exists h ∈ H such that h(x) = y(x) for all x ∈ S.
The VC dimension VC(H) of H is the size of a largest shattered set. If there exist shattered sets of
all sizes d ∈ N then VC(H) = ∞. We call H a VC-class if the VC dimension VC(H) of H is finite.
We will use the following related, recently introduced combinatorial parameter.
Definition 1 (VC-eluder dimension, Hanneke and Xu 2024). Let H be a hypothesis space, d ∈ N, and
h ∈ H. We say H has an infinite d-VC-eluder sequence S = {(x1, h(y1)), (x2, h(y2)), . . . } centered
at h if {xkd+1, . . . , xkd+d} is shattered by VS(S≤kd,H) for all k ∈ N. A 1-VC-eluder sequence is
an infinite eluder sequence. The VC-eluder dimension of H is the largest integer VCE(H) = d ≥ 0
such that H has an infinite d-VC-eluder sequence centered at some h ∈ H. If H has an infinite
d-VC-eluder sequence for all d ∈ N then VCE(H) = ∞.

By definition VCE(H) ≤ VC(H). Moreover, there are families of classes such that VCE(H) = 1
while VC(H) is arbitrarily large [Hanneke and Xu, 2024].

A rate function is a function R : N → [0, 1] with limn→∞ R(n) = 0. Adapting Bousquet et al. [2021]
we have the following cases of learning with rate R, which only differ in the order of quantifiers.

Uniform learning:

∃ĥn s.t. ∃C, c > 0 s.t. ∀P ∈ ∆(X) ∀f∗ ∈ H: E[erP,f∗(ĥn)] ≤ CR(cn) for all n.

Universal learning:2

∃ĥn s.t. ∀P ∈ ∆(X),∀f∗ ∈ H, ∃C, c > 0: E[erP,f∗(ĥn)] ≤ CR(cn) for all n.

Concept-nonuniform learning:

∃ĥn s.t. ∀f∗ ∈ H ∃C, c > 0 s.t. ∀P ∈ ∆(X): E[erP,f∗(ĥn)] ≤ CR(cn) for all n.

Marginal-nonuniform learning:

∃ĥn s.t. ∀P ∈ ∆(X) ∃C, c > 0 s.t. ∀f∗ ∈ H: E[erP,f∗(ĥn)] ≤ CR(cn) for all n.

More explicitly we define marginal-nonuniform learning with a rate function as follows.
Definition 2 (Marginal-nonuniform learning). Let H be a class and R a rate function.

1. H is marginal-nonuniformly learnable at rate R if there exists a learning algorithm ĥn such
that for all marginal distributions P ∈ ∆(X) there exists C, c > 0 such that for all target
functions f∗ ∈ H we have E[erP,f∗(ĥn)] ≤ CR(cn) for all n.

2. H is not marginal-nonuniformly learnable at rate faster than R if for every learning algo-
rithm ĥn there exists a marginal distributions P ∈ ∆(X), constants C, c > 0, such that
for infinitely many n there exists a target concept f∗ ∈ H (dependent on n) such that
E[erP,f∗(ĥn)] ≥ CR(cn).

2We emphasize that this slightly differs from the standard definition of universal learning [Bousquet et al.,
2021] in which a broader set of “realizable” distributions is used. See Section 6 for a discussion.

3



3. H is marginal-nonuniformly learnable at exact rate R if H is marginal-nonuniformly learn-
able at rate R and not faster than rate R.

4. H requires at least arbitrarily slow rates to be marginal-nonuniformly learnable if for every
rate function R′, the class H is not marginal-nonuniformly learnable at rate faster than R′.

5. H is marginal-nonuniformly learnable (independently of rates) if there exists a learning
algorithm ĥn and a function R∗ : N×∆(X) → [0, 1] with limn→∞ R∗(n, P ) = 0 for all
P ∈ ∆(X) such that for all target concepts f∗ ∈ H we have E[erP,f∗(ĥn)] ≤ R∗(n, P ).

We can now state our main result, a trichotomy of rates for marginal-nonuniform learning.

Theorem 3 (Marginal-nonuniform trichotomy). Every class H with |H| ≥ 3 satisfies:

1. H is marginal-nonuniformly learnable with exact rate e−n if and only if VCE(H) = 0
(equivalently |H| < ∞).

2. H is marginal-nonuniformly learnable with exact rate 1/n if and only if 1 ≤ VCE(H) < ∞
(equivalently |H| = ∞ and VC(H) < ∞).

3. H requires at least arbitrarily slow rates to be marginal-nonuniformly learnable if and only
if VCE(H) = ∞ (equivalently VC(H) = ∞).

In Theorem 8 we deepen the result for the linear case: we show that the exact fine-grained rate is
VCE(H)/n. See Section 3.3 for more details.

3 Marginal-nonuniform learning

In this section we give the details of the marginal-nonuniform learning trichotomy by going through
the individual cases. Missing proofs can be found in Appendix A.

3.1 Exponential rates for finite classes

We first show that all finite classes are marginal-nonuniformly learnable with exact exponential rate.

Lemma 4. Any class H with 3 ≤ |H| < ∞ is marginal-nonuniformly learnable with exact rate e−n.

The |H| ≥ 3 assumption is simply for excluding trivially learnable classes [Bousquet et al., 2021].
By Lemma 8 of Hanneke and Xu [2024] we know that H is finite if and only if VCE(H) = 0 (i.e., H
has no infinite eluder sequence). Hence the if-direction of the first bullet point of Theorem 3 follows.

3.2 Linear rates through finite VC dimension

We first show that a class with VC-eluder dimension 1 ≤ VCE(H) < ∞ can be marginal-
nonuniformly learned with linear rate. Moreover, VCE(H) is finite if and only if VC(H) is finite
[Hanneke and Xu, 2024, Remark 19]. Thus it suffices to prove the following lemma.

Lemma 5. Every class H with finite VC-dimension is marginal-nonuniformly learnable at rate 1/n.

Next we show that this is the best possible rate.

Lemma 6. Every infinite class H is not marginal-nonuniformly learnable at rate faster than 1/n.

This proves the if-direction of the second bullet point of Theorem 3. However, as we will see in the
next section a much stronger bound is possible; while still resulting in a linear rate it is determined by
the VC-eluder dimension instead of the VC dimension of the class.

3.3 Fine-grained linear rates through finite VC-eluder dimension

Using the notion of fine-grained rates [Bousquet et al., 2023], we deepen the results for the linear
case. In particular, we provide fine-grained rates characterized by the VC-eluder dimension. Let us
first define fine-grained rates for marginal-nonuniform learning.
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Definition 7 (Marginal-nonuniform fine-grained rates). Let H ⊆ {0, 1}X be a class and R be a
distribution-independent rate function.

1. The class H is marginal-nonuniformly learnable at fine-grained rate R if there exists
an algorithm ĥn such that for every distribution P ∈ ∆(X) there exists a distribution-
dependent rate function λ(n) = o(R(n)) such that for all f∗ ∈ H it holds E[erP,f∗(ĥn)] ≤
R(n) + λ(n).

2. The class is not marginal-nonuniformly learnable at fine-grained rate faster than R if for
each learner ĥn there exists a distribution P ∈ ∆(X) such that for infinitely many n there
exists a target function f∗ ∈ H (dependent on n) such that E[erP,f∗(ĥn)] ≥ R(n).

3. The class is marginal-nonuniformly learnable at exact fine-grained rate R if 1. and 2. hold.

We now state the fine-grained version of the main result of this work.
Theorem 8 (Fine-grained marginal-nonuniform rate). Let H be a class with VC-eluder dimension
VCE(H) = d < ∞. The class H is marginal-nonuniformly learnable at exact fine-grained rate d/n.

Proof. The proof follows from Lemma 9 and Lemma 12.

Lemma 9. There exists an absolute constant α such that for each class H with VCE(H) < ∞, there
exists a learner ĥn such that for all f∗ ∈ H and all marginal distributions P ∈ ∆(X) we have:

E[erP,f∗(ĥn)] ≤ α
VCE(H)

n
+ e−κ(P )n ,

where κ(P ) is a marginal-distribution-dependent (but target concept independent) constant.

Proof. Let P be a marginal distribution, f∗ be the target concept, let m = n/2, and Sm, S′
m ∈

(X × Y )m be two iid samples of size m from P labeled by f∗. Denote by A the event that the
version space VS(Sm,H) has VC dimension at most d = VCE(H) on S′

m. Let ĥOIG be the
classifier corresponding to the one-inclusion graph algorithm on the sample S′

m with hypothesis class
H′ = VS(Sm,H). By the law of total expectation (and as the error is bounded by one) we have

E[erP,f∗(ĥOIG)] ≤ Pr(¬A) + E[erP,f∗(ĥOIG) | A] .

By Lemma 11 there exists κ′ = κ′(P ) such that Pr(¬A) ≤ e−κ′m = e−
κ′
2 n. If A holds the

version space has VC dimension at most d on S′
m. Under this event, we bound the error of ĥOIG by

α′ d
m = 2α′ d

n for some absolute constant α′ [Haussler, Littlestone, and Warmuth, 1994].

For the upper bound we rely on an application of König’s lemma, which characterizes the finiteness
of a tree by the finiteness of all its subpaths.
Lemma 10 (König’s lemma, König 1927). Let T be a rooted tree with a finite or countable number
of nodes V such that each node has a finite number of neighbours. Then |V | is finite if and only if
every root to leaf path has finite length.

The next lemma is the core result allowing marginal-nonuniform learning with rate depending on
VCE(H) instead of VC(H).
Lemma 11. Let H be a class with VC-eluder dimension VCE(H) = d < ∞ and P ∈ ∆(X) a
marginal distribution. There exists a constant C only depending on P such that with probability
at least 1 − e−Cn over a sample Sn ∼ Pn labeled by an arbitrary f∗ ∈ H, the version space
VS(S≤n/2,H) induced by the first half of the sample S≤n/2 has, with probability one, VC dimension
at most d on the second half of the sample S \ S≤n/2.

Proof. Let d = VCE(H). Fix a marginal distribution P over X . Consider an infinite sequence
S̄ = {x1, x2, . . . } of iid samples from P . Let T be a rooted binary tree given by all possible
realizable classifications over S̄. More precisely, the nodes in each level i of T correspond to xi, and
the two descending edges of each node correspond to labeling the respective xi either as positive or
negative. A descending edge is only added to a node if the path from the root to this node including
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the label given by the edge is realizable (i.e., there exists a hypothesis h ∈ H, such that h(xi) = yi
with yi given by the edges). In other words, T is a Littlestone tree, which is level-constrained to
the sequence S̄ [Littlestone, 1988]. With every node in T we associate a version space given by all
hypotheses that realize the classifications on the path leading from the root to this node. Finally,
we truncate T at a node whenever its associated version space has VC dimension at most d on the
remaining sequence.

Claim. Every path starting in the root of T has finite length.

Assume there is an infinite path p starting in the root of T . Take the first node on p. The version space
associated with this node has VC dimension at least d+ 1 on the remaining sequence. Let S1 be a
shattered set of size d+ 1 on the remaining sequence. As the tree is level-constrained, we can reach
all nodes corresponding to S1 on p after a finite number of steps. The node after S1 on p again has an
associated version space with VC dimension at least d+ 1 on the remaining sequence. We can thus
repeat this argument to get an infinite sequence of version spaces and corresponding shattered sets
S1, S2, . . . leading to a (d+ 1)-VC-eluder sequence, which is not possible. This proves the claim.

Thus, by König’s lemma, the tree T is finite and in particular has finite depth. Denote by depth(S)
the integer random variable indicating the depth of T induced by S. As depth(S) is always finite, the
median qP , i.e., qP = min{n ∈ N | PrS∼PN(depth(S) ≤ n) ≥ 1/2}, is also a finite constant (only
dependent on P ). That is, the version space VS(S≤qP ,H) of a sample S≤qP of size qP (labeled by
any target) has, with probability at least 1/2, a VC dimension of at most d on the remaining sequence.

This has further consequences. Specifically, for any target f∗ ∈ H, denote by p̃ =
PrS′∼Pd+1(VS(S≤qP ,H) shatters S′). We claim that with probability at least 1/2 (over S≤qP )
we have p̃ = 0. To see this, note that since S≤qP may be regarded as the first qP examples from
an infinite sequence S ∼ PN, and is independent of the remainder of the sequence, given p̃ the
conditional probability that VS(S≤qP ,H) has VC dimension at most d on the remaining sequence
(i.e., does not shatter any d + 1 examples in the remaining sequence) is at most limr→∞(1 − p̃)r,
which is 0 unless p̃ = 0. Thus, with probability one, if p̃ > 0 then VS(S≤qP ,H) does not have VC
dimension at most d on the remaining sequence. Since the latter occurs with probability at most 1/2,
we conclude that with probability at least 1/2 we have p̃ = 0.

Now, for any ℓ ∈ N, if we have ℓ independent samples of size qP , all labeled by a common target
concept, since the version space VS(S≤ℓ·qP ,H) for the total set of ℓ · qP examples is the intersection
of the ℓ version spaces for the ℓ samples of size qP , the above implies that with probability at least
1− ( 12 )

ℓ, we have PrS′∼Pd+1(VS(S≤ℓ·qP ,H) shatters S′) = 0. In particular, given this occurs, the
conditional probability that VS(S≤ℓqP ,H) has VC dimension at most d on an additional independent
n/2 examples is 1.

Overall, if we draw a sample of size n, we have that the version space induced by the first n/2

samples has VC dimension at most d on the other n/2 samples with probability at least 1− ( 12 )
⌊n/2

qP
⌋.

This finishes the proof.

Lemma 12. There exists an absolute constant β such that for each class H with VCE(H) < ∞, for
all learners ĥn there is a marginal distribution P ∈ ∆(X), such that for infinitely many n ∈ N there
exists a target concept f∗

n with

E[erP,f∗
n
(ĥn)] ≥ β

VCE(H)

n
.

3.4 Arbitrarily slow rates

The third case of Theorem 3 is given by the following lemma.

Lemma 13. Let H be a class with infinite VC-eluder dimension. Marginal-nonuniformly learning H
requires at least arbitrarily slow rates.

Overall, as these three cases, distinguished by VCE(H), are disjoint and cover all possibilities, this
completes the proof of Theorem 3.
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4 Concept-nonuniform learning

In this section, we recap known results on concept-nonuniform learnability and state an improvement
over the best rate known in the literature [Lugosi and Zeger, 1996]. Missing proofs are in Appendix B.
We start again with a definition of learning with a specific rate.

Definition 14 (Concept-nonuniform learning). Let H be a class and R a rate function.

1. H is concept-nonuniformly learnable at rate R if there exists a learning algorithm ĥn

such that for all target functions f∗ ∈ H there exists C, c > 0 such that for all marginal
distributions P ∈ ∆(X) we have E[erP,f∗(ĥn)] ≤ CR(cn) for all n.

2. H is not concept-nonuniformly learnable at rate faster than R if for every learning algo-
rithm ĥn there exists a target function f∗ ∈ H and constants C, c > 0, such that for
infinitely many n there exists a marginal distribution P ∈ ∆(X) (dependent on n) such that
E[erP,f∗(ĥn)] ≥ CR(cn).

3. H is concept-nonuniformly learnable at exact rate R if H is concept-nonuniformly learnable
at rate R and not faster than rate R.

4. H is concept-nonuniformly learnable (independently of rates) if there exists a learning
algorithm ĥn and a function R∗ : N×H → [0, 1] with limn→∞ R∗(n, h) = 0 for all f∗ ∈
H such that for all marginal distributions P ∈ ∆(X) we have E[erP,f∗(ĥn)] ≤ R(n, f∗).

The following characterization of concept-nonuniform learnability is well known.

Lemma 15 (Benedek and Itai 1994). A class H is concept-nonuniformly learnable (independently of
rates) if and only if H is a countable union of VC classes.

Without loss of generality we can assume that a concept-nonuniformly learnable class H is a union
H =

⋃∞
i=1 Hi of a nested sequence H1 ⊆ H2 ⊆ . . . of VC classes. Common approaches rely

on empirical risk minimization (ERM) on each VC class Hi, which leads to an overall logn/n rate
[Lugosi and Zeger, 1996]. By using a combination of one-inclusion graph predictors [Haussler et al.,
1994] with an online-to-batch conversion instead, we achieve the optimal linear rate 1/n. This leads
to the following dichotomy.

Theorem 16 (Concept-nonuniform dichotomy). For every class H with |H| ≥ 3 the following holds:

1. H is concept-nonuniformly learnable with exact rate 1/n if H is a countable union of VC
classes.

2. H is not concept-nonuniformly learnable if H is not a countable union of VC classes.

The proof of Theorem 16 follows from the following two lemmas.

Lemma 17. Let H be a countable union of VC classes. The class H is concept-nonuniformly
learnable at rate 1/n.

Proof. If H has finite VC dimension we just run the one-inclusion graph algorithm and obtain a linear
error rate [Haussler et al., 1994]. Thus we can assume VC(H) = ∞. Without loss of generality H is a
nested union H1 ⊆ H2 ⊆ . . . of VC classes (we can set H′

i =
⋃i

j=1 Hi). Denote by d1 ≤ d2 ≤ . . .

the respective VC dimensions. Since di → ∞, we can moreover assume that di ≥ ln(i+ 1) for all i,
again by taking unions of subclasses. Let S be an iid sample of size n from a distribution P over X
labeled by some f∗ ∈ H and define i∗ = min{i | f∗ ∈ Hi}. We use the first half S′ of S to train a
classifier for each Hi and the second half S′′ of S as a validation set to aggregate them into a final
classifier achieving the linear error rate.

For each subclass Hi, if S′ is realizable by H, let hi be the one-inclusion graph predictor with
training sample S′, which satisfies E[erP,f∗(hi)] ≤ cdi

n for some universal constant c ∈ R; if S′ is
not realizable by Hi we let hi be arbitrary. Furthermore, we only consider hi with cdi < n and let
the remaining hi be arbitrary. This way we only have to compute finitely many one-inclusion graph
predictors hi, since di → ∞.
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Next we perform an online-to-batch conversion argument to aggregate these predictors. We fix an
arbitrary order on S′′ and run the weighted majority algorithm [Littlestone and Warmuth, 1994]. In
particular, we let each hi be an expert with initial weight wi =

1
i(i+1) and on mistake we multiply

the weights by e−η for some η ≥ 2. Denote by Mi the number of mistakes of each expert hi.3

The total number M of mistakes of the weighted majority algorithm on S′′ satisfies

M ≤ inf
i
Mi + 1/η ln(1/wi) ≤ inf

i
Mi + ln(i+ 1) ≤ Mi∗ + ln(i∗ + 1)

by a standard analysis (see, e.g., Corollary 3.1 by Cesa-Bianchi and Lugosi [2006]). Let p =
erP,f∗(hi∗), µ = pn/2, and ε ≥ 2p. Conditioned on S′, we have Mi∗ ≤ E[Mi∗ ]+εn/2 = (p+ε)n2
with probability at least

1− e−
(ε/p)2µ
2+ε/p ≥ 1− e−

(ε/p)2µ
2ε/p = 1− eεn/4

by a (multiplicative) Chernoff bound. We thus have with the latter probability

M ≤ n

2
(erP,f∗(hi∗) + ε) + ln(i∗ + 1) . (1)

Let h′
1, . . . , h

′
n/2 be the weighted majority predictors in each step of the algorithm over S′′.

Claim. The expected error (conditioned on S′) of the (unweighted) majority vote ĥ =
Maj(h′

1, . . . , h
′
n/2) is O (erP,f∗(hi∗) + ln(i∗ + 1)/n).

By Zhang [2005, Theorem 6 and Proposition 1], for ε > 0, with probability at least 1− e−εn/2, for
some universal constant c′, we have

2

n

n/2∑
i=1

erP,f∗(h′
i) = O

(
M

n
+

√
M

n

(
logM

n
+ ε

)
+ ε

)
≤ c′(M/n+ ε)

using the AM-GM inequality in the last step. For ĥ this implies

erP,f∗(ĥ) ≤ E
x∼P

1[(2/n) n/2∑
i=1

1[h′
i(x) ̸= f∗(x)] ≥ 1

2

]
≤2 E

x∼P

(2/n) n/2∑
i=1

1[h′
i(x) ̸= f∗(x)]

] = 2
2

n

n/2∑
i=1

erP,f∗(h′
i) ≤ 2c′(M/n+ ε) .

Combining this with Equation (1), the expected error of ĥ (conditioned on S′) is at most 3c′(β + ε)
where β = erP,f∗(hi∗) + ln(i∗ + 1)/n with probability at least 1− 2e−εn/4. The claim follows by

E
S′′

[erP,f∗(ĥ)|S′] =

∫
α>0

Pr(erP,f∗(ĥ) > α)dα

=

∫
0<α≤3c′β

Pr(erP,f∗(ĥ) > α)dα+

∫
α>3c′β

Pr(erP,f∗(ĥ) > α)dα

≤3c′β +

∫
α>3c′β

2e−(
α
3c′ −β)n/4dα = O

(
β +

1

n

)
.

Finally, as hi∗ satisfies E[erP,f∗(hi∗)] = O(di∗/n) (S′ is realizable by Hi∗ ) and by the assumption
di∗ ≥ ln(i∗ + 1), the expected error (conditioned on S′) of ĥ is at most O(di∗/n). Taking the
expectation over S′ and by the law of total expectation, the lemma follows.

Lemma 18. Let H be a class with |H| ≥ 3. The class H is not concept-nonuniformly learnable at
rate faster than 1/n.

3To keep the set of experts finite, we can sum all experts with cdi ≥ n and treat them as one.
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5 Examples and broader perspective

In this section we discuss some examples and put the results into a broader perspective. For a rate
R and T ∈ {uniform, universal, concept-nonuniform,marginal-nonuniform}, we denote by R-T the
family of hypothesis classes that are T -learnable with rate R. By definition of learning with a fixed
rate R we have the following trivial inclusions:

1/n-uniform ⊆
1/n-marginal-nonuniform
1/n-concept-nonuniform

⊆ 1/n-universal.

Our results yield that the inclusion “1/n-uniform ⊆ 1/n-marginal-nonuniform” is actually an equality.
This is the case as the first family is characterized by the finiteness of the VC dimension, the
latter family is characterized by the finiteness of the VC-eluder dimension (Theorem 3), and both
parameters are finite together [Hanneke and Xu, 2024, Remark 19]. Then, as each class that is
concept-nonuniformly learnable with linear rate is a countable union of VC classes (Theorem 16) we
also have the inclusion “1/n-marginal-nonuniform ⊆ 1/n-concept-nonuniform”. The next example
shows that this is indeed a strict inclusion.
Example 1 (1/n-concept-nonuniform but not 1/n-marginal-nonuniform). Let H = {A ⊆ N | |A| <
∞}. Note that VC(H) = VCE(H) = ∞, which means that H is not marginal-nonuniformly
learnable with linear rate and not uniformly learnable. However, it can be easily seen that H =⋃∞

i=1 Hi with Hi = {A ⊆ N | |A| ≤ i} and VC(Hi) = i. Thus H is concept-nonuniformly
learnable with rate 1/n. Furthermore, this class is countable and hence marginal-nonuniformly
learnable with arbitrarily slow rates, see Benedek and Itai [1991] and Section 6.

Additionally, by definition we have (with m.nu. = marginal-nonuniform):

e−n-m.nu. ⊆ 1/n-m.nu. ⊆ arbitrarily slow-m.nu. ⊆ arbitrarily slow-universal.

The first inclusion is strict, as the first family contains exactly all finite hypothesis classes, while the
second family contains all VC classes (Theorem 3). The other two inclusions are also strict as shown
in the next two examples.
Example 2 (Marginal-nonuniform with arbitrarily slow rate but not 1/n-universal learnable). Let
X = N and H = 2N. Ben-David et al. [1995] showed that this class is marginal-nonuniformly
learnable (independently of rates) but not concept-nonuniformly learnable. Moreover, as this class
shatters a countable set, it is not universally learnable with linear rate, see Bousquet et al. [2021],
Example 3 (Only arbitrarily slow universal). Let X = [0, 1] and H the set of all open sets over X .
Ben-David et al. [1995] showed that this class is universally learnable with arbitrarily slow rate, but
neither marginal nor concept-nonuniformly learnable. It is easy to see that this class also shatters a
countable set, and is, thus, not universally learnable with linear rate (see Bousquet et al. [2021]).

There are also classes that are concept-nonuniformly but not marginal-nonuniformly learnable.
Example 4 (Concept-nonuniform but not marginal-nonuniform). Let X = (0, 1), S be the set of
all sub-intervals with rational endpoints in X , and H be all finite unions of S. Ben-David et al.
[1995] showed that this class is concept-nonuniformly learnable (and thus with linear rate) but not
marginal-nonuniformly learnable (independently of rates).

Example 5 (Linear universal but neither concept-nonuniform nor marginal-nonuniform). Let X1 =
{A ⊆ R | |A| < ∞} and H1 = {hy | y ∈ R} with hy(S) = 1[y ∈ S]. Bousquet et al. [2021]
(Example 2.7) argued that H1 is not representable as a countable union of VC classes, thus not
concept-nonuniformly learnable. It is universally learnable with exponential rate however (and thus
also linear rate). Let H2 be from Example 4, which is not marginal-nonuniformly learnable. As H2

is concept-nonuniformly learnable at linear rate it is also universally learnable at linear rate. Take
the disjoint union H = H1 ∪ H2. It is easy to see that H is still universally learnable with linear
rate but neither concept nor marginal-nonuniformly learnable (independently of rates).

The only remaining open case is whether there exists a class that is not concept-nonuniformly
learnable, is universally learnable with linear rate, and marginal-nonuniformly learnable at arbitrarily
slow rate. Except this case, this shows all possible inclusions of the rates in marginal and concept-
nonuniform learning, and their relationship to uniform and universal learning. Figure 1 gives an
overview with the missing case marked as “?”.
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arbitrarily slow universal

• Example 3

1/n-universal

“?”

•

Example 5
1/n-concept-nonuniform

• Example 1

•

Example 4

arbitrarily slow marginal-nonuniform

• Example 2

1/n-marginal-nonuniform = 1/n-uniform

VC(H) < ∞ ⇐⇒

|H| < ∞ ⇐⇒
e−n-marginal-nonuniform

Figure 1: Overview on the learning rates related to marginal and concept-nonuniform learning.

6 Discussion and future work

We end with some discussion on related aspects and some potential future work.

Weaker notions of realizability. Bousquet et al. [2021] considered a weaker notion of realiz-
ability: a distribution PXY over X × Y is realizable if infh∈H erPXY

(h) = 0 where erPXY
(h) =

Pr(x,y)∼PXY
(h(x) ̸= y). Any such distribution P has P (y = 1|x) ∈ {0, 1} for almost all x. Hence

we can more generally say that a marginal distribution P over X and a target f∗ ∈ {0, 1}X is
realizable if infh∈H erP,f∗(h) = 0. This allows slightly more general definitions of marginal and
concept-nonuniform learning, with again constants depending on either P or f∗. Our proofs for
the marginal-nonuniform case can be adapted to the weakly realizable case. Thus, the landscape of
potential learning rates stays exactly the same, independently of weak or strict realizability. This is
also the case in uniform learning. However, for universal and concept-nonuniform learning the two
variants of realizability result in different learnable classes. Characterizing the differences is open.

Universal Glivenko-Cantelli does not determine learnability. The problem of distinguishing
a marginal-nonuniformly learnable class with arbitrarily slow rates from a not learnable class is
still open. A natural candidate is the universal Glivenko-Cantelli property, which is the analogue of
uniform convergence in the context of universal learning [Bousquet et al., 2021, van Handel, 2013].
However, the class {A ⊆ R | |A| < ∞} does not have the Glivenko-Cantelli property [van Handel,
2013], but is marginal and concept-nonuniformly learnable [Ben-David et al., 1995].

Marginal-nonuniform learning on countable domains. Benedek and Itai [1991] show that
discrete distributions are fixed-distribution learnable and thus all classes on countable domains are
marginal-nonuniformly learnable. However, our results show that the family of all such classes require
at least arbitrarily slow rates. Thus, while all classes on countable domains are marginal-nonuniformly
learnable (independently of rate), there is no single rate capturing the learnability.

Marginal-nonuniform ∩ concept-nonuniform vs. uniform learning. We showed that in the case
of linear rates, marginal-nonuniform learning collapses to uniform learning. Interestingly, if we
consider learning independently of rates a different situation arises. The intersection of marginal-
nonuniform and concept-nonuniform is then a strict superset of uniformly learnable classes, see
Ben-David et al. [1995]. In fact Example 1, the concept class of all finite subsets of N, is in the
intersection of the two nonuniform settings but not uniformly learnable.

Other learning settings. Universal rates were also considered for active [Hanneke et al., 2024] and
online learning [Blanchard, 2022]. Marginal-nonuniform rates could be interesting here, as well. For
example, typical worst-case lower bounds in active learning for linear classifiers, are achieved by
fixed marginal distributions [Balcan, Hanneke, and Vaughan, 2010, Hanneke et al., 2024].
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A Marginal nonuniform

Lemma 4. Any class H with 3 ≤ |H| < ∞ is marginal-nonuniformly learnable with exact rate e−n.

Proof. We start with the upper bound for all finite classes. The standard analysis of PAC learning with
finite H (see e.g., Example 8 of Hanneke and Xu [2024]) yields for any fixed P ∈ ∆(X), f∗ ∈ H:

E[erP,f∗(ĥn)] ≤ |H| exp
(
−
(

min
h∈H,erP,f∗ (h)>0

erP,f∗(h)

)
n

)
.

Now as H is finite and by taking the maximum over f∗ ∈ H we get for some constant c:

E[erP,f∗(ĥn)] ≤ |H| exp
(
−
(

min
h∈H,erP,f∗ (h)>0

erP,f∗(h)

)
n

)
≤ |H|max

h′∈H
exp

(
−
(

min
h∈H,erP,h′ (h)>0

erP,h′(h)

)
n

)
≤ |H| exp(−cn) .

Note that the constant c is independent of any concept h′ ∈ H (or rather it is the worst case over the
finitely many h′) and thus only depends on the marginal P .

We continue with the lower bound. A finite class H with |H| ≥ 3 is not universally learnable at rate
faster than e−n, see Bousquet et al. [2021], Schuurmans [1997]. Thus, this is also not possible in the
stricter marginal-nonuniform case.

Lemma 5. Every class H with finite VC-dimension is marginal-nonuniformly learnable at rate 1/n.

Proof. The class H is uniformly learnable at rate 1/n (using the one-inclusion graph algorithm
[Haussler et al., 1994]). Thus, it is also learnable at this rate in the less strict marginal-nonuniform
setting.

Lemma 6. Every infinite class H is not marginal-nonuniformly learnable at rate faster than 1/n.

Proof. We adapt the proof of Lemma 14 by Hanneke and Xu [2024]. As H has infinite size it has an
infinite eluder sequence [Hanneke and Xu, 2024, Lemma 8]. Let E = {(x1, y1), (x2, y2), . . . } be
such a sequence. Define the following marginal distribution P on X with P (xi) = 2−i for all i ∈ N.

Let Sn = {s1, . . . , sn} ∼ Pn be an unlabeled iid sample of size n ≥ 2. For t = ⌈log n⌉, the
probability that Sn does not contain any point in {xi : i > t} is

Pr(Sn ∩ {xi, i > t} = ∅) =
n∏

i=1

Pr(si ∈ {x1, . . . , xt}) = (1− 2−t)n ≥ (1− 1/n)n ≥ 1/4 . (2)

Let Sn = {(s1, y1), . . . , (sn, yn)} be a labeled (realizable) sample and ĥn = A(Sn). As E is
an eluder sequence, there are concepts h, h′ ∈ H with h(xi) = h′(xi) = yi for all i ∈ [t] and
h(xt+1) ̸= h′(xt+1). Let the target concept f∗ be chosen uniformly at random from {h, h′}. For any
deterministic learner A under the event that Sn ∩ {xi : i > t} = ∅ we have

erP,f∗(A(Sn)) ≥
1

2
2−(t+1) ≥ 1

4n
. (3)

This holds as xt+1 is drawn with probability 2−(t+1) and as xt+1 /∈ Sn the learner A will err with
probability 1/2 as the true label of xt+1 is drawn uniformly at random from {0, 1}. By combining
Equation (2) and Equation (3) we get

E
Sn,f∗

[erP,f∗(A(Sn))] ≥
1

4

1

4n
=

1

16n
.

Note that the uniform distribution over h, h′ yields a lower bound of 1/4n simultaneously for all
deterministic learners. Thus, by e.g., Yao’s principle, we know that for any randomized learner, either
h or h′ gives deterministically the same lower bound, proving the claim.
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A.1 Arbitrarily slow rates

We use here the notion of an infinite VC-eluder sequence, see, e.g., Hanneke and Xu [2024]. Let
H be a class and nk =

(
k
2

)
for all k ∈ N. A sequence S = {(x1, h(x1)), (x2, h(x2)), . . . } is an

infinite VC-eluder sequence (centered at h) if for all k ∈ N, the set {xnk+1, . . . , xnk+k} is shattered
by the version space VS(S≤nk

,H). The class H has an infinite VC-eluder sequence if and only if
VCE(H) = ∞ [Hanneke and Xu, 2024].

Moreover, we rely on the following technical lemma by Bousquet et al. [2021].

Lemma 19 (Lemma 5.12, Bousquet et al. 2021). For every rate function R, there exists probabilities
{pt}t∈N with

∑
t∈N pt = 1, two increasing sequences of positive integers {nt}t∈N, {kt}t∈N, and a

constant 1/2 ≤ C ≤ 1 such that all the following hold:

1.
∑

k kt
pk ≤ 1

nt
,

2. ntpkt
≤ kt, and

3. pkt
= CR(nt).

Lemma 13. Let H be a class with infinite VC-eluder dimension. Marginal-nonuniformly learning H
requires at least arbitrarily slow rates.

Proof. We adapt the proof of Lemma 7 by Hanneke and Xu [2024]. As VCE(H) = ∞, the class
H has an infinite VC-eluder sequence E = {(x1, f

′(x1)), (x2, f
′(x2)), . . . } for some f ′ ∈ H. Let

Xk = {xnk+1, . . . , xnk+k} be the shattered sets of increasing size in E for all k ∈ N. We define
the following marginal distribution P ∈ ∆(X). For all all k ∈ N, let Pr(x ∈ Xk) = pk and
Pr(x) = pk/k for all x ∈ Xk, where the sequence {pk}k∈N will be specified later. Let R be an
arbitrary rate function. We will show that no learner can marginal-nonuniformly learn under P faster
than rate R.

Let Sn be an unlabeled iid sample from P of size n. Let {kt}t∈N be an increasing sequence of
positive integers to be specified later. Denote Xk>t

=
⋃

t′>t Xkt′ for all t ∈ N. For all t ∈ N,
j ∈ [kt], and k we define the event

An,k,t,j =
{
Sn ∩ (Xk>t ∪ {xnkt+j}) = ∅

}
.

Note that, An,k,t,j indicates whether the sample Sn contains no points from any Xkt′ (for t′ > t) nor
the point xnkt+j ∈ Xkt

. That is, by definition of an infinite VC-eluder sequences, if An,k,t,j holds,
the version space under the sample Sn labeled by f ′ contains a hypothesis f ′′ ∈ H that classifies
xnkt+j differently, i.e., f ′(xnkt+j) ̸= f ′′(xnkt+j). This holds because Xkt

is shatterable in this case
and xnkt+j ∈ Xkt is not in the sample. Note that f ′′ can depend on n. Consider an algorithm ĥn and
its prediction on xnkt+j given by sample Sn (labeled by f ′ (or equally f ′′) restricted to Sn). Select
the ground truth f∗ ∈ {f ′, f ′′} as the one hypothesis whose label f∗(xnkt+j) is the more unlikely
one to be predicted by the classifier returned by the learner. Thus, if An,k,t,j holds we have that
erP,f∗(ĥn) ≥ 1

2

pkt

kt
, as xnkt+j will be drawn with the probability pkt

kt
and then misclassified with

probability at least 1/2. Also note that Pr(An,k,t,j) = (1−
∑

k>kt
pk − pkt

/kt)
n.

We now apply Lemma 19 to get the {pt}t∈N, {kt}t∈N, and {nt}t∈N sequences, and C with the
properties as stated. Then we get for all t ∈ N with nt ≥ 3 (and thus for infinitely many n ∈ N):

E[erp,f∗(ĥnt
)] ≥

∑
j∈[kt]

pkt

2kt
Pr(Ant,k,t,j) ≥

pkt

2
(1−

∑
k>kt

pk − pkt
/kt)

nt

≥ pkt

2

(
1− 2

nt

)nt

≥ pkt

54
≥ C

54
R(nt) .
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A.2 Fine-grained linear rates through finite VC-eluder dimension

Lemma 12. There exists an absolute constant β such that for each class H with VCE(H) < ∞, for
all learners ĥn there is a marginal distribution P ∈ ∆(X), such that for infinitely many n ∈ N there
exists a target concept f∗

n with

E[erP,f∗
n
(ĥn)] ≥ β

VCE(H)

n
.

Proof. The proof is similar to Lemma 13 but uses rate d/n instead of arbitrarily slow
ones. Let VCE(H) = d. The class H has an infinite d-VC-eluder sequence S =
{(x1, f

∗(x1)), (x2, f
∗(x2)), . . . } for some f∗ ∈ H. Let for all k ∈ N the Xk =

{xkd−d+1, . . . , xkd} be the shattered sets of size d in S. We define the following marginal dis-
tribution P ∈ ∆(X). For all k ∈ N, let Pr(x ∈ Xk) = pk and Pr(x) = pk/d for all x ∈ Xk, where
the sequence {pk}k∈N will be specified later. Let R(n) = d/n. We will show that no learner can
marginal-nonuniformly learn under P faster than rate R.

Let Sn be an unlabeled iid sample from P of size n. Let {kt}t∈N be an increasing sequence of
positive integers to be specified later. Denote X>k =

⋃
j>k Xj for all k ∈ N. For all t ∈ N, j ∈ [d],

and k we define the event

An,k,j =
{
Sn ∩ (X>k ∪ {xkd−d+j}) = ∅

}
.

Note that, An,k,j indicates whether the sample Sn contains no points from any Xj (for j > k) nor
the point xkd−d+j ∈ Xk. That is, by definition of an infinite d-VC-eluder sequences, if An,k,j holds,
the version space under the sample Sn labeled by f ′ contains a hypothesis f ′′ ∈ H that classifies
xkd−d+j differently, i.e., f ′(xkd−d+j) ̸= f ′′(xkd−d+j). This holds because Xk is shatterable in this
case and xkd−d+j ∈ Xk is not in the sample. Note that f ′′ can depend on n. Consider an algorithm
ĥn and its prediction on xkd−d+j given by sample Sn (labeled by f ′ (or equally f ′′) restricted to Sn).
Select the ground truth f∗ ∈ {f ′, f ′′} as the one hypothesis whose label f∗(xkd−d+j) is the more
unlikely one to be predicted by the classifier returned by the learner. Thus, if An,k,j holds we have
that erP,f∗(ĥn) ≥ 1

2
pk

d , as xkd−d+j will be drawn with the probability pk

d and then misclassified
with probability at least 1/2. Also note that Pr(An,k,j) = (1−

∑
j>k pj − pj/d)

n.

We now apply Lemma 19 to get the pt, kt, and nt sequences, and C with the properties as stated (we
do not use the kt sequence here). Then we get for all t ∈ N with nt ≥ 3 (and thus for infinitely many
n ∈ N):

E[erp,f∗(ĥnt)] ≥
∑
j∈[d]

pk
2d

Pr(Ant,k,j) ≥
pkt

2
(1−

∑
k>kt

pk − pk/d)
nt

≥ pkt

2

(
1− 2

nt

)nt

≥ pkt

54
≥ C

54

d

nt
.

B Concept nonuniform

Lemma 18. Let H be a class with |H| ≥ 3. The class H is not concept-nonuniformly learnable at
rate faster than 1/n.

Proof. This is an adaptation of standard lower bounds for PAC learning, see, e.g., Blumer, Ehren-
feucht, Haussler, and Warmuth [1989], Anthony and Bartlett [1999]. As |H| ≥ 3 there exist two
hypotheses h, h′ and two points x, x′ ∈ X such that h(x) = h′(x) and h(x′) ̸= h′(x′). We will show
that at least one of the two hypotheses requires a rate of 1/n to be concept-nonuniformly learnable.
Let n ∈ N be a sample size with n ≥ 2 and let the marginal distribution P ∈ ∆(X) be given as
P (x) = 1− 1

n and P (x′) = 1
n . Let S̄n be an unlabelled iid sample from Pn and denote the event
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that S̄n does not contain x′ as A. Note that

Pr
S̄n∼Pn

(A) =

(
1− 1

n

)n

≥
(
1− 1

2

)2

= 1/4 .

Now, for each n ∈ N, let ĥn be a classifier returned by a learning algorithm given the sample S̄n

labelled by f∗ ∈ {h, h′}, where the latter is to be determined shortly. For each n ∈ N, let yn ∈ {0, 1}
be the label that is less likely to be predicted by (the potentially randomized) ĥn for x′. At least one
of yn = 0 or yn = 1 appears infinitely often in the sequence (yn)n. Call this label y∗. We select f∗

as the hypothesis with f∗(x′) = y∗. Consider the sample under the event A, i.e., the sample contains
n times the point x. For infinitely many n, under the event A, the classifier ĥn will have an expected
error of at least 1

n
1
2 . Indeed, the point x′ will be drawn with probability 1/n and for infinitely many

n the classifier makes an error with probability at least 1/2 (by the choice of f∗). Thus, overall the
error probability of ĥn for the target concept f∗ satisfies

erP,f∗(ĥn) ≥
1

2n
P (A) ≥ 1

8n

for infinitely many n. The claim follows.

16



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We do prove the main trichotomy for marginal-nonuniform learning and
provide further results and context.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our results only hold under the specific assumptions in the theorems. Further
context is given in the example and discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Yes in the main paper and in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer:[NA]
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[NA]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is mostly theoretical with no immediate societal impact, neither
positive nor negative.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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