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ABSTRACT

Survival models are widely used to model time-to-event or survival data, which
represents the duration until an event of interest occurs. In clinical research, sur-
vival analysis is used for estimating the effects of treatments on patient health
outcomes. Recent advancements in machine learning (ML) have aimed to im-
prove survival analysis methods, but current evaluation practices largely focus
on predictive performance, often neglecting critical factors such as the ability to
accurately estimate treatment effects and possible consequences on health equity.
Estimating treatment effects from time-to-event data presents unique challenges
due to the complex problem setting, the extensive assumptions required for causal
inference, biased observational data, and the ethical consequences of using model
outcomes in real-world health decisions. In this work, we introduce a compre-
hensive benchmarking framework designed to evaluate survival models on their
ability to estimate treatment effects under realistic conditions and in the presence
of potential inequalities. We formalize the discussion of bias in survival modelling,
identifying key sources of inequity, and outline practical desiderata for methods that
model time-to-event treatment effects. We clarify common assumptions in survival
analysis, discuss critical shortcomings in current evaluation practices, and propose
a new benchmarking metric that can be used to better evaluate model calibration.
Using this framework, we systematically compare traditional and modern survival
models across multiple synthetic and real world datasets, investigating, among
other challenges, model performance under mis-specification and observational
biases. Through this benchmark, we provide actionable insights for researchers to
develop more robust and equitable survival models.

1 INTRODUCTION

With the rise of methods capable of processing large electronic health records (EHR) datasets, there
is growing excitement about using machine learning (ML) to extract new insights from existing
medical data. In particular, observational data could be used to assess the potential impact of various
clinical treatments on health outcomes, given personalized patient health data Liu et al. (2021); Tan
et al. (2021). The focus of such analyses typically centers on time-to-event data (or survival data),
representing the duration of time until a patient experiences a relevant health outcome (Klein and
Moeschberger, 1997; Tutz and Schmid, 2016; Hernan and Robins, 2023). For example, clinical
trials investigating cancer treatment often evaluate efficacy based on survival duration or time until
disease progression (Reck et al., 2016; Mok et al., 2019). Survival data may come from a randomized
controlled trial (RCT) or observational datasets, such as EHRs, which create additional modelling
complications (Hernan and Robins, 2023). While many ML for healthcare works focus on predicting
survival times directly (Huang et al., 2023), our interest lies in methods for estimating treatment-
specific survival models, such as survival or hazard functions, which can be used to determine
treatment effects (i.e. a conclusion that a treatment definitively impacts patient outcomes)–quantities
critical to clinical decision-making (Singh and Mukhopadhyay, 2011; Faraone, 2008).

Despite the increased adoption of ML for survival analysis and treatment effects estimation, little
attention has been given to proper benchmarking and evaluation methods. Estimating treatment effects
from time-to-event data poses unique challenges, due to inherent complications such as censoring,
the potential for biases, as well as the causal assumptions required for identifiability(Hernan and
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Robins, 2023). Many survival methods rely on restrictive modelling assumptions that may not hold
in practice. As treatment effect estimates can influence real-world medical decisions, a thorough
understanding of the methodology is crucial, especially of possible impacts on health equity. Key
challenges include: (1) complex data generating scenarios, (2) modelling assumptions violations, and
(3) sources of model bias (4) potential sources of inequity. In this paper, we propose a benchmarking
framework for the evaluation of survival methods used to estimate heterogeneous treatment effects
from time-to-event data, addressing these key challenges.

Related work. Survival models can be categorized into 1) classical statistical survival models, which
may be parametric, such as the logistic hazard model (Tutz and Schmid, 2016), semi-parametric, such
as the Cox proportional hazards model (CoxPH) (Cox, 1972), and non-parametric, such as the Kaplan-
Meier method (Kaplan and Meier, 1958); and 2) modern ML survival models, including tree-based
and neural network approaches (Wang et al., 2017). ML methods such as neural networks (Nagpal
et al., 2021; 2020; Katzman et al., 2016), random forests (Ishwaran et al., 2008; Cui et al., 2020), and
Gaussian processes (Fernandez et al., 2016; Alaa, 2017) have also been applied to survival analysis.
The Cox PH is widely used to estimate hazard ratios in clinical and epidemiological research, but its
causal interpretation has faced controversy due to common methodological flaws and assumption
violations in practice (Hernán, 2010; Martinussen et al., 2020; Martinussen, 2021). Tutz and Schmid
(2016) provides a detailed discussion of discrete-time survival methods, Wang et al. (2017) provides
a review of machine learning for survival analysis, and Wiegrebe et al. (2023) reviews deep learning
methods specifically. We provide details on notable approaches in Appendix A.1.

Existing benchmarks or comparison studies of ML (and classical) methods for survival analysis have
focused on empirically evaluating models on predictive ability (Zhang et al., 2021; Spooner et al.,
2020), rather than fidelity to the ground truth hazard or survival models, which are necessary to
estimate treatment effects. These works also do not investigate model performance in the presence of
assumption violations, known biases (such as confounding or informative censoring), or impacts on
health equity. Works proposing new methods for survival analysis often investigate model perfor-
mance over few synthetic scenarios, which cannot comprehensively inform model behavior (Katzman
et al., 2016; Cui et al., 2020). Related benchmarking works in the realm of ML for health have focused
on estimation of continuous treatment effects (Curth et al., 2021b; Crabbe et al., 2022) or fairness
in medical imaging (Zong et al., 2022). To our knowledge, our paper is the first to systematically
evaluate survival models from a causal perspective.

Contributions. 1) We provide a comprehensive discussion and formalization of key biases and
challenges that arise in survival analysis, particularly in the context of treatment effect estimation.
These include biases due to confounding, informative censoring, and model mis-specification, with a
focus on impacts on health equity. 2) We introduce a benchmarking framework, including a novel
evaluation metric, designed to evaluate the ability of survival models to estimate heterogeneous, time-
varying treatment effects in the face of various complications. 3) Through extensive experiments on
both synthetic and real-world datasets, we provide critical insights into the performance of traditional
and modern survival models as well as a guide for improved benchmarking practices.

2 TREATMENT EFFECTS FOR TIME-TO-EVENT DATA

Problem setting. Time-to-event data, orsurvival data, represents the duration until an event occurs.
We assume access to a dataset D = {xi, ai, yi, δi}Ni=1, with N drawn from baseline distribution, P0.
X ∈ Rd represents patient covariates, and A ∼ {0, 1} is the assigned treatment. Right censoring,
when patient data is unavailable beyond a certain time or when the event occurs after the study
period (administrative censoring), is a common issue. Let T be the time-to-event and C the time-to-
censoring, with observed outcome Y = min(T,C) and censoring indicator δ = 1(T ≤ C), where
δ = 1 indicates the event was observed. We aim to estimate survival models, focusing on the hazard
function, h(τ |a) = P (T = τ |T ≥ τ,A = a), and the survival function, S(τ |a) = P (T > τ |A = a),
which can be used to compute treatment effects. Clinical trials often report the hazard ratio, a
controversial metric for comparing treatments (Hernán, 2010; Stensrud and Hernán, 2020).

Estimands of interest. Survival models characterize the event processes leading to observed time-to-
event outcomes. Survival methods center on estimating one of the possible survival models shown
in Table 1 (details in App. A.5). In discrete-time, the hazard function is the probability that the
individual will experience the event outcome in a given interval of time, where τ = [tτ−1, tτ ). In
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(a) Survivorship bias. (b) Confounding. (c) Censoring bias.

Figure 1: Causal diagrams showing biases in the time-to-event setting.

continuous-time, the hazard function is the instantaneous event rate at time t conditioned on survival
until t. Under causal identifiability conditions (Sec. A.4), the causal treatment-specific conditional
survival and hazard functions are equivalent to the treatment-specific conditional survival and hazard
functions, such that ha(τ |x) = h(τ |a, x) and Sa(τ |x) = S(τ |a, x) (derivation in App. A.6). These
causal quantities can be used to directly compute treatment effects. While population-level (average)
treatment effects (ATEs) are typically reported in clinical research (Faraone, 2008), interest in
ML methods for estimating heterogeneous (conditional average) treatment effects (HTEs) has
grown (Alaa and van der Schaar, 2018; Chapfuwa et al., 2021; Cui et al., 2020). Treatment effects
are also represented by contrasts between the causal treatment-specific survival and hazard functions,
which illustrate the relative benefit of one treatment over another. Clinical trials often report ATEs
using the hazard ratio (HR), comparing the treatment (a = 1) to a control (a = 0), as HR(τ) = h1(τ)

h0(τ) .
The marginal HR is controversial in its causal interpretation, especially when treatment effects vary
over time (Hernán, 2010; Hernan and Robins, 2023; Martinussen et al., 2020). While use of the
conditional hazard ratio, HR(τ |x), may resolve issues of causal interpretation A.7, it is difficult to
estimate. Researchers have encourage use of alternative effect measures (App. A.8).

3 CHALLENGES: ESTIMATING TREATMENT EFFECTS FROM SURVIVAL DATA

Heterogeneity and effect modification. While RCTs typically report population-level ATEs, these
can be misleading when treatment effects vary across different values of covariates X , known as effect
modifiers. In such cases, HTEs are more informative; relying solely on ATEs is problematic, especially
for health equity. For example, women and people of color have been historically under-represented
in clinical trials, likely leading to biased ATE estimates that do not reflect diverse populations (Chien
et al., 2022). As covariates are likely to influence treatment effects, HTEs are a more useful and fair
quantity to focus upon, particularly as developments in ML make HTE estimation feasible. Treatment
effects can also vary over time, complicating estimation further.

Conditions for estimation of causal treatment effects. Clinical research aims to determine the
causal effects of treatments on health outcomes, reflecting how treatments would impact the same
population in a counterfactual world. Because multiple treatments cannot be applied to the same
individuals, estimating causal effects from observed data requires adherence to identifiability con-
ditions. Time-to-event data introduces additional challenges due to censoring and also relies on
exchangeability, the assumption that the counterfactual risk in the treated population is the same as
in the entire population if everyone were treated. If conditional exchangeability holds, conditional
causal effects can be estimated via methods like inverse propensity weighting (Hernan and Robins,
2023). We depict causal graphs of the time-to-event problem setting in Fig. 1, adapted from related
work (Nagpal et al., 2022). See detailed discussion of causal identifiability in App. A.4.

Confounding and selection bias. Observational data may be subject to confounding (Fig. 1b), where
treatment effects are obscured by a common cause of both treatment assignment and patient outcome.
Both RCT and observational data may be subject to selection bias, where the analyzed population is
selected on a common cause (or effect) of both treatment and outcome (Hernan and Robins, 2023).
Censoring can be a form of selection bias, if the censoring mechanism depends on a covariate that
affects treatment outcomes. Confounding and selection bias complicate treatment effects estimation
by disrupting exchangeability and may also result in covariate shifts (Curth et al., 2021a) in the
analyzed population, biasing model estimates.

Covariate shift. While lack of exchangeability leads to invalid causal interpretation, covariate shift
leads to bias during model estimation, particularly in the presence of model misspecification (Shi-
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(a) Survivorship bias (b) Confounding. (c) Censoring bias.

Figure 2: Biases with subgroup interaction. Red: S directly affects bias. Blue: S indirectly affects
bias via covariate shift on X . Green: S indirectly affects bias via outcome shift on Y (through
covariate shift on unmeasured variables Z.) As in (Pfohl et al., 2023), bi-directional arrows indicate
that S affects the distribution of the other variable, not that it is a direct cause.

modaira, 2000). In this case, a model trained through expected risk minimization (ERM) of the
training distribution will be biased with respect to the test distribution (Gretton et al., 2009). This
occurs as trained models may fit the data well in regions where Ptrain(X) is of high probability, but
not where Ptest(X) is of high probability (Scholkopf et al., 2012).

Survivorship bias. A form of selection bias termed survivorship bias, also known as "the built-in
selection bias of hazard ratios" (Hernan and Robins, 2023), has been discussed extensively in the
survival literature (Hernán, 2010; Martinussen, 2021; Martinussen et al., 2020; Stensrud and Hernán,
2020). It occurs in both RCTs and observational data, regardless of study design. Simply stated,
if treatment affects outcomes (Fig. 1a), the treatment-specific surviving populations diverge from
the baseline and from each other, breaking exchangeability (see App. A.7). While the conditional
hazard ratio is causal if the potential outcomes are independent conditional on measured covariates,
T 0 ⊥⊥ T 1|X (essentially, all effect modifiers, confounders, and sources of selection bias are observed),
this is both untestable and unlikely (Martinussen, 2021). Fig. 7 illustrates how unmeasured covariates
Z undermine that causal interpretation of the HR. Despite these issues, the HR remains standard in
clinical trials, while researchers continue to investigate methods for causally interpretable estimation
of HRs (Axelrod and Nevo, 2022; Adib et al., 2020).

Health equity. In survival analysis for clinical research, health equity concerns often arise across
subgroups defined by protected attributes, such as race, ethnicity, or gender. Due to space constraints,
the relevant figure (Fig. 2) can be found in App. A.3. Fig. 2 highlights three ways subgroup member-
ship S can drive inequities. 1) Directly, where S affects both survival times and the mechanism of
bias (red arrows): this could lead to inequities via the strength of the impact (i.e., subgroup is strongly
associated with assignment to a certain treatment) or subgroup prevalence in the data. 2) Indirectly,
via covariate shift (blue arrows): patient covariates X and subgroup S may be dependent, such that
the distribution of X differs across subgroups, while P(Y |X), the outcome distribution conditional
on covariates, remains the same. Model performance can degrade for covariates that are underrep-
resented in the training data, due to the presence of ‘harder’ examples of X or infrequent/unseen
values of X (Cai et al., 2023) and exacerbated by small datasets or mis-specified models (Shimodaira,
2000). Because certain demographic groups have been historically underrepresented in clinical trials,
unbalanced subgroup distributions leading to model bias is a significant equity issue. 3) Indirectly,
where S affects the distribution of unmeasured variables Z (green arrows). This causes outcome shift,
such that P(Y |X) differs across subgroups and conditional exchangeability no longer holds. This
can exacerbate health inequity if the frailties Z are dependent on protected attributes S.

4 BENCHMARKING OF SURVIVAL ESTIMANDS

We aim to evaluate (1) survival models and (2) treatment effects contrasts. Since true survival
functions, hazard functions, and counterfactual outcomes are unknowable from observed data, which
embeds confounding and selection bias, we generate treatment assignments and survival times to
simulate various realistic scenarios. This allows us to assess methods under different conditions,
such as observational biases and modelling assumption violations. The pseudocode for generating
semi-synthetic evaluation data can be found in Alg 1 (App. B.1).
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4.1 CONSTRUCTING AN EVALUATION SCENARIO

Discrete vs. continuous time. Survival times drawn from either discrete-time or continuous-time
distributions can be used for the evaluation of both discrete-time and continuous-time methods.
However, it is necessary to be mindful of the distinctions. For example, take a scenario where we
have generated survival times from a discrete-time model to test a continuous-time method. The
resultant continuous-time hazard function must be converted into discrete-time, using Equation 2, to
evaluate against a ground truth discrete-time model.

Data generating components. Generating synthetic survival data requires the following compo-
nents: a treatment assignment mechanism, A ∼ Bernoulli(α(x)), event and censoring processes
h(t|a, x) and hc(t|a, x) (or other survival models from Table 1), which define how frequently an
event/censoring event occurs, and patient covariates. Covariates can be generated synthetically or
sampled from real datasets to mimic realistic experimental conditions.

Model mis-specification. Parametric and semi-parametric methods require the underlying event
process to adhere to an assumed form that may not reflect the true data distribution. For example,
we can evaluate the CoxPH in situations where the proportional hazards assumption is violated. We
can evaluate parametric models, such as the exponential model, against misspecified data generated
from a log-logistic distribution. Time-varying models may be mis-specified with respect to the time
function. Table 5 summarizes types of mis-specification and what methods are affected.

Heterogeneous treatment effects. Treatment effects may be heterogeneous from two perspectives:
the event/censoring processes are dependent on covariates or the causal contrasts are dependent on
covariates. The former refers to a scenario where ha(t|x) ̸= ha(t). The latter refers to a scenario
where, if we define the causal contrast as the hazard ratio, HRA(t|x) ̸= HRA(t).

Time-varying treatment effects. Similar to heterogeneity, treatment effects may be time-varying
from two perspectives: the event/censoring processes are dynamic, or the treatment effects (causal
contrasts) are dynamic. For example, survival times drawn from an exponential distribution reflect
a constant hazard function, where h(t) = λ. A time-varying hazard function does not necessarily
imply time-varying causal contrasts. For example, if ha(t) = λt exp(0.2a), HRA(t) = exp(0.2),
which is constant over time. A time-varying contrast is HRA(t) = exp(0.1t), which would result
from ha(t) = exp(0.1a · t). This complication can be combined with the above to generate
heterogeneous and time-varying treatment effects, such that HRA(t|x) = exp(0.1t+ 0.2x), from
h(t|a, x) = exp(0.1a · t + 0.2a · x), or heterogeneously time-varying treatment effects, such that
HRA(t|x) = exp(0.1t · x), from h(t|a, x) = exp(0.1a · t · x).
Observational bias. Bias can be incorporated into a synthetic scenario via the inclusion of common
effects, defined as patient covariates. Confounding occurs when there is a common cause of treatment
assignment and patient outcome. For example, if A ∼ Ber(σ(x1)) and ha(t|x) = exp(a · x1 + x2).
Selection bias occurs when the at-risk population is selected based on two variables: treatment or
cause of treatment and outcome or cause of outcome. We can create a censoring mechanism that
incorporates selection bias if we make it dependent on variables that satisfy this definition. For
example, if treatment assignment and the hazard function are defined as above, the censoring hazard
ha
c (t|x) = exp(a · x1) leads to censoring bias. Recall that survivorship bias occurs in any situation

where there exist covariates (including treatment) that affect survival.

Violation of identifiability assumptions. Real world data is likely to violate causal identifiability
assumptions. The conditional exchangeability assumption does not hold if there are unmeasured
confounders, or, in the presence of censoring, there are any unmeasured variables that affect both
censoring and outcome. To create scenarios that violate these assumptions, we can incorporate
variables into the data generating models for treatment assignment, event hazard, and censoring
hazard that are withheld during model training.

4.2 EVALUATION

Calibration (which is related to the notion of sufficiency (Barocas et al., 2023)) has often been touted
as an appropriate measure of fairness (Pleiss et al., 2017), particularly in healthcare settings, for
evaluating models for clinical decision making (Pfohl et al., 2022). Thus, we focus on calibration
as our primary evaluation metric. In the context of survival analysis, we say a model is perfectly
calibrated if the estimated hazard function equals the true hazard function. It remains to determine
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how best to quantify deviations from perfect calibration. Given a time interval τ , a ground truth
(discrete) hazard function h, and an estimated hazard ĥ, we define the absolute logit error (ALE) as

ALE(τ) =

∣∣∣∣∣log h(τ |a, x)
1− h(τ |a, x)

− log
ĥ(τ |a, x)

1− ĥ(τ |a, x)

∣∣∣∣∣ . (1)

The main evaluation metric we use in our experiments is the mean absolute logit error (MALE),
which is just the ALE averaged over all failure intervals.

Motivation for MALE. MALE has two properties which make it an ideal performance metric. First,
it takes its minimum value 0 if and only if the model is perfectly calibrated, i.e., iff the estimated
hazard function is equal to the true hazard function. Second, a bound on MALE (which is in terms of
hazards) also corresponds to a natural bound on the difference in log failure probabilities between the
model and the ground truth. In contrast, while other seemingly natural measures such as the mean
squared error of the true vs. estimated hazard share the property that they are minimized only by the
ground truth, bounds on these quantities give no guarantees about the relative error of the computed
survival probabilities. Formal statements and proofs of these qualities can be found in Appendix D.1.

5 EXPERIMENTS

In this section, we benchmark common survival methods on their ability to estimate hazard functions
from survival times and patient covariates. We emphasize that we are interested in the estimation
of hazard functions (rather than predicting survival times) as they can be used to estimate treatment
effect contrasts, such as the hazard ratio, which are informative for clinical decision making. We
evaluate models on datasets generated with a wide range of ground truth hazards that address model
misspecification, constant vs. time-varying hazards, and confounding, as well as examining subgroup
fairness. While thorough, our experiments are non-exhaustive; alongside the insights reported, we
hope that this work can help improve evaluation practices ML for survival analysis.

Datasets. We use covariates both synthetically generated (App. B.2) and sampled from real datasets.
We utilize a diverse set of real-world datasets that vary in sample size, number of features, and feature
characteristics, and have been widely used in related work on survival analysis and treatment effects
estimation. These include Twins (Almond et al., 2004), TCGA (Weinstein et al., 2013), IHDP (Hill,
2011), News (Johansson et al., 2016), SUPPORT (Connors et al., 1995), and METABRIC (Curtis
et al., 2012). The characteristics of the real-world datasets are summarized in Table 2, with more
details in App B.3. Because it is not possible to know true underlying hazard or survival functions
from observed data, nor is it possible know if treatment assignments are affected by confounding, we
assign treatments we generate synthetic survival (and confonding) times using the procedure detailed
in Alg 1. Hazard and censoring hazard functions corresponding to scenarios are shown in Table 3.
Unless otherwise noted, all scenarios incorporate non-informative censoring.

Methods. We evaluate the performance of the parametric logistic hazard model (LH) (Tutz and
Schmid, 2016), the semi-parametric Cox proportional hazards model (CoxPH) (Cox, 1972), the
time-varying Cox model (CoxTV), Random survival forests (RSF) (Ishwaran et al., 2008), and
neural network methods DeepSurv (Katzman et al., 2016), CoxTime (Kvamme et al., 2019), and
DeepHit (Lee et al., 2018). See App. B.4 for detailed discussion and implementation details.

(a) Baseline, constant-time
scenarios.

(b) Baseline, time-varying
scenarios.

(c) Mis-specified, constant-
time scenarios.

(d) Mis-specified, time-
varying scenarios.

Figure 3: Critical difference diagrams of average ranks (based on MALE).

Overall results. Fig. 3 shows critical difference (CD) diagrams comparing the rankings of survival
methods based upon MALE performance over baseline and mis-specified scenarios across all 7
datasets. We first conduct a Friedman test (Friedman, 1937), finding that differences in model
performance are statistically significant (p < 0.05). Then, we construct CD diagrams using the results
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(a) Baseline, constant-time scenarios. (b) Baseline, time-varying scenarios.

(c) Mis-specified, constant-time scenarios. (d) Mis-specified, time-varying scenarios.

Figure 4: Heatmaps comparing MALE (heatmap rows) over scenarios (heatmap columns) over
datasets (columns). MALE is reported up to the 75th percentile of survival times (top row) and 76th
to 99th percentile of survival times (bottom row). Grey lines group variations of similar scenarios.
Note that heatmap scales are all different.

of the Nemenyi post-hoc test (Nemenyi, 1963), which determines which models have statistically
significant different rankings. We report the rankings based on MALE performance average over the
75th percentile of survival times, due to stark differences in model performance in later survival times
(99th percentile rankings in Fig. 8). Model rankings are largely intuitive: for baseline, constant-time
scenarios, CoxPH and LH are well-specified and ranked highly; for baseline, time-varying scenarios,
CoxTV is well-specified and ranks highly (Fig. 3b); for mis-specified, time-varying scenarios,
CoxTime, an extension of CoxTV parameterized by a neural network, is ranked highly (Fig 3a).
Strangely, for mis-specified, constant-time scenarios, CoxTV slightly outranks other methods (though
without statistical significance), possibly as CoxTV incorporates additional time parameters, which
may offer more flexibility in the presence of non-linearities. Notably, across all groups of scenarios,
no other models outperform (with statistical significance) the simplest models: LH and CoxPH.
Results are discussed in more detail in Secs. 5.1 and 5.2.

5.1 BASELINE SCENARIOS

Setup. We examine model performance over a set of baseline scenarios with constant-time
and time-varying, heterogeneous hazard functions, without the additional complications. While
parametric/semi-parametric LH and CoxPH models are technically mis-specified to heterogeneous
hazard ratios and time-varying hazards, these scenarios represent a baseline over which survival
models should perform reasonably well. While we aim to examine a breadth of scenarios representing
different manifestations of heterogeneity and time effects, we are also interested in varying the
complexity of hazard functions. Ihaz ⊆ |d| represents the indices for the covariates that affects
the hazard function. We increase |Ihaz| over variations of similar scenarios (exact hazard functions
shown in Table 3); the value of |Ihaz| for each scenario is included as its subscript. For example,
const1 includes 1 covariate that affects hazard: h(t|a, x) = 0.5∗ exp(−2+a+x0). For experiments
on real datasets, covariates are indexed randomly from the set of available covariates.

Results. Figs. 4a and 4b show MALEs of models (heatmap row) over the baseline scenarios (heatmap
column), for a select subset of datasets (columns). Results for remaining datasets are in App. Fig. 9.
For each dataset, MALEs are average over survival times up to the 75th percentile (top row) and
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from the 76th to 99th percentile (bottom row). As the risk set shrinks at later survival times, model
performance can deteriorate quickly, obscuring performance patterns when metrics are averaged over
time. For constant-time scenarios (Fig. 4a) LH and CoxPH generally perform well and performance
does not typically deteriorate for later survival times, except for IHDP, which is the smallest dataset
(n = 985). CoxTV deteriorates significantly in later survival times for some constant-time scenarios,
even with the larger synthetic dataset (n = 10000); this performance decline is not seen in the time-
varying scenarios (Fig. 4b). This is possible a drawback to use of CoxTV–if practitioners are unaware
of whether the ground truth hazard is time-varying, CoxTV may perform poorly. Interestingly, the
performance deterioration that is observed in DeepSurv in IHDP is not observed in CoxTime, a
similar neural network that includes time as a parameter. While the LH and CoxPH are mis-specified
to time-varying scenarios, in practice they perform quite well, with the exception of some scenarios
of IHDP, where performance deteriorates significantly at later survival times.

5.2 MISSPECIFICATION: NON-LINEARITIES

Setup. We now explore model performance over mis-specified hazard functions, particularly, non-
linearities, which are mis-specified to the parametric LH model and the semi-parametric CoxPH and
CoxTV models. Other types of mis-specification, including time-varying hazards (Section 5.1) and
unmeasured variables (Sec. 5.3) are explored in other sections. Scenarios in Figure 10a are constant
over time, while scenarios in Figure 10b are time-varying, with non-linearities over time as well as
the covariate space. Time-varying, non-linear hazard functions are mis-specified to DeepSurv, which
does not model time-varying covariates. In gauss scenarios, the hazard function mimics a Gaussian
distribution, while in piece, the hazard function is a linear piecewise function. The time-varying
non-linear functions are more variable, full details are found in Table 3.

Results. We report average MALE values averaged across time periods for mis-specified, constant-
time and mis-specified, time-varying scenarios for a select subset of datasets in Fig. ??. Heatmaps
for the rest of the datasets can be seen in Fig. 10. While the reported model rankings in Fig. 3 suggest
otherwise, we find that generally, DeepSurv outperforms other methods (across all time periods) in
mis-specified, constant-time scenarios (Fig. 10a. Average rankings are skewed particularly by results
on the dataset METABRIC. If METABRIC results are removed, DeepSurv ranks first on average
(though still not statistically significantly). For mis-specified, time-varying scenarios (Fig. 10b),
CoxTime generally performs the best (this is reflected in average model rankings as well); DeepSurv
notably performs quite poorly in small data settings (IHDP) and also at later survival times (bottom
row). As practitioners may not know ahead of time whether a hazard will be time-varying (as well
as non-linear), it may be advisable to select CoxTime rather than DeepSurv; CoxTime generally
performs well even in constant-time scenarios.

5.3 OBSERVATIONAL BIAS: CONFOUNDING

No unmeasured confounders. We examine the impact of confounding, a bias that occurs when
there exists covariates that affect both treatment assignment and patient outcomes. In a setting where
there are no unmeasured confounders, biases caused by confounding can be accounted for by the
estimation of conditional hazards (conditioning on any confounders). However, confounding may still
lead to covariate shift that can result in model estimation biases in low data or mis-specified settings.
We are interested in investigating what impacts the strength of confounding and the complexity
of the confounding mechanism have upon model performance. Ihaz ⊆ |d| represents the indices
for the covariates that affect the hazard function. Icon ⊆ Ihazard represents the set of indices
for covariates that also affect treatment assignment. Here, the hazard function can be written as
h(τ |a, x) = h(τ |a, xIhaz

). We define a treatment assignment function with a weight parameter, ωc,
which controls confounding strength: α(x) = σ(ωc ·

∑
j∈Icon

xj).

Results. In Figure 5a, we depict experimental results over varying the number of covariates that
affect treatment assignment, |Icon|, shown across the figure rows, and also varying the strength of the
confounding, shown over the y-axis of each plot. Figure columns correspond to assigned treatment
groups, a. In this experiment, we use hazard function piece9, where |Ihaz| = 9. Higher values of
ωc correspond to starker differences in the distributions of the covariates within Icon by treatment
assignment. The increasing size of Icon means that more covariates (which also affect hazard) will
be affected by distribution shift between treatment groups. We observe that generally, as |Icon|
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(a) Measured confounding (b) Unmeasured confounding

Figure 5: Observational bias: confounding

increases, performance across all models seems to slightly improve for treatment 0, but worsen for
treatment 1. Due to the construction of α(x), as ωc increases, the distribution of covariates (which
affect confounding) for treatment 1 tend towards larger values, while the distribution of covariates
for treatment 0 tend towards smaller values. In the hazard function used for this experiment, smaller
values (across multiple dimensions) tend towards lower hazard probabilities. The hazard function also
incorporates a non-linearity at higher covariate values. Thus, the structure of both the confounding
mechanism and the underlying hazard function could explain these changes in performance. For
higher |Icon| values (rightmost columns), we see that changes in ωc have the largest impact on
performance. These performance can also be explained by the pattern of distribution shift–treatment
group 0 is increasingly associated with an ’easier’ (well-specified, low hazard probabilities) covariate
space, while the opposite is true of treatment group 1. While these results are specific to the
experimental conditions, we demonstrate that confounding, even when all confounders are observed,
can influence model performance across all investigated models. We also see that ranking of model
performance remains fairly consistent, with neural network methods, DeepSurv and CoxTime, which
are able to address the non-linearities in hazard function piece9, outperforming other methods.

Unmeasured confounders. We turn our attention to investigate model behavior in the face of
unmeasured confounding. In this setting, we have unobserved confounders z which also affect
both hazard and treatment assignment. Here, the hazard function is h(τ |a, x, z) and the treatment
assignment function is α(z) = σ(ωc · z) (in these experiments, z is 1-dimensional). Here, we are
interested in what happens if we increase the confounding strength ωc and also vary the correlation
strength, ρc, between z and x. Because z is unmeasured and thus not included in model estimation,
the correlation between z and observed variables x should impact model performance. In this
experiment, we use hazard function piece4, which is constant-time and incorporates non-linearities.

Results. In Fig. 5b we show model performance over increasing correlation strength between z
and the observed variables x (columns) and increasing confounding strength (y-axis). As expected,
performance generally improves across all models as the correlation strength increases (with the
exception of DeepHit). Interestingly, across all correlation strengths and models, performance seems
to improve in both treatment groups as ωc increases. A possible explanation for this phenomenon is
that the increased confounding strength leads to treatment group distributions that are concentrated
in separate covariate spaces that may be ’easier’ for the models to learn. This is indeed the case
for hazard function piece4, a non-linear piecewise function where the breakpoints occur around the
middle of the covariate space. The covariate shifts caused by the unmeasured confounding appear to
affect the parametric and semi-parametric LH and CoxPH models the least, likely as these models are
not flexible enough to adapt to the non-linearities, regardless of covariate distribution.

9
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5.4 SUBGROUP FAIRNESS: SURVIVORSHIP BIAS

In this section, we investigate one possible source of inequity in the survival setting: survivorship
bias linked to protected attributes, s, which indirectly affect bias via covariate shift on measured
covariates, x. In the appendix, we also report results on an experiment investigating inequity caused
by covariate shift on unmeasured covariates, z, which are affected by subgroups s.

Setup. We now examine a setting where participants may belong to subgroups defined by protected
attributes, s. Even when there are no observational biases (such as confounding or informative
censoring) and all covariates that affect treatment outcome are measured, we still contend with the
issue of survivorship bias. Survivorship bias may be a source of inequity when, for example, subgroup
membership indirectly affects this bias via covariate shift on X , such that P(X|S). Here, the hazard
function h(τ |a, x, s) is complicated further by the presence of subgroups. In our experimental setup,
we draw x0 based on subgroup membership s, where x0|s = 0 ∼ N (µ0, σ

2) and x1|s = 1 ∼
N (µ1, σ

2). We vary subgroup means µ0 and µ1 across experiments (by column) to investigate
impacts on model performance as the overlap between subgroups decreases. We also vary the
proportion of subgroups P (s = 1) = π (shown on y-axis). We use hazard function piece1, which is
constant-time, non-linear, piecewise function where Ihaz = {0} (x0 is the only covariate that affects
the hazard). We report MALE values, averaged over the first 75th percentile of survival times.

Results. We report findings in Figure 11 which can be found in Appendix C.3 due to space constraints.
Each row of the figure shows an experiment with different subgroup means, (µ0, µ1), and each column
is associated with a treatment a and subgroup s pair. When the subgroup distributions are closer
together (first row), model performance generally remains similar across treatment, subgroup pairs,
with the exception of DeepHit and RSF, where performance is significantly worse for (a = 1, s = 0)
and (a = 0, s = 1). We find that this disparity increases as the subgroup means get further apart
(lower rows). In (a = 1, s = 0), model performance worsens as π increases, which means that fewer
samples belong to subgroup 0; as a result, the model errs in this covariate space. We see the reverse
effect in the columns corresponding to subgroup 1, particularly when a = 0; performance improves
π increases and more samples represent subgroup 1. These effects occur at a smaller scale for other
methods as well; as π increases, performance degrades for those in subgroup 0 and improves for those
in subgroup 0. Stark differences in performance created by changes in subgroup distribution terms of
of both sample size and covariate shift) across treatment, subgroup pairs are indicative of unfairness.
Thus, even while all effect modifiers are observed, survivorship bias may have a significant bias on
model performance, particularly for subgroups that are not well-represented in the dataset. This effect
is seen most clearly in DeepHit and RSF and to some degree with CoxTV as well.

6 DISCUSSION

We have provided a comprehensive discussion of the time-to-event problem setting, alongside the
requisite assumptions for causal inference of treatment effects and significant challenges faced
during model design and estimation. We provide recommendations for benchmarking and evaluating
methods for time-to-event treatment effect estimation, and evaluate the Cox proportional hazards
model and the extended Cox model under this paradigm. In these experiments, we expose the
common biases that the Cox model exhibits under different event settings, finding that the it is not
robust to model misspecification (either due to the parameterization of the distribution or unmeasured
confounders/effect modifiers) and is easily biased by certain covariate shifts. Future work should
focus on further examining the Cox model with respect to these issues and towards the development
of methods to overcome these particular forms of covariate shift.

This work also has several limitations. Most notably, we consider a specific setting for time-varying
treatment effects, wherein the treatment is set at the beginning of analysis and covariates are measured
at the beginning of analysis (but may contribute to time-varying effect modification). However,
clinical data may actually include time-varying covariates, time-varying treatments, and multiple
treatments. In addition, patients may be subject to competing events, where the patient outcomes are
caused by multiple mechanisms. There are also many more forms of selection bias, including selection
that occurs before a trial/before analysis, affecting generalizability of findings from analysis to the
general population. For example, eligibility criteria from clinical trials may restrict the investigated
population to a subset that is not reflective of the eventual patient population. This is a form of
selection bias also known as sampling bias and affects the transportability of clinical trials outcomes.
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A ADDITIONAL BACKGROUND

A.1 CURRENT PRACTICES

A.1.1 THE COX PROPORTIONAL HAZARDS MODEL

We discuss the Cox proportional hazards model (Cox PH) (Cox, 1972) with more detail, due to its
popularity. The Cox PH is a semi-parametric approach to modelling hazard functions in continuous-
time, with the primary goal of calculating hazard ratios. For estimation of average treatment effects,
the hazard function for the Cox PH is defined as h(t|a) = h0(t) exp(βA). Here, the baseline hazard
h0(t) is assumed to be the same across treatment groups and differs only by a constant (over time)
scaling factor, exp(βA), which is dependent on the treatment assignment. This is the proportional
hazards assumption, which is violated if the treatment effect coefficients β vary over time. The Cox
PH model is estimated with a partial likelihood (Cox, 1975) that relies on the censoring at random
assumption and treats the baseline hazard, h0(t), as a nuisance parameter that is not required in
the likelihood definition and not estimated during model inference. However, if a baseline survival
model is desired, the Breslow estimator is commonly employed to estimate the cumulative baseline
hazard (Lin, 2007). The Cox PH model is useful in that it does not require any assumptions regarding
the parametric form of the baseline hazard and the common issue of right-censoring is handled in
model inference. Additionally, the Cox PH presents a straightforward estimation of the hazard ratio,
which is often desired as a metric for the comparison of treatment effects. The Cox PH marginal
hazard ratio is defined as: HR(t) = h(t|A=1)

h(t|A=0) =
h0(t) exp(β∗1)
h0(t)exp(β∗0) = exp(β).
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However, there are two major issues with this definition of the hazard ratio: 1) dependence on the
proportional hazards assumption, and 2) survivorship bias. Recalling the definition of the hazard
ratio from Equation 6, we note that the hazard ratio is meant to be interpreted as a contrast between
treatment groups of the probability of event at a specific moment in time, t, conditioned on survival
until that time. However, the hazard ratio given by the Cox PH model really reflects a weighted
average of the hazard ratios over the entire time period of 0 ≤ u ≤ t (Stensrud and Hernán, 2020),
rather than the hazard ratio at the specific moment in time, t. Researchers have proposed to resolve
this by reporting a series of period-specific hazard ratios in order to reflect time-varying hazards (Lin
et al., 2019). This is problematic due to issue (2) noted in the previous paragraph; if treatment-specific
event processes differ, the distributions of the at-risk treatment groups diverge over time and lack
exchangeability (Bartlett et al., 2020). The conditional Cox model follows by incorporating patient
covariates X in the model in the same format as the treatment assignment variable, A. Under strict
assumptions (Martinussen, 2021), the conditional HR can be interpreted causally.

The extended Cox model. If the proportional hazards assumption is violated due to the presence of
time-varying treatment effects, the extended Cox model can be adopted (Bao et al., 2018) to model
time-varying covariates or time-varying coefficients. We focus on the modelling of time-varying
coefficients, indicating varying treatment effects influenced by effect modifiers. Under the extended
Cox model, the hazard function is modified such that h(t|a) = h0(t) exp(β(t) · A), where the
coefficients vary over time. If the time-varying coefficient can be represented by a time function, g(t),
such that β(t) = βg(t), then the Cox model can be used with a set of time-varying variables (Thomas
and Reyes, 2014), as β · g(t) ·A = β ·A(t). However, this procedures requires an assumption of the
time function, g(t), which provides another opportunity for model specification.

A.2 GENERAL CAUSAL MODEL

The causal setting of Nagpal et al. (2022). We incorporate treatments A and unmeasured factors Z.

A.3 CAUSAL MODELS FOR HEALTH EQUITY

A.4 IDENTIFIABILITY CONDITIONS

Figure 6: Causal model of time-to-event set-
ting. NT represents the event process, NC

represents the censoring event process. Z
represents unmeasured variables that can per-
form effect modification, and cause confound-
ing or selection bias.

In the following, we use T a to denote the potential
outcomes, the event time that would have been ob-
served given the assigned treatment a:

• Assumption 1 (Consistency). The observed
outcome is the counterfactual outcome un-
der the intervention actually observed. Thus,
if A = a, then T = T a.

• Assumption 2 (Conditional exchangeabil-
ity). The counterfactual outcome and the
assigned treatment are independent condi-
tional on measured covariates, such that
T a ⊥⊥ A|X . Conditional exchangeabil-
ity requires the presence of no unmeasured
confounders, where all variables that affect
both treatment assignment and outcomes
are observed. It can be achieved if treat-
ment assignment is random conditional on
measured covariates..

• Assumption 3 (Positivity). There is a pos-
itive probability of treatment assignment to
each treatment conditional on patient co-
variates, such that P (A = a|X = x) > 0
for a ∈ {0, 1} and x where p(x) > 0, where
p(·) is the probability mass function. Positivity is also known as the experimental treatment
assumption.
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Consistency is required because treatments must be well-defined in order to then estimate their causal
effects (Rubin, 1980; 1986). Because it is not possible to administer the same treatments to the
same individuals to determine the impact of a single treatment, estimation of causal treatment effects
relies on the concept of exchangeability (Robins and Hernán, 2008). Exchangeability holds when the
counterfactual outcome and the assigned treatment are independent, such that the counterfactual risk
(of some health outcome) in the treated population is the same as the counterfactual risk (of some
health outcome) in the entire population, had the entire population been treated. However, as the
risk of treatment is actually observed in the treated population, it can be held true across the entire
population (Hernan and Robins, 2023). It is sufficient to require conditional exchangeability if there
are no unmeasured confounders, as methods such as inverse propensity weighting can be used to
adjust for confounders to estimate average causal effects (Robins and Hernán, 2008). Positivity is
required as the causal effects of a treatment on patients can only be assessed if representative patients
have received the treatment (Hernan and Robins, 2023). These conditions motivate the design of
RCTs, where, in ideal settings, all identifiability conditions are achieved by construction (Hernan
and Robins, 2023). Consistency is achieved through complete adherence to the assigned treatment
protocol, which is carefully designed. Exchangeability and positivity are achieved via randomization
of treatment assignments. While these assumptions are untestable for observational data, leading to
the presence of unmeasured variables (Z in Figure 7), practitioners can use expert knowledge and
careful problem framing in order to improve plausibility.

A.4.1 IDENTIFIABILITY IN THE PRESENCE OF CENSORING

In the time-to-event setting, patient observations can be censored and unavailable after a certain time.
In order to uphold the conditions of identifiability when censoring is present, additional assumptions
are required, which are standard in the field of survival analysis. Assumption 4 is analogous to
Assumption 2 of conditional exchangeability, while Assumption 5 is analagous to Assumption 3 of
positivity.:

• Assumption 4 (Coarsening at random / censoring at random). Censoring and outcome
are conditionally independent given assigned treatment and patient covariates, such that
T a ⊥⊥ C|A,X .

• Assumption 5 (Positivity (censoring)). Censoring is non-deterministic, such that for all
values of covariates X , there is a positive probability of being uncensored. P (C > τ |A =
a,X = x) > 0, for all τ < t.

A.5 FURTHER DETAILS ON SURVIVAL MODELS

Survival models are defined in Table 1. These estimands can be derived from one another, below, we
list the relationships.

Table 1: Survival models in discrete- and continuous-time.
Model Discrete Time Continuous Time

Survival function S(τ |a) = P (T > τ |A = a) S(t|a) = P (T > t|A = a)

Hazard function h(τ |a) = P (T = τ |T ≥ τ, A = a) h(t|a) = limdt→0
P (t≤T<t+dt)

dt·S(t|a)
Cumulative hazard function H(τ |a) =

∑
u≤τ h(u|a) H(t|a) =

∫ t

0
h(u|a) du

PMF / PDF f(τ |a) = P (T = τ |A = a) f(t|a) = P (T = t|A = a)

A.5.1 DISCRETE-TIME

• Survival function: S(τ |a) = P (T > τ |A = a) = 1 − F (τ |a) = exp(−H(τ |a)) =∏
u≤τ (1− h(u|a))

• Hazard function: h(τ |a) = P (T = τ |τ ≥ t) = f(τ |a)
S(τ−1|a) = H(τ)−H(τ − 1)

• Cumulative hazard function: H(τ |a) =
∑

u≤τ h(u|a)
• PMF: f(τ |a) = P (T = τ |A = a) = h(τ |a)S(τ − 1|a)
• Lifetime distribution function: F (τ |a) = P (T ≤ τ) = 1− S(τ |a)
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A.5.2 CONTINUOUS-TIME

• Survival function: S(t|a) = P (T > t|A = a)

• Hazard function: h(t|a) = limdt→0
P (t≤T<t+dt)

dt·S(t|a) = f(t|a)
S(t|a)

• Cumulative hazard function: H(t|a) =
∫ t

0
h(u|a) du = − log(S(t|a))

• PDF: f(t|a) = P (T = t|A = a) = F ′(t|a)

• Lifetime distribution function: F (t|a) = P (T ≤ t) = 1− exp(H(t|a))

The distinction between discrete- and continuous-time models is particularly important when we
wish to use the hazard functions to determine causal contrasts under various data generating settings.
Note that previously expressed definitions assumed discrete-time. The discrete-time hazard function,
hτ , can be derived from the continuous-time hazard function, ht:

hτ (τ |a) = 1− exp (−
∫ tτ

tτ−1

ht(u|a)du) (2)

A.5.3 IMPACT ON EXCHANGEABILITY

While either confounding or selection bias can lead to a lack of exchangeability, if conditional ex-
changeability holds, it is possible to estimate conditional causal effects and to recover exchangeability
via methods such as standardization or inverse propensity weighting (Hernan and Robins, 2023).
Conditional exchangeability is achieved in the presence of confounding if there are no unmeasured
confounders, such that any covariate that affects both treatment assignment and outcome is measured
and accounted for, and in the presence of selection bias, if there are no unmeasured covariates that
affect both the selection mechanism and outcome. For example, when selection occurs through cen-
soring, conditional exchangeability is achieved if all covariates that affects the censoring mechanism
are measured (see Assumption 4, Section A.4).

A.6 DERIVATION OF CAUSAL SURVIVAL MODELS

Figure 7: Causal model of time-to-event set-
ting. NT represents the event process, NC

represents the censoring event process. Z
represents unmeasured variables that can per-
form effect modification, and cause confound-
ing or selection bias.

First, we account for the presence of censoring in the
conditional hazard function:

h(t|a, x) = P (T = t|T ≥ t, A = a,X = x)

= P (Y = t, δ = 1|Y ≥ t, A = a,X = x)

= P (T = t|T ≥ t, C ≥ t, A = a,X = x)
(3)

Line one follows by definition of the discrete-time
conditional hazard function. Line two follows from
Assumption 4, as the conditional probability of haz-
ard given the full dataset with no censoring should
be equivalent to the conditional probability of haz-
ard given the observed data of a censored-at-random
dataset. This assumption is commonly adopted for in
likelihood-based estimation of models from survival
data, due to the presence of censoring. Line three
follows by definition. We can then employ causal
operators to define a causal treatment-specific con-
ditional hazard function which is equivalent to the
treatment-specific conditional hazard function:
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h(t|a, x) = P (T = t|T ≥ t, C ≥ t, A = a,X = x)

= P (T a = t|T a ≥ t, C ≥ t, A = a,X = x)

= P (T a = t|T a ≥ t, C ≥ t,X = x)

= P (T a = t|T a ≥ t, do(C ≥ t), X = x)

= P (T = t|T ≥ t, do(A = a,C ≥ t), X = x)

= ha(t|x)
(4)

The first line follows from definition, line two follows from Assumption 1 (consistency), line three
follows from Assumption 2 (conditional exchangeability), and line four follows from Assumption
4 (censoring at random). The final line follows from definition and gives us the our formula for a
causal, treatment-specific hazard function, ha(t|x). As we are working with time-to-event data, it is
necessary for us to intervene on the censoring mechanism (by setting each individual to uncensored),
so that we can evaluate treatment outcomes as if we exist in a world without censoring (Stitelman and
van der Laan, 2010). The causal, treatment-specific survival function can be defined similarly, as:

Sa(t|x) = P (T > t|do(A = a,C ≥ t), X = x)

= P (Ta > t|C ≥ t,X = x)
(5)

A.7 CAUSAL HAZARD RATIOS

We define the marginal hazard ratio:

HR(τ) =
P (T 1 = τ |T 1 ≥ τ, C ≥ τ)

P (T 0 = τ |T 0 ≥ τ, C ≥ τ)
(6)

The marginal HR compares the surviving (and uncensored) treated population P(T 1 ≥ τ, C ≥ τ)
with the surviving (and uncensored) control population, P(T 0 ≥ τ, C ≥ τ). If the treatments indeed
have different effects on the outcome, these two groups are no longer exchangeable and the resultant
HR cannot be regarded as a causal effect. To resolve this issue, Martinussen et al. (2020) introduces a
causal hazard ratio over the population-average, defined as:

HRC(τ) =
P (T 1 = τ |T 0 ≥ τ, T 1 ≥ τ, C ≥ τ)

P (T 0 = τ |T 0 ≥ τ, T 1 ≥ τ, C ≥ τ)
(7)

The causal hazard ratio constructs an exchangeable population, P(T 0 ≥ τ, T 1 ≥ τ, C ≥ τ), so that
estimand now represents a valid causal contrast. However, HRC(τ) can only be estimated with
HRτ if the potential outcomes are independent (T 0 ⊥⊥ T 1). Martinussen et al. (2020) also defines
a conditional hazard ratio which is equivalent to the causal conditional hazard ratio if the potential
outcomes are independent conditional on measured covariates (T 0 ⊥⊥ T 1|X):

HR(τ |x) = h1(t|x)
h0(t|x)

=
P (T 1 = τ |T 0 ≥ τ, T 1 ≥ τ, C ≥ τ,X = x)

P (T 0 = τ |T 0 ≥ τ, T 1 ≥ τ, C ≥ τ,X = x)
=

P (T 1 = τ |T 1 ≥ τ, C ≥ τ,X = x)

P (T 0 = τ |T 0 ≥ τ, C ≥ τ,X = x)
(8)

However, Martinussen et al. (2020) stresses that both assumptions are both unrealistic and untestable.
Thus, methods that depend on this assumption should also be examined with a sensitivity analy-
sis (Axelrod and Nevo, 2022).

A.8 OTHER EFFECT MEASURES

Researchers have recommend the use of treatment effect measures that are not conditioned on
survival (Hernán, 2010; Martinussen, 2021):

• Difference in survival times: S1(τ |x)− S0(τ |x)
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• Difference in restricted mean survival time (RMST):
∑

τk≤τ∗(S1(τk|x)− S0(τk|x))(̇τk −
τk−1)
The RMST is the expected time-to-event conditioned on a specified time horizon, τ∗. For
example, if time-to-event outcome is death, RMST (τ∗) can be interpreted as the τ∗−year
life expectancy.

• Relative risk function (Martinussen et al., 2020): RR(τ) = P (T 1≥τ)
P (T 0≥τ)

A.9 MITIGATING CONFOUNDING AND SELECTION BIAS

Confounding and selection bias can lead to (1) a lack of exchangeability, complicating causal effect
estimation, and (2) covariate shift, which can lead to bias in model estimation, particularly if the model
is mis-specified (Shimodaira, 2000). If conditional exchangeability is satisfied, conditional survival
models are causal, and heterogeneous treatment effects calculated from causal conditional survival
models can be considered valid (Hernan and Robins, 2023). To recover average treatment effects
under conditional exchangeability, various methods such as stratification, standardization, and inverse
propensity weighting can be used (Hernan and Robins, 2023). However, it remains difficult to adjust
for potential issues of covariate shift, particuarly in the face of hetergeneous, time-varying treatment
effects. Novel methods have been proposed that rely on the learning of balanced representations to
overcome these issues (Chapfuwa et al., 2021; Curth et al., 2021a), but it remains an open area for
further study.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 SYNTHETIC DATA GENERATION ALGORITHM

Algorithm 1: Generating synthetic or semi-synthetic data

Input: Covariate features {xi}Ni=1, generated synthetically or adopted from a real-world dataset,
treatment assignment mechanism α(x), hazard functions ha(τ |x), censoring hazard functions
ha
c (τ |x) for treatments a ∈ {0, 1}, maximum duration Tmax

Output: Semi-synthetic dataset D = {xi, ai, yi, δi}Ni=1
D ← ∅ for i ∈ [N ] do

ai ∼ Ber(α(xi));
ti ∼ hai(τ |xi) ; /* sample event time using inverse transform
sampling */

ci ∼ hai
c (τ |xi) ; /* sample censoring time */

if ti ≤ ci then
yi ← ti;
δi ← 1;

end
else

yi ← ci;
δi ← 0;

end
if yi > Tmax then

yi ← Tmax;
δi ← 0;

end
D ← D ∪ {xi, ai, yi, δi}

end

B.2 SYNTHETIC COVARIATE GENERATION

We sample the synthetic covariates from a multivariate normal distribution with mean vector 0 and
covariance matrix Σ, where all variables are correlated by the same value ρ. The distribution is
given by X ∼ N (0,Σ), where the covariance matrix Σ is defined as Σij = 1 if i = j, ρc if i ̸= j,
representing a covariance matrix with diagonal elements 1 and off-diagonal elements ρc. In all
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experiments, the synthetic datasets consists of 10000 samples and 10 covariates, normalized to a
(0, 1) scale.

B.3 REAL-WORLD DATASETS

Name # Samples # Covariates Treatment Outcome

Twins (Almond et al., 2004) 10536 44 Heavier birth weight Survival
TCGA (Weinstein et al., 2013) 9695 100 Radiation therapy Survival
IHDP (Hill, 2011) 985 26 Treatment (RCT) IQ score (36 months)
News (Johansson et al., 2016) 10000 50 N/A N/A
SUPPORT (Connors et al., 1995) 9105 27 N/A Survival
METABRIC (Curtis et al., 2012) 1980 25 Chemotherapy Survival

Table 2: Real-world datasets

Scn. Survival model Description

2 ha(t|x) = 0.5 exp(−2 + a+ x0) Constant-time, heterogeneous hazards
3 ha(t|x) = 0.5 exp(−2 + a · x0 + x0) Constant-time, heterogeneous HRs
1 ha(t|x) = 0.3 exp(0.1a+ 0.3a · x0 + 0.2a · x1) Well-specified to Cox PH

ha
c (t|x) = 0.2 exp(0.1x2)

2 ha(t|x) =
{
0.3 exp(0.1a+ 0.1a · x0), if x0 > 0

0.3 exp(0.1a+ 0.5a · x0), otherwise
Mis-specified to Cox PH

3 ha(t|x) = 0.5 exp(0.1a+ 0.5a · t) Well-specified to Cox TV
ha
c (t|x) = 0.3 exp(0.01x2

2 · t)

4 ha(t|x) =
{
0.5 exp(0.1a+ 0.05a · t), if t > 10

0.5 exp(0.1a+ 0.01a · t), otherwise
Mis-specified to Cox TV

5 ha(t|x) = 0.8 exp(0.8a− 0.05a · t) Well-specified to Cox TV, decreasing HR

6
{
ha(t|x) = 0.8 exp(0.8a− 0.05a · t), if t > 10

ha(t|x) = 0.8 exp(0.8a− 0.01a · t), otherwise
Mis-specified to Cox TV, decreasing HR

7 ha(t|x) = 0.5 exp(0.3a · x0 − 0.1a · t+ 0.1x2 · t) TV and heterogeneous, increasing HR
8 ha(t|x) = 0.5 exp(−0.3a · x0 + 0.1a · t+ 0.01x2 · t) TV and heterogeneous, decreasing HR
9 ha(t|x) = 0.3 exp(0.2a · x0 · log(t+ 0.01) + 0.2a) TV heterogeneously
10 ha(t|x) = 0.3 exp(0.2a · x0 · log(t+ 0.01)− 0.1a · x1 · log(t+ 0.01) + 0.2a) TV heterogeneously

ha
c (t|x) = 0.1 exp(0.2x0)

Table 3: Experiments: synthetic data generating functions

B.4 METHOD DETAILS

Table 4 summarizes the attributes of the different models evaluated in the paper.

Name Time Scale Description Implementation

Logistic Hazard Discrete Modified logistic regression scikit-learn
Cox PH Continuous Semi-parametric lifelines
Extended Cox Continuous Semi-parametric lifelines
Random Survival Forests Continuous Modified random forest Chemotherapy
DeepSurv Continuous Neural network PyCox
Cox-Time Continuous Neural network PyCox
DeepHit Discrete Neural network PyCox

Table 4: Methods
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Mis-specification LH CPH CTV RSF DS CT DH

Heterogeneous HRs
(covariate-treatment interaction) ✖ ✖ ✖

Time-varying homogeneously
(treatment-time interaction) ✖ ✖ ✖

Time-varying heterogeneously
(covariate-treatment-time interaction) ✖ ✖ ✖ ✖

Non-linearity over covariates ✖ ✖ ✖
Non-linearity over time ✖ ✖ ✖
Covariate-covariate interactions ✖ ✖ ✖
Unmeasured variables ✖ ✖ ✖ ✖ ✖ ✖ ✖

Table 5: Types of mis-specification. ✖’s mark where a type of mis-specification applies to a method.

(a) Baseline, constant-time scenarios. (b) Baseline, time-varying scenarios.

(c) Mis-specified, constant-time scenarios. (d) Mis-specified, time-varying scenarios.

Figure 8: Critical difference diagrams of average ranks (based on MALE averaged over the 76th to
99th percentile of survival times).

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 SUMMARY OF RESULTS

C.2 ADDITIONAL HEATMAPS FOR BASELINE AND MIS-SPECIFIED SCENARIOS.

Figure 10 contains additional MALE heatmaps for several baseline and misspecified scenarios.

(a) Baseline, constant-time scenarios. (b) Baseline, time-varying scenarios.

Figure 9: RMSE heatmaps comparing model performance (heatmap rows) over baseline scenarios
(heatmap columns) on different datasets (columns). For each dataset, average RMSE is reported up to
the 75th percentile of survival times (top row) and 76th to 99th percentile of survival times (bottom
row). Grey lines group variations of similar scenarios.
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(a) Mis-specified, constant-time scenarios. (b) Mis-specified, time-varying scenarios.

Figure 10: RMSE heatmaps comparing model performance (heatmap rows) over baseline scenarios
(heatmap columns) on different datasets (columns). For each dataset, average RMSE is reported up to
the 75th percentile of survival times (top row) and 76th to 99th percentile of survival times (bottom
row). Grey lines group variations of similar scenarios. Note that heatmap scales are all different.

Figure 11: Fairness experiment with measured covariates.

C.3 SUBGROUP FAIRNESS: SURVIVORSHIP BIAS

Figures 11 and 12 give the results for the subgroup fairness experiments.
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Figure 12: Fairness experiment with unmeasured covariates.

D EVALUATION METRICS

D.1 MEAN ABSOLUTE LOGIT ERROR (MALE)

In the following subsection, for notational clarity we drop the conditioning on the treatment a and
covariates x.

Theorem D.1. MALE is a strictly proper scoring rule, i.e., it is minimized if and only if h(τ) = ĥ(τ)
for all τ .

Proof. It is clear that MALE is minimized iff it is minimized termwise in τ . In this case, for all τ ,
we have ∣∣∣∣ log h(τ)

1− h(τ)
− log

ĥ(τ)

1− ˆh(τ)

∣∣∣∣ = 0⇐⇒ h(τ)

1− h(τ)
=

ĥ(τ)

1− ˆh(τ)

⇐⇒ h(τ)− h(τ)ĥ(τ) = ĥ(τ)− h(τ)ĥ(τ)

⇐⇒ h(τ) = ĥ(τ),

i.e., the estimated hazard is equal to the ground truth as desired.

Theorem D.2. Let the ordered discrete time intervals be τ1, . . . , τk. Define P(τk) =
∏k−1

i=1 (1 −
h(τi))h(τk) be the probability that a unit with treatment a and features x fails in τi, according to
the ground truth hazard function h. Define P̂(τk) analogously for the estimated hazard ĥ. Then∣∣∣log P̂(τk)

P(τk)

∣∣∣ ≤∑k
i=1 ALE(τk) for all k.

Proof. First, we observe the following inequality: for any p, q ∈ (0, 1), we have∣∣∣∣log p

q

∣∣∣∣ , ∣∣∣∣log 1− q

1− p

∣∣∣∣ ≤ ∣∣∣∣log p

q
+ log

1− q

1− p

∣∣∣∣ . (9)

To see this, assume first that p ≥ q. Then 1− q ≥ 1− p, so all of the individual log terms are positive
and the inequality is trivial. When p < q, all of the individual log terms are negative and the same
inequality holds in terms of the absolute values.
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With this inequality in hand, a direct computation shows that∣∣∣∣∣log P̂(τk)
P(τk)

∣∣∣∣∣ =
∣∣∣∣∣log

∏i−1
j=1(1− ĥ(τi))ĥ(τk)∏i−1
j=1(1− h(τi))h(τk)

∣∣∣∣∣
≤

i−1∑
j=1

∣∣∣∣∣log 1− ĥ(τi)

1− h(τi)

∣∣∣∣∣+
∣∣∣∣∣log ĥ(τk)

h(τk)

∣∣∣∣∣
≤

i∑
j=1

∣∣∣∣∣log 1− ĥ(τi)

1− h(τi)
+ log

h(τi)

ĥ(τi)

∣∣∣∣∣ .
The final inequality holds by applying inequality equation 9 with p = ĥ(τi) and q = h(τi) for each
j = 1, . . . , i. This final bound is precisely

∑k
i=1 ALE(τi), as desired.

Theorem D.3. Let MSE = α. For any α > 0, we have sup
∣∣∣log P̂(τ)

P(τ)

∣∣∣ =∞, where the supremum is

taken over all h, ĥ such that the MSE of ĥ with respect to h is at most α. In other words, the survival
probabilities cannot be bounded in terms of the MSE.

Proof. We give two simple constructions, one in which one in which the hazards are allowed to be
equal to 0 and one in which all hazards must be contained in (0, 1).

For the first case, if we define h(τ1) = 0 and ĥ(τ1) =
√
α then the MSE is equal to α but

| log(P̂(τ1)/P(τ1))| =∞.

For the second case, define h(τ1) = ε
√
α and ĥ(τ1) = (1+ε)

√
α, where ε > 0 is assumed to be very

small (so that h(τ1), ĥ(τ1) < 1). Observe that the MSE is equal to α, but | log(P̂ (τ1)/P(τ1))| = 1+ε
ε .

Taking ε→ 0 gives the desired result.

D.2 OTHER EVALUATION METRICS

Brier score The Brier score is a time-dependent measure of the quality of an estimated survival
function, which computes the squared error of the survival probability predicted by the model vs. the
binary label of whether or not the datapoint being evaluated has failed by the specified time. This
squared loss is reweighted to account for censoring, and a time-independent version of the Brier score
(called the integrated Brier score or IBS) is given by averaging the time-dependent score over the
desired time interval. While the IBS is a proper scoring rule in the absence of censoring, Rindt et al.
(2022) showed that it may not be a proper scoring rule when the censoring mechanism depends on
the covariates. We refer the reader to Section 3.1 of Rindt et al. (2022) for more details.

1-Calibration 1-calibration compares predicted survival probabilities with outcomes in the data
and measures how well the two agree. Specifically, the data are binned into pre-specified bins based
on their predicted survival probabilities at the time they experienced an event. The actual number of
failures is compared to the expected number of failures (according to the model’s predicted failure
probabilities) for each bin. Under the null hypothesis that the model’s probabilities are correct, these
deviations can be used to define a test statistic which follows a χ2 distribution, which can be used
to construct a hypothesis test for the calibration of the model. We refer the reader to Section 3.3
of Haider et al. (2018) for complete details. As mentioned by Haider et al. (2018) in the following
section of their paper (Section 3.4), 1-calibration is not effective for ranking multiple models beyond
suggesting some of the models are calibrated (high p-value) and others are not (low p-value).

D-Calibration D-calibration is similar to 1-calibration in that it compares estimated failure prob-
abilities to the expected number of events that would occur if these probabilities were accurate.
However, instead of just comparing the predicted probabilities at the event time for each datapoint,
D-calibration seeks to measure the goodness of fit of the entire survival distribution predicted by the
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model. This is again accomplished using a probability binning procedure followed by a hypothesis
test. We refer the reader to Section 3.5 of Haider et al. (2018) for the complete details of this metric.
While D-calibration does give a more nuanced evaluation of the calibration of a survival model as
compared to 1-calibration, it suffers from the same problem, namely, it cannot be used to rank many
survival models beyond suggesting that some are poorly calibrated (low p-value) while others are not
(high p-value).
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