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Abstract

Protein language models (pLMs) have the capacity to infer structural information
from amino acid sequences. Evaluating the extent to which structural information
they truly encode is crucial for assessing their generalizability and the interpretabil-
ity of their latent representations, yet current approaches lack a model-free, quan-
titative framework to evaluate these encodings. We introduce RemoteFoldSet, a
curated collection of protein sequence sets stratified by high structural similarity
but minimal sequence identity. We also define the Structural Awareness (SA) score,
a novel metric that enables model-agnostic, unsupervised, and training-free quan-
tification of structure-related patterns in pLM embeddings. Using RemoteFoldSet
together with the SA score, we benchmark a range of existing pLMs, elucidating
how models with different training objectives, architectures, and sizes discriminate
and distribute proteins within their embedding spaces, both quantitatively and
qualitatively. We expect that this methodology will serve as a reliable benchmark
for evaluating the performance of pLMs for structural and functional applications.

1 Introduction

As a paradigm of applying natural language processing (NLP) techniques to protein sequences, pLMs
have become indispensable in drug design and computational biology, facilitating both the prediction
of protein structure and protein complexes as well as the generative design of de novo proteins.
The goal of a pLM is to extend sequence-level patterns to a protein’s structure and, ultimately, its
function. How a pLM organizes its embedding space is therefore critical to making these connections.
Assessing the extent to which pLMs capture structural information is essential not only for ensuring
robust generalization, but also for interpreting their internal representations in biologically meaningful
ways. For example, in protein–protein interaction prediction, a model with structural awareness
may generalize well by learning the underlying physicochemical principles that confer specificity
and affinity. By contrast, a model lacking structural awareness might still achieve high accuracy for
benchmark datasets by memorizing superficial patterns at the sequence level, but such reliance can
undermine robustness and lead to failures in novel or distribution-shifted scenarios[1]. Thus, we must
understand the structure of the pLM embedding space to analyze whether the pLM explicitly encodes
true physicochemical features or merely captures spurious patterns.

Structure prediction models like ESMfold utilize pLM embeddings to predict protein structure in a
supervised manner [2], but pLMs have been shown to be capable of inferring structural information
from sequence alone. In many transformer-based pLMs, researchers have observed that attention
patterns between residues often correlate with their spatial interactions[3][4]. Other studies applying
linear probes to assess pLM-derived embeddings have demonstrated that these embeddings can
directly predict secondary structures and contact maps[5]. These results suggest that these representa-
tions indeed capture meaningful structural information without explicitly being trained on structural
data. The pLM research space has been expanding rapidly with a wide range in model sizes, layers,
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architectures and training sets. The extent to which these models capture structural features is unclear,
and to date, no model-free approach currently exists to quantitatively evaluate the degree to which
structural information is captured in these representations.

To address this evaluation gap, we propose a benchmark dataset specifically designed to decouple
structural homology from sequence identity. Each set in the dataset consists of protein sequences
with extremely low sequence identity but highly consistent 3D structures. We introduce a metric
that probes the organization of the pLM embedding space, investigating if protein sequences of
similar structure, but low identity, cluster in the embedding space. By computing pairwise similarities
between the sequence embeddings produced by different pLMs within each set, we quantify this
clustering and compare these pairwise similarities across pLM models. Because sequence identity
is minimized, any similarity in the embeddings can be attributed to shared structural features rather
than sequence-level patterns.

In this study, we investigate the structural awareness encoded in pLMs by proposing a novel model-
agnostic and unsupervised evaluation framework. Our contributions are summarized as follows:

• Construction of RemoteFoldSet: a new dataset comprising 90 protein sets of diverse folds with
alternative, low-identity sequences generated via ProteinMPNN[6] and filtered for foldability
using AlphaFold3[7]. Each set includes sequence-diverse proteins with consistent folds, enabling
evaluation decoupled from sequence similarity.

• Structure-aware evaluation method: a new metric to assess pLM embeddings that is model-
agnostic, unsupervised, and training-free, and supports layer-wise analysis of structural information
encoded across model depths.

• Extensive benchmarking of pLMs: applying our framework to widely-used pLMs reveals differ-
ences in their capacity to capture structural similarity, offering insight into their representational
strengths and limitations.

2 Related Work

Traditionally, pLMs have been evaluated through supervised downstream tasks. The TAPE benchmark
[5] introduced a suite of biologically relevant, semi-supervised tasks to assess protein embeddings,
including secondary structure prediction and contact map prediction, two structurally informative
tasks. However, because these tasks rely on labeled data and fine-tuning, they may not directly reflect
the intrinsic structural awareness encoded in pLM representations.

More recent benchmarks, such as FLIP[8] and ProteinGym[9], focus on mutation effect prediction and
fitness estimation. These benchmarks typically compare models on their ability to predict outcomes
of experimental assays that map protein sequences to phenotypic measurements. While such tasks
may correlate with structural properties, they are primarily designed to evaluate functional fitness
rather than the quality of structural representations.

In contrast, our proposed RemoteFoldSet provides a model-agnostic and unsupervised framework for
evaluating structural awareness. It operates purely on sequence embeddings, leveraging structure-
consistent but sequence-divergent protein sets to assess whether pLMs capture fold-level similarity
without relying on downstream tasks or structural supervision.

3 Methods

3.1 Dataset generation

To ensure that the selected starting structures are distributed across the known structural space, we
sample proteins from clusters of the CATH dataset[10][11], a widely used resource that offers a
hierarchical classification of protein domain structures that sorts proteins by class, architecture, fold,
superfamily, and then domain. We selected domains that cover all 40 architectures within the three
primary CATH classes: Mainly Alpha, Mainly Beta, and Alpha Beta. To minimize redundancy and
ensure structural diversity, no two domains were selected from the same superfamily. These 168
starting structures were used as the input backbones for alternative sequence generation.
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Figure 1: RemoteFoldSet workflow. Protein domains are selected from CATH, sequence variants
are generated via ProteinMPNN, filtered using AlphaFold3, and grouped into structure-consistent,
sequence-diverse sets.

Constructing such a dataset while minimizing sequence similarity and preserving structural consis-
tency requires a mechanism to generate sequence-diverse proteins with shared structures. To this end,
we leverage inverse folding models, which predict amino acid sequences that likely fold into a given
protein’s three-dimensional structure. We employ ProteinMPNN, which is a message passing neural
network capable of stochastically decoding protein sequences using a Monte Carlo, temperature
dependent, protocol. Starting from a fixed structure, we generate diverse candidate sequences by
raising the temperature of the sampling module, which encourages exploration of a broader sequence
space. We set the temperature to T=1.0 and generate 160 sequences per structure.

Mutations in a protein sequence will inevitably alter a protein’s ground state structure, but some
mutations or alternative sequences will fold into a very similar structure while others may either not
fold or adopt a different conformation. To ensure that these sampled sequences indeed correspond
to a similar structure, we validate each one using Alphafold3. Since our primary interest was in the
overall protein fold, we used the pTM score to assess the reliability of the structures predicted by
AlphaFold3, and the TM-score to evaluate their agreement with the given structures. From the 160
generated sequences of each domain, we retained only those satisfying both pTM > 0.8 and TM-score
> 0.8, resulting in 9,893 out of 26,880 sequences across 100 domains (Table 3). Then a greedy search
was applied to select the 16 most diverse sequences. Domains with fewer than 16 sequences that
met the criteria were discarded. This process yielded a dataset of 90 protein sets, each containing 16
sequences (1,440 sequences in total), with a mean sequence diversity of 0.74.

Although our dataset does not yet reach the ideal scenario of near-zero sequence identity, the mean
sequence identity is approximately 26%, placing it squarely in the so-called ‘twilight zone’ of protein
sequence similarity, where homology detection becomes unreliable without structural information[12].
By having sequences with similar fold but almost no identity, we can evaluate the embedding space
of these proteins and determine if the embedding space will distribute the proteins according to
their similar structure rather than sequence. This will give us insight into whether these pLMs have
‘structural awareness’ from sequence alone.

3.2 Detect structural awareness

With the validated dataset, we evaluated the extent to which the embeddings derived from pLMs
contain structural information. All 1,440 sequences in the dataset were fed into the pLMs (Table 4)
to obtain their corresponding embeddings. To remove global bias, we applied mean centering to
all embeddings from each model, i.e., subtracting the mean embedding vector from each individual
embedding.

For each structural set S = {xi}16i=1, the model f generates sequence embeddings zi = f(xi). After
mean-centering all {zi}, we compute the pairwise cosine similarities and take their average as the
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Structural Awareness (SA) score for that set:

SA(S) =
2

|S|(|S| − 1)

∑
i<j

⟨zi, zj⟩
∥zi∥ ∥zj∥

.

This metric quantifies the extent to which embeddings capture fold-level similarity beyond sequence
identity. Unless otherwise stated, we report the mean and standard deviation (mean ± std) of SA
scores between different sets. Since the 90 protein sets correspond to domains distributed across
the structural space, we further group them by their CATH class-level annotations to enable a more
comprehensive evaluation. Proteins from different structural classes often exhibit distinct folding
patterns, so analyzing model performance within each group provides additional insight into the
structural sensitivity of pLMs. To validate the robustness of our metric, we also compute SA scores
on randomly shuffled embeddings as a baseline control (Figure 2).

While the SA score quantifies the overall amount of structural information by measuring fold-level
similarity, the quantity of information is not always equivalent to its quality. For example, certain
models may achieve high SA scores by capturing shared local structural patterns influenced by
architectural inductive biases, which may not support reliable distinctions between different folds.
To mitigate this, we additionally define the SA distance ratio, which compares intra-group and
inter-group distances as a simple auxiliary metric for assessing the discriminability of encoded
structural information. A lower ratio suggests better structural discrimination beyond global similarity
(Appendix A.3).

4 Experiments

4.1 Benchmarking protein language models

We first benchmark multiple pLMs on the RemoteFoldSet dataset using the proposed SA metric. This
benchmark quantifies how well each model captures fold-level structure beyond sequence similarity.
For the benchmark, we include a representative selection of pLMs, comprising UniRep[13], multiple
variants of ProGen2[14], CARP[15], several models from the ESM family[2], as well as the ProtT5
and ProtBert models from the ProtTrans suite[4]. The detailed results are presented in Table 1.

Table 1: Comparison of the structural awareness scores of different pLMs (higher is better).

Models All domains Mainly Alpha Mainly Beta Alpha Beta

UniRep 0.52± 0.19 0.64± 0.10 0.54± 0.21 0.45± 0.17

ProGen2 (base) 0.45± 0.21 0.46± 0.17 0.51± 0.23 0.36± 0.17

ProGen2 (large) 0.45± 0.18 0.51± 0.11 0.49± 0.21 0.38± 0.11

ProGen2 (xlarge) 0.33± 0.25 0.43± 0.28 0.37± 0.25 0.25± 0.19

CARP (640M) 0.61± 0.28 0.59± 0.12 0.70± 0.27 0.50± 0.30

ESM-1b 0.59± 0.21 0.54± 0.17 0.65± 0.21 0.54± 0.21

ESM-2 (650M) 0.59± 0.22 0.51± 0.17 0.65± 0.21 0.55± 0.22

ESM-2 (3B) 0.63± 0.20 0.57± 0.16 0.67± 0.20 0.60± 0.20

ESM-2 (15B) 0.60± 0.19 0.54± 0.17 0.65± 0.19 0.57± 0.18

ProtBert 0.54± 0.20 0.59± 0.09 0.57± 0.22 0.49± 0.17

ProtT5 (XL-U50) 0.56± 0.20 0.49± 0.14 0.59± 0.21 0.55± 0.20

On the RemoteFoldSet benchmark, the ESM family and CARP exhibit the strongest structural
awareness, with SA scores typically around 0.60, and CARP achieving up to 0.70 on beta structures.
The ProtTrans models (ProtBert and ProtT5) form the second tier, reaching scores of approximately
0.56. UniRep performs less effectively, with a score of 0.52, while the ProGen2 models show the
weakest structural awareness, with scores ranging from 0.33 to 0.45.

In comparisons within the same model family, we observe that for ProGen2, increasing the parameter
count from 764M (base) to 6.4B (xlarge) does not lead to an improvement in SA score, and even
results in a decrease for the xlarge model. In contrast, for ESM-2, scaling from 650M to 3B yields an
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improvement in SA score, although the score decreases again at 15B. These results suggest that the
ability to capture structural information does not necessarily increase with the size of pLMs. The
compatibility between the model architecture and the training objective might play a critical role in
determining whether scaling translates into structural awareness.

A closer look at the differences between ESM-2 and ProGen2 helps illustrate this point (Table 4).
ESM-2 is trained with a masked language modeling (MLM) objective, which leverages bidirectional
context and may be more conducive to learning embeddings that capture comprehensive structural
information through richer contextual representation. This characteristic also contributes to the strong
performance of ESMFold, which is built upon ESM-2 embeddings. In contrast, ProGen2 adopts a
GPT-style autoregressive architecture trained for next-token prediction, which is more optimized for
sequence generation than for producing globally informative representations.

An interesting observation is that UniRep performs particularly well on alpha structures. Given that
UniRep has a very simple architecture consisting of only a single-layer mLSTM, it is capable of
capturing local information that aligns with the primarily local nature of helices. This explains its
relative strength on alpha structures but weaker performance on more complex classes. However,
its superior scores in the Mainly Alpha category also reveal a limitation of the SA metric: UniRep
may be capturing structural patterns, but these likely correspond to shared local features that are
present across different alpha proteins, and therefore do not enable reliable distinction between them.
Consistent with this, UniRep exhibits a substantially worse SA distance ratio (Appendix A.3) than
other models in the Mainly Alpha category in Table 5, suggesting that its structural awareness may be
largely due to inductive biases of the architecture rather than truly informative learned representations.

In the case of CARP, its optimal SA distance ratio in the Mainly Beta category of Table 5 suggests
that the high SA score is not merely indicative of general structural awareness, but reflects precise
and discriminative information. One possible explanation for CARP’s strong performance on beta
structures is its ByteNet-based dilated convolution architecture, which may more stably preserve the
spatial pairing patterns required for beta-sheet formation. While dilated convolutions are theoretically
less capable than self-attention at modeling arbitrary long-range dependencies, their progressively
expanding receptive fields could confer an advantage in maintaining such pairing patterns, potentially
leading to better structural awareness.

4.2 Validating the structural awareness metric

To ensure that the proposed SA score genuinely reflects fold-level structural information rather than
artifacts or dataset biases, we conduct a control experiment using shuffled embeddings. Although
mean-centering removes global biases, we still need to account for two potential sources of error:
residual confounding factors, such as dominant principal components in the embedding space, and
possible limitations of the SA scoring procedure itself. To this end, for each model, we randomly
permuted the 1,440 embeddings, completely breaking the original alignment between sequences and
embeddings. These shuffled embeddings were randomly grouped into 90 new sets of 16 sequences
each, and SA scores were computed using the same methodology. The corresponding results are
shown in Figure 2.

Panels (A) and (B) display the SA scores obtained from the original embeddings of two representative
and widely used models: ESM-2 (650M) and ProtT5 (XL-U50), respectively. Each of the 90 bars
corresponds to one of the protein sequence sets in the RemoteFoldSet dataset. The SA scores range
from approximately 0.1 to 1.0, with most values clustering around 0.6, in agreement with the averages
reported in Table 1. Moreover, the distribution patterns of the two models exhibit similar trends,
indicating that both models capture comparable levels of structural information across different
protein sets. For the shuffled embeddings in panels (C) and (D), the SA scores drop sharply, all falling
within a narrow range around zero (-0.1 to 0.1), and the distributions show no discernible patterns.
These near-zero values and random patterns confirm that the embeddings no longer exhibit consistent
representational clustering, and that the SA score does not mistakenly capture similarity driven by
noise.

4.3 Layer-wise structural awareness analysis

To investigate how structural information is captured across different depths of pLMs, we perform a
layer-wise evaluation on ESM-2 and ProtT5. For each Transformer layer, we compute the structural
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Figure 2: Structural awareness score of pLM embeddings and shuffled embeddings. (A-B) SA
score of the 90 embedding groups according to the 90 protein sets. (C-D) SA score of the 90 shuffled
embedding groups.

Figure 3: Layer-wise structural awareness of pLMs. (A) Structural awareness scores across
transformer layers for three ESM-2 models of varying scales (650M, 3B, 15B parameters). (B)
Layer-wise structural awareness for ProtT5 (XL-U50).

awareness score and visualize its evolution, revealing where structural patterns emerge and how they
change throughout the network.

From the layer-wise structural awareness curves shown in Figure 3, we observe a consistent pattern
across different models: the scores are moderately high in the early layers, drop in the lower-middle
layers, and then steadily increase in the mid-to-late layers before declining again near the final
layers. This trend suggests that the early layers capture basic structural cues by focusing on local
sequence patterns and token-level representations. As the model progresses, the structural awareness
temporarily decreases, possibly due to the integration of more contextual or semantic information,
which may obscure direct structural signals. In the mid layers, structural features appear to be
reinforced, leading to a rise in structural awareness that stabilizes into a plateau. This phase likely
reflects the model’s ability to internalize fold-level patterns. However, in the final layers, the structural
awareness declines again, potentially due to the representations being adapted or optimized for
downstream objectives (e.g., MLM), which may deprioritize fold-specific features.
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Within the ESM-2 model family, we observe that the early to mid layer drop in structural awareness
becomes more pronounced as the model size increases. The smallest model (650M) exhibits a
relatively flat trajectory, while the 3B and 15B variants show a clear dip followed by a recovery.
Interestingly, ProtT5, which has approximately 3 billion parameters, shows a similar trend to ESM-2
(3B), further supporting the observation that the magnitude of this drop is closely related to model
capacity. This suggests that larger models tend to perform more complex internal reorganization of
representations between layers, which may temporarily reduce the prominence of low-level structural
signals before they are recovered in later layers.

4.4 Visualization of embedding representations

In addition to quantitative evaluation, we also conducted t-SNE visualization of the learned embed-
dings to qualitatively compare the performance of different pLMs. Specifically, we applied t-SNE
directly to the 1,440 protein sequence embeddings obtained from each model, using a perplexity
of 30 and a learning rate of 200. The models included in the comparison are ProGen2 (base),
UniRep, CARP (640M), ESM-2 (650M), and ProtT5 (XL-U50). As a baseline, we also included
representations obtained by mean-pooling over one-hot encoded sequences. The t-SNE projections
are presented in Figure 4.

Figure 4: t-SNE visualizations of protein sequence embeddings. Each plot shows the t-SNE
projection of 1,440 sequences represented by different models, with points colored based on the
class-level labels from CATH. The top row (from left to right) corresponds to the one-hot encoded
baseline, ProGen2 (base) and UniRep, while the bottom row shows CARP (640M), ESM-2 (650M),
and ProtT5 (XL-U50).

The one-hot encoded baseline exhibits an unstructured distribution, reflecting its limited discriminative
capacity. ProGen2 shows a modest refinement over the baseline, with a few noticeable clusters
emerging in the upper-right region, although most points remain dispersed without clear organization.
Compared to ProGen2, UniRep embeddings demonstrate a slightly more structured distribution, with
clearer groupings and several well-defined clusters. In contrast, the t-SNE plots of CARP, ESM-2,
and ProtT5 embeddings reveal numerous compact clusters separated by class, indicating a stronger

7



ability to capture structural similarity. Among them, ESM-2 and ProtT5 exhibit the most distinct
patterns, characterized by a higher number of tight clusters with well-defined intra-cluster cohesion
and inter-cluster separation.

These visualization results are consistent with the quantitative trend of the SA score in Table 1.
ProGen2 exhibits the lowest score and weakest clustering, followed by UniRep, while CARP, ESM-
2, and ProtT5 all demonstrate substantially better performance and are comparably strong. This
alignment further supports the SA score as a faithful and model-agnostic indicator of how effectively
different pLMs capture structural information from sequences.

5 Conclusion

In this work, we introduce RemoteFoldSet, a new dataset and evaluation framework designed to
quantify the intrinsic structural knowledge encoded by pLMs. By benchmarking a wide range of
pLMs, we observe that ESM-2 (3B) exhibits the strongest capacity to encode structural information.
CARP also demonstrates strong performance, particularly on beta proteins, which may stem from
its unique ByteNet-based dilated convolution architecture. Interestingly, model size alone does not
directly correlate with structural awareness, as architectural design and training objectives appear
to play a more critical role. For example, BERT-style model embeddings are more structurally
informative compared to their GPT-style counterparts. Additionally, layer-wise analysis reveals
a non-monotonic trend in fold-level structural encoding, with an initial dip followed by a steady
increase across layers. This may indicate that early to mid layers in large models perform a degree
of representational integration, temporarily suppressing explicit structural signals before they are
reinforced in deeper layers.

More broadly, our results highlight the importance of evaluating the intrinsic representational quality
of pLMs. While widely-used benchmarks such as TAPE rely on supervised probing tasks that
approximate structural knowledge through downstream performance, task-specific approximation
is fundamentally distinct from task-free intrinsic evaluation. By explicitly decoupling sequence
similarity from structural similarity in dataset design, RemoteFoldSet enables direct assessment of
the structural information encoded in protein embeddings. This design allows the SA score to be
computed in a simple yet meaningful way, and also makes structural patterns readily observable
through unsupervised visualization methods such as t-SNE, which is not possible with prior evaluation
frameworks.

RemoteFoldSet also provides substantial practical advantages, enabled by its simple, training-free
evaluation procedure. Assessing structural awareness with SA scores requires only a single forward
pass per sequence, making it orders of magnitude faster than supervised probing approaches, particu-
larly for layer-wise analysis across large models. As pLMs continue to scale in size and application,
we expect RemoteFoldSet to serve as a lightweight, interpretable, and scalable diagnostic tool for
analyzing their structural representational capacity.
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A Supplementary Methods

A.1 Dataset generation details

We selected 168 domains from the CATH database, aiming for an approximately even coverage across
43 architectures. To reduce redundancy, no two domains were taken from the same superfamily. For
sequence generation, we provided the CATH structures directly to ProteinMPNN. In cases where
the input structures contained unresolved regions, ProteinMPNN left ‘X’ characters in the generated
sequences as placeholders. We retained these ‘X’ positions because they implicitly reflect spatial
constraints that may be useful for downstream modeling.

The ProteinMPNN-generated sequences, including the ‘X’ placeholders, were then submitted to
AlphaFold3 for structure prediction. Because AlphaFold3 attempts to generate complete structures
even when ‘X’ placeholders are present, the resulting predictions contained no missing regions. For
evaluation, we computed TM-scores over residues corresponding to regions with resolved structures in
the CATH templates, thereby excluding originally missing segments. This ensures that the comparison
reflects only the experimentally validated parts of the structures. Meanwhile, the pTM scores were
taken directly from AlphaFold3’s output summary files.

For each domain, we generate 160 sequences using ProteinMPNN and retain only those satisfying both
pTM > 0.8 and TM-score > 0.8. If fewer than 16 sequences pass these thresholds, the corresponding
domain is then discarded. Otherwise, we perform a greedy search to select a diverse subset of 16
sequences. The selection begins with a single seed sequence, and sequences are added iteratively by
choosing the one that maximizes the diversity of the current set. This process is repeated with each
candidate sequence as the initial seed, and the final selection is the one that achieves the highest overall
diversity. When computing diversity, we considered only the non-‘X’ positions in the sequences.

When providing sequences to pLMs, we preserved the ‘X’ positions to enable the models to capture
information about the lengths and positions of missing regions. After obtaining residue-level em-
beddings for the full sequences, we removed embeddings corresponding to the ‘X’ positions and
performed mean pooling over the remaining embeddings to produce the final protein-level representa-
tions. This step ensures that the final representations reflect only biologically meaningful residues,
avoiding artifacts that could otherwise bias the calculation of the SA score.
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A.2 Hyperparameter selection

To evaluate the impact of the sampling module’s temperature on the stochasticity of sequence
generation in inverse folding, we systematically varied the temperature and analyzed its effect on
several evaluation metrics. One domain was selected from each of the CATH architectures, and
ProteinMPNN was used to generate sequences conditioned on these structures. For each temperature
setting (1.0, 1.5, and 2.0), we sampled 160 sequences per structure and evaluated them in terms of
Recovery, Diversity, Root Mean-Squared Deviation (RMSD), and TM-score.

Table 2: Performance across different temperature (T ) values.

T = 1.0 T = 1.5 T = 2.0

Recovery 0.307± 0.066 0.197± 0.036 0.138± 0.020

Diversity 0.720± 0.056 0.870± 0.018 0.920± 0.006

RMSD (Å) 3.865± 4.514 12.703± 7.673 19.817± 5.970

TM-score 0.831± 0.218 0.519± 0.286 0.289± 0.110

As shown in Table 2, increasing the sampling temperature significantly affects structural fidelity. At
T = 1.5, the RMSD reaches 12 Å while the TM-score drops to 0.5, indicating that most generated
sequences fail to maintain the original fold. At T = 2.0, both metrics further deteriorate, suggesting
that temperatures of 1.5 or higher are not suitable for our goal of generating fold-consistent sequences.
In contrast, at T = 1.0, the TM-score remains around 0.8, which is acceptable for our use case.
Although the diversity at this temperature is relatively low (0.72), it can be slightly improved
using post hoc greedy search strategies. If the temperature is set even lower, the fold consistency
may improve further, but the resulting diversity would fall below the level required for our dataset
construction goals. Considering the trade-off between diversity and refoldability, we selected T = 1.0
for sequence sampling during dataset construction.

Table 3: Number of samples meeting joint thresholds on pTM and TM-score.

TM-score > 0.7 TM-score > 0.8 TM-score > 0.9

pTM > 0.7 14813 / 26880 14578 / 26880 12315 / 26880
pTM > 0.8 9902 / 26880 9893 / 26880 9357 / 26880
pTM > 0.9 1708 / 26880 1708 / 26880 1708 / 26880

For the final version of the dataset, we selected 168 domains, corresponding to approximately 5
domains per architecture. If an architecture contained fewer domains, we included as many as were
available, aiming for broad structural coverage. For each domain, we sampled 160 sequences using a
temperature of T = 1.0, resulting in a total of 26,880 sequences. To ensure reasonable refoldability,
we measured how many of the generated sequences passed certain thresholds defined by combinations
of pTM and TM-score, as summarized in Table 3. Notably, pTM has a greater impact on the number
of sequences passing the thresholds compared to TM-score. When applying a strict threshold of pTM
> 0.9, only about 6% of sequences passed, which was too low and left multiple domains with no
qualifying sequences, compromising structural coverage. In contrast, with pTM > 0.8, approximately
36% of sequences passed, which we consider an acceptable balance. For TM-score, we chose a
threshold of 0.8, striking a compromise between better alignment and sufficient sequence retention,
and used it in combination with the pTM threshold.
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A.3 Metrics

TM-score The template modeling score (TM-score) is a length-normalized metric for evaluating
global structural similarity between two protein structures. It ranges from 0 to 1, with scores above
0.5 indicating roughly correct topology[16][17].

pTM The predicted template modeling (pTM) score is a confidence metric from AlphaFold 3 that
estimates the TM-score, which reflects the accuracy of the predicted protein fold. Higher pTM scores
indicate that the predicted structure should be more similar to the true structure[7].

Diversity Let m be the number of generated sequences, each of length n. Let ri,k denote the
residue at position k in the i-th sequence, where 1 ≤ i ≤ m and 1 ≤ k ≤ n. We compute diversity
as the average pairwise mismatch ratio between all sequence pairs:

Diversity =
2

m(m− 1)

∑
1≤i<j≤m

1

n

n∑
k=1

1(ri,k ̸= rj,k)

Recovery When using the inverse folding to generate alternative sequences for the given structure,
the sequence recovery rate measures the identity between the generated sequences and the reference
sequence[6][18].

SA distance ratio For each structural set Sg = {xi}16i=1, the model f produces sequence em-
beddings zi = f(xi), which are first mean-centered to remove global bias. Let G denote the total
number of sets, and define the group mean embedding as µg . Using the distance as one minus cosine
similarity, we compute the average intra- and inter-group distances, and take their ratio as the SA
distance ratio:

SA_distance_intra(S) =
2

|S|(|S| − 1)

∑
i<j

(
1− ⟨zi, zj⟩

∥zi∥ ∥zj∥

)
.

µg =
1

|S|

|S|∑
i=1

zi.

SA_distance_inter(g) =
1

G− 1

∑
h ̸=g

(
1− ⟨µg, µh⟩

∥µg∥ ∥µh∥

)
.

SA_distance_ratio(Sg) =
SA_distance_intra(Sg)

SA_distance_inter(g) + ε
, ε = 10−12.
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B Dataset Details

B.1 Sequence diversity

Figure 5: Diversity distribution across all protein sets. Colored by sequence length. Each set is
labeled by its domain name.

B.2 Structural similarity

Figure 6: TM-score distribution across all protein sets. Visualization follows the same format as
Figure 5.
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C Evaluated Protein Language Models

Table 4: Comparison of pLMs

Model Architecture Objective Size Layers Embedding

UniRep mLSTM Next-token 18M 1 1900
ProGen2 (base) GPT-style Next-token 764M 27 1536
ProGen2 (large) GPT-style Next-token 2.7B 32 2560
ProGen2 (xlarge) GPT-style Next-token 6.4B 32 4096
CARP (640M) ByteNet-style MLM 640M 30 1280
ESM-1b BERT-style MLM 650M 33 1280
ESM-2 (650M) BERT-style MLM 650M 33 1280
ESM-2 (3B) BERT-style MLM 3B 36 2560
ESM-2 (15B) BERT-style MLM 15B 48 5120
ProtBert BERT-style MLM 420M 30 1024
ProtT5 (XL-U50) T5-style Span MLM 3B 24 (enc) / 24 (dec) 1024
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D Supplementary Experiments

D.1 Benchmarking protein language models using SA distance ratio

Table 5: Comparison of the SA distance ratio of different pLMs (lower is better).

Models All domains Mainly Alpha Mainly Beta Alpha Beta

UniRep 0.50± 0.21 1.01± 0.39 0.52± 0.26 0.73± 0.22

ProGen2 (base) 0.57± 0.23 0.69± 0.26 0.52± 0.26 0.69± 0.21

ProGen2 (large) 0.57± 0.20 0.74± 0.21 0.55± 0.23 0.75± 0.16

ProGen2 (xlarge) 0.68± 0.26 0.92± 0.48 0.63± 0.25 0.86± 0.24

CARP (640M) 0.40± 0.29 0.77± 0.34 0.30± 0.27 0.51± 0.32

ESM-1b 0.41± 0.22 0.71± 0.31 0.37± 0.23 0.47± 0.22

ESM-2 (650M) 0.41± 0.22 0.76± 0.35 0.36± 0.21 0.45± 0.22

ESM-2 (3B) 0.37± 0.20 0.71± 0.32 0.33± 0.20 0.40± 0.19

ESM-2 (15B) 0.39± 0.19 0.70± 0.31 0.35± 0.20 0.43± 0.18

ProtBert 0.46± 0.20 0.71± 0.21 0.46± 0.24 0.54± 0.19

ProtT5 (XL-U50) 0.44± 0.21 0.70± 0.24 0.42± 0.22 0.46± 0.21
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