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Abstract

Language Models [LMs] are now playing an increasingly large role in information generation
and synthesis; the representation of scientific knowledge in these systems needs to be highly
accurate. A prime challenge is hallucination; that is, generating apparently plausible but
actually false information, including invented citations and nonexistent research papers.
This kind of inaccuracy is dangerous in all the domains that require high levels of factual
correctness, such as academia and education. This work presents a pipeline for evaluating the
frequency with which language models hallucinate in generating responses in the scientific
literature. We propose ArxEval, an evaluation pipeline with two tasks using ArXiv as a
repository: Jumbled Titles and Mixed Titles. Our evaluation includes fifteen widely
used language models and provides comparative insights into their reliability in handling
scientific literature.

1 Introduction

Large Language Models (LLMs) have emerged as pivotal tools in information access and generation, partic-
ularly through their capabilities of producing factually accurate texts. As these models become increasingly
integrated into various applications, ensuring the accuracy of their responses has become very important.
The performance and reliability of LLMs in generating accurate information are significantly influenced by
multiple factors, including training data quality, model architecture design, and post-training optimization
processes Naveed et al. (2024), Minaee et al. (2024), Guo et al. (2023).

However, a significant challenge in the deployment of LLMs lies in their propensity to generate nonfactual
responses, a phenomenon commonly referred to as hallucination. These hallucinations fundamentally under-
mine the reliability and faithfulness of LLMs, presenting substantial obstacles to their widespread adoption
across various domains Huang et al. (2024), Sahoo et al. (2024). The mitigation of hallucinations has conse-
quently emerged as a critical area of research within the field. While various strategies have been proposed
and implemented to reduce hallucinations, showing promising improvements in the faithfulness of LLMs for
general-purpose tasks, domain-specific applications remain particularly challenging Tonmoy et al. (2024),
Rawte et al. (2023), Berberette et al. (2024).

In this paper, we present a comprehensive study evaluating the extent of hallucination in LLMs under
domain-specific prompting, with a particular focus on scientific literature. We develop and implement a
systematic evaluation pipeline to assess fifteen prominent open-source LLMs: Qwen 2.5 Yang et al. (2024),
Gemma 2 Team et al. (2024), Llama 3 Grattafiori et al. (2024), Phi 3 Abdin et al. (2024), Orca 2 Mitra et al.
(2023), Mistral v-0.3 [Team (2024), Deepseek-llm DeepSeek-AI et al. (2024), Olmo-2 OLMo et al. (2024),
Mistral-Nemo Team, Eurus-2 Yuan et al. (2024), and Solar-Pro upstage (2024). Our evaluation utilizes the
ArXiv dataset Clement et al. (2019) as the primary source of scientific articles, providing a robust foundation
for assessing model performance in academic contexts.

The evaluation pipeline ArxEval introduces two novel tasks: Jumbled Titles and Mixed Titles. These
tasks are specifically designed to assess the faithfulness of LLMs in retrieving and reasoning about scientific
articles under challenging conditions. The models are presented with either jumbled or mixed titles and
evaluated not only on their prompt adherence but also on the quality and accuracy of their generated
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outputs. By adopting an open-ended evaluation approach, we aim to provide comprehensive insights into
the models’ capabilities in processing and responding to ambiguous or altered inputs within a domain-specific
context, particularly focusing on their ability to maintain factual accuracy while handling complex scientific
information.

This study contributes to the growing body of research on LLM reliability and provides valuable insights
into the current limitations and capabilities of state-of-the-art language models in handling domain-specific
tasks. Our findings have important implications for the development and deployment of LLMs in scientific
and academic applications, where maintaining factual accuracy is crucial.

2 Related Work

2.1 Hallucinations in Large Language Models (LLMs)

Hallucinations in LLMs have been extensively studied and documented. While significant advancements
have been made in improving their accuracy and reliability, LLMs have been shown to hallucinate even
when tasked with generating responses based on known facts Jiang et al. (2024). Such behavior suggests
an inherent limitation in these models, reinforcing the hypothesis that hallucination may be an intrinsic
characteristic Banerjee et al. (2024).

2.2 Hallucinations in Domain-Specific Settings

2.2.1 Definition and Challenges

Domain-specific hallucinations manifest when LLMs generate inaccurate or fabricated information in spe-
cialized fields. In domains like biomedicine, such hallucinations can have serious implications, potentially
leading to incorrect medical advice or misinterpretation of research data. The fundamental challenge lies
in maintaining factual accuracy while preserving the model’s ability to generate coherent and contextually
relevant responses.

2.2.2 Causes and Perspectives

Domain-specific hallucinations primarily stem from two factors: deficiencies in training data and limitations
in model architecture Dziri et al. (2022). However, recent research presents an alternative viewpoint, suggest-
ing that under certain conditions, hallucinations could be leveraged as a resource for novel problem-solving
approaches Sui et al. (2024).

2.2.3 Detection and Evaluation Frameworks

• DelucionQA Sadat et al. (2023): A specialized dataset designed for detecting hallucinations
in domain-specific question-answering tasks, providing evaluation metrics for retrieval-augmented
LLMs.

• DAHL Seo et al. (2024): A comprehensive benchmark for evaluating hallucinations in biomedical
text generation, featuring atomic unit decomposition and the DAHL Score metric.

2.3 Hallucinations in Multimodal Settings

2.3.1 Definition and Challenges

Multimodal hallucinations occur when models generate outputs inconsistent with visual or auditory inputs.
This phenomenon is particularly critical in applications like video understanding, where temporal and spatial
accuracy are essential Bai et al. (2024).
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2.3.2 Evaluation Frameworks

• VidHalluc Li et al. (2024): A specialized benchmark for evaluating temporal hallucinations in video
understanding, assessing multiple dimensions including action recognition and scene transitions.

• MHaluBench Chen et al. (2024): A meta-evaluation framework for comprehensive multimodal
hallucination detection across diverse categories.

2.4 Hallucinations in Natural Language Generation

In natural language generation tasks such as dialogue generation, abstractive summarization, and neural
machine translation, hallucinations frequently manifest as plausible but factually incorrect outputs Ji et al.
(2023). These inaccuracies significantly impact the reliability and trustworthiness of these models.

2.5 Hallucinations in Academic Reference Generation

Academic reference generation represents a critical challenge, with studies demonstrating that even state-of-
the-art models frequently generate fabricated or inaccurate citations Agrawal et al. (2024). This limitation
underscores the urgent need for continued research in hallucination mitigation, particularly in tasks where fac-
tual accuracy is paramount. In addressing these challenges, our work specifically focuses on Domain-Specific
Biases by leveraging over 150 categories of papers from the ArXiv repository, providing a comprehensive
evaluation across diverse academic domains.

3 Dataset

In this section, we describe the dataset used to evaluate our two tasks: the Jumbled Title task and the
Mixed Title task. The dataset is derived from the ArXiv repository and organized into 176 categories
referring to the subject areas of the papers within the ArXiv dataset, such as Computer Science, Physics,
Economics etc. For each category, 3 paper titles are selected, resulting in a total of 528 titles.

Figure 1 illustrates the distribution of titles across subjects. For instance, Computer Science comprises 65
categories (195 titles), whereas Economics is represented by only 3 categories (9 titles).

Figure 1: Number of titles from each subject.

Table 1 summarizes the dataset statistics along with readability metrics. The Flesch reading ease
scores indicate that the Jumbled Titles fall within the Very difficult to read. Best understood by
university graduates range, while the Mixed Titles are classified as Extremely difficult to read.
Best understood by university graduates. Similarly, the Gunning fog index places the Jumbled Titles
at a College graduate level (score 17) and the Mixed Titles also at a College graduate level (score 19).
The title lengths vary widely (Jumbled Titles: 2–24 words; Mixed Titles: 8–33 words), ensuring a robust
evaluation across diverse input complexities.
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Task Total Categories Count Avg. Len Range Readability
Gunning Fog Flesch

Jumbled Titles 528 176(3) 9.45 2–24 17 16
Mixed Titles 265 176(3) 18.89 8–33 20 8

Table 1: Dataset Statistics for the Jumbled and Mixed Titles Tasks.

3.1 Jumbled Title Task

In real-world academic and research settings, users often recall only fragments of paper titles or misremember
their exact phrasing. They may reorder words, conflate multiple concepts, or substitute synonymous terms
when searching for relevant literature. The Jumbled Titles task is designed to reflect this intrinsic difficulty
by presenting models with scrambled versions of real paper titles. This approach mimics the challenges of
information retrieval, where users provide imprecise search queries due to memory limitations, cognitive
biases, or incomplete knowledge.

A robust language model should be able to process these disordered inputs effectively, retrieving relevant
research despite the inconsistencies. By evaluating models on their ability to reconstruct meaningful asso-
ciations from jumbled titles, we assess their resilience in real-world search conditions. This task not only
tests a model’s capacity to recognize and reassemble key concepts but also highlights its practical utility in
assisting researchers who struggle with recalling precise paper titles.

Each title from the original dataset is internally scrambled to produce a jumbled version. Table 2 presents
examples of jumbled titles alongside their corresponding original titles.

Jumbled Title Original Title
Hydrodynamic bubble to obstruction expansion Hydrodynamic obstruction to bubble expansion
with Warm Microwave Background Constraining
Inflation Cosmic the

Constraining Warm Inflation with the Cosmic
Microwave Background

QCD Hadron Colliders Three-Jet Corrections
Production Two-Loop at for Leading-Color

Leading-Color Two-Loop QCD Corrections for
Three-Jet Production at Hadron Colliders

enumeration theorem polynomials Order Pólya’s
and

Order polynomials and Pólya’s enumeration the-
orem

Table 2: Examples from the dataset used for the Jumbled Title task.

3.2 Mixed Title Task

Scientific discovery often emerges from the intersection of multiple disciplines, where researchers seek to ex-
plore new ideas by combining concepts from different fields. For instance, a scientist might ask whether there
are existing studies on the integration of quantum mechanics with financial modeling or the application of
machine learning in archaeology. Such inquiries reflect the growing importance of interdisciplinary research.
Researchers often explore new areas by searching for existing papers that address these cross-disciplinary
topics or by proposing novel combinations of ideas.

The Mixed Titles task captures this trend by merging two disparate paper titles, assessing whether models
can identify relevant papers that address both topics. This task evaluates not only the truthfulness of model-
recommended references but also their capacity to facilitate interdisciplinary research. By testing a model’s
ability to recognize meaningful connections across domains, the task provides insight into how well AI can
support scientific innovation and knowledge synthesis.

Scientific discovery often emerges from the intersection of multiple disciplines, where researchers seek to ex-
plore new ideas by combining concepts from different fields. For instance, a scientist might ask whether there
are existing studies on the integration of quantum mechanics with financial modeling or the application of
machine learning in archaeology. Such inquiries reflect the growing importance of interdisciplinary research.
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Mixed Title Title 1 Title 2
Bioconvection Transport Irradiation
Suspensions: across Non-scattering
Coarse-grain Molecular under Heat-
ing Fullerene in Membrane Collimated
Above a Study Phototactic from Cell
Dynamics of

Heating from Above in Non-
scattering Suspensions: Photo-
tactic Bioconvection under Col-
limated Irradiation

Coarse-grain Molecular Dynam-
ics Study of Fullerene Transport
across a Cell Membrane

Value of oil and gas Semi-intrusive ex-
change in the uncertainty quantity mul-
tiscale for stock gas london and change
disclosures components oil of the rele-
vance models propagation of upstream
reserve companies

Value relevance of the compo-
nents of oil and gas reserve quan-
tity change disclosures of up-
stream oil and gas companies in
the London Stock Exchange

Semi-intrusive uncertainty prop-
agation for multiscale models

Table 3: Overview of the dataset for the Mixed Title task.

The Mixed Titles task operationalizes this trend by blending two distinct paper titles into a single query.
This challenges language models to identify relevant papers that address both topics, testing their ability to
facilitate interdisciplinary exploration. The task evaluates not only the factual accuracy of model-generated
references but also their capacity to support knowledge synthesis across domains.

A total of 265 mixed titles are generated by combining two randomly selected paper titles from the dataset.
Table 3 shows sample mixed titles along with the original titles from which they were derived.

4 Methodology

In this section, we outline our evaluation pipeline designed to mimic realistic user interactions with language
models. The pipeline is built around two tasks: the Jumbled Titles task and the Mixed Titles task.

Figure 2: Pipeline for evaluating language models using the ArXiv dataset.

4.1 Jumbled Titles

For the Jumbled Titles task, we randomly select 5 titles per category from the ArXiv dataset and scramble
the words within each title. The resulting jumbled titles serve as input prompts to the language models.
The prompt template used is:

Tell me about this research paper: [jumbled title]

Here, [jumbled title] refers to the scrambled title. The language models’ responses are evaluated by comparing
them with the original abstracts. We generate embeddings using the all-MiniLM-L6-v2 model Reimers &
Gurevych (2019) and compute cosine similarity scores. In addition, BERTScore Zhang et al. (2020) and
Semantic Textual Similarity (STS) Reimers & Gurevych (2019) metrics are employed to assess the response
quality.
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Algorithm 1 details the creation of the Jumbled Titles dataset.

Algorithm 1 Create Jumbled Titles Dataset
Require: Parquet file path parquet_file_path, Output CSV file path output_csv_file_path
Ensure: CSV file with jumbled titles is saved

1: function jumble_title(title)
2: Split the title into words
3: Randomly shuffle the words
4: return the shuffled words joined into a single string
5: end function
6: procedure create_jumbled_titles_dataset(parquet_file_path, output_csv_file_path)
7: Load the dataset from parquet_file_path into DataFrame df
8: Apply jumble_title(title) to the title column in df
9: Create a new DataFrame jumbled_titles_df with the jumbled titles

10: Save jumbled_titles_df to CSV file at output_csv_file_path without the index
11: end procedure

Algorithm 2 Create Mixed Titles Dataset
Require: List of titles titles
Ensure: List of mixed titles with original pairs

1: function mix_titles(title1, title2)
2: Split title1 and title2 into words
3: Concatenate the words from both titles into a list mixed_words
4: Randomly shuffle mixed_words
5: return the shuffled words joined into a single string
6: end function
7: procedure create_mixed_titles(titles)
8: Randomly shuffle the titles list
9: if the length of titles is odd then

10: Append an empty string to titles
11: end if
12: Initialize an empty list mixed_titles_data
13: for each pair of titles in titles do
14: Mix the pair of titles using the mix_titles function
15: Append a dictionary with keys mixed_title, title1, and title2 to mixed_titles_data
16: end for
17: return mixed_titles_data
18: end procedure

4.2 Mixed Titles

For the Mixed Titles task, we generate mixed titles by combining two randomly selected paper titles from
the dataset. This task is designed to emulate interdisciplinary queries where users combine concepts from
different fields. The language models are prompted using the template:

Tell me 2 papers related to this and only mention the Title and the DOI: [mixed title]

Here, [mixed title] is the result of merging two titles. After generating responses, we evaluate the provided
DOIs in two steps:

1. DOI Validity Check: Verify each model-generated DOI using API requests to databases such as
Crossref, DataCite, UnPaywall, and OpenAlex.
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2. Title Accuracy Verification: For validated DOIs, retrieve the official paper titles and compare
them against the model-generated titles.

Algorithm 2 outlines the process for creating the Mixed Titles dataset.

5 Results

To run the inference on the models, we used 2× T4 Tesla GPUs (16GB each). Our experiments were
conducted using PyTorch Paszke et al. (2019) and Huggingface’s Transformers Wolf et al. (2020). The
complete evaluation pipeline for each model required approximately 2.5 to 3 hours. To improve inference
speed and efficiency, we applied 4-bit quantization using bitsandbytes bitsandbytes foundation (2024).

Figure 3: CosSim, BERTScore and STS Scores for all models.

Figure 4: DOIs generated by each model during the
Mixed Title task.

Figure 5: Comparison of DOIs Found vs. DOIs Not
Found for each model.

Table 4 presents the performance of the models on the Jumbled Titles task. Notably, Mistral v0.3 Jiang
et al. (2023) achieved the highest similarity scores, with a cosine similarity of 0.605, a BERTScore of 0.542,
and an STS of 0.607. Qwen2.5 (7B) was the second best performing model overall. On average, BERTScore
showed a 1.068% reduction in similarity compared to cosine similarity. The worst performing model was
Orca-2 (13B), with scores of 0.476 (CosSim), 0.475 (BERTScore), and 0.477 (STS), averaging 0.476.

Table 5 evaluates the performance on the Mixed Titles task. Mistral-v0.3 (7B) generated the highest total
number of DOIs (425), with 25.56% of them verified as valid. In contrast, Gemma-2 (9B) and Qwen-2.5 (14B)
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Model Parameters CosSim BERTScore STS Average
Gemma-2 9B 0.487 0.478 0.489 0.485
Phi-3.5 7B 0.502 0.489 0.503 0.498
Llama-3 7B 0.477 0.477 0.479 0.478
Mistral v0.3 7B 0.605 0.542 0.607 0.585
Qwen-2.5 7B 0.578 0.528 0.572 0.559
Orca-2 7B 0.544 0.508 0.546 0.533
Deepseek 7B 0.509 0.501 0.513 0.507
Olmo-2 7B 0.600 0.537 0.602 0.580
Eurus2 7B 0.528 0.523 0.530 0.527
Qwen-2.5 14B 0.579 0.522 0.575 0.559
Orca-2 13B 0.476 0.475 0.477 0.476
Mistral-Nemo 12B 0.577 0.503 0.578 0.553
Phi-3 14B 0.571 0.522 0.572 0.555
Olmo-2 13B 0.577 0.528 0.578 0.561
Solar Preview 22B 0.55 0.502 0.558 0.537

Table 4: Cosine Similarity Scores, BERTScores and STS Scores between the generated response and the
original abstract for various language models. Best performing model is shown in Bold and second best in
Italics.

Model Total DOIs DOIs Found DOIs Not Found Matching Titles
Llama-3 (7B) 112 9 [8.04%] 8 [91.96%] 0.00%
Mistral v0.3 (7B) 425 109 [25.65%] 316 [74.35%] 0.00%
Gemma-2 (9B) 1 0 [0.00%] 1 [100.00%] 0.00%
Phi-3.5 (7B) 261 36 [13.79%] 225 [86.21%] 0.00%
Qwen-2.5 (7B) 172 70 [40.70%] 102 [59.30%] 0.00%
Orca-2 (7B) 176 20 [18.87%] 86 [81.13%] 0.00%
Deepseek (7B) 270 62 [22.96%] 208 [77.04%] 0.00%
Olmo2 (7B) 98 12 [12.24%] 86 [87.76%] 0.00%
Eurus2 (7B) 141 40 [28.37%] 101 [71.63%] 0.00%
Olmo2 (13B) 11 4 [36.36%] 7 [63.64%] 0.00%
Orca-2 (13B) 225 39 [17.33%] 186 [82.67%] 0.00%
Phi-3 (14B) 122 35 [28.69%] 87 [71.31%] 0.00%
Mistral-Nemo (12B) 9 2 [22.22%] 7 [77.78%] 0.00%
Qwen-2.5 (14B) 4 0 [0.00%] 4 [100.00%] 0.00%
Solar Preview (22B) 227 59 [25.99%] 168 [74.01%] 0.00%

Table 5: DOI Search and Title Comparison Results for the Mixed Titles task.

generated 0% valid DOIs. The best DOI validity rate was achieved by Qwen-2.5 (7B) with 70 valid DOIs
(40.70%). Figure 5 graphically depicts that for each model, the number of DOIs not found exceeds those
found. Moreover, all models exhibited a consistent shortcoming: every valid DOI retrieved corresponded to
an incorrect title (0% matching). It is noteworthy that Mistral-v0.3 (7B) generated the highest number of
valid DOIs (109 out of 425).

We evaluate the factual consistency of various models using FactCCKryscinski et al. (2020), an entailment-
based model designed to assess the accuracy of generated outputs for the Jumbled Titles Task. The results,
as presented in Table 6, reveal that all models achieved high FactCC scores, ranging from 0.903 to 0.944.
However, despite these high scores, every model was labeled as ’INCORRECT’ for all 528 Jumbled Titles,
meaning the model labeled it ’INCORRECT’ with that much confidence. This discrepancy suggests that
while the generated outputs may appear superficially similar to the expected results, they frequently con-
tained factual inconsistencies or hallucinated information. This finding underscores the limitations of relying
solely on surface-level similarity metrics for evaluating the factual accuracy of generated content.
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Model Score Label Number
Solar (22B) 0.943 INCORRECT 528
Qwen2.5(14B) 0.944 INCORRECT 528
Qwen2.4(7B) 0.937 INCORRECT 528
Eurus2(7B) 0.911 INCORRECT 528
Phi-3(14B) 0.936 INCORRECT 528
Phi-3.5(7B) 0.924 INCORRECT 528
Orca(7B) 0.935 INCORRECT 528
Orca(13B) 0.931 INCORRECT 528
Olmo(13B) 0.933 INCORRECT 528
Olmo(7B) 0.933 INCORRECT 528
Mistral-Nemo(12B) 0.909 INCORRECT 528
Mistral v0.3 (7B) 0.935 INCORRECT 528
Llama-3(7B) 0.913 INCORRECT 528
Gemma-2(9B) 0.903 INCORRECT 528
deepseek (7B) 0.936 INCORRECT 528

Table 6: FactCC scores and labels for the generated outputs of the models for the Jumbled Titles task.

6 Conclusion

This paper evaluates the extent of hallucination in state-of-the-art language models by designing two tasks:
Jumbled Titles and Mixed Titles. In the Jumbled Titles task, the fifteen evaluated models achieved
an average cosine similarity score of 0.544, 0.509 on BERTScore, and 0.545 on STS. Mistral-v0.3 was the
best-performing model across all metrics, averaging 0.585 on the Jumbled Titles task and outperforming
models twice and thrice its size.

For the Mixed Titles task, while models generated DOIs for the mixed titles, they often cited non-existent
papers or mismatched DOIs. These results underscore critical limitations in maintaining factual accuracy
in domain-specific contexts. On average, valid DOIs were generated only 17.75% of the time. Moreover,
every model completely failed to generate the corresponding DOI for the title they generated, indicating
that models struggle with maintaining factual consistency. To further highlight Prompt Adherence, it is
worth noting that none of the models generated the required number of two DOIs for each Mixed Title. This
discrepancy is evident as the expected output for each model was 530 DOIs (given 265 mixed titles), but
none of the models met this requirement, as seen in Figure 4.

6.1 Model Size Performance

In Table 4 and Table 5, we observe a concerning trend where many of the larger models are significantly
outperformed by their smaller counterparts in both tasks. For instance, the 7B Mistral-v0.3 outperforms
models up to three times its size, while the Solar Preview (22B) demonstrates mediocre performance despite
its substantially larger parameter count. A similar trend is seen with Qwen2.5, where the 7B variant outper-
forms the 14B variant. These findings raise serious questions about the relationship between model size and
task performance. The results starkly highlight that simply scaling up model parameters does not guaran-
tee superior performance in specialized tasks, particularly those requiring precise adherence to instructions
and factual accuracy. This counterintuitive finding challenges the common assumption that larger language
models inherently perform better, suggesting that architectural choices and training approaches might be
more crucial than raw parameter count for achieving superior performance.

7 Limitations

There are several limitations to our work:
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1. Model Selection: Our evaluation focuses on smaller models due to computational constraints.
Results may differ significantly with larger variants, which could exhibit different performance char-
acteristics. Although our findings in Section 6.1 shows that might not always be the case, as we
observed smaller models often outperforming their larger counterparts.

2. Model Quantization: We use 4-bit quantization for inference. While this may reduce performance,
studies suggest the impact is minimal Jin et al. (2024). The trade-off between computational effi-
ciency and potential performance impact was deemed acceptable for our experimental setup.

3. Human Evaluation: Human evaluation remains a key limitation, as our current pipeline relies
primarily on automated metrics like cosine similarity, BERTScore, and FactCC, which may not fully
capture nuanced hallucinations or the scientific validity of generated outputs. Incorporating expert
human assessments could provide deeper insights into relevance, factual correctness, and coherence,
addressing gaps in purely quantitative evaluation.

4. Data Contamination: Given the scale of pretraining datasets, it is challenging to definitively
determine whether specific papers in our test set were seen during model training. This makes it
difficult to distinguish between genuine reasoning capabilities and potential memorization effects.
Future work could address this by evaluating on recently published papers post-dating model training
cutoffs, implementing systematic contamination checks, and using synthetic scientific papers to test
reasoning capabilities.

8 Future Work

While ArXEval provides an automated pipeline for evaluating retrieval and generation in scientific language
models, several avenues for future work can further enhance its scope and depth. A key direction is the
integration of Retrieval-Augmented Generation (RAG) into the evaluation framework. Our current approach
primarily assesses the intrinsic capabilities of language models in handling jumbled and mixed titles. RAG
is a prominent technique for mitigating hallucinations by grounding language models in external knowledge
sources. Future iterations of ArXEval could incorporate a RAG component, allowing us to evaluate how
well models utilize retrieved scientific literature to generate factually accurate and contextually relevant
outputs. This would necessitate expanding the evaluation to assess not only generation quality but also the
effectiveness of the retrieval mechanism and the model’s ability to faithfully incorporate retrieved information.
Metrics specifically designed for RAG evaluations, such as retrieval precision/recall and faithfulness to the
retrieved context, could be incorporated alongside our existing metrics.
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