The Panaceas for Improving Low-Rank Decomposition in
Communication-Efficient Federated Learning

Shiwei Li!2* Xiandi Luo'”

Haozhao Wang ' Xing Tang? Shijie Xu® Weihong Luo? YuhuaLi'

Xiugiang He? Ruixuan Li'

Abstract

To improve the training efficiency of federated
learning (FL), previous research has employed
low-rank decomposition techniques to reduce
communication overhead. In this paper, we seek
to enhance the performance of these low-rank
decomposition methods. Specifically, we focus
on three key issues related to decomposition in
FL: what to decompose, how to decompose, and
how to aggregate. Subsequently, we introduce
three novel techniques: Model Update Decom-
position (MUD), Block-wise Kronecker Decom-
position (BKD), and Aggregation-Aware Decom-
position (AAD), each targeting a specific issue.
These techniques are complementary and can be
applied simultaneously to achieve optimal per-
formance. Additionally, we provide a rigorous
theoretical analysis to ensure the convergence of
the proposed MUD. Extensive experimental re-
sults show that our approach achieves faster con-
vergence and superior accuracy compared to rel-
evant baseline methods. The code is available
athttps://github.com/Leopoldl1423/
fedmud-icml25.

1. Introduction

Federated learning (FL) is a distributed training framework
that preserves data privacy by exchanging model parameters
instead of sharing decentralized data (McMahan et al., 2017).
In an FL system, a central server manages the training pro-
cess across multiple distributed clients, typically involving
the following steps: (1) the server broadcasts the global
model to the clients; (2) each client optimizes the model

“Equal contribution. 'Huazhong University of Science and
Technology, Wuhan, China ?Shenzhen Technology University,
Shenzhen, China >FiT, Tencent, Shenzhen, China. Correspondence
to: Ruixuan Li <rxli@hust.edu.cn>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

using its local data; (3) after local training, each client sends
the model updates (i.e., changes to model parameters) back
to the server; and (4) the server aggregates the model up-
dates from all clients to generate a new global model. These
steps together constitute one training round in FL.

However, FL generally requires multiple training rounds
to achieve convergence, leading to considerable commu-
nication overhead. Specifically, communication occurs in
two phases: the uplink, where clients transmit local model
updates to the server, and the downlink, where the server
sends global model parameters to the clients. Latency in
both phases can significantly reduce training efficiency, es-
pecially in scenarios with limited bandwidth or large model
sizes (Honig et al., 2022). To mitigate this issue, various
strategies have been proposed to compress either the uplink
(Li et al., 2024a;b; Reisizadeh et al., 2020) or the bidirec-
tional (Tang et al., 2019; Dorfman et al., 2023) communi-
cation. This paper focuses on investigating bidirectional
compression methods for better training efficiency.

Low-rank decomposition (Sainath et al., 2013) is an effec-
tive technique for parameter compression, which approxi-
mates a matrix by the product of smaller sub-matrices. It
has been widely employed in FL for bidirectional commu-
nication compression (Yao et al., 2021; Hyeon-Woo et al.,
2022). In these approaches, the server transmits a low-rank
model to the clients for training and subsequently receives
the optimized models from them. For example, FedHM
(Yao et al., 2021) generates a low-rank model by applying
truncated singular value decomposition (SVD) to the global
model. However, the SVD process introduces approxima-
tion errors, causing the low-rank model to deviate from the
global model. In contrast, FedLMT (Liu et al., 2024) di-
rectly trains a pre-decomposed global model, eliminating
the need for SVD. Similarly, FedPara (Hyeon-Woo et al.,
2022) trains a pre-decomposed model and enhances the rank
of the recovered matrices using the Hadamard product. (Mei
et al., 2022) further improves compression by sharing low-
rank matrices across multiple layers. These methods have
laid the foundation for low-rank decomposition techniques
in communication-efficient FL. (CEFL). Nevertheless, sev-
eral challenges remain. In this paper, we address three key

https://github.com/Leopold1423/fedmud-icml25
https://github.com/Leopold1423/fedmud-icml25

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

Aggregate

P

W |+ 4w | = ||U

WeR™M | = ! |ycgme

Errors

¢ | Explicit
i | Errors

] Recover

Aggregate W SVD

Model Update Decomposition (MUD)

Block-wise Kronecker Decomposition (BKD)

n
sk
ol o -

H r vT E Biy Bip Big
W, [+ AW |i=| W, |+|U 1 B,i B,
______________ Byy By, Bas|l1=iisk

Aggregation-Aware Decomposition (AAD)

| o)
w v + |o

ke

(a) what to decompose

(b) how to decompose

(c) how to aggregate

Figure 1. An illustration of three key issues related to decomposition in FL and their corresponding solutions: (a) What to decompose
to minimize information loss? Existing methods decomposes the entire parameters, while MUD decomposes only the model update,
effectively reducing information loss. (b) How to decompose to achieve a higher rank? Standard low-rank decomposition achieves
rank(W) < minr < min{m, n} with (m+n)r parameters, while BKD achieves higher rank upper bound, i.e., rank(W) < min{m, n}
with k+/mn parameters. (¢) How to aggregate to reduce compression errors? Directly aggregating sub-matrices results in implicit
errors, as W = U1 (V) T+U2(V2) T /o =£ Ur(V)) T+U1(Va) T+U2(V) T+U2(V2) T /4 = U(V) 7. AAD can effectively avoid this deviation.

issues related to decomposition in FL to further enhance
communication efficiency, as shown in Figure 1.

First, what to decompose to minimize information loss? In
FL, communication is driven by the model updates derived
from local training or global aggregation. Both the server
and clients can generate the latest model parameters by
transmitting only the model updates. Therefore, we argue
that decomposing model updates is more efficient than de-
composing the entire model parameters, as the latter may
lead to greater information loss. Building on this insight,
we propose Model Update Decomposition (MUD), which
freezes the original model parameters and then learns low-
rank sub-matrices to serve as model updates during local
training, as illustrated in Figure 1(a).

Second, how to decompose to achieve a higher rank? The
rank of a matrix indicates the amount of information it en-
codes, so maximizing the rank of the recovered matrix is
crucial in matrix decomposition (Hyeon-Woo et al., 2022).
To achieve this, we propose Block-wise Kronecker Decom-
position (BKD), which partitions a matrix into blocks and
then decomposes each block with the Kronecker product, as
shown in Figure 1(b). BKD offers a higher rank upper bound
for the recovered matrix while requiring fewer parameters.
Furthermore, the block structure of BKD enables dynamic
compression by varying the number of blocks, k, similar to
adjusting the rank, r, in traditional low-rank decomposition.

Third, how to aggregate to reduce compression errors? As
shown in Figure 1(c), after receiving the optimized low-rank
models, the server should aggregate the recovered matri-
ces and then obtain a new low-rank model through SVD,
which explicitly introduces errors into the model parameters.

Consequently, Liu et al. (2024) suggest directly aggregating
the sub-matrices to avoid the SVD process. However, our
analysis indicates that this aggregation introduces implicit
errors. Specifically, we find that U(V) T # W, where U,
V and W are the aggregated results of the sub-matrices U,
V' and the recovered matrix W, respectively. To address
this issue, we propose Aggregation-Aware Decomposition
(AAD), which decouples the multiplication of trainable sub-
matrices, as shown in Figure 1(c). Through AAD, there is
no discrepancy between recovering then aggregating and
aggregating then recovering, i.e., W = UV + UV, where
U and V are fixed matrices shared among clients. AAD ap-
plies to all forms of products involving trainable parameters
that require aggregation, including the Kronecker product.

The contributions of this paper are summarized as follows:

* A comprehensive study on low-rank decomposition
in CEFL is presented, along with three novel tech-
niques to enhance performance: Model Update De-
composition, Block-wise Kronecker Decomposition,
and Aggregation-Aware Decomposition.

» A rigorous theoretical analysis of the proposed method
is provided, confirming its effectiveness and conver-
gence. Specifically, it is demonstrated that the pro-
posed method converges faster than existing low-rank
decomposition approaches in FL, such as FedLMT.

» Extensive experiments are conducted on four popular
datasets to evaluate the superiority of the proposed
method. Notably, our method achieves up to a 12%
improvement in test accuracy compared to relevant
baselines, with each technique contributing positively.

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

2. Preliminaries

The goal of FL is to train a global model using decentralized
datasets {ID1,Ds, ..., Dy}, which can be formulated as:

| X
min f(w) £ N Zfl(w)’ ()
i=1

where w denotes the model parameters. f;(-) denotes the
expected loss function of client i, defined as f;(w) =
Eeen, [Fi(w,)], where F;(w,§) is the loss value corre-
sponding to the data sample £. For simplicity, we will omit

the symbol £ in F;(-) in the following discussions.

To solve Eq.(1) in a privacy-preserving manner, FL generally
requires multiple rounds of training. In each round ¢, the
server sends the global model parameters w* to clients. Each
client ¢ then optimizes w’ using local data through several
steps of gradient descent, yielding w'**. Subsequently,
each client ¢ sends the local model update, AW;E = wf“ —
wt, back to the server, which aggregates these updates to

generate the global model update as follows:
1N
t_ t
Aw' = N igl Aw,. 2

Using Aw!, the global model is updated as wit! =
w! + Aw?. In the next round, the server can send either
wit! or just Aw? to the clients. In the latter case, clients re-
construct w*! with their locally stored w’. Notably, even
if a client does not participate in a specific round, it must still
download the global model update to ensure correct restora-
tion of the model parameters in future rounds. However,
the communication overhead incurred by non-participating
clients does not impact the overall training efficiency of FL.

3. Methodology
3.1. Model Update Decomposition

Recent approaches in FL reduce communication overhead
by training low-rank models on the client side (Hyeon-Woo
et al., 2022). For example, FedHM (Yao et al., 2021) gen-
erates low-rank models by applying truncated SVD to the
global model, while FedLMT (Liu et al., 2024) directly
trains a pre-decomposed global model.

However, we argue that these approaches result in substan-
tial information loss, which consequently reduces accuracy.
Taking the parameter IV as an example, the communication
content in round ¢ can be expressed as Wit = W+ AW?,
where AW denotes either a local or global model update.
Decomposing the entire model parameter W**! can intro-
duce significant errors in both W*¢ and AW?*. Since both
the server and clients typically have access to W?, it is suffi-
cient and more efficient to decompose and transmit only the

model update AW?, as this avoids introducing errors into
Wt. To this end, we propose Federated Learning with
Model Update Decomposition (FedMUD). As shown in
Figure 1, FedMUD freezes the original model parameters
and then learns low-rank matrices to serve as model updates.
In round ¢ and on client ¢, the parameter W is optimized as:

W =W AW =W UL V)T,)

where W represents the received global parameter, which
remains frozen during local training. The trainable compo-
nent is the pre-decomposed model update, denoted as U}
and V,it. Prior to local training, U,it is initialized randomly,
while V! is initialized to zero, ensuring that the model up-
date starts at zero. Additionally, the server sends a random
seed to the clients to ensure consistent initialization of U
across all clients. After local training, the clients send their
optimized U and V back to the server, which aggregates
these sub-matrices as follows:

W:iiw W:iiw. 4)
N =1 N i=1

In the next round, the server sends Ult and ‘7lt back to the
clients. Upon receiving U/ and V}!, the clients have two
options: (1) incorporate these sub-matrices into the frozen
parameters and then reinitialize the sub-matrices, or (2) con-
tinue training with the received sub-matrices. Let s denote
the number of rounds for resetting model updates, referred
to as the reset interval. Every s rounds, the recovered matrix
U(V)T is added to the frozen parameters. Assuming the
total number of training rounds is R = ns, the final global
model parameters can be expressed as follows:

WR — WO + Z UTSVTS7)

T=1

which implies that the initialized parameters are updated
through the accumulation of low-rank updates. As s de-
creases, the number of low-rank updates increases, thereby
improving the information richness. To achieve optimal
accuracy, s is set to 1 by default. Notably, by setting
W09 =0,s> Rand initializing both U and V' randomly,
FedMUD reduces to FedLMT. In other words, the parame-
ters of FedLMT correspond solely to a low-rank update of
FedMUD, causing FedLMT to perform much worse than
FedMUD. Theoretically, we show that increasing s can neg-
atively affect the convergence rate of FedMUD in Section 4.

3.2. Block-wise Kronecker Decomposition

In the previous section, we demonstrated the necessity of
decomposing the model update. With standard low-rank de-
composition, the model update AW € R™*" is represented
as the product of two smaller matrices, U € R"™*" and

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

V' € R™*". The compression ratio is 2(m+n)r/mn, where
r < min{m, n}. However, due to the property of matrix
multiplication, the rank of the recovered model update is
constrained as rank(AW) < min{rank(U), rank(V)} <,
which limits the choice of smaller values for 7.

To address this issue, we utilize the Kronecker product to
enhance the rank of the recovered matrix. Assume /m and
\/n are integers, the Kronecker decomposition can be for-
mulated as AW = U®V, where U,V € RV™XVr AW e
R™*"™ and ® denotes the Kronecker product. The re-
sulting compression ratio is 2//mn, and the rank satisfies
rank(AW) = rank(U) X rank(V) < min{m,n}, which
matches the upper bound for a matrix of dimensions (m,n).

However, the compression ratio of the Kronecker decompo-
sition, specifically 2/\/mn, is overly rigid and lacks dynamic
adaptability. To address this limitation, we introduce Block-
wise Kronecker Decomposition (BKD), which partitions
the matrix into k2 blocks and applies the Kronecker decom-
position to each block, as shown in Figure 1. Assume m =
ka?,n = kb%, a matrix W € R™*™ will be represented
by k? pairs of sub-matrices U,V € R%*®. Consequently,
the compression ratio is given by 2k*ab/mn = 2k/,/mn. Dy-
namic compression can be achieved by adjusting k, like ad-
justing r in the standard low-rank decomposition. Notably,
when k& = 1, BKD reduces to the Kronecker decomposition.
The rank upper bound of BKD is full rank, similar to that
of the Kronecker product-based decomposition discussed
above. A detailed analysis of the rank upper bound of BKD
is provided in Appendix B.

Decomposition is commonly applied to linear and con-
volutional layers. The parameter of a linear layer is
a two-dimensional tensor, making low-rank decomposi-
tion straightforward. In contrast, the parameter of a
convolutional layer is a four-dimensional tensor W &
ReoutXcinXkxk = ywhich should be reshaped into a two-
dimensional tensor W’/ &€ Reutk*cink before decompo-
sition. This strategy has also been utilized in (Liu et al.,
2024). In BKD, we let the sub-matrices be square for sim-
plicity, i.e., a = b = z, so that the restored matrix becomes
W e RF2%xkz? Here, k2 represents the number of blocks,
and z is determined by £ and the size of the target tensor. For
instance, in the case of a linear layer with dimensions (m, n),
zis computed as z = [{/mn/k%]. When k?2% > mn, only
the first mn parameters of W € RF="xk=* are reshaped into
the target parameter matrix with dimensions (m,n). This
process is applicable to tensors of any dimension.

3.3. Aggregation-Aware Decomposition

Aggregation in FL is to synthesize the knowledge learned
by different clients. This is commonly achieved by averag-
ing the parameters of different clients or through weighted

averaging based on the data volume each client holds. How-
ever, low-rank decomposition presents new challenges for
parameter aggregation. Specifically, there are two ways to
aggregate the sub-matrices: direct aggregation and aggrega-
tion after recovery. In direct aggregation, the results are also
sub-matrices, which can be directly sent to clients for the
next training round. In contrast, aggregation after recovery
requires applying truncated SVD on the aggregated results
to obtain new sub-matrices before transmission to the clients.
However, the SVD process introduces approximation errors,
which can significantly affect convergence. Therefore, we
primarily focus on the direct aggregation.

However, directly aggregating the sub-matrices, U and V,
introduces bias into the model parameters implicitly. This
issue persists regardless of whether U and V are used to
represent the model parameters or the model update. For
simplicity, we will explain this bias in the context of the
former scenario. Let Uy and Vj denote the initial parameters
received by the clients, while U; = Uy + AU; and V; =
Vo + AV; denote the optimized parameters on client ¢. The
recovered matrix, which represents the parameters actually
used during the client’s forward propagation, is given by
W; = U;(V;) 7. Their aggregated result is:

W* = A[U;(Vi) '] = Up(Vo) "+ ©
UoA(AV) T + AAU) (Vo) T + A(ATU(AV)T),

where A(z) returns the aggregated result of variable x. In
direct aggregation, the aggregated results are U = Up +
A(AU) and V =V + A(AV). The recovered matrix of

U and V is then given by:

W=UWV)" =Up(Vo) "+
UoA(AV)T + A(AU) (V) T + A(AU)AAV)T.

It is evident that W in Eq.(7) deviates from the desired result
W* in Eq.(6). The discrepancy arises from the last term, i.e.,
the second-order update induced by AU and AV. To ad-
dress this issue, we propose decoupling the multiplication of
the trainable matrices U and V' to eliminate the second-order
update. Specifically, we introduce Aggregation-Aware De-
composition (AAD) , which reformulates the operation of
UV)T as follows:

wW=uWv)"+0V)", ®)

where U and V are randomly initialized and remain fixed
during local training. Through AAD, the actual and desired
recovered matrices are equal as follows:

W =W*= Uy +AAU)V)T +T (Vo + AAV))T.

9
When AAD is applied to model updates, both U and V
shall be initialized to zeros, ensuring that the model update

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

starts at zero. It is important to note that AAD is appli-
cable to any product involving trainable parameters that
require aggregation, including matrix multiplication and the
Kronecker product. Therefore, AAD can also be used to
enhance BKD. Integrating AAD with BKD requires only
replacing the matrix multiplication in Eq.(8) with the pro-
posed BKD operator.

4. Convergence Analysis

In this section, we present a theoretical analysis that demon-
strates the convergence of FedMUD and highlights its ad-
vantages over FedLMT. Our objective is to compare the
convergence rates of full-weight decomposition and model
update decomposition (i.e., FedLMT vs. FedMUD); there-
fore, BKD and AAD are not considered in this analysis. The
notations used are summarized below.

Notations. For an L-layer neural network, the model pa-
rameters are represented as w = {W1,..., W, , W,11 +
Upi1(Vor1) Ty, W + U (VL) T}, where MUD s ap-
plied to the last (L — p) layers. R denotes the number
of training rounds, E denotes the number of iterations per
round, and T' = RFE denotes the total number of iterations.
||-||, denotes the /5 norm of a vector and ||-|| - denotes the
Frobenius norm of a matrix. In this section, ¢ € [T de-
notes the current iteration number, rather than the training
round. For the sake of analysis, we make the following
assumptions, as used by FedLMT (Liu et al., 2024).

Assumption 1. Each loss function f; (fori =1,2,...,N)
is differentiable and L -smooth.

Assumption 2. The stochastic gradient VF;(w) is un-
biased, with bounded variance and norm. Specifically,
EVF,(w) = Vfi(w), E|VE(w) = Vfi(w); < o2

2

and B [V F; (w)% < G2.

Assumption 3. The sub-matrices U and V are bounded
during training, i.e., UZH; < k2 and HVZH; < k2. Fur-

thermore, the initialization values of U and V' also satisfy
U5 < €2 < k2 and |U])5 < €2 < k2.

Assumption 4. At least one of the matrices U =
% Zfil Uiy and Vi, = % Zfil Vi1 has a positive smallest
singular value, i.e., [6,in (U1)]? + [6min(V1)]2 > 92, > 0,
where 8, (+) denotes the smallest singular value.

Assumptions 1 and 2 are commonly used in convergence
analysis under distributed settings (Li et al., 2020; Yu et al.,
2019; Li et al., 2024b). Assumption 3 is also commonplace
in the theoretical analysis of machine learning models (Chen
et al., 2020; Liu et al., 2024). In our case, this assumption
holds exactly; see Appendix C.2 for details. Given that the
model dimension is finite, it is reasonable to assume that
the model weights are bounded. Assumption 4 is supported
by the Marchenko-Pastur theory, as discussed by Liu et al.
(2024). Based on these assumptions, we present Theorem 1,

which demonstrates the convergence of FedMUD with non-
convex settings. The proof is provided in Appendix C.

Theorem 1. Under Assumptions 1, 2, 3 and 4, let 1 <
¢ < 2 be a constant and the learning rate satisfy 0 < n <

2
min{(%)fl, 1}, with FedMUD, we have

1« t—1,\2 2 0 *
f;EHVf(w Mz < T = 1) (o)

+O(* =) [1+ (L — p)O(Ty, +T)]

where w* denotes the optimal parameters, T2 2 min{2¢2 +
21n252G%K2, k2} and T'? 2 min{262 + 2n2S2G%k2, K2}

Remark 1. By setting p = L, Theorem 1 is equivalent to
the convergence analysis of FedAvg. Additionally, by setting

n = % and letting ¢ — 1, the convergence rates of both
1
FedAvg and FedMUD are O(ﬁ)

Remark 2. Compared to FedAvg, the convergence rate of
FedMUD is further affected by the term (L — p)O(T'2 +
). As S — T, T, and T, gradually increase, eventually
reaching their respective upper bounds, k., and k.. Thus, as
S increases, the convergence of FedMUD becomes slower.

Remark 3. By setting S > T, W; = 0 and initializing both
U, and V; randomly for all | > p, Theorem I reduces to the
convergence of FedLMT. As noted in Remark 2, FedLMT
employs a much larger value for S, which results in a slower
convergence rate compared to FedMUD.

5. Experiments
5.1. Experimental Setup

Datasets and Models. In this section, we evaluate the pro-
posed method on four widely used datasets: FMNIST (Xiao
etal., 2017), SVHN (Netzer et al., 2011), CIFAR-10, and
CIFAR-100 (Krizhevsky & Hinton, 2009). For FMNIST and
SVHN, we employ a convolutional neural network (CNIN)
with four convolutional layers and one fully connected layer.
For CIFAR-10 and CIFAR-100, we employ a CNN with
eight convolutional layers and one fully connected layer.
ReLU (Glorot et al., 2011) is used as the activation function,
and batch normalization (BN) (Ioffe & Szegedy, 2015) is
utilized to ensure stable training. For better performance,
we do not compress the first and last layers of the model.

Data Partitioning. Each dataset is partitioned into several
subsets to serve as the local data of different clients. Based
on the data partitioning benchmark of FL (Li et al., 2022),
we consider two kinds of non-IID data distribution, termed
Non-IID-1 and Non-IID-2. In Non-IID-1, the proportion
of the same label across clients follows the Dirichlet distri-
bution (Yurochkin et al., 2019), while in Non-IID-2, each
client only contains data of partial labels. For CIFAR-100,

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

Table 1. Accuracy of different methods. Except for FedAvg, the best accuracy is in bold and the second best accuracy is underlined.

FMNIST SVHN CIFAR-10 CIFAR-100

Non-IID-1 Non-1ID-2 Non-IID-1 Non-IID-2 Non-IID-1 Non-1ID-2 Non-IID-1 Non-IID-2
FedAvg (McMahan et al., 2017) 90.3(+0.2) 88.6(+0.3) 89.7(£0.3) 88.3(£0.3) 81.0(+0.7) 77.8(£0.7) 49.8(£0.6) 44.8(+0.5)
FedHM (Yao et al., 2021) 87.2(£0.1) 84.5(£04) 73.8(£0.8) 71.1(£09) 66.5(£0.4) 63.3(+0.7) 285+0.8) 23.3(£0.3)
FedLMT (Liu et al., 2024) 87.3(+£0.4) 84.4(£0.5) 71.0(£0.6) 70.1(£1.0) 64.7(£0.8) 62.1(+=0.8) 28.4(+£0.3) 23.4(£0.6)
FedPara (Hyeon-Woo et al., 2022) 87.1(£0.2) 84.4(£0.3) 824(£0.6) 79.3(£0.5) 70.6(£ 0.6) 66.6(£0.7) 29.3(+0.9) 25.3(+0.6)
EF21-P (Gruntkowska et al., 2023) 84.1(£ 0.8) 82.0(£ 0.8) 82.5(+0.5) 76.7(+0.9) 47.2(+0.8) 46.8(+0.9) 152(+£0.7) 13.8(£1.0)
FedBAT (Li et al., 2024b) 88.4(£0.1) 86.7(£0.1) 852(+0.4) 83.8(+0.3) 750(x0.1) 72.3(x04) 37.4(+£0.7) 34.2(£0.6)
FedMUD 87.9(£0.2) 858(£04) 81.3(+0.8) 785(=x0.7) 689(£0.9) 658(+04) 29.4(£0.5) 28.9(£04)
FedMUD+BKD 88.2(£0.1) 86.7(£0.6) 84.8(+=0.5) 83.5(x04) 702(£0.7) 67.5(+0.8) 357(£0.5) 30.7(£0.8)
FedMUD+AAD 88.5(+0.3) 87.0(£0.3) 84.7(+0.2) 82.5(x£0.6) 73.3(£04) 723(+0.3) 37.4(£04) 35.1(£0.2)
FedMUD+BKD+AAD 89.0(+ 0.2) 87.6(+0.2) 86.6(+0.3) 84.9(+0.3) 759(+0.2) 73.9(+0.6) 41.2(£0.5) 36.1(+0.9)

we set the Dirichlet parameter to 0.1 in Non-IID-1 and as-
sign 10 random labels to each client in Non-IID-2. For
the other datasets, we set the Dirichlet parameter to 0.3 in
Non-IID-1 and assign 3 random labels to each client in Non-
IID-2. The data heterogeneity of Non-IID-2 is generally
higher than that of Non-IID-1. The experiments under the
IID data distribution can be found in Appendix A.

Baselines. FedMUD is compared to several CEFL meth-
ods, including FedHM (Yao et al., 2021), FedLMT (Liu
et al., 2024), FedPara (Hyeon-Woo et al., 2022), EF21-P
(Gruntkowska et al., 2023) and FedBAT (Li et al., 2024b).
FedHM decomposes the global model on the server through
truncated SVD and sends the decomposed model to clients
for local training. FedLMT directly trains a pre-decomposed
global model. FedPara enhances the rank of the recovered
matrix by applying the Hadamard product. EF21-P is a state-
of-the-art algorithm for communication compression with
the error feedback mechanism in FL. Following the original
setting of EF21-P, the Rand-K and Top-K compressors are
used to compress the local and global model updates, respec-
tively. FedBAT is an advanced communication quantization
algorithm in FL, which learns binary model updates during
local training. However, it only compresses uplink commu-
nication. For a fair comparison, we also use its quantizer to
compress the global model update.

Hyperparameters. The number of clients is set to 100,
with 10 clients randomly selected to participate in each
round of training. The local epoch is set to 3, and the
batch size is 64. SGD (Bottou, 2010) is employed as the
local optimizer, with the learning rate tuned from the set
{1.0,0.3,0.1,0.03,0.01}. The number of training rounds is
set to 100 for FMNIST and SVHN, and 200 for CIFAR-10
and CIFAR-100. The initialization of sub-matrices in the
decomposition methods has a significant impact on model
performance. To ensure a fair comparison, we adjust the ini-
tialization across methods to optimize performance. Specifi-

cally, the sub-matrices are randomly initialized with values
drawn from the uniform distribution U(—a, a), where a is
selected from the set {0.01,0.05,0.1,0.5,1,5,10}. In the
main experiments, the compression ratio is set to 1/32 for
all methods. For FedMUD, we also report the performance
of its variants, corresponding to whether BKD or AAD is
applied on top of MUD. Each experiment is run five times,
and the average results are reported. The code is provided
in the supplementary materials.

5.2. Overall Performance

In this section, we compare the performance of our methods
and the baselines in terms of test accuracy and convergence
speed. All numerical results are reported in Table 1, and
partial convergence curves are shown in Figure 2. More
experimental results can be found in Appendix A.

First, we observe that FedHM and FedLMT exhibit similar
performance. As discussed in Section 1, these two meth-
ods introduce errors into model parameters in distinct man-
ners. Specifically, the errors in FedHM stem from truncated
SVD, while those in FedLMT arise from biases introduced
by directly aggregating sub-matrices. In contrast, FedPara
achieves higher accuracy by increasing the rank of the recov-
ered matrix, which highlights the crucial role of matrix rank
in low-rank decomposition methods. Compared to these de-
composition methods, FedMUD consistently demonstrates
superior accuracy and faster convergence. Moreover, its per-
formance is further enhanced when integrated with the BKD
and AAD techniques. For EF21-P, we attribute its poor per-
formance to the excessively high compression rate, with
only 3% of the parameters being updated per round. Among
the baselines, FedBAT performs the best, notably surpass-
ing existing low-rank decomposition methods. However,
our method still exceeds FedBAT by a substantial margin,
bridging the gap in low-rank decomposition for CEFL.

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

F-MNIST with Non-lID-1 SVHN with Non-IID-1

CIFAR-10 with Non-lID-1 CIFAR-100 with Non-IID-1

85 40
70 1
88 80 -
86 754 60 - »
> > > >
[9 [9 9
e o O 504 g2
S s =] =] =]
g 3 651 | / g g
g £ 65 ,/‘ ——. FedHM & g 20 - FedHM
e FedLMT e FedLMT 7 J FedLMT /" FedLMT
s 1 - p
82 h3 FedPara 60 s FedPara I 4 FedPara 15 FedPara
I —-- EF21-P ! "I/ -~ EF21-P 304 D S ——- EF21-P _-~=—- EF21-P
0 i ——- FedBAT % HEs ——- FedBAT © s=~./ = FedBAT 10 - ——- FedBAT
i . P
I —— FedMUD+BKD+AAD 1 I’l —— FedMUD+BKD+AAD Pl —— FedMUD+BKD+AAD —— FedMUD+BKD+AAD
50 LI 20 5
o 1 2 3 4 o 1 2 3 4) 20 40 60 80 100 o 20 40 60 80 100
Communication volume (4B:log10(x)) Communication volume (4B:log10(x)) Communication volume (4B:log10(x)) Communication volume (4B:log10(x))
Figure 2. Convergence curves of different methods under the Non-IID-1 data distribution.
a0 F-MNIST with Non-IID-1 SVHN with Non-IID-1 CIFAR-10 with Non-IID-1 CIFAR-100 with Non-IID-1
" |87.6 849 747 oI %0
8751 ©~~8L4_ 873 -84 841 B N rE 36 3{1__373‘:3_%§~_35“:
870 iy =870 844835 535 "~ 430 s S-- i - hS SCANEN
7.0 15827 gg7 I~ 825 3 [N L g -
3 ETR‘G~~,.'\ SS866 g5 . _818 ~. 72 ~< gy <710 S o
GO _ s 82 ~ 816 817 07 =%~ _ 503 2 BL6 S gy
86.5 86.3%< ~s % _sts. . L L% _69.9 N 30.7 307 -~ %5
o 52 gg1 852 > ~809— 807 o > 70 == ~g91 > 305 300 BN
& 86.0{858 i S N, ® S 795 99 798 3 682 684 Ta885 T8 ® 30 - NSRS
£ 856 ~8%7 838, £ 8o 9.2 783 T=%~_790| 5 68 {675 S19 L) ~675] & 282 289 Nl 285
3 855 34 854 == 3 |785 734 b ~J8.4 ~30 3 oe3 6oT~gad St Y| 3 27.9 7.9 9 "N
Q 85.1 SN 9 77.7 T4 9 mn 657 65.7 . 9 26.6 N
P4 29 N 85.0) I J74 < 66 € 5.0 65.1 < 5.2 N
8501 —a— FedMUD O T —=— FedMUD | JET~765 —=— FedMUD ; ~847| 7 g6 —=— FedMUD 252983
845 FedMUD+BKD —SHA_ggsl 7o FedMUD+BKD W - FedMUD+BKD 634 FedMUD+BKD %8 i~uns
sa0] = FedMUD+AAD] —=- FedMUD+AAD ’\7&5\\14;1 62{ —=- FedMUD+AAD < 241 —=- FedMUD+AAD
"] =+ FedMUD+BKD+AAD 741 —e- FedMUD+BKD+AAD —+- FedMUD+BKD+AAD 60.4| 221 —e- FedMUD+BKD+AAD 52
835

a
g

1 2 4 8 16
Reset intervals

2 64 100 1 2 4 8 16

Reset intervals

32 64 100

1 2 4 8 16
Reset intervals

32 64 200 1 2 4 8 16 32 64 200
Reset intervals

Figure 3. Accuracy of FedMUD under different reset intervals.

Table 2. Accuracy of FedMUD when applied with freezing (+F)
and decoupling (+AAD) under the Non-IID-1 data distribution.

FMNIST SVHN CIFAR-10 CIFAR-100

FedMUD+F 88.5 81.0 71.1 353
FedMUD+AAD 88.5 84.7 73.3 374
FedMUD+BKD+F 88.6 84.9 74.4 38.0
FedMUD+BKD+AAD 89.0 86.6 75.9 41.2

5.3. Decoupling vs. Freezing

ADD decouples the multiplication of trainable matrices to
avoid errors introduced by aggregating sub-matrices. In
principle, a similar effect could also be achieved by freezing
one of the sub-matrices (Sun et al., 2024). Therefore, we
conduct an ablation experiment to compare the difference
between decoupling and freezing, under the same commu-
nication cost. Table 2 demonstrates that AAD consistently
outperforms the method that freezes the matrix U, where
FedMUD+AAD and FedMUD+F utilize different update
matrix shapes: Usap (V)T 4+ U(Vaap)' for the former
and U (V)T for the latter. Although U 4p and Va4 p indi-
vidually have significantly fewer parameters than Vy, their
sum is approximately equal. As discussed by Hayou et al.
(2024), the roles of U and V in low-rank training differ,
and both of their updates significantly affect convergence.
Therefore, freezing either U or V results in suboptimal per-
formance. In contrast, AAD can be viewed as an additive
combination of two freezing modules, which ensures the
simultaneous trainability of U and V.

5.4. Ablation on Reset Intervals

By default, FedMUD reinitializes the sub-matrices before
each round of local training, i.e., the reset interval s = 1.
In this section, we examine the effect of the reset interval
on model performance. As illustrated in Figure 3, model
accuracy generally decreases as the reset interval increases,
consistent with our theoretical analysis. However, com-
pared to s = 1, a slight improvement in model accuracy is
occasionally observed for s = 2 or s = 4, which can be at-
tributed to data heterogeneity. Specifically, a larger interval
allows the low-rank matrices to observe more diverse data
before being added into the frozen parameters, thereby miti-
gating the effects of data heterogeneity. Yet, as the interval
continues to increase, previously learned knowledge may
be forgotten or overwritten, leading to a decline in accuracy.
Moreover, when the reset interval equals the total number of
training rounds, FedMUD reduces to FedLMT, and its per-
formance becomes comparable to that of FedLMT. Figure 3
also demonstrates the performance improvements achieved
by AAD and BKD individually, with AAD showing a more
significant contribution. In conclusion, the reset interval
should typically be set to 1 for optimal performance.

5.5. Ablation on Initialization Values

The initialization of sub-matrices plays a critical role in the
performance of low-rank decomposition methods. In our ex-
periments, we employed a uniform distribution U (—a, a) to
initialize the sub-matrices. This section examines how differ-
ent initialization values affect the performance of FedMUD.

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

F-MNIST with Non-IID-1 SVHN with Non-1ID-1

CIFAR-10 with Non-IID-1 CIFAR-100 with Non-IID-1

89.3

. 86.3_ °32 _ 863
890 :':’;__B%g’ \\asn % == 84.8 g
885 885 e v 3 845 i 846
88.5 r———-—__gig" 884 838~ ‘*gﬂ-s 838 83.8
> /l 88.2 82| 84 ud =
E 88.0 Vi 87.9) E //
§ 875 & § & 8L e 810 oo
< a1b —e— FedMUD < —a— FedMUD
87.0 FedMUD+BKD 8 FedMUD+BKD
6 —= FedMUD+AAD —s- FedMUD+AAD
86 —+ - FedMUD+BKD+AAD 17 -+ FedMUD+BKD+AAD

75.8 75.9
e BRI R

7 a7 5 ~ <407
74 73-'B‘~133 40 39"42”
/ 1N 37.8
72 4 '3 Syl 712 38 =
w==762 702 ~ 36.0
Tl S 69.3 697 693| O 36 7 Sev2 o3l 351 31
© 7 © 7 -l
5 67,4 N ’
0 581U es o / 32.4
£ & 3% ¢
66 50 g4 —=— FedMUD 21 —=— FedMUD
64 FedMUD+BKD 30 29.4 FedMUD+BKD
o === FedMUD+AAD 28 == FedMUD+AAD
60, =& FedMUD+BKD+AAD 26 J =& FedMUD +BKD+AAD
60 -

05 10 30 50 100 300

Initialization Value

05 10 30 50 100 300

Initialization Value

01 03

05 10 30 50 100 300

Initialization Value

05 1.0 30 50 100 300 03

Initialization Value

01 03

Figure 4. Accuracy of FedMUD under different initialization values.

F-MNIST with Non-IID-1 SVHN with Non-IID-1

CIFAR-10 with Non-IID-1 CIFAR-100 with Non-IID-1

88.5 .
883 Efy ————— 83 87.9 88.0_ __——— B3
—— ot 88 e = =
88.0 5= 87.9 .~~~ Rl :Z:? ____ +
87.6. =" 876 =~ 877 86 e 657 e - 85.6
3 875 - i 2l
b _-"813 B
5 N 812 £ 83835
: —e— FedMUD 82 FedMUD
86.5 FedMUD-+BKD FedMUD+BKD
—=- FedMUD+AAD 80 —=- FedMUD+AAD
860185 —+- FedMUD-+BKD-+AAD 78, —+ - FedMUD+BKD+AAD
T 78 T

116 112
Compression Ratio

1716 112
Compression Ratio

18 8

IR 3
. B2 e 0 o 393 ==~
- oy 7.6 744 B €1
a0 + 3 /,’311 _______ .-______i;._g
_______]
> (723 B -7 > [-7 36.0
E Lo = E 36735“1/’ 347 34.9
5 707| 5 [4 3414
<l(uJ o §9.2 ——" § *7 33.0
+— —=— FedMUD —s— FedMUD
68 {67.5 FedMUD+BKD 21 FedMUD+BKD
—=- FedMUD+AAD 304 —=-- FedMUD+AAD
66 165, —e- FedMUD+BKD+AAD 28 —e- FedMUD+BKD+AAD

116 112
Compression Ratio

116 112
Compression Ratio

18 18

Figure 5. Accuracy of FedMUD under different compression ratios.

In Figure 4, the z-axis denotes the parameter a, which de-
termines the magnitude of the initialization range. As illus-
trated, we observe that inappropriate initialization values
can lead to a decrease in model accuracy. In contrast, the
proposed BKD exhibits reduced sensitivity to variations in
initialization values. Further, BKD typically requires larger
initialization values compared to traditional low-rank de-
composition. Overall, some adjustment of the initialization
values is necessary for FedMUD to achieve optimal perfor-
mance. Based on these observations, we believe that it is
feasible to dynamically adjust the initialization values for
FedMUD during training, and we leave this as future work.

5.6. Ablation on Compression Ratios

The compression ratio is set to 1/32 for all methods in Sec-
tion 5.2, where FedMUD significantly outperforms the base-
lines in terms of accuracy, though it still lags behind FedAvg.
This section examines the impact of varying compression
ratios on model performance. As illustrated in Figure 5, the
accuracy improves as the compression strength decreases.
Notably, with 8-fold compression, FedMUD+BKD+AAD
achieves accuracy comparable to that of FedAvg.

6. Related Work

6.1. Low-Rank Decomposition

Low-rank decomposition is a matrix compression technique
that expresses a matrix as the product of two sub-matrices
(Sainath et al., 2013). To enhance performance, researchers
have further explored decomposing matrices into more sub-
matrices, as in Tucker Decomposition (Malik & Becker,

2018) and Tensor-Train Decomposition (Novikov et al.,
2018). Recently, such techniques have been widely adopted
in model compression (Yao et al., 2021; Novikov et al.,
2018), parameter-efficient fine-tuning (Hu et al., 2022; Mao
et al., 2024), and related domains.

This paper investigates the application of low-rank decompo-
sition in communication-efficient federated learning (CEFL).
The work in (Kone¢ny et al., 2016) was the first to apply
low-rank decomposition for reducing communication costs,
although it only compresses the uplink communication. As
previously discussed, subsequent studies (Yao et al., 2021;
Liu et al., 2024) face several challenges. To address these,
we propose three novel techniques that significantly improve
the performance of low-rank decomposition in federated
learning. It is also noteworthy that low-rank decomposi-
tion has seen broad application in personalized federated
learning (FL) (Hyeon-Woo et al., 2022; Liu et al., 2024; Wu
et al., 2024; Dadras et al., 2024), and our proposed methods
can be effectively extended to this setting to further enhance
performance.

In addition, low-rank techniques have been extensively uti-
lized for the efficient fine-tuning of large language models
(LLMs). For example, Hu et al. (2022) introduced Low-
Rank Adaptation (LoRA), which approximates updates to
pretrained weights using products of low-rank matrices, sig-
nificantly reducing memory consumption. However, the con-
strained rank may limit model performance. To overcome
this, Lialin et al. (2024) proposed superimposing multiple
low-rank matrices to increase the effective rank. Further-
more, Edalati et al. (2023) replaced matrix multiplication
in LoRA with the Kronecker product, enabling theoreti-

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

cal reconstruction of full-rank matrices. Nevertheless, this
approach is less flexible in controlling compression rates
compared to the proposed BKD method.

6.2. Communication-Efficient Federated Learning

Existing methods primarily reduce communication cost in
FL from two aspects: model compression and gradient com-
pression. Model compression typically involves training
a smaller model on the client side. For example, (Caldas
et al., 2018; Bouacida et al., 2021) allow clients to train sub-
models derived from a larger server model, while (Isik et al.,
2023; Bibikar et al., 2022) train pruned models during local
training. Furthermore, Yang et al. (2021) trains and commu-
nicates a binary neural network. Low-rank decomposition
methods, such as FedLMT and FedHM, also fall within the
model compression category. However, model compres-
sion often sacrifices the model’s expressiveness, resulting
in decreased accuracy, especially when higher compression
strengths are applied. In contrast, gradient compression tar-
gets model updates (i.e., accumulated gradients), minimiz-
ing the negative impact on model’s expressiveness. Existing
methods typically apply pruning (Stripelis et al., 2022; Qiu
etal., 2022; Li et al., 2024a) or quantization (Karimireddy
et al., 2019; Li et al., 2024b) techniques to the model up-
dates to reduce communication overhead. Notably, MUD
is a form of gradient compression. By representing the
model update as sub-matrices, our approach achieves sig-
nificantly higher accuracy compared to existing low-rank
decomposition methods. Additionally, experimental results
demonstrate that our method outperforms the gradient com-
pression methods based on pruning and quantization.

7. Conclusion

In this paper, we provide a comprehensive study on low-rank
decomposition techniques in the context of communication-
efficient federated learning (CEFL). Specifically, we focus
on three key challenges related to decomposition in FL:
what to decompose, how to decompose, and how to aggre-
gate. In response to these challenges, we propose three
novel techniques: Model Update Decomposition, Block-
wise Kronecker Decomposition, and Aggregation-Aware
Decomposition. These techniques have been theoretically
analyzed and empirically validated, and the results demon-
strate that our approach significantly improves the perfor-
mance of low-rank decomposition in CEFL.

Acknowledgements

This work is supported by the National Key Re-
search and Development Program of China under grant
2024YFC3307900; the National Natural Science Founda-
tion of China under grants 62376103, 62302184, 62436003,

and 62206102; Major Science and Technology Project
of Hubei Province under grant 2024BAA008; Hubei Sci-
ence and Technology Talent Service Project under grant
2024DJCO078; and Ant Group through CCF-Ant Research
Fund. The computation is completed in the HPC Platform
of Huazhong University of Science and Technology.

Impact Statement

In this paper, we improve low-rank decomposition tech-
niques in communication-efficient federated learning. The
proposed method focuses solely on improving the commu-
nication efficiency. Therefore, we believe that our method
does not result in any adverse social impact.

References

Bibikar, S., Vikalo, H., Wang, Z., and Chen, X. Federated
dynamic sparse training: Computing less, communicating
less, yet learning better. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2022.

Bottou, L. Large-scale machine learning with stochastic
gradient descent. In International Conference on Compu-
tational Statistics (COMPSTAT), pp. 177-186. Physica-
Verlag, 2010.

Bouacida, N., Hou, J., Zang, H., and Liu, X. Adaptive
federated dropout: Improving communication efficiency
and generalization for federated learning. In 2021 IEEE
Conference on Computer Communications Workshops,
INFOCOM Workshops, pp. 1-6. IEEE, 2021.

Caldas, S., Kone¢ny, J., McMahan, H. B., and Talwalkar, A.
Expanding the reach of federated learning by reducing

client resource requirements. CoRR, abs/1812.07210,
2018.

Chen, M., Li, X., and Zhao, T. On generalization bounds
of a family of recurrent neural networks. In The 23rd
International Conference on Artificial Intelligence and
Statistics (AISTATS), 2020.

Dadras, A., Stich, S. U., and Yurtsever, A. Personal-
ized federated learning via low-rank matrix factorization.
In Advances in Neural Information Processing Systems
(NeurIPS) Workshop OPT, 2024.

Dorfman, R., Vargaftik, S., Ben-Itzhak, Y., and Levy, K. Y.
Docofl: Downlink compression for cross-device feder-
ated learning. In International Conference on Machine
Learning (ICML), 2023.

Edalati, A., Tahaei, M. S., Kobyzev, 1., Nia, V. P., Clark,
J. J., and Rezagholizadeh, M. Krona: Parameter efficient
tuning with kronecker adapter. In Advances in Neural

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

Information Processing Systems (NeurIPS) Workshop,
2023.

Glorot, X., Bordes, A., and Bengio, Y. Deep sparse rectifier
neural networks. In International Conference on Artificial
Intelligence and Statistics (AISTATS), pp. 315-323, 2011.

Gruntkowska, K., Tyurin, A., and Richtarik, P. EF21-P and
friends: Improved theoretical communication complexity
for distributed optimization with bidirectional compres-

sion. In International Conference on Machine Learning
(ICML), 2023.

Hayou, S., Ghosh, N., and Yu, B. Lora+: Efficient low rank
adaptation of large models. In International Conference
on Machine Learning (ICML), 2024.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR, pp.
770-778. IEEE Computer Society, 2016.

Honig, R., Zhao, Y., and Mullins, R. D. Dadaquant: Doubly-
adaptive quantization for communication-efficient feder-
ated learning. In International Conference on Machine
Learning (ICML), 2022.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models. In International Conference
on Learning Representations (ICLR), 2022.

Hyeon-Woo, N., Ye-Bin, M., and Oh, T. Fedpara: Low-rank
hadamard product for communication-efficient federated
learning. In International Conference on Learning Rep-
resentations (ICLR), 2022.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. In International Conference on Machine Learning
(ICML), 2015.

Isik, B., Pase, F., Giindiiz, D., Weissman, T., and Zorzi, M.
Sparse random networks for communication-efficient fed-
erated learning. In International Conference on Learning
Representations (ICLR), 2023.

Karimireddy, S. P., Rebjock, Q., Stich, S. U., and Jaggi, M.
Error feedback fixes signsgd and other gradient compres-
sion schemes. In International Conference on Machine
Learning (ICML), 2019.

Konecny, J., McMahan, H. B., Yu, F. X., Richtarik, P,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. CoRR,
2016.

10

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical report, University
of Toronto, 2009.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge, 2015. Stanford CS231n Course Project.

Li, Q., Diao, Y., Chen, Q., and He, B. Federated learning
on non-iid data silos: An experimental study. In Inferna-
tional Conference on Data Engineering (ICDE), 2022.

Li, S., Cheng, Y., Wang, H., Tang, X., Xu, S., Luo, W,, Li,
Y., Liu, D., He, X., and Li, R. Masked random noise
for communication-efficient federated learning. In ACM
International Conference on Multimedia (ACM MM),
2024a.

Li, S., Xu, W., Wang, H., Tang, X., Qi, Y., Xu, S., Luo,
W., Li, Y., He, X., and Li, R. Fedbat: Communication-
efficient federated learning via learnable binarization. In

International Conference on Machine Learning (ICML),
2024b.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On the
convergence of fedavg on non-iid data. In International
Conference on Learning Representations (ICLR), 2020.

Lialin, V., Muckatira, S., Shivagunde, N., and Rumshisky,
A. Relora: High-rank training through low-rank updates.

In International Conference on Learning Representations
(ICLR), 2024.

Liu, J., Zhou, Y., Wu, D., Hu, M., Guizani, M., and Sheng,
Q. Z. Fedlmt: Tackling system heterogeneity of federated
learning via low-rank model training with theoretical
guarantees. In International Conference on Machine
Learning (ICML), 2024.

Malik, O. A. and Becker, S. Low-rank tucker decomposition
of large tensors using tensorsketch. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

Mao, Y., Ge, Y., Fan, Y., Xu, W., Mi, Y., Hu, Z., and Gao, Y.
A survey on lora of large language models. CoRR, 2024.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In International Con-
ference on Artificial Intelligence and Statistics (AISTATS),
2017.

Mei, Y., Guo, P, Zhou, M., and Patel, V. Resource-adaptive
federated learning with all-in-one neural composition.
In Advances in Neural Information Processing Systems
(NeurlPS), 2022.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

unsupervised feature learning. In Advances in Neural
Information Processing Systems (NeurlPS) Workshop,
2011.

Novikov, A., Izmailov, P., Khrulkov, V., Figurnov, M., and
Oseledets, 1. V. Tensor train decomposition on tensorflow
(T3F). CoRR, 2018.

Qiu, X., Ferndndez-Marqués, J., de Gusmao, P. P. B., Gao,
Y., Parcollet, T., and Lane, N. D. Zerofl: Efficient on-
device training for federated learning with local sparsity.
In International Conference on Learning Representations
(ICLR), 2022.

Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A.,
and Pedarsani, R. Fedpaq: A communication-efficient
federated learning method with periodic averaging and
quantization. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2020.

Sainath, T. N., Kingsbury, B., Sindhwani, V., Arisoy, E., and
Ramabhadran, B. Low-rank matrix factorization for deep
neural network training with high-dimensional output
targets. In IEEE International Conference on Acoustics,
Speech and Signal Processing, (ICASSP), 2013.

Stripelis, D., Gupta, U., Ver Steeg, G., and Ambite, J. L.
Federated progressive sparsification (purge-merge-tune)+.
In Advances in Neural Information Processing Systems
(NeurlPS) Workshop, 2022.

Sun, Y., Li, Z., Li, Y., and Ding, B. Improving lora in
privacy-preserving federated learning. In International
Conference on Learning Representations (ICLR), 2024.

Tang, H., Yu, C., Lian, X., Zhang, T., and Liu, J. Dou-
blesqueeze: Parallel stochastic gradient descent with
double-pass error-compensated compression. In Interna-
tional Conference on Machine Learning (ICML), 2019.

Wu, X., Liu, X., Niu, J., Wang, H., Tang, S., Zhu, G., and
Su, H. Decoupling general and personalized knowledge
in federated learning via additive and low-rank decompo-
sition. In ACM International Conference on Multimedia
(ACM MM), 2024.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. CoRR, 2017.

Yang, Y., Zhang, Z., and Yang, Q. Communication-efficient
federated learning with binary neural networks. IEEE J.
Sel. Areas Commun., 39(12):3836-3850, 2021.

Yao, D., Pan, W., Wan, Y., Jin, H., and Sun, L. Fedhm:
Efficient federated learning for heterogeneous models via
low-rank factorization. CoRR, 2021.

11

Yu, H., Yang, S., and Zhu, S. Parallel restarted SGD with
faster convergence and less communication: Demystify-
ing why model averaging works for deep learning. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), 2019.

Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K. H.,
Hoang, T. N., and Khazaeni, Y. Bayesian nonparametric
federated learning of neural networks. In International
Conference on Machine Learning (ICML), 2019.

Zou, D., Long, P. M., and Gu, Q. On the global conver-
gence of training deep linear resnets. In International
Conference on Learning Representations (ICLR), 2020.

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

A. Additional Experimental Results

In this section, we present the convergence curves of different methods under various data distributions, as illustrated in
Figure 6. Then, we evaluate the performance of FedMUD under the Non-IID-2 data distribution, considering various reset
intervals, initialization values, and compression ratios. The experimental results, presented in Figure 7, align with the
findings in Section 5. Table 4 summarizes the results of ablation experiments on decoupling and freezing, as discussed in
Section 5.3, under Non-IID-2 and IID data distributions. Additionally, we provide the experimental results for all methods
under the IID data distribution, as shown in Table 3. Moreover, we evaluate our method against FedAvg and FedLMT using
ResNet18 (He et al., 2016) on the CIFAR-10 and TinylmageNet (Le & Yang, 2015) datasets under the Non-IID-1 setting.
The compression ratio is set to 16x or 32x, and the learning rate is tuned over {0.001,0.003,0.01,0.03,0.1}. All other
experimental settings follow those described in Section 5.1. The results, summarized in Table 5, show that our method
retains superior performance even with 32x communication compression, achieving accuracy closest to FedAvg.

F-MNIST with Non-1ID-1 SVHN with Non-IID-1 CIFAR-10 with Non-1ID-1 CIFAR-100 with Non-IID-1
% ./-_\‘ 90 l/,\\“/.—-- 80 4 e EY) —
88 85 701
40
86 80 60
> > > >
9 9 9 [
© © © © 30
° ° ° °
S 84 375 3 50 4 =1
S S S o
< < < <
82
70 40 1 20
80
65 30 1
10
78
60 20 =
o 20 40 60 80 100 o 20 40 60 80 100 o 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
Communication rounds Communication rounds Communication rounds Communication rounds
—-- FedAvg --- FedHM FedLMT FedPara -=- EF21-P —--- FedBAT —— FedMUD —— FedMUD+AAD —— FedMUD+BKD —— FedMUD+BKD+AAD
F-MNIST with Non-I1ID-2 w0 SVHN with Non-1ID-2 o CIFAR-10 with Non-IID-2 " CIFAR-100 with Non-1ID-2
Rl .
88
85 70 1
86
80 60
g 3 3 g
© © © ©
5 575 5 50 5
o o o o
I8 < < <
70 404
80
65 30 1
78
60 20
o 20 40 60 80 100 o 20 40 60 80 100 o 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
Communication rounds Communication rounds Communication rounds Communication rounds
—-- FedAvg --- FedHM FedLMT FedPara -=- EF21-P —--- FedBAT —— FedMUD —— FedMUD+AAD —— FedMUD+BKD —— FedMUD+BKD+AAD
F-MNIST with IID SVHN with IID CIFAR-10 with IID CIFAR-100 with IID
22 v,,—»-—"'"""— 60
920
91 80
50
85
90
> 89 > 80 "] >0
9 9 9 [
jd jd jd o
3 88 3 = =3
g g g g
< < < 00 < 3
87
70
86
50 20
65
85
84 60 40 10 o
0 20 40 60 80 100 0 20 40 60 80 100 0 25 50 75 100 125 150 175 200 0 25 50 s 100 125 150 175 200
Communication rounds Communication rounds Communication rounds Communication rounds
—-- FedAvg === FedHM FedLMT FedPara -=-- EF21-P —--- FedBAT —— FedMUD —— FedMUD+AAD —— FedMUD+BKD —— FedMUD+BKD+AAD

Figure 6. Convergence curves of different methods under Non-IID-1, Non-IID-2 and IID data distribution.

12

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

SVHN with Non-IID-2

CIFAR-10 with Non-IID-2

CIFAR-100 with Non-IID-2

F-MNIST with Non-IID-2
88.0 86 Y
7.5 TS<BL4 g =84 g4 739,27 SN IR N b
-~ 8. - -~ ~
- 841835 TS ~a3ots
87.0 ~87.0 83.2 ~g3.0 34 L3 3.5
87.0 #-—-86.9 N,
867 oo~ .807 “Naus 83> o AN
a6 o N V.89 82 T~818 g1 g7 2 L6 \§ -
> > > > > 258 0.0 NS
& eoo 8 8 8 ¥ os. R
5 =1 5 5 N T~28s
S 51 s S 2 27.9)‘9 hd
I < < < \
\
26 252 353
24 237
22 9
835
1 2 4 8 16 32 64 100 1 2 4 8 16 32 64 100 1 2 4 8 16 32 64 200 1 2 4 8 16 32 64 200
Reset intervals Reset intervals Reset intervals Reset intervals
—=— FedMUD FedMUD+BKD —-=- FedMUD+AAD —-+- FedMUD+BKD+AAD
. F-MNIST with Non-IID-2 o SVHN with Non-IID-2 CIFAR-10 with Non-IID-2 CIFAR-100 with Non-IID-2
740 739 36.1
87.6 85.0 -
875 _"4_815 849 ° 74 e 5 5 .
.o * it XY alw__?i?——"‘ *--837 / ~22.7 * w231 AR \\{5‘.3,3506
87.0 / b 835 835 72 S~aLe ! I /
87 '-‘~@s 7/ 867 867 86.7 M 34 L AN z
7 SeL-—n o 86.6 : 82.7 ,, N 7
a?{i € 863 7 i (4
1 AN
-] > 268 675 T * / 309 30.9
- 30.8
[[[663 996 O H 2L
g g g 66 g 30 +29.7
< < < < ,' 8.9 288
64 284
28 7.8
62
26
60 1
24/6
83 58 24
01 03 05 10 30 50 100 300 01 03 05 10 30 50 100 300 01 03 05 10 30 50 100 300 01 03 05 10 30 50 100 30.0
Initialization Value Initialization Value Initialization Value Initialization Value
—s— FedMUD FedMUD+BKD —-#- FedMUD+AAD -+~ FedMUD+BKD+AAD
F-MNIST with Non-1ID-2 SVHN with Non-IID-2 CIFAR-10 with Non-IID-2 CIFAR-100 with Non-lID-2
£
88.5 88.4 = 764 e ‘
PX il -
’,,’ 8 * 7327
.0~ - —— 74.6
8 sa-- o e
- - 4 e
86 B 733
723 24 ——
5. 875 - oy | e T20_ = -
9 9 9 9
e o84 e 07| €
3 3 3 3
87.0
o o] o o
< < < 692 69.3 <
82
86.5 68 {675
80
86.0
66 65,
78
132 116 12 s 132 116 12 8 132 116 112 18 132 116 112 s
Compression Ratio Compression Ratio Compression Ratio Compression Ratio
—=— FedMUD FedMUD+BKD —-=- FedMUD+AAD —-+- FedMUD+BKD+AAD

Figure 7. Ablation on hyperparameters for the proposed methods under Non-IID-2 and IID data distribution.

Table 3. Accuracy of different methods under the IID data distribution.

FMNIST (IID) SVHN (IID) CIFAR-10 (IID) CIFAR-100 (IID)
FedAvg (McMahan et al., 2017) 91.9(£0.1) 92.3(£0.1) 87.4(£0.2) 59.1(£ 0.4)
FedHM (Yao et al., 2021) 89.1(£ 0.3) 79.9(£ 0.9) 76.4(£ 0.7) 35.9(£ 0.8)
FedLMT (Liu et al., 2024) 89.1(£ 0.1) 79.6(£ 0.7) 75.9(£ 0.7) 34.6(£ 0.3)
FedPara (Hyeon-Woo et al., 2022) 89.2(£ 0.2) 86.1(£ 0.2) 76.7(+ 0.6) 37.8(£0.5)
EF21-P (Gruntkowska et al., 2023) 87.9(£ 0.3) 87.9(£ 0.2) 64.4(+ 0.4) 28.1(+ 04.)
FedBAT (Li et al., 2024b) 90.5(+ 0.1) 89.3(+ 0.0) 82.8(+ 0.1) 47.3(£0.5)
FedMUD 90.0(£ 0.2) 87.3(£ 0.1) 79.2(£ 0.3) 43.5(£0.3)
FedMUD+AAD 90.9(£ 0.1) 89.1(£ 0.2) 83.0(+ 0.1) 50.5(£ 0.1)
FedMUD+BKD 90.5(£ 0.2) 88.5(£ 0.1) 79.0(£ 0.2) 45.7(£ 04)
FedMUD+BKD+AAD 91.0(£ 0.3) 89.5(+£ 0.1) 83.2(£ 0.3) 51.4(£ 0.3)

13

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

Table 4. Accuracy of FedMUD when applied with freezing (+F) and decoupling (+ADD) under the Non-IID-2 and IID data distribution.

FMNIST SVHN CIFAR-10 CIFAR-100
Non-IID-2 11D Non-IID-2 1ID Non-IID-2 11D Non-IID-2 11D
FedMUD+F 87.1 90.9 80.2 87.4 67.5 82.2 33.0 48.4
FedMUD+AAD 87.0 90.9 82.5 89.1 72.3 83.0 35.1 50.5
FedMUD+BKD+F 87.4 90.9 83.3 88.5 71.2 81.9 333 48.7
FedMUD+BKD+AAD 87.6 91.0 84.9 89.5 73.9 83.2 36.1 514

Table 5. Accuracy of ResNet18 on CIFAR-10 and TinyImageNet.

16x Compression 32x Compression
Model / Dataset FedAvg FedLMT FedMUD+BKD+AAD FedLMT FedMUD+BKD+AAD
ResNet18 on CIFAR-10 84.1 76.4 83.2 73.9 79.6
ResNet18 on TinyImageNet 40.0 31.3 36.9 13.8 334

B. Discussion about the Upper Rank Bound of BKD

In this section, we briefly examine the upper bound on the rank of BKD by leveraging properties of the Kronecker product
and matrix concatenation. Specifically, we use the identity rank(A @ B) = rank(A) - rank(B) and the inequality
rank([A|B)]) < rank(A) + rank(B). Let A, B € R**?; then their Kronecker product yields a matrix W € R®” x°,
According to the rank property of the Kronecker product, we have rank(W) = rank(A) - rank(B), which can be as
large as min a2, b? (i.e., the maximum possible rank for a matrix of size a? x b?). Since BKD can be interpreted as the
concatenation of several such Kronecker product matrices, and each sub-matrix can individually attain full rank, the overall
recovery matrix of BKD is capable of achieving full rank.

C. Proof of Theorem 1

In this section, we first present the problem formulation, then outline the assumptions and lemmas necessary for the proof,
and conclude with a detailed proof process. Our theoretical analysis relies mainly on FedLMT (Liu et al., 2024).

C.1. Problem Formulation

Let us consider N clients with local datasets D = {ID,Ds, ..., Dx}. The goal of FL is to solve the following problem
1
. A)
min f(w) = i E_l fi(w), (11)

where w = {Wy, Wa, ..., W} denotes the parameters of L layers. fi(w) £ E¢,cp,[F;(w,&;)] is the expected loss
function of client 7 and &; is a random data sample of client . In this paper, we propose freezing the original model
parameters and learning low-rank matrices as the model updates. Assuming that the first p layers remain unchanged and
low-rank model updates are only applied to the subsequent layers, the entire set of model parameters can be expressed as

X = {Wl,...,Wp,Wp+1,Up+1,Vp+1,...,WL,UL,VL}, (]2)

where {W, 11, W,42,..., W} remains frozen during gradient descent and will only be updated when the model updates
U(V)T are manually added. Each pair of U; € R™*" and V; € R"*" denotes the low-rank updates of the corresponding
frozen parameters W; € R™*"™. Throughout the entire training process, the recovered parameters can be expressed as

w={Wi,...,W,, W1 +Upi1(Vor1) ..., W +U(V) "} (13)

Let h(-) denote the local objective function for training with low-rank model updates, the goal of FL with FedMUD becomes
1N
. A
min h(x) = N ;:1 hi(x), (14)

14

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

where h;(x) £ E¢,ep, [Hi(x,&;)] is the excepted loss function of client 4 with low-rank model updates.

Let x! denote the model parameters of client i at iteration ¢ and E < T' denote the number of iterations between successive
aggregations, we have
t—1 1 N t—1 ;
’ { X\t =k S VH(xi7 gl) ift mod E =0, as)
+—

X. =
' x{ = nVH(x{7 ¢ otherwise,

Next, we define S £ nE to be the number of iterations between consecutive resets of low-rank updates. Specifically, for
every n rounds or S iterations, low-rank model updates U (V) T will be manually added to frozen parameters. Subsequently,
U is reinitialized randomly and V is reinitialized to zero, ensuring that the values of the recovered model parameters w
remain unchanged before and after the reset. In particular, the initialized value of U must remain consistent between different
clients, which can be ensured by passing a random seed from the server to clients. This reset process is defined as

£y s —
Xt = { retset,updates(xi) ift mod =0, (16)
X; otherwise.
Table 6. Commonly used notations and descriptions.
Notation Description
n The learning rate.
1 N The index and total number of clients.
t T The index and total number of training iterations.
E S The number of iterations for model aggregation and resetting model updates.
te ts The iteration indices of last model aggregation and last resetting model updates.
I L The index and total number of the layers within a neural network.
p The first p layers of the network remain the same without applying low-rank model updates.
X W The model parameters and recovered model parameters as defined in Eq.(12) and Eq.(13).
X W The average results of x and w of all clients as defined in Eq.(17) and Eq.(18).
lIll= Il Frobenius norm of a matrix and ¢> norm of a vector.
h; H; The objective function and its expectation of client ¢, defined in Eq. (14), taking x as their input.
fi F; The objective function and its expectation of client ¢, defined in Eq. (11), taking w as their input.
For the sake of convenience in subsequent analysis, we give the following definitions.
1 1 1
Tt A t it A t it A t
mfﬁgmwmfﬁgwbwfﬁgm,
. (17)
it = N fo = {va LR W;> W;Jrl? U;+1> V:atJrh B Wia U£> V[f}
i=1
Further, we can use X to get the recovered parameters w as follows.
W (W W Wy + U (Vi) T W+ DLV T) (18)
According to the definition of x, we have the following property for x.
1
-t _ ot—1 (t—1
%t =% anZVHZ(xi) (19)

=1

Since w is recovered from x and w is recovered from X, we have F;(w,§) = H;(x,§) and F;(w, &) = H;(X,§). Next,
we discuss the relationship between the derivatives of F'(-) and H(-). We use the subscript [to indicate the trainable
parameters and corresponding gradients of layer I. For each layer | < p, we have VF} (w}, &) = VHY (x}, &), since
x}; = wi, = W/,. For each layer | > p, VH(-) and VF(-) satisfy

VE(wh eV
. togt+1ly » ER) %,
VHz,l(Xlagz) VFi,l(Wg,gg—i—l)TUil . (20)

15

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

Note that we will omit & in F'(-) and H(-) for ease of writing in the following analysis. Considering that h;(x) = E[H;(x)]
and Vh(x) = & SN Vhi(x), we have

\V4 i t V-t _ _ Wt /it
Vhi,z(XD = {Vf{léf’zslﬁij) VHZ(X)= {VVF};((— t)zr‘/[}]t}) Vhl(xt) = {vaﬁi—vt)zr } : 2D

The Frobenius norm of VH (-) and VF(-) has the following relationship
||VH¢,1(X§71)||37 = ||VFi,l(W§71)VZlH; + ||VFi,z(W§71)TUZz||F7 22
[9haa 6Dl = 19 Fuatoi VA + 9 falwt) TOL

Finally, the whole gradient of x,t»_1 and wg_l can be represented as

Vhi(x t'il) = {Vhl(x 1)7 = ’vVhiL(Xgil)}ﬂ VHi(Xiil) = {VH}(X§71)7 - ’7VH’L'L(X§71)}7

23
VA) = (VA D, VA wED), VEwEY) = (VR VR),
where Vh;(x! ™), VH;(x! ™), Vfi(w!™') and VF;(w!™') are flattened vectors, and we have

VR, = ZHWM s IVEET] = ZHVHH Iz

(24
N
IV siwi][5 = Z IV 7w IV, = Z IV Fra(wi |-
I=1

In the following, we demonstrate that the sequence of recovered model parameters {w', w2 ..., w’ ... w’}, obtained by

FedMUD, converges to a local stationary point in the optimization space of w under non-convex and smooth assumptions.
The commonly used notations are summarized in Table 6, where t. and ¢ are used to represent the iteration indices of last
aggregation and last resetting model updates. Thus, we have 0 <t —t. < Fand 0 <t —ts < S.
C.2. Assumptions
Assumption 1. The loss functions f;(-) and h;(-) are differentiable and L-smooth, with a constant L.
L ,
filw1) < fi(wa) + (w1 — wa, Vfi(wa)) + o5 w1 — W2||§7 Vi, Vwy, Vwo,
I (25)
hi(x1) < hi(xa) + (%1 = Xa, Vhi(x2)) + 2 [Ix1 = xal3, Vi, V3o, Vo
Assumption 2. The stochastic gradient V F;(w, &b and V H;(x!, &8 are unbiased, with bounded variance and norm.
EEqEDVE(fagt) :vff(:)7 E&EDZVHl(Xf’gzt) :v}ll(xf)’ Vi, Vit
VE(whe) — Viwh|s <o? Ee (Wl e < G2 WLV

Assumption 3. The Frobenius norm of matrices U and V' is bounded during both initialization and training.

(26)

LI <s2, (VAR <2 and |JUE|% <& <r?, |[UF|5 <& <n? Vivtvi>p QD)

Assumption 4. At least one of the matrices in {Uy, V;} has a smallest singular value greater than zero.
[5min((jlt)]2 + [5min(‘7lt)]2 > wiv >0, VtVl>p, (28)
where Uf = < Zz VUl Vi=+ ZZ L Vi and 8y, (+) return the smallest singular value of a matrix.

Note that Assumption 3 is reasonable and commonly adopted in convergence analysis, as discussed in Section 4. In FedMUD,
the low-rank matrices U and V' undergo local gradient descent updates for a finite number of steps (7). Following this, they
are merged into the base model parameters and subsequently reinitialized. This periodic reinitialization mechanism prevents
the unbounded growth of U and V. To illustrate, for any matrix U, its value after ¢ steps (t < 7)is Uy = Uy + 7 Z i=1 Ji-
Given ||g;||r < G, its squared norm is bounded by ||U;||% < (7 + 1) [||Uo|% + n*72G?]. Therefore, the combination of
finite local training and periodic reinitialization ensures that U and V' remain bounded, validating our assumption.

16

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

C.3. Lemmas

Before presenting the lemmas, we first introduce an inequality as follows

n 2
D
i=1

2

<n |zl (29)
i=1

which holds for any vector z; and any positive integer n. This inequality also applies to the Frobenius norm of matrices
and can be seen as a special case of the Minkowski inequality. It will be used frequently in the subsequent analysis. For
convenience, we will refer to it as the Minkowski inequality in the following discussion, without further elaboration.

Lemma 1. Under Assumption 4, at each iteration t and for each layer | > p, it follows that
2
VG| = w2, [V AW - (30)
Proof of Lemma 1. According to Eq.(21), for each layer [> p, we have

VR[5 = IV Al OV [+ ([(9 i) T
= (V)R + @D TV AW
@ } , G1)
(5m1n(vvl) +6rmn Ul val HF’
= U A

where (a) follows from the inequality dmin (U) |V|| < [[UV|| for any matrix U € R™*" and matrix V' € R"*". The
proof of this inequality can be found in Lemma B.3 in (Zou et al., 2020). (b) follows from Eq.(28) in Assumption 4.

Lemma 2. Under Assumptions 2 and 3, at each iteration t and for every client i and each layer | > p, it follows that

(32)

u’ ’L)

E[[UL]}] <12 2 minf2el + 20252622, 12}, B [[|[VA][7] T2 2 min{2e2 + 2025°G2k2,

Proof of Lemma 2. Based on the relationship between ¢ and ¢,, we consider two cases. First, when ¢ = ¢, the matrix U
2 2

U, } =F U Ul } < €2 <T?2. Next, for the case where
i o

t > t,, the update of U after initialization can be divided into aggregated gradients and unaggregated gradients as follows

is reinitialized. In this case, by Assumption 3, we have E U

te t
Ul =Ul=n Y. ZVF7 WVt = Y VE(wl VT (33)
T= thrl Jj=1 T=te+1
Thus, we have
[n fll]
2
(@) |1 2 - 1 -1 1
<2E ||vt; L N 2 VEw TV Z VE(w] VT
T=ts+1 j=1 T=te+1 F
Qo [vts|” + 2Pt - 1)E S E EN:VF (wr vt Z VF, vt
<oE |[Ufs||” + 202(t — ¢, = W 1y (ZaMC oy H
Hllr S8 | ket T=to+1 vl (34)
(C)QEUtz 2 E_te 1NVF 1v12 t F 1V12_
oo +aie—rm| 3 S Svmior i+ 3 o |

(@) t.]|? 2 212 2
<2E|U;3 F—|—217 (t—t5)°G*k

(e)
<262 4 202 S2G2 k2,

17

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

where (a), (b) and (c) result from applying the Minkowski inequality in Eq.(29) with n = 2, ¢ — ¢, and N, respectively.
(d) follows from the basic inequality ||PQ||?, < HP||§, . ||Q||§,, Eq.(26) in Assumption 2 and Eq.(27) in Assumption 3. (e)
follows from the inequality (¢ — ¢,) < .S and Eq.(27) in Assumption 3.

Furthermore, by Eq.(27), we have E [H Uit’ .

2
F} < min{2e2 + 2n?5%2G?K2, k2 }. Considering the symmetry of the matrices

U and V/, we can repeat the above process and have E U Vfl

2
‘F] < min{262 + 2n2S?G?*k2, K2
Lemma 3. Under Assumptions 1 and 2, at each iteration t and for every client i and each layer | > p, it follows that

E[[l% - xti3] < 4?2622 + 1) (35)

Proof of Lemma 3. Similar to Lemma 2, we analyze two cases based on the relationship between ¢ and ¢.. First, for the case

2
t = t, all model parameters are aggregated. Thus, we have x| ; = X; and E [xf —xt, ‘ } =0 <4n’E2G?*(I'? +1?).
v
Next, for the case t > t,, both x! and X! can be represented using x‘ as follows
t t N
Xy =X =0 Y VHu(x[), x=x-n Y, > VHux"). (36)
T=t.+1 T=te+1 i=1
Thus, we have
, b N ¢ 2
E s —xtlp] =E{n X 52 VHuGI) =0 Y VHu(q)
T=te+1 i=1 T=te+1 F

t

(a) ¢
< 2Rt —t)E + 3 |VHLeY

1 N
= S VH L)
i=1

o+ P T=tetl
o N o 2 &)
S) SN A va-,mle)uF]

i=1 7=t.+1 T=te+1

() 2 2
Lup- U\ww-w [+ ooz)
(i) 4 2E2G2 2 2
< 4 (Tu +1%),
where (a) and (b) result from applying the Minkowski inequality in Eq.(29) with n = 2(¢ — t.) and N, respectively. (c)

follows from Eq.(22). (d) follows from inequality HPQH% <|IP ||2F . HQH%, Assumption 2 and in Lemma 2.
Lemma 4. Under Assumptions 1, 2 and 3, at each iteration t and for every client 1, it follows that

U v

E[[[w' - wi[3] <A 24 E2G2 +12(L — p)n? E2GA (TS + T} + 1 E2GT2I). (38)

Proof of Lemma 4. Similar to Lemma 3, we analyze two cases based on the relationship between ¢ and t.. First, for the
case t = t., wi = w', and thus E {Hw —wi| } = 0 < A. Next, for the case ¢t > t., we can divide the model parameters

into full and low-rank components and compute E [||\Tvt —w! ||§} as follows

P L
E {H‘V - Wf”;] =E Z Wi - sz”? + Z T (VT - Uf,z(‘/}fz)THQF : (39)
=1 l=p+1
For the first consider the term E Y7, H W} —w}, ‘i, we have
t o X
Wi=Wi—n > VEuw[™), Wi=Wi—n 3 <> VEuw™). (40)
T:tc+1 T=te+1 j=1

18

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

Thus, we have

P P t N
E lz W — W;lH;] =E Z n Z %ZVFJJ(WJT-A) -1 Z VF(wl ™)
=1

F
_) }
(@) - 2 . 1 a T—1
S 2277 (t —te) Z E NZVFN(WJ)|+ HVF” HF
=1 T=to+1 j=1 s 41)
O S, S R]
<D uP(t—to) E |~ 2 [VEuw; O} + [VE.w] D]
=1 r=te+l | j=1 |

where (a) and (b) follow from the Minkowski inequality. (c) follows from Assumption 2. (d) follows from ¢t — t. < E.

1y

o 2
For the second term E |:ZlL_p+l HUlt(Vlt)T — Uit,l(th)T HF] , we have

t t N
_ _ 1 _ ,—
UL =0f—n Y VEuw Wit Of =07 —n 3 5> VEaw; vt
‘r:tc+1 T=t.+1 j=1
t t N (42)
) . 1 STy
Vie=Vie—n Y VE(wWIOTUL V=V - Y 5 VE(w) TUT
T=t.+1 T=te+1 j=1
Thus, we have
t 1 N
ULV =ULVED T ==n | D0 5 D VEw WV = >0 VE(w YV (1)
T=te+1 j=1 T=te+1
Ay
) t 1 t
ST | Y) VEw) = 3 U VWY
T=t.4+1 " j=1 T=tc+1
) b 43)
t 1 N t 1 N
+772 Z NZVF]J(1)‘/]‘3_1 Z Z UT 1 TVF (1)
_‘r:tEJrl j=1 T=te+1 _7:1
C
root t
7772 Z Vle(] [Z U-r 1 VF’LZ(T— 1)]
LT=te+1 T=te+1
D,

Next, we try to find the upper bound of E {HA;HH ,E {HB;HH JE [HC;HH ,and E {HD;H;] , respectively.

19

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

2
t N t
2 1 T— T— T— te
B4l =nE| | > D VRV = Y VEw TV ()T
T=te+1 j=1 T=te+1 F
2
t N t
@ PR > iZVF- (Wi Vit = Y VE(wl vt
>nly N 3 I\Wj 3.l i,1\W; il
T=te+1 j=1 T=te+1 F
] ,]
t N 44
Yy T2(t—t) » E iZVF- (wI VI + (| VE g (wl vt ’ “
miy e N 5,1 \W gl i,1\Wy W g
T=te+1 j=1 P
(c) N . |2 2]
<orit—t) Y B| > |VEuwi i TR
T=to+1 j=1

(d)
< APt —t.)*G’Ty, < 4n° E*G°Ty,

where (a) and (d) follow from the inequality HPQH% <||P ||2F . ||Q||% (b) and (c) result from applying the Minkowski
inequality in Eq.(29) with n = 2(¢ — t.) and N, respectively. Note that A; and B; are symmetric, and similarly, we can

deduce E {HBIH%} < 4n?E%G?T%. Next, for Cj, we have

t 1N t N 2
2 T— T— T— T—
E |:||Cl||F:| =n'E Z NZVFj,Z(Wj I)Vj,l ' Z NZ(UN 1)TVFj,l(Wj 1)
T=te+1 7j=1 T=te+1 j=1 F
2 2
(@ 4 A 1 1 A INT 1
ST SNED SR ZSHETSUIS! N 1D DRSS St LM
T=t.+1 j=1 o ||T=tetl Jj=1 F
Ot —te)? : . 1y 1] : - T—INT NI 45
I DYDY (e il D SIS (Chrs I HC el N)
| T=te+1 =1 T=te+1j=1
©nt(t —t.)? : Z —1y]|2 —1? : J — 1
e DLl el WD SIS o | (M W A2 T
_'r:tg+1_j=1 T=tc+1 j=1
(d)774(t_te)2 [Y 2 2 : al 2 2 A2 2 4 14 ~AT2 2
<—57E S Yo Y [6rE]| =t —to)* G < n'E'GUTIIY,
_'r:tﬁ+1 j=1 T=te+1 j=1

where (a) and (c) follow from the inequality ||PQ||% < ||P||§; : ||Q||2F (b) results from applying the Minkowski inequality

with n = N(t — t.). (d) follows from Assumption 2 and in Lemma 2. Similarly to E [HCZ ||H , we can obtain the same

bound for D, which is E {HD; ||H < n*E4G*T2T'2. Combining the result of A;, By, C; and D;, we have

L L
= 2
Z |THVHT Ul (VDT .| =E Z |A; + Bi + Ci + Dy|| 3,
l=p+1 l=p+1
L L
2 2 2 2 2 2 2
<3 > B[4} + 1Bl + G+ Dilly] <3 3 B[4+ 1B + 210Gl + 2 1017 (46)
l=p+1 l=p+1

L
=3 Y (E’G’Ty + 4*B°G°T)y + 4y E*G'TiT}) = 12(L — p)® B> G*(T'y, + T +)’ E*G°TT2)
l=p+1

Finally, adding Eq.(41) and Eq.(46) to Eq.(40) yields the result of Lemma 4.

20

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

Lemma 5. Under Assumptions 1, 2 and 3, at each iteration t, it follows that

2
2 2
+ 1T L 3(L = ppPGA(TE + T +°GPT2T?) (47

F

P N
Bl -] < 3o || 3wt
=1 =1

Proof of Lemma 5. Similar to Lemma 4, we divide the model parameters into full and low-rank components as follows

E[||w - %!} =E

For the first term, we have

L
+E Z HUIt(Vlt)T 70lt—1(vlt—1)THiﬂ (48)
l=p+1

p
S =W
=1

p P 2
ElZHWf—VW”H?] =>_mE H ZVFH
=1 =1 F
() - 2
N 2 2
—l;nE Z:: VE(wi) = Vi (w])] +ZnE NZVfl)
9 (49)
P N
:Z%Z “Vle = Vil -I-ZUZE H vai,l(w_
=1 i=1 =1 F
O n2e? & N ’
Sn]\(; +) 7’E H;,Z Viawi | |,
=1 i=1 F

where both (a) and (c) follow from Assumption 2. (a) and (c) leverage the unbiased and bounded variance properties of the
gradient, respectively.

For the second term, we have

N
o 1 _
orvh" =0 v :anVFu DV VDT g DU U TV R (wi)
i=1
Al B,
. (50)
NZVFM Vi] ZUfl1 VFE(w)1
Cy
Next, we try to find the upper bound of E {HA;HH JE {HBIH%}, and E _||Cl||f,},respectively.
1 & ’
E[I14}] = 7B |+ D2 VRuwi WV YT
i=1 F
Z}EHVF” WV)T HF (51)
_1|? — 2
<n2ﬁ@sz D Vi T < e

21

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

Note that A; and B; are symmetric, and similarly, we can deduce E {HB; ||H < n2G2T%. Then, for C;, we have

2

N 7 N
1
21 _ 4 t—1 t 1 -1
E[ICi)}] = #'E ﬁ;vm i [NZ U TV F (w >])
1 N e N 2
<n'E ~ > VE (Wi ~ Z (UL TV E y(w! 1)] (52)
i=1 iRiyS i=1 F
ZIE VF, Yyt N Z]E (USHTVE (whh) ‘2 < *GAT2r?
i il || g Ni:l il i, 1\W; » =N ul v
Combining the result of A;, B; and C, we have
L) L
b (T Frt—1 Tt 2 2 2
E| S 00T =0 YT <3 50 B[4 + 1Bl + I
lL=p+1 I=p+1 (53)
<3) PG+ PGP + ' GUTILY] = 3(L — p)*GP (I + Ty + PGPS T).
l=p+1
Finally, adding Eq.(49) and Eq.(53) to Eq.(48) yields the result of Lemma 5.
Lemma 6. Under Assumptions 1, 2, 3 and 4, at each iteration t, it follows that
E[(V(W' ™), w —w')]
~ g 2 2 |1 s o
- 1 - t—1 2
<X B [IVA]+ X ST || 5 E A | L "
=1 =1 i=1 F 54
- 1
+ 3 U Lt (VA DIL] +20 - L2 B2 G2 +12) + S(L—pPGUTar?
l=p+1
Proof of Lemma 6. Similarly, we divide the model parameters into full and low-rank parameters as follows
P
E[VI(w), w —w! " H] =E |3 V(VAWH)) T VIV - W)
=1
(55)

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

where V(-) denotes the operator of converting a matrix to a column vector. Next, for the first term, we have

M=

E|D> VIVAW)T - VIV - W

N
Il
—

-n)E

N

V(VAWT)) T V(% > VFi,l(w;?*))]
1 Z;

VIVAWT) T V(g X Vfi,z<w§1>>]

Il
-
- |l ME
—
—~

YNk

=1

P 1 N 2
D3 B | VA) [+ [V S Vualwt
=1 i=1 9
’ (56)
38 s -9 S e
2
P N 2
(o) -1 _ 1412 1 _
:ZTE VA + szfi,l(w
=1 i=1 P
2
+ZnE V(wt vaz
=1 h
SN A (%t 1) 1 1 & _ ’ n .5
<Y S E|IVAE }+Z S || S0V fualw RN
=1 i=1 I

where (a) follows from f;(w) £ Ee¢,cp, [Fi(w,&)]. (b) follows from —a'b = 3 Na — b3 — ||a]lZ = |[b]|2] for two
column vectors a and b. (c) follows from ||[V(X) H; =||X ||§ for any matrix X. (d) follows from Eq.(57).

P [N ?
R
=1 =1 F
, - 2
:ZE Zsz (wi™h) vaz
=1 F
@1 L [& _
gNZE SOV LW) = Vi I (57)
=1 =1
®1 L [&
<5 2B D[VAT = Vfi(w] HF]
=1 =1
©1 & 2
< S E [t - wi]
i=1
@2

where (a) follows from the Minkowski inequality. (b) follows from p < L. (c) follows from the smoothness of f. (d) follows
from the result of Lemma 4.

23

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

For the second term, we have

L
E Z V(VAW) T - VOHVHT - Uf‘l(Vf‘l)T)]
l=p+1
L 1 N B
= > (-n)E wvmwf1>>T~V<NZVFZ-J<W;‘1>V:ll<vl“f>]
l=p+1 =1
’ L N
£ R VTR V(g S0 O VFi,z<w§‘1))]
I=p+1 i=1
’ N N
+ Z ’E [V(V fulw NZ vt [ZUfﬂ) VEii(w)H
l=p+1 i=1 i—1
L (58)
WS () E [V AWV ZVfZ “Hvih
l=p+1
Ay
L B 1 N
+ Z (—n) V((Uf‘l)Tsz(vaH))T~V(N Z(Uf,l‘l)TVfi,z(WE‘l))]
I=p+1 =1
B,
N
+ Z P E | V(V fi(w NZVFM Hvit [ZUfll) Vi (w 1)H,
l=p+1 =
Cy

where (a) follows from f;(w) £

E¢,ep, [Fi(w,&)] and a’ (bc) = (ab") T ¢ for column vectors a, b and c.

2
1 _ I\ t—1\T (|2 1 _t—INTrt—1N\T 1 Z t—1\yt—1\T
—Azé—gE [val(w Vi) HF}+§E VAWV _N;vfi,l(w Wi F] (59)
A

-B < —%E [H(Ult—l)val(wt—l)HH n %E

B

Further, we have

1 (a) 2
A+ B = 3B [V 3] < -2 At}

? 2
1 1 X 1 LN
Ao+ Bia = iE Vh(xt1) — N;Vhi,z(xf—l) F] = 5]E [v ; [Vh (%) = Vhiy(xt71)] F] .
C N 2
< 2NZE[HVh”) = Vhia L] < 5 Z;EU Xfl_XEJl”F]

< aPEEA 1),
where (a) follows from Lemma 1. (b) follows from the Minkowski inequality. (c) follows from the smoothness of h. (d)

24

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

follows from Lemma 3. Next, for C;, we have

N N 2
1 1 1
_t—1 1 1
CZS*]E[HVfl I }JFQE ’ NZVF”(Vi [> (UL TV E(w)1
- i—1 F (62)
1 _t—14]|2 1 22
< SE|[VAT[] + seirir
Combining the results of A;, B; and C, we have
L
E Z V(Vfl(wt_l))T _V(Ult(vlt)T _ Ult—l(vlt—l)T)
l=p+1
L L
=Y n=A-B)+ > 7n’C
l=p+1 l=p+1
s . (63)
< Z n(Aiq+ B+ A2+ Bi2) + Z n*C,
l*p+1 l=p+1
1
< Z n” ““E[HVf w5 }+2L pILIE*GA (L2 +12) + 5 (L —)P G2
l=p+1

Finally, adding Eq.(56) and Eq.(63) to Eq.(55) yields the result of Lemma 6.

C.4. Proof of Theorem 1

Theorem 1. Under Assumptions 1, 2, 3 and 4, let 1 < ¢ < 2 be a constant and the learning rate satisfy 0 < n <
min{(“’)cll, -1}, we have

1 & 112 2
7 LBV] <

where w* is the optimal parameters, T'? 2 min{2¢2 + 2n2S%2G?k2, k2} and T'? & min{2¢2 + 202 S?G?K2, K2},

v u?r U

W) = (W) + O*) [L+ (L = p)O(ILY) + (L = p)O(I, + T3] (64)

Proof of Theorem 1 According to Assumption 1, we have

E VW) <E[VFW D] +E[(VFWw), w —w] + % [|| W' —wi| } (65)
Using the results of Lemmas 5 and 6, we have

E[VfW"] <E[Vf(w')]
S 2 b2, o1y |2
+ 3 SE[[VAE D] + Y T | VA
=1

l=p+1

Ay

1 & ’
~ > Viilwi™)
N =1

2 =1

2

B

1 LapPo? 3L,
+2 L2 4 2(L — p) 2P B2 G2 (T2 + T2) + = (L — p)PGAT2T2 4 =212 :
2 2 2N 2

C

(L = p)*G*(Ty + Ty + n>G°ToT?)

(66)

25

The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning

For Ay, By, we have

[

—~
S]
N

>

IN
M=
NS

E || VA hF] + Z z “”E[HW Sl

=1 = p+1
L C

=> “Lr[|vaeh;] + > 2 Wiy [w2
=1 I=p+1

(67)

—~
=
=

IN
M=
1\3‘3

MVﬁ] < e[V

2

N
Il
-

(c)
<0

)

va

F

where (a) follows from 0 < 7 < land 1 < ¢ < 2, thus —n < —n° and % < n°. (b) follows from 7 < (wg‘“)?11 and thus
2n¢ — m/JZU < 0. (c) follows from i < %’ and thus Lsn2 — 1 < 0. Therefore, we have

E[VfW)] <E[Vfw'™H] + _TncE [HVf(v‘vt—l)HQF} +C (68)

Rearranging the above inequality, summing over ¢ € {1,2,..., T} and then dividing both sides by % yields

(f(WO) = f(w*) + = (69)

Ly B [[es] < 2w - s + 2 <
T T

Next, rearranging the terms in C yields

2L2 E2 2,3
C=2LpE°G 2N "
+ (L — p)2L2E* PGP (T2 +T72)
254 3 | O 2422 (70)
(L=)OI + 5 Lo + PG
3
+ (L= p)(6LIE" D + S Ls)n* G2 (T, +Ty)
Multiplying C' by % and analyzing its complexity with respect to 7, we have
2C LS 2
T ALERG + ST (L - pULE G (T 4 1Y)
(71)

(L= p)(12L2 B + 3LyP + P GIT2T2 + (I — p) (1212 %) + 3L,)i2~*GA(T4 + T)
20(°7°) [L+ (L — p)O(Iy, + Ty)]

Finally, adding Eq.(71) to Eq.(69) yields the result in Theorem 1.

26

