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ABSTRACT

Pretrained vision foundation models (VFMs) advance robotic learning via rich vi-
sual representations, yet individual VFMs typically excel only in specific domains,
limiting generality across tasks. Distilling multiple VFMs into a unified represen-
tation can mitigate this limitation but often yields inflexible task-specific feature
selection and requires costly full retraining to incorporate robot-domain knowl-
edge. We propose VER, a Vision Expert transformer for Robot learning. During
pretraining, VER distills multiple VFMs into a vision expert library. We then fine-
tune only a lightweight routing network (fewer than 0.4% of parameters) to dy-
namically select task-relevant experts from the pretrained library for downstream
robot tasks. We further introduce Patchwise Expert Routing with Curriculum Top-
K Annealing to improve both flexibility and precision of dynamic expert selection.
Moreover, VER supports parameter-efficient finetuning for scalable expert utiliza-
tion and adaptive robot-domain knowledge integration. Across 17 diverse robotic
tasks and multiple policy heads, VER achieves state-of-the-art performance. We
find that VER reduces large-norm outliers in task-irrelevant regions (e.g., back-
ground) and concentrates on task-critical regions. Code, checkpoints and visual-
izations are available in supplementary materials and https://gever2025.github.io.

1 INTRODUCTION

Developing robotic systems capable of perceiving and interacting with complex, unstructured en-
vironments remains a fundamental challenge in embodied AI. Recently, visuomotor robot policy
learning has emerged as a promising approach, enabling robots to directly map visual observations
to control actions. Pretrained vision foundation models (VFMs) such as DINOv2 (Oquab et al.,
2024), CLIP (Radford et al., 2021), and ViT (Dosovitskiy et al., 2020), provide transferable visual
representations that support robotic perception and control with certain generalizability, improving
the scalability of robotic systems (Huang et al., 2024; Wan et al., 2024).

However, executing even a single robotic task, and especially a diverse set of tasks, often requires
multiple implicit visual competencies that a single VFM cannot fully capture. Directly integrat-
ing multiple VFMs for robot tasks increases computational and operational complexity. Previous
works (Ranzinger et al., 2024; Shang et al., 2024; Chen et al., 2025) distill diverse foundation mod-
els into a unified representation, but three key challenges remain. First, heterogeneous VFM features
are often misaligned, so a unified representation tends to dilute or discard model-specific capabili-
ties. Second, the policy head must extract task-relevant information from the fused representation,
which limits flexibility to leverage the most relevant VFMs across tasks and leads to suboptimal
results. Third, existing distilled models typically require full retraining to incorporate robot-domain
knowledge and it is hard to scale computation (down for simple tasks and up for complex tasks).

To address these limitations, we propose VER, a Vision Expert transformer for Robot learning via
foundation distillation and dynamic routing. VER distills knowledge from multiple vision founda-
tion models into a unified representation library and uses a dynamic routing mechanism to selec-
tively activate the most relevant experts for robot policy learning. Specifically, VER introduces a
Mixture-of-Experts (MoE)-based Vision Expert Library (VEL), replacing traditional static vision
transformer backbones with a collection of specialized experts, each capturing distinct aspects of
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Figure 1: A comparison between our VER and previous distillation framework. Our method
not only enhances knowledge distillation from vision foundation models (VFMs) into vision experts
but also offers two key advantages over previous works (Ranzinger et al., 2024; Shang et al., 2024).
First, VER trains a lightweight router that dynamically selects vision experts for downstream robot
policies. Second, VER allows the integration of additional trainable experts, enabling the adaptation
to robot-specific domain knowledge to further improve robotic performance.

visual understanding. This design enables robots to selectively leverage the specialized experts best
suited for task-aware policy learning.

Our method operates in three stages as shown in Fig. 1. First, during pretraining, we distill knowl-
edge from multiple VFMs into a vision expert library using Teacher-Specific Routers with mutual-
information regularization. This covers a broad spectrum of visual knowledge while maintaining
efficiency via sparse expert activation. Second, in the robotic policy learning phase, we freeze all
pretrained vision experts and fine-tune only a lightweight Robot Router that dynamically selects
task-relevant experts, whose outputs are fed to a policy head to generate actions. To expand selec-
tion capacity across patches and layers, enhance exploration, and prevent premature convergence
to suboptimal expert combinations, we employ Patchwise Expert Routing with Curriculum Top-K
Annealing, leading to more robust policy learning. Third, we offer parameter-efficient fine-tuning
strategies that scale expert utilization and facilitate the integration of robot-domain knowledge.

Across different types of policy heads, such as diffusion and flow matching policies (Chi et al., 2023;
Zhang & Gienger, 2024), extensive experiments on diverse robotic benchmarks show that VER
achieves state-of-the-art performance. With Patchwise Expert Routing and Curriculum Top-K An-
nealing, VER suppresses high-norm background outliers and reduces information in task-irrelevant
patches while preserving details in task-critical regions, yielding more compact and discriminative
visual features and robust policy learning.

2 RELATED WORKS

2.1 VISION FOUNDATION MODELS FOR REPRESENTATION

Vision Foundation Models (VFMs) have revolutionized computer vision through self-supervised
and weakly-supervised learning on large-scale datasets (Radford et al., 2021; Caron et al., 2021;
Oquab et al., 2024). Notable examples include CLIP (Radford et al., 2021) which pioneered image-
text joint embeddings, DINOv2 (Oquab et al., 2024) which advanced self-supervised learning, and
SAM (Kirillov et al., 2023) specialized for segmentation tasks.

Knowledge distillation has emerged as a powerful paradigm for transferring learned representations
from large teacher models to more compact student architectures (Hinton et al., 2015; Romero et al.,
2014). While traditional distillation approaches focus on compressing a single teacher into a smaller
student (Hinton et al., 2015), recent advances have explored multi-teacher distillation (You et al.,
2017; Shang et al., 2024) where complementary knowledge from multiple source models is com-
bined. Theia (Shang et al., 2024) demonstrated that careful fusion of representations from diverse
vision foundation models can achieve superior performance for downstream robotic tasks. However,
these methods typically produce static representations with fixed weights, limiting their adaptability
to specific downstream tasks.

Our work differs by distilling multiple VFMs into a specialized expert library rather than a sin-
gle unified representation, preserving diverse knowledge from VFMs while enabling task-specific
feature selection through learned routing mechanisms.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Base Vision
Transformer

(BVT)

DINOv2

ViT

CLIP

Vision Expert Library

Teacher-Specific Router Experts

Student 
Representations

Large image dataset
Distillation

BVT

Vision Expert Library

Trainable Robot Router
<0.4% Params

Frozen Experts

Policy
Head

Previous images
in robot dataset

Unified
Representation

Structured
Representation

Actions

Pretraining

Downstream Robot Tasks

× N

× N

FrozenTrainable

Unified
Representation

Inactive vision experts

Active vision experts

Figure 2: Overall structure of VER. VER comprises two key components: the Base Vision Trans-
former (BVT), which processes images into unified representations; the Vision Expert Library
(VEL), which stores a diverse set of specialized vision experts and selectively utilizes the experts
to mimic teacher vision foundation models and enhance performance in downstream robotic tasks.
Our framework consists of two phases: (1) Pretraining, where we distill multiple foundation models
(DINOv2 (Oquab et al., 2024), ViT (Caron et al., 2021), CLIP (Radford et al., 2021)) into VER;
(2) Downstream Robotic Tasks, where we freeze the experts and train a lightweight Robot Router
(< 0.4% parameters) that dynamically selects task-relevant visual features to guide the policy head
in generating appropriate robotic actions. This two-stage approach enables efficient knowledge dis-
tillation from diverse vision foundation models and adaptive feature selection for robotic tasks.

2.2 MIXTURE OF EXPERTS IN VISION AND POLICY

Mixture of Experts (MoE) architectures (Shazeer et al., 2017a; Fedus et al., 2022; Riquelme et al.,
2021; Wang et al., 2024) have gained popularity for their ability to scale model capacity without
proportional increases in computational costs by activating only a subset of expert networks for
each input.

Router design represents a critical component in MoE systems, determining which experts process
specific inputs. Top-k routing (Shazeer et al., 2017a) selects the k highest-scoring experts for each
token, while Switch Transformers (Fedus et al., 2022) employ a simpler top-1 routing for efficiency.
Recent work has explored learned routing mechanisms (Dai et al., 2022; Wang et al., 2024) that
balance expert utilization while preserving specialization. Sparse MoE Router (Wang et al., 2024)
introduced mutual information maximization between tasks and experts to encourage meaningful
specialization while maintaining balanced utilization.

While MoE has been widely applied in language processing and general computer vision (Riquelme
et al., 2021; Fedus et al., 2022), its application to robotic learning remains relatively unexplored.
Our work bridges this gap by adapting MoE principles for vision-based robotic policy learning, in-
troducing specialized routers that dynamically select visual representations most relevant to specific
robotic tasks.

2.3 VISUOMOTOR ROBOTIC POLICY LEARNING

Visuomotor robotic policy learning maps visual observations directly to robot actions (Levine et al.,
2016; Brohan et al., 2023; Liang et al., 2024a; Mu et al., 2024; Chen et al., 2024), showing bet-
ter generalization ability compared to state-based methods (Janner et al., 2022; Liang et al., 2023;
Ajay et al.; Ni et al., 2023; Liang et al., 2024b). Recent approaches have leveraged pre-trained vi-
sion models to improve sample efficiency and generalization (Nair et al., 2023; Xiao et al., 2022;
Radosavovic et al., 2023; Chen et al., 2025; Kim et al.; Black et al., 2024), but typically use fixed
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visual encoders that may not capture optimal representations for specific tasks. A persistent chal-
lenge is identifying which visual features are most relevant for different robotic tasks (Xiao et al.,
2022; Luo et al., 2023). Current methods using attention mechanisms (Luo et al., 2023) or feature
selection (Jiang et al., 2025) often lack the flexibility to incorporate diverse visual expertise from
foundation models. Our work advances this field by introducing a dynamic visual representation
selection mechanism specifically for robotic tasks. Unlike fixed visual feature approaches, ours en-
ables selective leveraging of different representations from a diverse expert library based on task
requirements, leading to more robust policies across varied robotic scenarios.

3 METHOD

3.1 OVERVIEW

In this section, we present our VER framework for visuomotor robot policy learning, as illustrated
in Fig. 2. Our approach begins with visual perception, where input images are processed by a Base
Vision Transformer (BVT) to extract foundational visual features, referred to as unified representa-
tions. These representations are then fed into a Vision Expert Library (VEL), a collection of special-
ized neural network experts designed to capture diverse aspects of visual understanding. A dynamic
routing mechanism determines which experts should be activated based on the specific task: dur-
ing pretraining, to mimic the teacher vision foundation models (VFMs); and for downstream robot
tasks, to select experts that enhance performance. This mechanism enables selective attention to the
most relevant visual features. Finally, the outputs of the selected experts are integrated to generate
a more structured representation, which is either used to replicate the teacher VFMs or passed to a
policy head that translates these representations into robot actions.

3.2 MODEL ARCHITECTURE

As illustrated in Fig. 2, our approach consists of two main components: a Base Vision Transformer
(BVT) that generates unified feature representations from input images, and a Vision Expert Library
(VEL) comprising specialized experts that capture diverse visual representations from various vision
foundation models.

We design VER based on a modified vision transformer (Dosovitskiy et al., 2020) architecture,
where the FeedForward Network in the last N transformer layers is replaced with Mixture of Experts
(MoE) (Shazeer et al., 2017b) modules. The initial unaltered ViT layers are referred to as BVT, while
the MoE-enhanced later layers constitute the VEL.

In the n-th MoE layer (Shazeer et al., 2017b) of VEL, where n ∈ {1, 2, ..., N}, we incorporate L
experts {En

l }Ll=1, each implemented as a multilayer perceptron (MLP). We then introduce Teacher-
Specific (TS) Routers Rn

i , where i ∈ 1, 2, ..., I corresponds to each teacher vision foundation model.
TS Router Rn

i takes in the input feature vector x ∈ R1×M and learn a MLP to determine the score
for each expert, as well as score noise. During inference, only the top-K scoring expert networks
are activated, while the remaining experts remain inactive, ensuring computational efficiency. The
MoE output y is computed as:

y =
∑L

l=1 R
n
i (x, l) · En

l (x),

Rn
i (x, l) = Top-K(Softmax(s1 + ϵ), l),

[s1; s2] = MLP(x), ϵ ∼ N (0, SoftPlus(s2))

(1)

where Top-K(v, l) returns the l-th element of vector v if it is among the K largest elements, and
returns 0 otherwise. This sparse gating mechanism enables efficient computation while maintaining
representation quality.

3.3 DISTILLATION TRAINING

Building on our network architecture, we now describe the distillation process that enables our
model to acquire diverse visual representations from multiple VFMs, forming a comprehensive li-
brary of specialized vision experts for effective utilization in downstream robot tasks.

Given an input image x, the BVT f(·) first processes the image to produce a unified rich representa-
tion z = f(x). Subsequently, the VEL g(·, ·) generates teacher-specific representations y = g(z, i),
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where i denotes the index of the specific teacher model being mimicked. Note that g(·, i) utilizes
the corresponding TS Router to select the most appropriate experts for emulating the i-th VFM’s
representational characteristics.

Following (Shang et al., 2024), we formulate the distillation loss Ldistill as a weighted combination
of cosine and smooth L1 losses:

Ldistill =

I∑
i=1

αi[βLcos(hi(g(f(x), i)), ti(x))

+ (1− β)LsL1(hi(g(f(x), i)), ti(x))],

(2)

where hi(·) represents a projection head for the i-th teacher, ti(x) is the representation from the i-th
teacher model, αi = 1/I and β = 0.9.

To ensure balanced utilization of experts during pre-training and prevent expert collapse, we intro-
duce a teacher-level mutual information loss inspired by (Wang et al., 2024). This loss maximizes
the mutual information between the VFMs Ii and the experts En across all MoE layers:

Lmi =

N∑
n=1

Ln
mi = −

N∑
n=1

L∑
l=1

I∑
i=1

p(Ii, En
l ) · log

p(Ii, En
l )

p(Ii)p(En
l )

, (3)

where we assume each teacher model contributes equally to the overall knowledge, setting p(Ii) =
1
I . Detailed implementation of Lmi is provided in Appendix D.2. Thus, the training objective is:

Lpretrain = Ldistill + γLmi (4)

where we empirically set γ = 0.0005.

3.4 ROBOT POLICY TRAINING

After distilling diverse visual representations, we freeze a Vision Expert Library (VEL) together
with a frozen base visual transformer (BVT) for downstream robot tasks. We introduce a lightweight
robot router Rn

robot that selects task-relevant vision experts and feeds the resulting representations to
a newly trained policy head to produce actions.

We consider two routing modes for robot tasks.

Teacher Routing (TR) Because pretrained vision foundation models perform strongly on robot
tasks, one option is to choose which VFM to use by selecting among the Teacher-Specific (TS)
routers {Rn

i }Mi=1 learned during distillation. Specifically, for each image/frame t and layer n, the
robot router Rn

robot produces a categorical distribution πt,n ∈ ∆M−1 over {Rn
i }Mi=1. The selected

TS router at layer n is then used to select among the experts {En
ℓ }Lℓ=1 in that layer. During training,

we optimize the discrete teacher choice with the Gumbel–Softmax estimator:

zt,n = softmax

(
logπt,n + g

τ

)
, g ∼ Gumbel(0, 1), (5)

using a straight-through estimator, while at inference we take argmax(πt,n). We can share teacher
logits across layers within a frame, i.e., πt,n ≡ πt, yielding a single teacher choice per frame; or
allow per-layer logits πt,n so that shallow and deep layers route to different teachers (e.g., DINOv2-
like early, CLIP-like late) for finer control. We refer to the former as Framewise Teacher Routing
(FTR) and the latter as Layerwise Teacher Routing (LTR).

Patchwise Expert Routing (PER) PER applies standard MoE routing per patch token (Eq. 1), of-
fering maximal adaptivity to local content with small overhead (adds <0.4% parameters). However,
it can suffer from premature convergence (early collapse). Moreover, we do not apply the mutual-
usage regularizer Lmutual in Eq. 3, since the router serves as a planning selector for task-relevant
experts rather than enforcing balanced utilization.

To mitigate early collapse and encourage exploration over expert combinations, we use Curriculum
Top-K Annealing (CTA). We begin with all experts active (K0 = L) and gradually reduce to a small
target Kmin over training steps s = 0→S:

K(s) = max
(
Kmin,

⌊
L+ 1− (L+ 1−Kmin) ·

s

S

⌋)
. (6)
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Table 1: Per-task performance comparison (success rate in %) across various robotic bench-
marks. The same policy head as (Shang et al., 2024) is used for a fair comparison on vision encoder.
The best result is in bold and the second best result is underlined. Our approach (VER) outperforms
previous state-of-the-art methods across 11 diverse tasks from Franka Kitchen (Gupta et al., 2020),
Meta-World (Yu et al., 2020), and Adroit (Rajeswaran et al., 2018) environments, achieving the
highest average success rate (74.7%).

Model LightOn DoorOpen DoorSlide KnobTurn Microwave BinPick ButtonPress DrawerOpen Hammer Pen Relocate Average

VC-1 (Majumdar et al., 2023) 1.6 0.2 14.4 1.2 1.8 66.7 56.0 100.0 93.3 68.0 24.0 42.6
MVP (Xiao et al., 2022) 13.6 5.3 17.8 1.8 4.0 73.3 82.7 100.0 97.3 77.7 26.7 48.7
R3M (Nair et al., 2023) 67.3 31.2 83.1 35.4 35.8 92.0 68.0 100.0 98.7 73.3 58.7 67.6

RADIO (Ranzinger et al., 2024) 35.2 19.7 69.2 24.4 25.3 82.7 80.0 100.0 100.0 66.7 45.3 61.3
VIP (Ma et al.) 61.3 25.2 83.0 44.6 31.3 70.7 76.0 98.7 96.0 73.3 29.3 62.8

Theia-B (Shang et al., 2024) 58.8 34.1 81.2 47.8 24.8 76.0 82.7 100.0 98.7 78.7 46.7 67.1

VER-B (Ours) 67.2 38.0 85.8 55.3 38.2 93.3 94.7 100.0 97.3 80.0 64.0 74.7

Table 2: Per-task performance comparison (success rate in %) across different policy
heads.VER consistently outperforms Theia across ViLT (Kim et al., 2021), Flow-Matching (Zhang
& Gienger, 2024) and Diffusion heads (Chi et al., 2023).

Model ViLT head Flow-Matching head Diffusion head

LIBERO LIBERO-OOD cross→bin cube→cup cylinder→plate Real-world pour

Theia-T 0.61 0.58 0.65 0.50 0.70 0.45
VER-T 0.70 0.71 0.95 0.75 0.85 0.90

Here, ⌊x⌋ denotes the floor function, i.e., the largest integer less than or equal to x. CTA is applied
to PER’s token-wise dispatch, promoting exploration early (large K) and training stability later
(Kmin), while keeping inference efficiency at target Kmin. More analysis on early collapse and
CTA can be seen in Appendix B.

4 EXPERIMENTS

4.1 NETWORK STRUCTURE

To address the limited computational resources of robotic systems, we use DeiT-Tiny (Touvron
et al., 2021) for VER-T, DeiT-Small for VER-S, and ViT-Base (Dosovitskiy et al., 2020) for VER-
B. Distillation is performed on ImageNet-1K (Deng et al., 2009) from three foundation mod-
els—DINOv2 (Oquab et al., 2024), ViT (Caron et al., 2021), and CLIP (Radford et al., 2021).
This configuration, aligned with Theia (Shang et al., 2024), controls for pretraining variations and
enables a fair comparison. We use a total of L = 6 experts and activate K = 2 experts. To con-
trol complexity, VER replaces only the last three layers of a 12-layer transformer with the Vision
Expert Library, yielding 9 standard transformer layers for the Base Vision Transformer and N = 3
MoE layers for the Vision Expert Library. Routing network is provided in Appendix C. Details of
the pretraining procedure are provided in Appendix D.

4.2 PERFORMANCE ON ROBOT TASKS

With different policy heads such as ViLT (Liu et al., 2023; Kim et al., 2021), flow-matching and
diffusion policy, we evaluate VER against pretrained vision encoders, including VC-1 (Majumdar
et al., 2023), R3M (Nair et al., 2023), MVP (Xiao et al., 2022), RADIO (Ranzinger et al., 2024),
VIP (Ma et al.), and Theia (Shang et al., 2024). Among these baselines, Theia is particularly strong
as it distills multiple vision foundation models into a unified representation, while VIP leverages
large-scale human video datasets to learn transferable features for robotic control.

We first follow Theia (Shang et al., 2024) and apply the same policy head across 11 diverse manipu-
lation tasks spanning three benchmarks: 5 tasks from Franka Kitchen (Gupta et al., 2020) (LightOn,
DoorOpen, DoorSlide, KnobTurn, Microwave), 4 from Meta-World (Yu et al., 2020) (Binpick, But-
tonpress, DrawerOpen, Hammer), and 2 from Adroit (Rajeswaran et al., 2018) (Pen, Relocate).
Second, we adopt the ViLT head (Liu et al., 2023; Kim et al., 2021) and evaluate VER on four
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Figure 3: Cosine loss for DI-
NOv2 distillation. Circle size
indicates total parameters (TP).

Figure 4: Expert utilization frequency across three MoE lay-
ers. Heatmap shows how each teacher model activates experts
(1–6) during distillation on ImageNet-1K.

Table 3: Ablation of robot routing strategies. Mean success rate ± standard deviation over 10
seeds. Best per task in bold; second best underlined. DINOv2, ViT, and CLIP denote the cor-
responding Teacher-Specific Routers. We can see different VFMs suit different tasks, and VER
improves performance by dynamically routing to the appropriate experts distilled from these VFMs.

Task DINOv2 ViT CLIP FTR LTR PER PER+CTA

pen 78.0±4.7 72.8±9.4 80.0±4.6 81.2±3.8 79.2±6.2 78.0±6.3 80.8±5.3

relocate 38.4±5.7 41.6±6.6 41.2±3.8 41.2±6.0 36.4±5.8 47.6±5.1 56.4±6.9

LIBERO tasks (Liu et al., 2023), including LIBERO-OOD, where object colors are modified to test
out-of-distribution generalization. Third, we apply a flow-matching head on three Pick and Place
task in the Robomimic(Mandlekar et al., 2021). Finally, we use a diffusion policy head for the Pour
task in real-world experiments.

As shown in Table 1, VER consistently outperforms prior approaches, achieving the highest average
success rate of 74.7%. Furthermore, Table 2 shows that VER surpasses Theia across all policy heads
both in simulation and real world experiments. Figure 5 shows the performance of our VER. More
details and results can be found in Appendix E.

4.3 DISTILLATION PERFORMANCE

Figure 3 shows that our framework effectively distills more knowledge from diverse foundation
models; additional results are provided in Table 8. Figure 4 further illustrates expert utilization on
ImageNet-1K (Deng et al., 2009). Instead of pre-assigning experts to teacher models, our Teacher-
Specific Routers dynamically allocate them, with mutual information regularization encouraging di-
verse expert usage. We observe that ViT activates fewer experts, whereas DINOv2 and CLIP engage
more, suggesting that ViT is easier to mimic while DINOv2 and CLIP present greater challenges.
This trend is confirmed in Table 8, where the cosine loss after pretraining is significantly lower for
ViT than for DINOv2 and CLIP. Overall, these findings demonstrate that our method outperforms
fixed expert assignments by adaptively allocating more experts to stronger foundation models and
fewer to weaker ones, thereby improving both utilization and distillation performance.

4.4 ABLATION ON ROUTER DYNAMICS IN ROBOT TASKS

In this subsection, we investigate the functional role of routers in robotic policy learning through
three key experiments: (1) evaluating the impact of noisy gating on performance, (2) analyzing
feature entropy evolution during training, and (3) examining the relationship between feature entropy
and task performance. These experiments provide insights into how routers function as implicit
planning modules for robotic tasks.

Robot Routing Stratgies Performance. We compare: (1) select one frozen Teacher-Specific (TS)
Routers (DINOv2, ViT, or CLIP); (2) Framewise Teacher Routing (FTR) and Layerwise Teacher
Routing (LTR); and (3) Patchwise Expert Routing (PER), with and without Curriculum Top-K An-
nealing (CTA). Results in Table 3 show that relying on a single VFM performs poorly across diverse
tasks, whereas PER, when combined with CTA, adapts more effectively to local content across lay-
ers and achieves superior performance.
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Figure 5: Visualization of real world experiments. We find with human interference (not in the
training dataset), our VER can successfully complete the task.

Figure 6: Feature visualization of PER with and without CTA (seed = 0). Row 1: pen; Row
2: relocate. Without CTA, the Robot Router attends broadly to the dexterous hand, objects, and
task signals (e.g., target pen pose, target ball region). With CTA, the Robot Router suppresses task-
irrelevant patches and concentrates on task-related, object-centric regions throughout execution.

Patch Feature Analysis. To investigate the mechanism of CTA, we compute the norm of the last-
layer patch features in VER, comparing models trained with and without CTA. As shown in Figure 6,
CTA reduces high-norm outliers and concentrates attention on task-critical patches, whereas models
without CTA exhibit large outliers in background regions. We further analyze patch features on
30% of the robot dataset by measuring entropy and mutual information before and after the Vision
Expert Library (VEL). Patch features are first reduced to five dimensions via Principal Component
Analysis (PCA), and then NPEET (Steeg, 2022) is used to estimate entropy and mutual informa-
tion. As shown in Figure 7, PER+CTA filters out task-irrelevant background patches (lower mutual
information before vs. after expert selection) while preserving task-relevant information (e.g., the
target pen pose in pen-v0, which consistently appears in the left region of the image). Finally, Fig-
ure 8 compares feature norms from Theia, from VER before VEL, and from VER after VEL in the
Pick and Place task. This task consists of two stages: first pick up the cross, then place it into the
bin. We supply patch features and robot proprioceptive state to the flow-matching policy head. We
find that pretrained VFMs such as Theia, as well as VER before expert selection, broadly attend to
all potentially important objects. After expert selection in VEL, however, the features focus exclu-
sively on task-relevant objects (cross and bin) and suppress robot-related patches—consistent with
our design choice to provide robot proprioceptive state directly to the policy, eliminating the need
for robot-related information in patch features. More analysis can be found in Appendix E.3.

Figure 9: Trainable parame-
ters vs average success rates.
Performance is evaluated on
pen and relocate tasks.

Additional complexity and overhead. To control complexity,
VER replaces only the last three layers of the 12-layer trans-
former with the Vision Expert Library, thereby incurring min-
imal overhead by design. In Table 2, the inference time with
the diffusion policy is 0.105s on an RTX 4090 for both VER
and Theia(Shang et al., 2024). In terms of trainable parame-
ters, VER introduces only lightweight components for the Robot
Router compared with Theia, yet achieves substantially better
performance (Figure 9). For active/total parameters, VER per-
form better performance with less active and total performance
as shown in Table 8. Overall, VER delivers significant perfor-
mance gains over existing baselines with comparable—or even
lower—computational complexity.

Scalability and Extensibility. We examine the effect of the Top-K hyperparameter by finetuning
only the lightweight Robot Router to adjust how many experts are selected per patch. As shown
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Figure 7: Mutual information between patch features before and after the Vision Expert Li-
brary. Row 1: pen; Row 2: relocate. PER+CTA suppresses information in background patches
while preserving information in task-relevant regions, yielding a more compact visual represen-
tation (lower average per-patch mutual information). For example, in pen, the left-middle region
containing the target pen pose exhibits higher mutual information.

Figure 8: Feature visualization compared with Theia (Shang et al., 2024) on place the cross
into the bin. Both Theia and our features before the Robot Router tend to attend broadly to other
objects, the robot itself, and background regions, resulting in noisy feature norm. After routing,
VER concentrates on task-relevant objects and suppresses robot-related and background patches.

Table 4: Ablation study on Top-K. More active
experts lead to better performance.

Model TopK AP(M) Relocate Pen Avg
Theia-Tiny - 5.3 74.0 46.0 60.0

VER-Tiny
1 4.8 42.7 77.3 60.0
2 5.2 52.0 80.0 66.0
3 5.7 57.3 78.7 68.0

Table 5: Ablation on the mixture of
Distilled-Foundation-Model (DFM) and
Train-from-Scratch (TFS) experts.

# DFM # TFS TopK Relocate Pen Avg
6 0 2 64.0 80.0 72.0
0 2 2 69.3 74.7 72.0
6 1 2 74.7 82.7 78.7

in Table 4, increasing the number of selected experts improves success rates but also increases
computational cost. This demonstrates that VER enables a controllable trade-off between accuracy
and efficiency without retraining the backbone or the experts. Beyond scalability, VER also offers
extensibility by adaptive robot-domain knowledge integration. While distilled experts from pre-
trained VFMs encode strong general visual knowledge, they may miss information critical for spe-
cific downstream tasks. Our framework allows seamless integration of trainable experts tailored to
such tasks. As shown in Table 5, adaptively combining Distilled-Foundation-Model (DFM) experts
with Train-from-Scratch (TFS) experts achieves the best performance, highlighting the complemen-
tarity between generalist and task-specialized experts in enhancing overall task success.

5 CONCLUSION

In this paper, we introduce VER, a Vision Expert transformer for Robot learning. Our approach
distills knowledge from diverse vision foundation models into a vision expert library and employs
a task-adaptive Robot Router to select task-relevant features for downstream control. To maximize
selection capacity and prevent early collapse during router learning, we further propose Patchwise
Expert Routing with Curriculum Top-K Annealing. Across multiple policy heads and a range of
robotic benchmarks, VER achieves state-of-the-art performance. Patch-level analyses show that
the Robot Router learns to selectively leverage pretrained experts, yielding increasingly structured
representations that drive performance gains. In addition, VER is highly extensible: it seamlessly
incorporates new robot-domain knowledge through expert addition, and scales the number of active
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experts to meet task complexity through lightweight router fineuning. These results highlight the
value of expert-driven visual representation distillation and selection for robust, generalizable robot
learning.

10
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Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Jinghuan Shang, Karl Schmeckpeper, Brandon B May, Maria Vittoria Minniti, Tarik Kelestemur,
David Watkins, and Laura Herlant. Theia: Distilling diverse vision foundation models for robot
learning. In 8th Annual Conference on Robot Learning, 2024.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2017a.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. In International Conference on Learning Representations, 2017b. URL https://
openreview.net/forum?id=B1ckMDqlg.

Greg Ver Steeg. Npeet: Non-parametric entropy estimation toolbox. https://github.com/
gregversteeg/NPEET, 2022. Commit 8b0d948, MIT License. Accessed: 2025-09-24.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Weikang Wan, Yifeng Zhu, Rutav Shah, and Yuke Zhu. Lotus: Continual imitation learning for
robot manipulation through unsupervised skill discovery. In 2024 IEEE International Conference
on Robotics and Automation (ICRA), pp. 537–544. IEEE, 2024.

Yixiao Wang, Yifei Zhang, Mingxiao Huo, Thomas Tian, Xiang Zhang, Yichen Xie, Chenfeng
Xu, Pengliang Ji, Wei Zhan, Mingyu Ding, and Masayoshi Tomizuka. Sparse diffusion policy:
A sparse, reusable, and flexible policy for robot learning. In 8th Annual Conference on Robot
Learning, 2024. URL https://openreview.net/forum?id=zeYaLS2tw5.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control. arXiv preprint arXiv:2203.06173, 2022.

Shan You, Chang Xu, Chao Xu, and Dacheng Tao. Learning from multiple teacher networks. In
Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and
data mining, pp. 1285–1294, 2017.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Fan Zhang and Michael Gienger. Robot manipulation with flow matching. In CoRL 2024 Workshop
on Mastering Robot Manipulation in a World of Abundant Data, 2024.

14

https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://github.com/gregversteeg/NPEET
https://github.com/gregversteeg/NPEET
https://openreview.net/forum?id=zeYaLS2tw5


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A LLM USAGE DISCLOSURE

We employed ChatGPT to assist with language refinement. All suggestions were reviewed and
revised by the authors, who take full responsibility for the final manuscript.

B EARLY COLLAPSE OF ROUTER AND CTA

B.1 ROUTER GRADIENT DYNAMICS IN TOP-K MOE

In this section, we analyze how the loss gradient with respect to the router logits zl is determined
by the alignment between the MoE output y and each active expert output El(x). We show that, for
active experts (ml = 1), the router updates compare the current mixture y with each expert direction
El(x) and increase the routing probability when moving towards that expert reduces the loss. In
contrast, inactive experts (ml = 0) receive only weak, indirect updates that do not depend on their
outputs, so their re-entry into the Top-K set is not guaranteed, even if they could potentially improve
the loss.

Recall Equation 1 here:
y =

L∑
l=1

Rn
i (x, l) · En

l (x),

Rn
i (x, l) = Top-K(Softmax(s1(x) + ϵ), l),

[s1(x); s2(x)] = MLPn
i (x), ϵ ∼ N (0, SoftPlus(s2(x))).

(7)

Let
zni (x, l) := s1(x)l + ϵl,

pni (x, l) := Softmaxl
(
zni (x, ·)

)
=

exp(zni (x, l))∑L
j=1 exp(z

n
i (x, j))

,
(8)

Define the Top-K(Softmax(s1(x) + ϵ), l)) indicator mn
i (v, l) as

mn
i (x, l) =

{
1, if l is in Top-K for token x at layer n,
0, otherwise.

(9)

Thus, the output y is

y =

L∑
l=1

mn
i (x, l)p

n
i (x, l)En

l (x) (10)

For brevity, we temporarily suppress the indices (n, i, x) and write ml, pl, El. Denote L is the loss,
then we compute the gradient with respect to the noisy logits zl, zni (x, l) of expert l.

∂L
∂zl

=

(
∂L
∂y

)⊤
∂y

∂zl

=

(
∂L
∂y

)⊤
∂

∂zl

∑
j

mjpjEj


=

(
∂L
∂y

)⊤∑
j

(
mjEj

∂pj
∂zl

)
(11)

∂pj
∂zl

=
∂

∂zl

(
ezj∑
r e

zr

)
=

ezjδjl
∑

r e
zr − ezjezl

(
∑

r e
zr )

2

=
ezj∑
r e

zr

(
δjl −

ezl∑
r e

zr

)
= pj

(
δjl − pl

)
.

(12)
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Thus,
∂L
∂zl

=

(
∂L
∂y

)⊤∑
j

(
mjEj

∂pj
∂zl

)

=

(
∂L
∂y

)⊤∑
j

(
mjEjpj

(
δjl − pl

))

=

(
∂L
∂y

)⊤
mlElpl − pl

∑
j

mjEjpj


= pl

(
∂L
∂y

)⊤

(mlEl − y)

= pl

(
ml

(
∂L
∂y

)⊤

El −
(
∂L
∂y

)⊤

y

)
= pl (mlql − q)

(13)

Where ql :=
(

∂L
∂y

)⊤
El, q :=

(
∂L
∂y

)⊤
y.

When ml = 1, which is to say that expert l is active, the gradient ∂L
∂zl

effectively compares the
performance between the current mixture output y and the single expert output El(x), and determines
the update direction for zl. The change in zl will in turn shift the output y through the routing
probabilities. Let us assume that

y′ = y + α
(
El(x)− y

)
,

i.e., we slightly move the mixture output towards expert l with a small step size α > 0. Using a
first-order Taylor expansion,

L(y′)− L(y) ≈
(
∂L
∂y

)⊤

(y′ − y) = α

(
∂L
∂y

)⊤ (
El(x)− y

)
= α

(
ql − q

)
, (14)

When ql < q, moving y towards El(x) reduces the loss, i.e., L(y′) < L(y) for small α. In this case,
the gradient ∂L

∂zl
becomes negative, so zl increases under gradient descent. Since expert l is active,

a larger zl increases its routing probability and reinforces its selection. Thus, for active experts,
the router automatically increases the weights of experts with smaller ql during training, leading to
better expert assignments.

When ml = 0, which is to say that expert l is not active, there is no direct comparison between the
current mixture output y and the single expert output El(x) in the gradient signal: the update of zl
does not involve ql, and El(x) does not effectively participate in the gradient descent for this token.
As a result, inactive experts receive only weak, indirect updates; consequently, their re-entry into the
Top-K set is not guaranteed, even if they could potentially improve the loss.

B.2 EARLY COLLAPSE OF ROUTER

In the previous section, we showed that only active experts (ml = 1) receive expert-specific gradi-
ents based on the comparison between y and El(x), whereas inactive experts (ml = 0) receive only
weak, indirect updates and their re-entry into the Top-K set is not guaranteed.

When training the robot router of VER for a robot task, a large, randomly initialized policy network
Fθ is placed on top of y. Because the router is typically shallow, it can adapt much faster than this
downstream network. In the early phase, random fluctuations of ql − q cause the router logits zl
to concentrate on an essentially arbitrary subset of experts, meaning that expert selection is highly
sensitive to random initialization and training seeds. Once a small set of experts is consistently
selected as Top-K, the inactive experts (ml = 0) receive only weak, indirect updates that do not
depend on El(x), as discussed above. This early router collapse creates a mismatch in convergence
rates: the router quickly commits to a suboptimal routing pattern determined by the random seed,
while the large downstream network has not yet learned a meaningful representation. After this
point, it is difficult for the router to revise its expert selection, because inactive experts no longer
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Figure 10: Expert activation frequency during the training with and without CTA on pen (10
seeds). Without CTA, expert activation frequencies converge prematurely in the early stage of train-
ing (for example, the activation frequencies of Seed 1 and Seed 5 do not change after 10 epochs) and
depend strongly on the training random seed, leading to substantial variability across seeds. With
CTA, the robot router explores more effectively and converges more consistently across different
random seeds.
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Figure 11: Expert activation frequency during the training with and without CTA on relocate
(10 seeds). Without CTA, expert activation frequencies converge prematurely in the early stage of
training (for example, the activation frequencies of Seed 5, 7 and 9 do not change after around 20
epochs) and depend strongly on the training random seed, leading to substantial variability across
seeds. With CTA, the robot router explores more effectively and converges more consistently across
different random seeds.
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participate in gradient descent in a significant way, even if their fixed representations would later
become beneficial as Fθ improves.

To address this issue, we propose Curriculum Top-K Annealing (CTA) in Equation 6, which initially
activates all experts and then gradually decreases the number of active experts. This curriculum
encourages exploration over expert combinations in the early stage and allows the policy network to
converge, before enforcing a sparse Top-K routing pattern. As shown in Figure 10 and Figure 11,
expert activation frequencies tend to converge early in training. With CTA, however, the expert
activations exhibit a more consistent pattern across different random seeds. Figure 17 and Figure 18
present the final expert activation frequencies across all layers, further demonstrating that CTA leads
to a more consistent final activation pattern across random seeds.

Figure 12: Ablation study on S in CTA on pen (3 seeds). As S increases, the success rate improves,
and we also observe a reduction in the variance of the success rate, indicating more robust policy
training.

B.3 ABLATION STUDY ON S

In Curriculum Top-K Annealing (CTA) in Equation 6, there is a hyperparameter S that controls the
annealing schedule. A too small S leads to insufficient exploration, whereas a too large S results in
slower convergence to the true Kmin and thus higher computational cost. In practice, we choose S
based on the total number of training epochs. We evaluate performance on the pen-v0 and relocate-
v0 tasks by training for 200 epochs with three random seeds and averaging the best success rate.
Specifically, we set S to 0, 40, 60 and 80 epochs, where S = 0 means that CTA is not applied.
Table 6 shows that as S increases, the success rate also increases. Moreover, Figure 12 shows that
a higher value of S reduces the variance of the success rate in the later stages of training, indicating
more robust training with CTA.

Table 6: Ablation study on S in CTA on pen.

Task S=0 S=40 S=60 S=80

pen-v0 77.3±8.3 78.7±2.3 81.3±2.3 81.3±2.3

C ROUTING NETWORK

For the Teacher-Specific (TS) Router Rn
i , we use a lightweight two-layer MLP (Linear → GELU

→ Linear) that produces per-patch logits over experts.

For the Robot Router Rn
robot, we use different network structure for Teacher Routing and Patch

Routing. For Patchwise Expert Routing, we adopt the same architecture as the TS Router. For
Framewise Teacher Routing and Layerwise Teacher Routing, we first apply attention pooling over
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all patch features to obtain a summary token, followed by a three-layer MLP head (SiLU activations,
dropout) that outputs logits over the Teacher-Specific Routers.

Table 7 shows the details of router network.

Table 7: Network structure for routers.

Module Input Granularity Core Layers / Pooling Output

TS Router Single patch Linear, GELU, Linear Expert logits (per patch)
PER Single patch Linear, GELU, Linear Expert logits (per patch)
FTR/LTR All patches Attn pooling; 3-layer MLP (SiLU, dropout) Teacher logits (per patch/layer)

D PRETRAIN EXPERIMENTS

D.1 PRETRAINING DETAILS

We adopt DeiT-Tiny (Touvron et al., 2021) as the backbone for VER-T, DeiT-Small (Touvron et al.,
2021) for VER-S, and ViT-Base (Dosovitskiy et al., 2020) for VER-B. We choose the last N =
3 layers as Vision Expert Library (VEL). The projection head hi(·) consists of shallow CNNs,
following the same design of Theia (Shang et al., 2024). The training dataset is ImageNet-1K (Deng
et al., 2009). We initialize the model weights using Theia and train VER on four A6000 GPUs for
50 epochs. The learning schedule consists of a linear warmup for the first 10% of training steps,
followed by a constant learning rate of 0.002 for the next 40%, and then Cosine Annealing LR for
the remaining steps.

D.2 MUTUAL INFORMATION LOSS

In order to calculate Lmi, we need to get p(Ii), p(En
l ) and p(Ii, En

l ). Where Ii is the ith of teacher
VFM, En

l is the lth expert at layer n. We assume each teacher model is equally important so p(Ii) =
1
I where I is the number of teacher models. For p(Ii, En

l ), we have

p(Ii, En
l ) = p(Ii)p(En

l |Ii) =
1

I
p(En

l |Ii)

p(En
l |Ii) is the score of Teacher-Specific router i for expert l at layer n. Then p(En

l ) can be calcu-
lated by

∑
i p(Ii, En

l ).

Intuitively, this mutual-information objective can be understood as follows. Maximizing I(I, En)
encourages the router to assign different experts to different VFMs while avoiding excessive overlap
and promoting balanced expert utilization. Since

I(I, En) = I(En, I) = H(En)−H(En | I), (15)

maximizing I(I, En) simultaneously increases H(En) and decreases H(En | I). A larger H(En)
drives the marginal expert-usage distribution toward being approximately uniform, similar in spirit
to traditional MoE token load-balancing losses. A smaller H(En | I) implies that, given a specific
teacher Ii (and input x), the selected experts are more predictable and less uncertain. In practice, this
encourages different teacher VFMs to rely on distinct subsets of experts, allowing them to preserve
their fine-grained visual characteristics. Overall, the mutual-information loss both promotes task-
agnostic load balancing across experts and preserves fine-grained vision features, thereby reducing
conflicts when distilling multiple VFMs into a shared expert pool.

D.3 PRETRAINING RESULTS

Table 8 demonstrates the distillation performance compared with Theia. We can see that our VER
can achieve better distillation performance with similar active parameters. And VER-S with less
active and total parameters achieve comparable distillation performance compared to Theia-B.
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Table 8: Distillation performance comparison between our VER and Theia across three foun-
dation models (DINOv2, ViT, CLIP) using different loss metrics. TP(M) denotes total parameters
(Million), and AP(M) denotes active parameters (Million).

Model TP (M) AP (M) Cosine Loss L1 Loss MSE Loss
DINOv2 ViT CLIP DINOv2 ViT CLIP DINOv2 ViT CLIP

Theia-T 5.3 5.3 0.641 0.431 0.651 0.377 0.301 0.373 0.873 0.673 0.875
VER-T (Ours) 7.0 5.3 0.559 0.398 0.592 0.351 0.287 0.357 0.800 0.636 0.829

Theia-S 20.7 20.7 0.554 0.335 0.587 0.351 0.255 0.356 0.800 0.556 0.826
VER-S (Ours) 27.7 20.8 0.453 0.299 0.517 0.311 0.235 0.332 0.695 0.507 0.762

Theia-B 81.8 81.8 0.444 0.267 0.521 0.308 0.216 0.334 0.688 0.462 0.767
VER-B (Ours) 110.1 82.2 0.337 0.226 0.455 0.255 0.189 0.307 0.555 0.400 0.700

E ROBOT TASK EVALUATION

E.1 BENCHMARKS & EVALUATION SETTINGS

Franka Kitchen We mainly follow R3M (Nair et al., 2023) evaluation protocol. Specifically, we
train the policy for 20,000 steps and evaluate success results every 1,000 steps throughout training.
The final reported performance is based on the best average of three success rates observed during
evaluation. To ensure robustness, our results in each environment are averaged over different camera
views (left and right) and different numbers of demonstrations (5, 10, and 25). We use the same
policy network as Theia (Shang et al., 2024) for comparison. Specifically, we employ a three-layer
MLP for CNN-based models using vector-based representations. For transformer-based models, we
introduce a three-layer CNN before the MLP to process spatial inputs.

Table 9: Performance vs. epoch.
We report average / highest success
rates.

Epoch relocate pen

100 48.0/52.0 78.7/80.0
200 50.7/52.0 80.0/84.0
300 56.0/60.0 –/–
400 64.0/68.0 –/–

Adroit & Meta-World We primarily follow the original
evaluation setup of Cortex (Majumdar et al., 2023), with mod-
ifications to the training epochs for the Adroit environment.
Since VER introduces additional training parameters for the
router, which functions as a planning module requiring ex-
tended training, we increase the training epochs for the pen
task to 200 and for the relocate task to 400, ensuring full per-
formance convergence. As shown in Tab. 9, training for 100
epochs is insufficient for policy convergence. For VER-T, 200
epochs are enough for relocate. In this paper, our focus is
primarily on the functionality of router, while optimizing its
training efficiency is left for future work. We use the same policy network as in Franka Kitchen.

LIBERO We select first four tasks from LIBERO OBJECT (Liu et al., 2023) and train a
ViLT (Kim et al., 2021) policy for 30 epochs, following the LIBERO evaluation protocol. In ad-
dition, we change colors for all the colors to evaluate performance in an out-of-distribution setting.

Pick and Place We set up the Pick and Place task in robomimic (Mandlekar et al., 2021). The
object is one of {cross, cube, cylinder}, and the container is one of {bin, cup, plate}. Objects are ran-
domly positioned and oriented on the left side of the desk; containers are randomly positioned and
oriented on the right side. We use a SpaceMouse to teleoperate the robotic arm in robomimic, col-
lecting 50 human demonstrations, and then use MimicGen (Mandlekar et al., 2023) to generate 450
additional demonstrations, yielding 500 demonstrations per task. We train the flow-matching policy
for 16,000 steps and evaluate over 40 trials. The flow-matching policy network is U-Net–based.

Real-World Experiment We conduct real-robot experiments on a FANUC LR Mate 200iD/7L
robotic arm equipped with an SMC gripper. The task is to pick up a teapot and pour into a cooking
pot. Both the teapot and the cooking pot are randomly positioned and oriented. We collect 20
demonstrations, train a diffusion policy for 120,000 steps, and evaluate over 20 trials. The diffusion
policy network is U-Net–based.
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E.2 EXPERIMENT VISUALIZATIONS

Figure 13: Performance on Pick and Place.. We find that when the first attempt fails, the VER-
equipped policy can retry and complete the task, as shown in the images with red boundaries.

Figure 13 shows the performance of VER in Pick and Place tasks. We find that when the first
attempt fails, the VER-equipped policy can retry and complete the task, as shown in the images with
red boundaries.

E.3 PATCH FEATURE ANALYSIS

Figure 14: Mutual information vs. success rate. For each method (CLIP, DINOv2, ViT, FTR,
LTR, PER, PER+CTA), we report the mean ± s.d. over 10 random seeds. The dashed line is an
ordinary least-squares fit on 70 points (7 methods × 10 seeds) summarizing the overall trend.

Figure 14 shows that PER+CTA occupies the region with the lowest mutual information and the
highest success rate. We fit a linear model to all 70 training results (7 methods × 10 random seeds)
and observe a negative association: lower mutual information correlates with higher success. For
the effect of CTA, we find that adding CTA markedly reduces both mutual information and variance
across seeds, leading to more stable and robust training. Additional per seed visualizations with
and without CTA (Figure 15) further support this observation: without CTA, the mutual information
distribution varies substantially across different random seeds; with CTA, the Robot Router always
concentrates on the task relevant region (the left middle area with high mutual information corre-
sponding to the target pen pose) and suppresses background regions with low mutual information.
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Figure 15: Mutual information between patch features before and after the Vision Expert
Library on pen. We plot the image across 10 random seeds for training.

Figure 16: Feature visualization of PER with and without CTA across 10 seeds. Without CTA,
the Robot Router attends broadly to the background and generates extreme feature-norm outliers,
and its behavior is strongly influenced by the training random seed. With CTA, the Robot Router
robustly suppresses task-irrelevant patches and concentrates on task-related regions across all the
seeds.

Figure 16 shows that without CTA, the Robot Router produces noisy patch embeddings with ex-
tremely large feature norms in background regions. Although it can sometimes attend to the correct
regions and ignore task-irrelevant patches, its behavior is highly sensitive to the training random
seed. This indicates that training a lightweight router is prone to early collapse and limited explo-
ration. In contrast, with CTA, the Robot Router consistently focuses on task-relevant patches in a
more robust manner. To further analyze this phenomenon, we plot the expert utilization frequency
over the entire robot dataset for 10 random seeds in Figures 17 and 18. With CTA, the utilization
frequencies are noticeably more consistent across seeds, which indicates that CTA helps avoid early
collapse and insufficient exploration, thereby leading to more robust Robot Router learning.
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Figure 17: Expert utilization frequency with and without CTA on pen (10 seeds). Without
CTA, expert utilization frequency varies substantially across random seeds. With CTA, it is more
consistent across seeds, indicating improved training robustness and a more stable Robot Router.
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Figure 18: Expert utilization frequency with and without CTA on relocate (10 seeds). Without
CTA, expert utilization frequency varies substantially across random seeds. With CTA, it is more
consistent across seeds, indicating improved training robustness and a more stable Robot Router.
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