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ABSTRACT

Open-vocabulary segmentation (OVS) has gained attention for its ability to recog-
nize a broader range of classes. However, OVS models show significant perfor-
mance drops when applied to target data distributions beyond the source dataset.
Fine-tuning these models on new datasets can improve performance, but often
leads to the catastrophic forgetting of previously learned knowledge. To address
this issue, we propose a method that allows OVS models to learn information from
new data distributions while preserving prior knowledge. Our approach begins
by evaluating the input sample’s proximity to multiple data distributions, using
precomputed multivariate normal distributions for each data distribution. Based on
this prediction, we dynamically interpolate between the weights of the pre-trained
decoder and the fine-tuned decoders. Extensive experiments demonstrate that this
approach allows OVS models to adapt to new data distributions while maintaining
performance on the source dataset.

1 INTRODUCTION

Open-vocabulary segmentation (OVS) has Table 1: Segmentation performance on Cityscapes
emerged as a pivotal area of research due to its and ADE20k. We use Panoptic Quality (PQ) as the
potential to predict a diverse range of vocabularies ~V2luation metric.

without being restricted to a fixed set of predefined

. ey eqe Method Vocab Type Fine-tuning Cityscapes ADE20k
f:lassc?s. This ﬂ§x1b111ty enables QVS modjcls t0  Nask2Former Closedoser 7 a1 307
identify new objects, rare categories, or arbitrary X pecoder ovs X 362 167
text-based descriptions. Recent advances in  X-Decoder v 62.9 449
OVS (Xu et al., 2023; Yu et al., 2024) have fe-clip ovs X 44.0 268
fe-clip v 64.2 47.6

extended its application to panoptic segmentation
to recognize new classes across various segmentation tasks, such as semantic and instance
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OVS models on these datasets can Figure 1: Segmentation Performances before and after Applications
lead to substantial performance of Fine-tuning and Our Method. The numbers above bars indicate
the relative performance gaps based on the original model (before fine-

improvements; however, as illus- ; d
tuning). The fc-clip is used.

trated in Figure 1, this comes at
the cost of a significant drop in performance on unseen target data distributions. This limitation
greatly restricts the applicability of OVS models in scenarios where recognizing objects in unseen
target data distributions is critical.
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Continual learning methods offer a promising solution, as they learn new knowledge while preserving
existing information. However, previous continual learning methods (Kirkpatrick et al., 2017; Kim
et al., 2024) have limitations when applied to OVS models. We delve deeper into these challenges in
Section 3.1.

We propose a new approach that enables OVS models to generalize to fine-tuning data distributions
while preserving previous knowledge. This approach assumes that the fine-tuning dataset is already
known, as it aims to improve the OVS model’s performance on the fine-tuning dataset by training
the model to align with its data distribution. Our method begins by training the decoder of the OVS
model on the data distribution of the fine-tuning dataset. For this, we prepare a multivariate normal
distribution (MVN) for each data distribution. During inference, we use these MVN distributions to
infer interpolation factors that measure the proximity of the input sample to various data distributions.
Based on this factor, we interpolate the weights of the pre-trained decoder and the fine-tuned decoders
to generate new decoder weights for each input sample. This improves performance on the fine-tuning
dataset while preserving performance on the source dataset, as shown in Figure 1. Our approach does
not introduce additional parameters to the OVS model and integrates seamlessly with the existing
OVS architecture.

In addition, we propose a novel evaluation protocol for OVS models that integrates methodologies
from continual learning and OVS literature. This protocol considers all sequential training orders
of COCO, Cityscapes, and ADE20K, and expands evaluations to include unseen datasets, such as
DarkZurich, FoggyZurich, and GTAS, enabling a more comprehensive analysis.

Our experimental results demonstrate that applying the proposed approach to OVS models improves
performance in the fine-tuning data distribution while maintaining performance in the previously seen
data distribution. Specifically, when fine-tuned on Cityscapes (Cordts et al., 2016) and ADE20k (Zhou
et al., 2019), the model adapts well to the fine-tuning data distribution without losing prior knowledge.
We also observe the same effect when fine-tuning the model on multiple datasets. Furthermore, the
performance improves on various target segmentation datasets, including Mapillary Vista (Neuhold
etal., 2017), LVIS (Gupta et al., 2019), and BDD100k (Yu et al., 2020).

2 RELATED WORK

2.1 OPEN-VOCABULARY SEGMENTATION

Open-vocabulary segmentation (OVS) addresses the limitations of traditional closed-set segmentation
models, which can only recognize predefined classes. Research on closed-set segmentation models
has focused on identifying objects within a fixed set of classes. However, this restriction is impractical
in real-world scenarios where it is crucial to recognize new or rare classes. OVS overcomes this issue
by enabling the recognition of classes not included in the training.

Existing OVS literature mainly uses models trained on large external datasets to recognize novel
classes. For example, Yu et al. (2024); Zhou et al. (2022); Ding et al. (2022); Wu et al. (2023)
leverage CLIP (Radford et al., 2021), a large vision-language model, with OVS models to predict
classes. Recent studies also explore methods such as using a pre-trained diffusion-based model (Xu
et al., 2023) or combining the Segment Anything Model (SAM) (Kirillov et al., 2023) with CLIP
to recognize a variety of classes (Yuan et al., 2024; Wang et al., 2024a). OVS models trained on
large-scale datasets, such as X-Decoder (Zou et al., 2023a; 2024; 2023b), can handle OVS tasks as
well as tasks like referring segmentation and image captioning. Despite these advancements, current
OVS models, when not trained on specific datasets, can exhibit significantly lower performance. This
paper addresses these unresolved issues in detail.

2.2  FINE-TUNING AND CATASTROPHIC FORGETTING

Fine-tuning is widely used to improve the performance of a pre-trained model on downstream tasks by
adjusting the model’s parameters (Yosinski et al., 2014; Kornblith et al., 2019). Recently, parameter-
efficient fine-tuning (PEFT) has been introduced as an approach to effectively utilize the knowledge
of pre-trained models. Instead of fine-tuning all parameters, PEFT adjusts only a subset to improve
the performance of downstream tasks. These methods include linear probing, adapters (Houlsby
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et al., 2019), low-rank adaptation (Hu et al., 2021), bias tuning (Cai et al., 2020), and visual prompt
tuning (VPT) (Jia et al., 2022).

Although these methods improve task-specific performance, they often overlook the problem of
catastrophic forgetting. Specifically, previous OVS fine-tuning methods primarily focus on adjusting
the CLIP encoder to enhance segmentation performance, but they do not address catastrophic
forgetting (Xu et al., 2024; Ghiasi et al., 2022; Li et al., 2022). We are the first to highlight and
analyze this issue when fine-tuning OVS models on a new data distribution.

Many researchers have focused on replay-based continual learning methods to address catastrophic
forgetting (Chaudhry et al., 2019; Shin et al., 2017). These methods help preserve previously acquired
knowledge while the model learns new tasks by using past datasets. However, storing previous
datasets can raise concerns about data storage, security, and privacy. To overcome these issues,
exemplar-free continual learning methods, which do not store or use past datasets, have gained
attention. In this area, parameter regularization methods (Kirkpatrick et al., 2017; Ritter et al., 2018;
Liu et al., 2018), function regularization methods (Li & Hoiem, 2017; Dhar et al., 2019; Iscen et al.,
2020), and architecture-based approaches are commonly used to solve the problem of catastrophic
forgetting. Among these, architecture-based approaches include PEFT (Wang et al., 2022a; Liang &
Li, 2024; Wang et al., 2022b; Smith et al., 2023), which introduces dedicated model parameters to
facilitate learning new data.

Despite various efforts to address catastrophic forgetting in continual learning, this issue remains
unresolved in OVS models. In this paper, we propose a novel method to overcome this problem and
expand the range of data distributions that OVS models can recognize.

2.3 MULTI-SOURCE DOMAIN ADAPTATION

Multi-Source Domain Adaptation (MSDA) (Mansour et al., 2008) tackles the challenge of adapting
models from multiple source domains to perform well on a single target domain. The primary focus of
existing MSDA literature is the alignment of feature representations across multiple source domains
and the target domain. For example, Li et al. (2021); Song et al. (2021); Peng et al. (2019) use
multiple models from different source datasets to learn domain-specific representations to adapt
knowledge from multiple sources to the target domain. In addition, Guo et al. (2018) introduce a
mixture-of-experts approach for multi-source domain adaptation that explicitly models relationships
between target examples and source domains.

The concept of using multiple models trained on diverse datasets in MSDA aligns with our approach.
However, our method differs from MSDA in two key aspects: 1) addressing catastrophic forgetting in
sequential learning scenarios, and 2) improving generalization not only to a single target data distri-
bution but also to diverse distributions. This paper builds on these distinctions to develop a method
that is better suited for open-vocabulary segmentation tasks in continual learning environments.

3 BACKGROUND

3.1 MOTIVATION

When fine-tuning the OVS model on the fine-tuning dataset, the model forgets previously learned
knowledge. As shown in Figure 1, performance improves on the fine-tuning dataset after fine-tuning,
but it significantly drops on the source dataset. To extend the data distributions that the OVS model
can recognize, it is necessary to address this issue of catastrophic forgetting.

Whether the model is trained from scratch or fine-tuned on both the source and fine-tuning datasets,
joint training consistently results in lower performance compared to training exclusively on the
fine-tuning dataset. Notably, this holds true regardless of the distribution gap between the source and
fine-tuning datasets, as training solely on the fine-tuning dataset yields better performance.

One common approach to preserving existing knowledge is joint training. In this method, the OVS
model is trained simultaneously on the source and fine-tuning datasets, with each batch containing
data from both datasets in equal proportions. This approach is inspired by previous studies that
address balanced joint training across multiple datasets (Rolnick et al., 2019; Van de Ven et al., 2022)
or multimodal datasets (Evans et al., 2024). However, this approach presents three issues: 1) Access to
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Figure 2: Comparison of performance trends for the OVS model fc-clip trained on both the source dataset
and the fine-tuning dataset versus trained only on the fine-tuning dataset. The left graph shows results when
the fine-tuning dataset is Cityscapes, while the right graph corresponds to ADE20k. Evaluations are conducted
on the validation set of the fine-tuning dataset.

all source datasets is required, which creates data management challenges. These challenges include
issues with data usage rights, such as licensing. For instance, if a dataset’s usage rights expire after it
was used for training, joint training cannot proceed. 2) Whether the model is trained from scratch
or fine-tuned on both datasets, joint training consistently results in lower performance compared to
fine-tuning on the new dataset alone (see Figure 2). Specifically, this holds true regardless of whether
the fine-tuning dataset is Cityscapes or ADE20K, as fine-tuning solely on the new dataset yields
better performance. 3) In joint training, training datasets often contain different numbers of images.
This difference can cause class imbalance, which hinders effective learning. Resolving this issue is a
well-known challenge in the field (Johnson & Khoshgoftaar, 2019; Ghosh et al., 2024).
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Figure 3: (a) Segmentation performance comparison (PQ, mAP, mIoU) among standard fine-tuning, PEFT, and
our method. All methods fine-tune fc-clip on the Cityscapes dataset. (b) Average inference time per sample
compared across standard fine-tuning, PEFT, and our method, based on the number of datasets used during
training. Average inference time per sample indicates the time required for a single sample to pass through
the model during inference. The number of seen datasets includes the source dataset (COCO) and fine-tuning
datasets (Cityscapes, ADE20k). All evaluations are conducted on the Cityscapes validation set.

Another approach is exemplar-free continual learning, which resolves data management issues by
eliminating the need to store previous datasets. To explore this method, we apply visual prompt tuning
(VPT) (Jia et al., 2022), a PEFT approach, to the OVS model. VPT has recently shown performance
improvements in the field of continual learning (Qiao et al., 2023; Wang et al., 2022c). Following the
method in Kim et al. (2024), we incorporate VPT into the OVS model by adding learnable prompts
to the queries and positional embeddings of the model’s decoder. However, applying this method to
OVS models presents two challenges: 1) As shown in Figure 3a, PEFT results in lower performance
on the new dataset compared to fine-tuning. This likely occurs because fine-tuning optimizes a larger
set of parameters, leading to greater improvements (Wortsman et al., 2022). 2) As shown in Figure 3b,
PEFT requires more inference time compared to our method and the baseline. While our method
incurs increased inference time as the number of seen data distributions grows (Rypesc¢ et al., 2024)
due to the need to compute more interpolation factors for weight interpolation, it remains faster than
techniques like PEFT that require additional parameters.

To address the limitations of previous techniques applied to OVS models, we propose a novel
exemplar-free continual learning method. The proposed method starts by assessing the input sample’s
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proximity to multiple data distributions, using precomputed MVN distributions for each data distribu-
tion. Based on this, it dynamically interpolates the OVS model’s decoder weights to generate decoder
weights that suit the input sample. As shown in Figure 3, the proposed method improves performance
on new datasets more effectively than PEFT, while using fewer computational resources.

Problem Definition. OVS models often struggle with desired unseen data distributions, limiting
their applicability in real-world scenarios where new objects or classes frequently emerge. For
instance, consider a scenario where a user deploys an OVS model in a driving scene. Pre-trained
OVS models, without fine-tuning, perform poorly because they have not adapted to the driving
scene’s data distribution. On the other hand, fine-tuning the model on such data can compromise
its open-vocabulary capabilities, restricting it to recognizing only objects and classes typical of the
driving scene. This study addresses this issue by proposing a method that sequentially fine-tunes the
model, extending its data distribution coverage while preserving its open-vocabulary properties.

More formally, we define our objective in detail as follows: The OVS model is first trained on the
source dataset D" and then fine-tuned sequentially on specific datasets { D}r‘;“}, thr‘t“g, ... }. Each
dataset D contains images Xj,,,, and class labels X;.,;. At the i-th fine-tuning stage, the model
only has access to the current training set D}r‘t‘”l‘ of the fine-tuning dataset. For evaluation, the model
is evaluated on the test sets of source and fine-tuning datasets { D}, D¢, ..., D}, }, and target
datasets {Dmrge[, 1> Diarget,25 - - - }. Note that the model has never encountered the target datasets during
training.

4 METHODOLOGY

This section explains the proposed Fine-tuned OVS Model Our method
method that allows OVS models to class mask (b) Decoder Weight Interpolation
learn a new data distribution without L DT g

losing prior knowledge. First, it de- \ f ( t t g L’
. i . d img © d )
scribes how to generate the MVN dis- sl e
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ference process is shown in Figure 4. TPLEWEEE i [0
Figure 4: Inference process of our method.

4.1 TRAINING PHASE

During training, we first train the OVS model using the source dataset. Then, we fine-tune the
trained OVS model on new datasets. Following the methods of Yu et al. (2024); Zou et al. (2023a),
we keep the encoder fixed during fine-tuning and only update the decoder. Notably, our approach
does not modify the original training process of the OVS model, including the objective function or
architecture design.

Each time we train a dataset, we calculate two sets of means and covariance matrices from the image
and text embeddings. These are components of the multivariate normal (MVN) distributions. After
completing the training phase, we obtain the means and covariance matrices for the source dataset
(i = 0) and the fine-tuning datasets (i = 1,..., Ny;), denoted as {4}, 34,0 Miexts Dtert -

4.2 INFERENCE PHASE

The inference process begins by calculating the interpolation factor vector A (Algorithm 1, Steps
1-3). Specifically, the input image and text are passed through the encoder, producing embedding
vectors for both. These embedding vectors are then fed into the probability density functions (pdf) of
the image and text MVN distributions, which are defined for each data distribution. The image MVN
distribution consists of p!,, , and i - While the text MVN distribution consists of iy and X

This step produces a likelihood vector l;y,, € RNre+1 for the i image embedding and a likelihood
vector lyeyy € RV7t+1 for the text embedding. A softmax function is then applied to these likelihood

text®



Under review as a conference paper at ICLR 2025

Example of Interpolation Factors

e
.

¥ [0.10,0.10,0.99]
Unseen Interpolation
. domain Factor [Aprs A1, Ag]
domain xT Estimator [0.21,0.47, 0.36]

..... G(iu‘, new

2
Oedec, ft

uonejodiau] 1ybisp 1epodeq

edec,pr

Embed Space

Figure 6: Illustration of A generated by the interpolation factor estimator for input samples from seen and target
data distributions.

vectors, resulting in s;y, 4 and Sy¢.+. The interpolation factor A for each data distribution is determined
by selecting the maximum value from both $;,,,4 and ss..¢. By considering both the image and text,
this approach calculates the appropriate interpolation factor for each data distribution. Section 5.1
demonstrates through an ablation study that using both image and text improves performance on new
data distributions. Figure 4a shows the interpolation factor estimator that handles this process.

The calculated interpolation factor vector, A, is used to interpolate between the pre-trained decoder
and the fine-tuned decoders (Ilharco et al., 2022) (Algorithm 1, Steps 4-5). Specifically, we multiply
the difference between the weights of the distribution-specific fine-tuned decoder 9360’ ¢ and the
pre-trained decoder 04c. - by the interpolation factor A;. This determines whether the final weights
are closer to the pre-trained decoder or the fine-tuned decoder. After completing this process for
all the fine-tuned decoders, we sum the results to form the final interpolated decoder. The weight
interpolation process is illustrated in Figure 4b.

The decoder weight interpolation process determines
whether the OVS model uses the weights fitted to the 60
source dataset or the fine-tuning dataset, based on the in-

terpolation factor. As shown in Figure 5, when \; = 0, 50
the decoder uses the previously trained weights Ogec pr,
leading to strong performance on the source dataset. When

PQ

40

—— Fine-tuning (cityscapes)

A; = 1, the decoder applies the fine-tuned weights 93667 oo 30 —— Previous training (coco)

resulting in strong performance on the fine-tuning dataset. o o2 o4 o5 os 1o
For \; values betw§en 0 anq 1,. the decoder interpolates ' “ Interpolation factor A '
between the two weights, achieving moderate performance

on both datasets. Figure 5: Performance on the validation set

of Cityscapes and COCO depending on the
Finally, the resulting decoder weights are used to predict interpolation factor A, using fc-clip.
the mask and class for the embedding of the input. The
complete inference procedure with interpolation of the decoder weights, is outlined in Algorithm 1.

Discussion. We observe that our method behaves differently depending on whether the input sample
is close to the seen data distribution or the target data distribution. Figure 6 shows an example of
the A produced by the interpolation factor estimator. When the input sample is from the seen data
distribution, it generates values close to O or 1. This indicates that a distribution-specific model is
selected for the input sample. This behavior is effective because using the model trained on the
corresponding data distribution is optimal when the input sample is close to the seen data distribution.

On the other hand, for samples from the target data distribution, the interpolation factors are more
evenly distributed between 0 and 1. This means that our method combines the models trained on seen
data distributions to prevent the model from relying on a single data distribution. As a result, this
approach improves generalization performance on input samples from the target data distribution.
We demonstrate this in the Section 5.

5 EXPERIMENTS

Settings. For panoptic segmentation, fc-clip and X-Decoder use COCO as the pretraining dataset
and are fine-tuned on Cityscapes and ADE20k. We evaluate both models on eight unseen datasets
using task-specific metrics (mIoU, PQ, mAP), reporting PQ in the main paper and including others
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Table 2: Performance comparison between standard fine-tuning, previous continual learning methods, and our
method, with COCO as the source dataset. All methods fine-tune the models using (a) Cityscapes or (b) ADE20K
datasets. PQ is used.

Method COCO | Cityscapes | ADE20K | Avgon Method COCO ADE20K Cityscapes | Avgon

(source) | (fine-tuning) | (target) | 6 datasets (source) | (fine-tuning) (target) 6 datasets
fe-clip 50.1 | 44.0 | 235 | 456 fe-clip 50.1 | 235 | 440 | 46.0
+ Fine-tuning -22.7 +20.1 -10.3 -3.9 + Fine-tuning -1.7 +24.1 -3.0 +0.3
+ Joint training +0.6 +17.9 +1.7 +0.5 + Joint training +1.4 +16.5 -1.2 +0.6
+ER -1.6 +19.0 +0.3 -0.6 +ER +0.4 +21.5 -3.5 +0.0
+ LwF -10.7 +12.2 -0.8 -1.1 +LwF -3.8 +13.7 -1.0 -0.4
+EWC -25.9 +19.3 9.8 4.3 +EWC -11.1 +20.7 2.6 -1.5
+ ECLIPSE -6.0 +2.2 +0.9 -0.7 + ECLIPSE -0.5 +0.2 -5.9 -0.4
+ Ours +0.3 +20.2 +2.5 +0.6 + Ours +1.7 +23.8 -0.3 +0.6
X-Decoder 56.7 | 36.3 | 167 | - X-Decoder 56.7 | 16.7 | 363 |
+ Fine-tuning -50.4 +26.6 -12.9 - + Fine-tuning -37.3 +28.2 -3.7
+ Ours -0.4 +26.6 +0.1 - + Ours -1.5 +29.2 +1.4

(a) Cityscapes (b) ADE20K

Table 3: Performance comparison among standard fine-tuning, previous continual learning methods, and our
method, with ADE20K as the source dataset. All methods fine-tune the models using (a) COCO or (b) Cityscapes
datasets. PQ is used.

e AU | coco | e e MDENKC| G | coco

fe-clip 48.1 423 40.9 fe-clip 48.1 409 423

+ Fine-tuning -18.5 ‘ +10.4 ‘ +3.3 + Fine-tuning -18.5 ‘ +21.4 ‘ -11.5

+ Ours -1.3 +9.3 +5.2 + Ours +0.0 +19.5 +0.0
(a) COCO (b) Cityscapes

in the appendix. During fine-tuning, we freeze the encoders and train the decoders, implementing
an interpolation factor estimator with a softmax temperature of 0.01 and log-likelihoods of MVN
distributions. Detailed descriptions of datasets, evaluation metrics, and implementation details are
provided in the appendix.

5.1 COMPARISON WITH OTHER METHODS

In each experiment, we evaluate the model on the source dataset, the fine-tuning dataset, and the
target dataset. When the model is fine-tuned on Cityscapes, we treat ADE20K as the target dataset
for evaluation, and vice versa.

Results of fine-tuning with Cityscapes. We present the evaluation results in Table 2a after fine-
tuning the model on Cityscapes. Our method improves performance on the fine-tuning dataset while
maintaining the performance on the source dataset, regardless of whether it is applied to fc-clip or
X-Decoder. Specifically, compared to fine-tuning, our method preserves performance on the source
dataset more effectively (e.g., Fine-tuning: —22.7, Ours: +0.3 for fc-clip / Fine-tuning: —50.4,
Ours: —0.4 for X-Decoder), while achieving the same improvements on the fine-tuning dataset.
In addition, we observe that the performance improvement of joint training is relatively smaller
compared to our method (e.g., Joint training: +17.9, Ours: 420.2 for fc-clip). Furthermore, we
observe that other continual learning methods consistently result in performance degradation on the
source dataset (e.g., ER: —1.6, LwF: —10.7, EWC: —25.9, ECLIPSE: —6.0). In contrast, our method
preserves performance on the source dataset (e.g., Ours: +0.3) and achieves better results on both
the fine-tuning and target datasets.

Results of fine-tuning with ADE20K. We present the evaluation results of our method and previous
methods when fine-tuning on ADE20K in Table 2b. Since ADE20K shares a similar data distribution
with COCO, previous methods maintain performance on the source dataset compared to fine-tuning
on Cityscapes. However, they still show a consistent performance drop on target datasets. In contrast,
our method improves performance on the target dataset while also enhancing results on the source
dataset and achieving a significant boost on the fine-tuning dataset (e.g., fc-clip with ours: source
+1.7, fine-tuning +23.8, target —0.3). The improvement on the source dataset indicates that our
method not only preserves prior knowledge but also enhances performance in the previously trained
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data distribution by leveraging new knowledge. Additionally, X-Decoder loses performance on
the source dataset with standard fine-tuning, but with our method, this performance is effectively
preserved (e.g., X-Decoder with ours: —1.5 on the source dataset).

Results with ADE20K as the source dataset. To evaluate whether the proposed method shows
superior performance when using ADE20K as the source dataset instead of COCO, we conduct
additional experiments. As shown in Table 3, the proposed method preserves the performance of the
source dataset while improving the performance on the fine-tuning dataset. It achieves consistent
performance improvements on target datasets that are not included during training (e.g. Ours: +5.2
for Cityscapes, +0.0 for COCO).

Results of fine-tuning with mul- Table 4: Performance of standard fine-tuning and our proposed
tiple datasets. As shown in Ta- method. The best performance for each dataset is underlined.
ble 4, we compare the standard fine- City—ADE refers to the model fine-tuned on the Cityscapes dataset
tuning method with our approach first, followed by ADE20K. The reverse applies to ADE—City. PO

in the sequential training scenario 1S used.

on ADE20K and Cityscapes. Fine-  Method
tuning results in a significant perfor-

The order of COCO
fine-tuning  (source)

ADE20K Cityscapes
(fine-tuning 1) | (fine-tuning 2)

mance drop on source datasets (e.g.,  feclip - 50.1 235 44.0

C _ : . + Fine-tuning ~ ADE — City 20.8 154 65.2
ADE—City: 29’3.’ C}ty—>ADE. +Fine-tuning  City — ADE  39.3 48.3 46.0
—10.8 on COCO), maintaining Strong | joint training ~ City, ADE  48.6 355 605
performance only on the most re-  +Ours City, ADE 516 47.0 643

cent training dataset. In contrast, our

method improves performance on the source dataset (e.g., +1.5 on COCO) and enhances results
across all fine-tuning datasets. Furthermore, joint training achieves high performance on the source
dataset compared to sequential fine-tuning but performs worse than our method across all three
datasets.

Table 5: Performance comparison between sequential training and our method on 8 unseen datasets. PQ is used.

Source The order of LVIS BDDI100K Mapillary PC-59 PC-459 PAS-20 PAS-21 A-847
Method L

Dataset fine-tuning  (mMAP) (PQ) (mIoU) (mIoU) (mIoU) (mIoU) (mIoU) (mIoU)
OpenSeeD COCO,0Object365 - 14.4 10.7 15.0 47.7 11.0 87.2 335 53
fe-clip COCO - 20.5 19.0 26.0 53.0 16.9 93.1 80.2 13.8
+ Fine-tuning COoCcoO City - ADE  21.7 19.7 27.8 52.1 17.2 92.3 76.7 16.0
+ Fine-tuning Ccoco ADE — City 104 213 242 459 13.5 87.4 70.7 11.5
+ Joint training  COCO,City,ADE - 10.4 213 242 459 13.5 87.4 70.7 11.5
+ Ours Ccoco City, ADE 23.1 22.6 29.1 549 17.9 93.6 80.7 16.3

As shown in Table 5, we compare the fine-tuning technique with our method and the previous OVS
model, OpenSeeD (Zhang et al., 2023), on target datasets. We observe that OpenSeeD performs worse
than fc-clip, which is trained solely on COCO, across the eight target datasets. Fine-tuning fails to
consistently improve performance on these datasets, and in some cases, it even results in performance
drops (e.g., City—ADE: —3.3 on PAS-21, ADE—City: —11.1 on LVIS). In contrast, our method
achieves consistent performance improvements across all target datasets. In addition, joint training
shows better generalizability than sequential fine-tuning but still underperforms compared to our
method.

5.2 METHOD ANALYSIS & ABLATION STUDY

Analysis on Seen and Truly Unseen Classes. This sec- Taple 6: Comparison of performance on seen
tion analyzes the performance of our method on seen and  and truly unseen classes. mIoU is used.
truly unseen classes. We use COCO as the source dataset, Method
Cityscapes for fine-tuning, and ADE20K for evaluation.
Truly unseen classes refer to those not present in either
COCO or Cityscapes. Seen classes include those present
in at least one of these datasets. Our method achieves performance improvements for both seen
classes (Ours: 37.9, fc-clip: 35.0) and truly unseen classes (Ours: 30.9, fc-clip: 28.6) compared to
the original fc-clip, as shown in Table 6. This suggests that merging the domain-specific knowledge
of the two OVS model decoders through our weight interpolation technique truly enhances the
generalization capability for target datasets.

Seen Classes  Truly Unseen Classes

fe-clip 35.0 28.6
+ Ours 37.9 30.9
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Evaluation on Diverse and Challenging Domains. We evaluate our method on datasets that differ
significantly from the training dataset’s domain to demonstrate its robustness. The evaluation includes
GTAS, a synthetic driving dataset, and DarkZurich and FoggyZurich, which consist of nighttime and
foggy driving scenes. These datasets introduce substantial domain shifts compared to ADE20K and
COCO, which are used as the training and fine-tuning datasets, respectively.

As shown in Table 7, the results show that standard fine-

: ' Table 7: Performance comparison (mIoU) on
tuning of fc-clip reduces performance across all three

datasets with significant domain shifts.

datasets. In contrast, our interpolation-based method

N . N Method GTA5 DarkZurich FoggyZurich
improves performance by leveraging both the original — o 02 B
. c-clr B 8 5
and fine-tuned parameters. This demonstrates that our P
h effectivelv handles t t d . ith 1 + Fine-tuning 58.4 39.8 52.1
approach effectively handles target domains with large e e 0

domain differences, including adverse conditions and
synthetic environments.

Ablation Study of Image and Text Distribution. In our
method, we determine the interpolation factor using the
MVN distributions of both image and text data. We conduct
an analysis by removing either the image or text distribution
and comparing the results to the case where both distribu-

Table 8: Comparison between using both
image and text or using only one type of in-
formation. Fine-tuned fc-clip on Cityscapes.
Unseen represents the average score across

8 target datasets. PQ is used.
Ccoco Cityscapes

tions are used (Table 8). The best performance is observed = Distribution () ‘ (fine-tuning) | UTSeEn
when both image and text distributions are used, as this
combination not only improves performance on the fine- image only S5L5 434 403

: 1: text only 51.9 60.7 40.6
tuning dataset but also ensures stability on target datasets. image +text 516 s e

This result shows that combining these distributions allows
for more accurate selection of interpolation factors for the fine-tuning dataset.

Comparison of Alternative Prototype Models with the MVN Distribution. Table 9 presents the
evaluation results comparing three different prototype models available for estimating interpolation
factors in our method. K-means clustering causes significant performance loss on the source dataset,
and kernel density estimation fails to improve performance on the fine-tuning dataset. In contrast, the
MVN distribution not only maintains performance on the source dataset and improves performance
on the fine-tuning dataset but also achieves consistent results on target datasets. These findings
emphasize the versatility of the MVN distribution in adapting to various datasets.

Using only the MVN distribution poses chal-
lenges in capturing the data distribution of sam-
ples because our algorithm does not involve clus-
tering. However, the MVN distribution still per-
forms well. This is because a small distribution

Table 9: Analysis of the prototype modeling in the in-
terpolation factor estimator. We fine-tune fc-clip on
Cityscapes. Unseen represents the average score across
8 target datasets. PQ is used.

COoCo Cityscapes

Prototype Models (source) ‘ (fine-tuning) Unseen
gap between datasets, where the two domains &
become indistinguishable, often indicates that  k-means clustering 424 64.1 40.6
the datasets share similar distributions. In such ~ kernel density estimation ~ 48.1 574 40.6

MVN distribution 50.4 64.3 40.9

cases, OVS models are expected to perform well,
requiring minimal reliance on our algorithm.

Replacing Weight Interpolation with Prompts. In
this experiment, we compare the performance of
replacing our method’s weight interpolation (Algo-
rithm 1, Steps 4-5) with prompt-based alternatives.

Table 10: Comparison between the prompt-based
approach and our weight interpolation. We fine-
tune fc-clip on Cityscapes. Unseen represents the
average score across 8 target datasets. PQ is used.

The prompt implementation follows these steps: 1) COCO | Cityscapes

I . X s ethod 6 . Unseen
For each data distribution, we train only the decoder’s (source) | (fine-tuning)
query and positional embeddjngs, then store themin = p. 133 489 191
a prompt pool. 2) During inference, we compute  Weight interpolation ~ 50.4 643 40.9

interpolation factors for each data distribution using

our method. 3) We select the data distribution with the highest interpolation factor and replace the
original decoder’s query and positional embeddings with those from the corresponding prompt in the
prompt pool (Wang et al., 2022a). As shown in Table 10, the prompt-based approach results in lower
performance compared to our method on both the source and the fine-tuning dataset. Additionally,
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our method outperforms the prompt-based approach on target datasets. Therefore, we conclude that
weight interpolation is more effective for our task than using the prompt-based approach.

5.3 COMPUTATIONAL RESOURCES

Table 11: Inference time per sample with varying numbers of seen datasets. The unit for all numbers in the table
is milliseconds (ms).

Number of Interpolation Factor Decoder Weight Total Inference
Seen Datasets Encoder Estimator Interpolation Decoder Time Per Sample Change (%)
1 97.69 - - 102.30 199.99 +0.00%
2 97.69 0.81 10.69 102.30 211.48 +5.75%
3 97.69 1.01 13.23 102.30 214.23 +7.12%

Our method ensures efficient use of computational resources during inference. It avoids the addi-
tional parameters required by other continual learning techniques as the number of learned datasets
grows (Kim et al., 2024). Furthermore, our method does not involve multiple forward passes (Nicolas
et al., 2023; Wang et al., 2022a), which are computationally expensive. Instead, we perform weight
interpolation exclusively in the decoder of encoder-decoder models, minimizing overhead.

To demonstrate the efficiency of our method, we measure inference time as the total processing time
per sample, as shown in Table 11. The increase in inference time remains minimal as the number
of datasets grows. Specifically, training with two datasets increases inference time by only 5.75%p,
while adding a third dataset results in a marginal additional increase of 1.37%p. These results confirm
the scalability of our approach with respect to inference time.

In addition to computational efficiency, our method achieves significant storage savings. Unlike
ensemble-based approaches, which require storing the entire model for each dataset (Wortsman et al.,
2022; Khirodkar et al., 2022), our method stores only the decoder parameters. This reduces the
storage requirement to 6.11% of the total model size, which corresponds to approximately 80MB per
dataset. This efficiency ensures scalability in scenarios involving multiple datasets.

6 LIMITATIONS

Our method incurs computational overhead during the weight interpolation process, as illustrated in
Table 11. This presents a significant challenge, as it reduces the efficiency of OVS models, and remains
an unresolved issue insufficiently addressed in prior research. To address this problem, reducing the
number of parameters involved in interpolation could be a potential solution. This can be achieved by
exploring approaches from prior work on model merging, such as pruning techniques (Yadav et al.,
2024; Sun et al., 2023), which eliminate redundant parameters, or Mixture-of-Experts methods (Tang
et al., 2024), which activate only a subset of parameters for specific tasks.

However, applying these techniques to segmentation models, particularly OVS models, introduces
unique challenges due to their structural characteristics and the complexity of the data. Developing
methods to reduce the cost of weight interpolation is a critical research direction that can overcome
these limitations and optimize the inference time of OVS models.

7 CONCLUSION

Conventional segmentation models are limited to recognizing predefined classes, which highlights
the growing importance of Open-vocabulary Segmentation (OVS) for broader category prediction.
However, OVS models show reduced performance when applied to target datasets beyond the source
dataset. While fine-tuning OVS models improves performance on fine-tuning datasets, we observe
that it leads to catastrophic forgetting of previous knowledge. To address this issue, we propose
a method that adaptively interpolates between the weights of the pre-trained decoder and the fine-
tuned decoders based on the input sample’s proximity to different data distributions. We conduct
extensive experiments to verify the method, showing that it allows OVS models to effectively learn
on fine-tuning data distributions while preserving prior knowledge.

10
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APPENDIX

A OPEN-VOCABULARY SEGMENTATION

We define the input image and class label as 2,4 and x4, respectively. The image encoder and text
encoder are defined as fj,g and fiez¢, With parameters 0,4 and 6., representing the parameters of
the image and text encoders. The image embedding is computed as ;g = fimg(Timg; Oimg), and
the text embedding is computed as ziept = frewt(Trext; Otent). The decoder takes these embeddings
as input and predicts N, pairs of masks and class labels, where IV, is the number of object queries in
the decoder. Specifically, the decoder, fgec, takes zimg and z:c,+ as inputs and predicts the output
0 = faec(Zimg Zteat; Bdec). The output o consists of IV, pairs of masks and class embeddings,

{(m;, ci)}fv:ql, where 7 denotes the index of the pair, m; represents the mask, and c; represents the
corresponding class embedding. The class associated with mask m; is determined by selecting
the class label with the highest similarity between the predicted class embedding c; and the text
embedding z;..+. This approach allows the model to predict a wide range of classes without being
limited to predefined categories.

B EXPERIMENT SETTINGS

Datasets. For the panoptic segmentation task, fc-clip and X-Decoder use COCO (Lin et al., 2014)
as the source dataset. For the fine-tuning datasets, we use Cityscapes (Cordts et al., 2016) and
ADE20k (Zhou et al., 2019). For evaluation purposes only, we assess model performance on
eight target datasets: i) LVIS (Gupta et al., 2019), ii) BDD100K (Yu et al., 2020), iii) Mapillary
Vista (Neuhold et al., 2017), iv) Pascal Context (Mottaghi et al., 2014) with 59 common classes
(PC-59), v) Pascal Context with all 459 classes (PC-459), vi) PASCAL VOC (Everingham et al., 2010)
with 20 foreground classes (PAS-20), vii) an extension of PAS-20 with an additional background
class (PAS-21), and viii) A-847, which includes all 847 classes from ADE20K (Zhou et al., 2019).

Evaluation Metrics. We evaluate all OVS models on the tasks of open-vocabulary panoptic, instance,
and semantic segmentation. For evaluation, we use the Panoptic Quality (PQ) (Kirillov et al., 2019),
mean Average Precision (mAP), and mean Intersection over Union (mIoU) metrics. When evaluating
on eight different unseen datasets, we select the most representative metric for each dataset based
on the task it targets. Specifically, mIoU is used for semantic segmentation tasks, PQ for panoptic
segmentation, and mAP for instance segmentation. In our experiments, PQ, mAP, and mIoU show
similar performance trends. To maintain clarity, we only report PQ in the main paper and include the
other metrics in the appendix.

Implementation Details. We apply our method to two OVS models: fc-clip (Yu et al., 2024) with
ConvNext-L (Liu et al., 2022) backbone and X-Decoder (Zou et al., 2023a) with Focal-L (Yang
et al., 2022) backbone. The fc-clip uses the CLIP (Radford et al., 2021) for both the image and text
encoders, and training only decoder of the model using COCO (Lin et al., 2014). X-Decoder trains its
encoder and decoder on the multiple pre-training datasets, including COCO, SBU Captions (Ordonez
etal., 2011), Visual Genome (Krishna et al., 2017). Following the fc-clip and X-Decoder, we freeze
the encoders and train only the decoder for both OVS models during fine-tuning. To implement
the interpolation factor estimator in our method, we use the softmax temperature 7" as 0.01 for the
softmax operation, and calculate the log-likelihood for the MVN distribution.

C COMPARED METHODS

Since there is no prior research that apply continual learning to OVS models, we apply the previous
continual learning methods to the OVS models and evaluate all approaches. Following Wang et al.
(2024b); Chen & Liu (2022); Parisi et al. (2019); Mundt et al. (2023), we categorize previous methods
into replay-based, regularization-based (parameter, function), and architecture-based approaches. We
apply a representative method from each category to OVS models and compare their performance.

Replay-based Method. Experience Replay (ER) serves as the conceptual foundation for many
memory-based methods (Lopez-Paz & Ranzato, 2017; Iscen et al., 2020). In our experiments, we
apply this technique to the OVS model. ER stores a subset of training samples from previous datasets
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and uses them during the training of a new dataset. For ER, we select 10 training samples per class
from the source dataset. Unlike our method, ER requires access to the source dataset during the
training of a new dataset, which makes a fair comparison difficult.

Function Regularization. We incorporate Learning without Forgetting (LwF) (Li & Hoiem, 2017),
a function regularization method, into the OVS model. LWF is an exemplar-free continual learning
method that uses knowledge distillation loss based on the distance between predictions of the pre-
trained model and the fine-tuned model. This loss helps regularize the model to preserve its prior
knowledge.

Parameter Regularization. The Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017)
method is adapted for the OVS model. EWC is a parameter regularization approach that does not
rely on previous datasets. It first estimates the importance of each neuron by calculating the Fisher
information matrix. This matrix assigns weights to the distance between the parameters of the
pre-trained model and the fine-tuned model. This process suppresses changes to parameters that are
crucial for preserving previous knowledge.

Architecture-based Method. We apply ECLIPSE (Kim et al., 2024), one of the architecture-based
methods, to the OVS model. This method is designed for class-incremental learning in closed-set
segmentation tasks and does not rely on the previous dataset. ECLIPSE introduces visual prompt
tuning for the decoder by adding learnable prompts to the object queries and positional embedding.
For our task, we add 250 prompts for each fine-tuning data distribution to ensure sufficient learning
capacity. We use only the prompt tuning component of ECLIPSE in the OVS model and do not
include the classifier or logit manipulation components.

D DISCUSSION & ANALYSIS

Table Al: Performance comparison between the argmax and softmax operations in the interpolation factor
estimator. We use fc-clip with our method and fine-tune it on both Cityscapes and ADE20K. PQ is used.

- Fine-tuning LVIS BDDI100K Mapillary PC-59 PC-459 PAS-20 PAS-21 A-847
Decision Rule
Dataset (mAP) (PQ) (mIoU) (mIoU) (mIoU) (mIoU) (mIoU) (mIoU)
Argmax Cityscapes, ADE20k 21.3 18.3 26.9 53.1 17.0 93.2 80.2 16.3
Softmax Cityscapes, ADE20k 23.1 22.6 29.1 549 17.9 93.6 80.7 16.3

Replacing Softmax with Argmax. In this study, we use the softmax function to calculate interpo-
lation factors for each data distribution. Considering that argmax is a hard version of softmax, we
compare the segmentation performance on target datasets when using argmax and softmax operations.
Table Al presents the evaluation results. We observe that softmax consistently outperforms argmax
across all target data distributions (e.g., on LVIS, argmax: 21.3, softmax: 23.1). In the PAS-20,
PAS-21, and A-847, there is little difference in performance between softmax and argmax. This
is because the interpolation factor from softmax tends to be close to 0 or 1 when the input sample
is close to the seen data distribution, making softmax behave similarly to argmax. As shown in
Figure D1, for A-847, the interpolation factors are close to 0 or 1 because it shares a data distribution
similar to ADE20K, a training dataset. In contrast, the interpolation factors for BDD100K are evenly
distributed between 0 and 1. This occurs because BDD100K is closer to an target data distribution. In
this case, our method improves generalization performance by combining models trained on multiple
data distributions. These results indicate that considering multiple data distributions simultaneously
via softmax leads to better performance than selecting a single data distribution through argmax,
supporting the effectiveness of our design choice.

Extending the Proposed Method to Traditional Continual Learning. Our approach can also be
extended to traditional continual learning tasks. In this context, recent techniques such as prompt-
tuning (Wang et al., 2022a) and LoRA (Liang & Li, 2024) maintain independent parameter sets
for each incremental session, enabling task-specific adaptation. Similarly, our method leverages
independent parameter sets generated during each incremental session and uses the initial model to
estimate the data distribution proximity of the input sample. This allows the method to dynamically
merge the corresponding parameters, enabling accurate predictions for traditional continual learning
tasks while effectively mitigating catastrophic forgetting. This adaptability demonstrates the broader
potential of our framework beyond OVS task.
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Figure D1: The histogram of interpolation factors when inferring all samples from the validation sets of (a)
A-847 and (b) BDD100K. We fine-tune fc-clip on Cityscapes and ADE20K and use PQ as the evaluation metric.

Hyperparameter Sensitivity Analysis. We an- Table A2: Effect of softmax temperature 7" on perfor-
alyze the impact of the softmax temperature mance across datasets. Results are reported as mloU.

T used to compute interpolation factors in our Previous  Fine-tuning Unseen

. . T (COCO) (ADE20K) (Cityscapes) 1otal
method. While our approach introduces no ad- yscap
ditional hyperparameters related to the MVN ~ 0:0001 507 334 4338 129.9
distributi the soft " " iticall 0.001 512 422 439 137.3
distributions, the softmax temperature critically 0.01 18 473 57 142.8
influences the effectiveness of interpolation. Ta- 0.1 513 475 432 142.0
ble A2 presents the results of our ablation study. 1.0 512 474 432 141.8

We observe that using a small temperature T

reduces performance on the fine-tuning dataset due to excessive smoothing of the interpolation factors.
This results in minimal contribution from the fine-tuned model, ultimately lowering performance on
the fine-tuning dataset. On the other hand, a large temperature skews the interpolation factors toward
0 or 1, which degrades performance on the target dataset. Such extreme values hinder the integration
of multiple models, a key requirement for effective generalization to target data distributions. Further
details are provided in Section 4.2.

The model achieves the best balance across datasets when 7" = 0.01. This configuration produces the
highest total score of 142.8, demonstrating its effectiveness for robust generalization.

E QUALITATIVE RESULTS

This section provides an analysis of the qualitative results from the original fc-clip, the standard
fine-tuning technique, and the proposed method. Figure D2 shows the output of each method. When
evaluated on the source dataset, the standard fine-tuning technique fails to recognize the backpack,
losing information from the source dataset. On the fine-tuning dataset, the original fc-clip fails to
identify key elements such as road and person. This highlights that OVS models perform well only
within the data distribution of the source dataset. When evaluated on the target dataset, the standard
fine-tuning technique fails to recognize ceiling, a class that does not exist in both the source dataset
and the fine-tuning dataset. In contrast, the proposed method successfully identifies both previous
and newly learned classes, as well as classes not present in either training dataset.

F ADDITIONAL LIMITATIONS

Our method generates unique model weights for each input sample, which makes it challenging to
use when the batch size exceeds one. This limitation is also observed in other continual learning
approaches (Wang et al., 2022a; Smith et al., 2023; Jin et al., 2023). One potential solution is to
apply parallel processing only during the encoder stage. The encoder stage of OVS models generally
requires significant computational resources. However, since our method focuses on decoder weight
interpolation, multiple samples can be processed in parallel during the encoder stage. Afterward, the
embeddings from each sample can be passed through decoders with different weights. While this
approach resolves the batch size limitation, the increased computational cost in the decoder stage
remains a concern compared to traditional OVS models. To address this issue, further research is
needed to develop a parallel processing mechanism for our method.
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Figure D2: We provide a qualitative analysis on COCO, Cityscapes, and ADE20K. The comparison involves
three methods: fc-clip, fine-tuning, and our approach. Both fine-tuning and our method use the Cityscapes
dataset to fine-tune fc-clip.

Algorithm 1 Inference Process of Our Method.

Input: Input  (Zimg, Ttext), encoder fimg
&  freat, decoder fiec, pre-trained decoder
weight  Ogec,pr, fine-tuned decoders weight
{Géec,ft, 0¢2iec,ft7 - Gif;ﬁ}, mean and covari-
ance matrix {(Mzmm E;.L:mg> ll/ieztv E%ezt)}fifot ’ Pdf of
the MVN distribution p.

Output: Mask & class pairs {(m;, ¢;) 5\21

Step 1. Extract embedding vectors z.

Zimg < fimg(Timg)

Ztext < ftezt (xtezt)

Step 2. Calculate the likelihood 1 for all data distribu-

tions. _ _ N
limg <~ {p(zimg“'b;b'mgv Eng)}zzf(j
Nyt

Licat <+ {p(ztewt“flezt’ Erztezt)}izo

Step 3. Apply softmax and maximum to get A.

Simg < softmax(Limg)

Stext < softmax(ltezt)

A+ maximum(Simg, Steat)

Step 4. Interpolate the decoders weight.

edec new Hdec,pr + Zth )\ * (adec ft — gdec,pr)

Step 5. Compute the output from the decoder.
N,

(mi7 Ci)i:ql — fdec(zimgy Ztext; odec,new)

return {(mi, ci)} i
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Table A3: Performance comparison between original fine-tuning, previous continual learning methods, and our
method. All methods fine-tune the models using Cityscapes. We use PQ, mAP, mIoU for evaluation metrics.

Method Fine-tuning COCO (previous training) Cityscapes (fine-tuning) ADE20K (unseen)
Dataset PQ mAP mIoU Avg PQ mAP mIoU Avg PQ mAP mIoU Avg
fe-clip - 501 411 520 477 | 440 268 562 424 | 235 171 304 237
+ Fine-tuning 227 <162 -118  -169 | +20.1  +139 4212 +184 | -103 63 -39 638
+ER 1.6 27 402 <14 | 4190 +13.0 4201  +174 | 403 -35 409  -08
+LwF Cit 2107 <119 <79 <102 | 4122 427 +102 483 | 08 -54  +08  -18
+EWC TSCAPES 559 190 -133 <194 | +193 4112 +184 +163 | 98 -84 42 75
+ECLIPSE 6.0 62 -39 53 | 422 402 443 422 | 409 36 +20 03
+ Ours +0.3  +0.5  +0.1  +0.3 | 4202 +13.9 +21.3  +185 | 425 12 +25  +13
X-Decoder - 567 469 674 570 | 363 254 529 382 | 167 117 249 1738
+Fine-tming . 504 322 537 455 | 4266 4117 4267 4217 | 129 81 197 135
+Ours Tryscap 04 04 03 03 | +266 +11.6 +267 +21.7 | +0.1 +0.5  -03  +0.1

Table A4: Performance comparison between original fine-tuning, previous continual learning methods, and our
method. All methods fine-tune the models using ADE20K. We use PQ, mAP, mIoU for evaluation metrics.

Method Fine-tuning COCO (previous training) ADE20K (fine-tuning) Cityscapes (unseen)
Dataset PQ mAP mIoU Avg PQ mAP mIoU Avg PQ mAP mIoU Avg
fe-clip - 50.1 41.1 52.0 47.7 ‘ 23.5 17.1 30.4 23.7 ‘ 440 268 56.2 424
+ Fine-tuning =17 -6.2 -2.7 -5.5 +24.1  +19.0 4220 +21.7 | -3. -2.8 +2.9 -1.0
+ER +0.4 -0.3 +2.9 +1.0 +21.5  +163  +195  +19.1 -3.5 -2.8 -1.0 -2.4
+ LwF -3.8 -7.1 -2.4 -4.4 +13.7 +8.4 +11.3  +11.1 -1.0 -6.2 -3.0 -3.4
ADE20K
+EWC -11.1 9.3 -6.0 -8.8 +20.7  +162 +18.0 +18.3 -2.6 -3.2 +0.3 -1.8
+ ECLIPSE -0.5 -1.2 +0.6 -0.3 +0.2 -0.3 +3.0 +1.0 -5.9 -4.0 2.2 -4.0
+ Ours +1.7  +14 +3.2 +2.1 | +23.8 +18.6 +21.1 +21.2 | -0.3  -0.7 +0.6 -0.1
X-Decoder - 56.7 46.9 67.4 57.0 16.7 11.7 249 17.8 363 254 52.9 38.2
+ Fine-tuning ADE20K -37.3 336 424 -37.8 | +282 +18.6 4272 +246 | 3.7 94 -0.8 -4.6
+ Ours -1.5 -1.7 -1.1 14 | 4292 +19.0  +27.5 4252 | +14  -6.4 +3.5 -0.5

Table AS: Performance comparison between standard fine-tuning and our method. The underlined values
indicate the best score for each dataset. We use PQ, mAP, mIoU for evaluation metrics.

Method The order of COCO (previous) ADE20k (fine-tuning 1) Cityscapes (fine-tuning 2)
fine-tuning PQ mAP mIoU PQ mAP mIoU PQ mAP mIoU
fe-clip - 50.1 41.1 52.0 23.5 17.1 30.4 44.0 26.8 56.2
+ Fine-tuning ADE20k — Cityscapes 20.8 19.5 40.0 15.4 14.2 349 65.2 423 71.6
+ Fine-tuning Cityscapes — ADE20k 393 324 48.3 48.3 363 52.1 46.0 26.4 61.5
+ Ours Cityscapes, ADE20k 51.6 42.5 553 47.0 359 51.4 64.3 40.7 77.6
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Figure F3: We provide additional qualitative analysis on COCO (previous training dataset). The comparison
involves three methods: fc-clip, fine-tuning, and our approach. Fine-tuning and our method both use the
Cityscapes dataset to fine-tune fc-clip.
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Figure F4: We provide additional qualitative analysis on Cityscapes (fine-tuning dataset). The comparison
involves three methods: fc-clip, fine-tuning, and our approach. Fine-tuning and our method both use the
Cityscapes dataset to fine-tune fc-clip.
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