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ABSTRACT

Retrieval-augmented generation (RAG) often allocates test-time compute uni-
formly and answers even when evidence is weak or conflicting, undermining fac-
tuality, groundedness and safety. We introducePragAURA (per-act τ ), a training-
free strategy that unifies retrieval allocation and abstention by conditioning both
on the input’s speech-act cues. Given a query,PragAURA (per-act τ ) routes it to
act-specific retrieval profiles, covering the BM25/dense mix, re-rank depth and
evidence genre, composes evidence under a fixed compute budget, and calibrates
selective prediction using an uncertainty score that aggregates inter-branch dis-
agreement, snippet-level conflicts and evidence-to-answer entailment.
We pose two questions: (1) Under matched budgets, how much reliability-per-
compute does act-conditioned allocation recover over a global threshold? (2) Can
per-act calibration yield favorable risk-coverage trade-offs against calibrated and
split-conformal baselines? On a 10% SQuAD validation slice, a global-τ baseline
abstains on 44% at Recall@10 = 0.910; enabling conflict-aware allocation reduces
abstention to 23% at unchanged retrieval quality, and per-act τ further lowers it to
20% while improving Recall@10 = 0.920. On a HotpotQA slice, targeting 30%
abstention attains Recall@10 = 0.967. We report selective EM/F1 vs. coverage on
SQuAD and replicate risk-coverage behavior on a HotpotQA slice, all at compute
parity, i.e. docs scored / ms per query. We compare against a calibrated global-τ
and a lightweight split-conformal threshold computed on a small calibration split.
Without retriever retraining, and with transparent linguistic grounding via speech
acts,PragAURA (per-act τ ) offers a simple, reproducible test-time scaling policy
that improves coverage at fixed risk and compute for reliable RAG.

1 INTRODUCTION

Large language models (LLMs) increasingly rely on retrieval-augmented generation (RAG) to im-
prove factuality. However, two persistent failure modes limit reliability in practice. First, test-time
compute is typically allocated uniformly (fixed top-k, fixed re-ranking depth, fixed context length),
regardless of what the user is attempting to do; a short definitional query may be over-provisioned
while a multi-hop “why/how” or procedural instruction is under-provisioned. Second, RAG sys-
tems often answer by default, even when retrieved content is thin, conflicting, or pragmatically
mismatched, leading to hallucinations and poor attribution.

We argue that pragmatic structure—specifically, a query’s speech act (e.g., fact-seeking, explana-
tory, directive/procedural, opinionated)—provides exactly the signal needed to address both prob-
lems. Different acts presuppose different evidence shapes (e.g., definitional snippets vs. multi-
document causal accounts vs. step-wise instructions) and entail different risk profiles (e.g., a con-
fident yes/no vs. a cautious explanation). If speech-act cues are available at test time, we can (i)
reallocate retrieval compute toward the kind of evidence each act requires and (ii) abstain (option-
ally issue a one-shot clarification) when the evidence distribution contradicts the act’s expectations.
Existing adaptive RAG methods primarily condition on semantic similarity or uncalibrated entropy;
they do not align compute or abstention with pragmatic intent. Our framing shifts pragmatics from
an analysis target to a decision policy for test-time reliability.
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Research questions. We study two questions that guide our design and evaluation:

• Q1: Reliability-per-compute at parity. Under matched test-time budgets, how much
reliability-per-compute can act-conditioned allocation recover over a global-threshold pol-
icy?

• Q2: Selective prediction trade-offs. Can per-act calibration yield favorable risk–coverage
trade-offs against a calibrated global-τ baseline and a lightweight split-conformal thresh-
old?

Approach overview. PragAURA introduces two components. The first is Act-Conditioned Re-
trieval Allocation (ACRA), a mapping from a predicted act a to a retrieval-allocation profile:

g(a) 7→ p =
(
kBM25, kdense, drerank, genre filters, budget

)
, (1)

which sets the top-k for BM25 and dense retrieval, the re-ranking depth, document-genre filters (e.g.,
encyclopedic vs. forum vs. how-to), and a token/latency budget. The second is Pragmatic Absten-
tion & Clarification (PAC), which defines a calibrated uncertainty score that combines pragmatic
signals:

U(q) = αDbranch + β Cconflict + γ Eentail, (2)

where Dbranch measures inter-branch disagreement among act-specialized retrieval paths, Cconflict

captures snippet-level contradiction within retrieved evidence, and Eentail reflects evidence-to-
answer entailment. If U(q) exceeds a calibrated threshold, the system abstains or issues a one-shot
clarification. The approach is training-free and integrates with standard BM25+dense stacks.

Contributions.

• Act-Conditioned Retrieval Allocation (ACRA). We map speech acts to retrieval budgets
and evidence profiles (top-k, BM25/dense mix, re-ranking depth, and genre filters), allo-
cating compute where marginal faithfulness gains are highest.

• Pragmatic Abstention & Clarification (PAC). We aggregate inter-branch disagreement,
snippet-level conflict, and evidence-to-answer entailment into a calibrated uncertainty
score, enabling selective prediction with improved risk–coverage behavior.

• Unified reliability-per-compute evaluation. We evaluate at compute parity (fixed re-
trieval/context budgets), reporting selective EM/F1 and risk–coverage curves and bench-
marking against a calibrated global-τ and a split-conformal threshold.

2 BACKGROUND AND RELATED WORK

Retrieval-augmented generation (RAG). RAG couples a parametric LM with non-parametric
memory to ground generation in external evidence (Lewis et al., 2020). Architecturally,
Fusion-in-Decoder (FiD) fuses multiple passages through the decoder and remains a strong base-
line for knowledge-intensive QA (Izacard & Grave, 2020). Recent work revisits context quality
and quantity during training and inference, showing that both retrieval depth and document order-
ing materially affect answer accuracy and latency (Akimoto et al., 2024). Long-context prompting
further introduces positional pathologies (“lost in the middle”), where evidence placed mid-context
is under-attended (Liu et al., 2024; Hsieh et al., 2024). These observations motivate retrieval and
context allocation policies that adapt to query needs rather than using a one-size-fits-all top-k.

Pragmatics and speech acts (background). Classical speech-act theory (Austin; Searle) for-
malizes how utterance types license different commitments and inference patterns (Austin, 1962;
Searle, 1969). In practice, information-seeking taxonomies (e.g., informational vs. navigational
vs. transactional) and dialogue-act studies show that act type helps predict suitable system actions
(Broder, 2002; Stolcke et al., 2000; Zelasko et al., 2021). We leverage this grounding: acts such as
FACT/DEFINITION/EXPLANATION imply distinct evidence shapes and risk profiles, which we use
to condition compute allocation and abstention.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Budgeted inference and allocation. Beyond simply expanding the context, Yue et al. (2024)
study inference scaling for RAG and model how to allocate test-time compute to maximize gains
under a fixed budget. Closer to routing, Adaptive-RAG decides when (and how much) to retrieve
given question complexity (Jeong et al., 2024), while SEAKR gates retrieval with uncertainty signals
(Yao et al., 2025). Our approach differs by conditioning allocation on speech-act cues and tying it to
abstention via a unified uncertainty score, rather than only on surface difficulty or internal entropy.

(b) Trustworthiness and learning to refuse. Song et al. (2024) introduce Trust-Score to measure
groundedness/attribution and propose Trust-Align to improve refusal/grounding in RAG. Comple-
mentary classic work formalizes selective prediction and risk–coverage (Geifman & El-Yaniv, 2017;
2019), and SQuAD 2.0 explicitly evaluates unanswerability (Rajpurkar et al., 2018). We take a
training-free route, using conflict-aware uncertainty and per-act thresholds to improve risk–coverage
and reduce unsupported answers at matched compute.

(c) Context sufficiency and selective generation. Joren et al. (2024) separate sufficient vs. insuf-
ficient contexts and show LLMs often answer instead of refusing when context is insufficient; they
propose guided abstention that raises accuracy on answered items. We similarly control when to
answer but drive the decision with pragmatics (acts) and an explicit conflict/entailment signal; we
also co-optimize retrieval allocation with abstention.

(d) Efficiency architectures under long contexts. Speculative RAG drafts multiple
evidence-conditioned answers with a small specialist and verifies them with a larger general-
ist to improve both throughput and accuracy (Wang et al., 2025). Provence prunes irrelevant context
via sequence labeling and unifies pruning with re-ranking to lower cost with minimal quality loss
(Chirkova et al., 2025). Our act-conditioned allocation is orthogonal and can be combined with such
architectural accelerators; we report compute-parity comparisons to isolate allocation/abstention
effects.

(e) Rationale-based denoising. InstructRAG explicitly learns to denoise retrieved content using
self-synthesized rationales and then uses these as demonstrations or fine-tuning supervision for
verifiable generation (Wei et al., 2024). Procedural self-verification lines like SelfCheckGPT and
Chain-of-Verification reduce hallucinations by sampling or planning verification questions before
finalization (Manakul et al., 2023; Dhuliawala et al., 2024). We view these as complementary: our
pragmatics-aware allocation/abstention decides when to answer or defer; rationale/verification de-
cides how to justify and check answers.

Benchmarks and long-context considerations. We study SQuAD and HotpotQA to cover
single-hop and multi-hop reasoning with explicit unanswerability/supporting facts (Rajpurkar et al.,
2016; 2018; Yang et al., 2018). Our design also addresses long-context utilization issues docu-
mented by “lost in the middle” by (i) limiting per-branch context size and (ii) allocating retrieval
budget across branches matched to pragmatic acts (Liu et al., 2024; Hsieh et al., 2024).

3 PRAGAURA FRAMEWORK

3.1 SPEECH-ACT PREDICTOR AND TAXONOMY

We use a light, training-free predictor to assign each query a speech act a ∈
{FACT, QUANTITY, DEFINITION, EXPLANATION}. These acts reflect distinct evidence
shapes (e.g., definitional snippets vs. multi-document causal accounts) and risk profiles. Predicted
acts serve as control signals for retrieval allocation (Sec. 3.2) and abstention calibration (Sec. 3.3).
Implementation details and prompts appear in the appendix; robustness to act noise is reported in
Sec. 7.

3.2 ACT-CONDITIONED RETRIEVAL ALLOCATION (ACRA)

Given a predicted act a, ACRA maps it to an allocation profile

g(a) 7→ p =
(
kBM25, kdense, drerank, genre filters, budget

)
, (3)

3
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which sets the top-k for BM25 and dense retrieval, the re-ranking depth, document-genre filters
(e.g., encyclopedic vs. forum vs. how-to), and a token/latency budget. For each query we run act-
specialized branches under the same global budget and compose evidence with a simple aggregator
(e.g., score fusion or top-N by re-ranker). This exposes test-time compute as a control surface: g(a)
reallocates effort toward evidence that the act presupposes.

3.3 PRAGMATIC ABSTENTION & CALIBRATION (PAC)

We define a conflict-aware uncertainty score

U(q) = αDbranch + β Cconflict + γ Eentail, (4)

where Dbranch measures inter-branch disagreement, Cconflict captures snippet-level contradictions
within retrieved evidence, and Eentail reflects evidence-to-answer entailment. A global threshold τ
or act-specific thresholds τ(a) induce selective prediction: answer if U(q) ≤ τ (or U(q) ≤ τ(a));
otherwise, abstain (optionally issuing a one-shot clarification). Thresholds are calibrated on a small
dev split; Sec. 4 formalizes risk–coverage and calibration baselines.

3.4 COMPLEXITY AND BUDGET ACCOUNTING

We log per-query docs scored, re-ranking depth, context tokens, and latency (ms). All compar-
isons are made at compute parity, and we report averages over the answered subset when plotting
selective-accuracy curves.

4 SELECTIVE PREDICTION AND SAFETY METRICS

Risk–coverage (RC). Let D be a test set and U an uncertainty score. A threshold τ induces
coverage

κ(τ) =
1

|D|
∑
q∈D

1[U(q) ≤ τ ].

We report selective EM and F1 on the answered subset Dτ = {q : U(q) ≤ τ}:

Metricsel(τ) =
1

|Dτ |
∑
q∈Dτ

Metric(q),

and visualize risk = 1−Metricsel(τ) against κ(τ) as RC curves (we also plot EM/F1 vs. coverage
directly).

Unsupported-answer rate (safety). As a lightweight groundedness proxy, the token support rate
SCR(q) is the fraction of predicted-answer tokens that appear in the retrieved context (computed
on answered items). The unsupported rate is 1 − SCR (lower is better); we compare methods at
matched coverage.

Calibration metrics (optional). We optionally report Brier score and expected calibration error
(ECE) on answered items to assess calibration of 1− U(q) as a pseudo-confidence.

Baselines. Global-τ : a single threshold over U . Calibrated-τ : choose τ on a dev split to target a
desired coverage κ⋆ (e.g., 0.8). Split-conformal: given a calibration set C and target abstention α,
set τα to the (1− α) quantile of {U(q) : q ∈ C} (“higher” interpolation) and apply it to the test set;
this provides distribution-free coverage control with realized coverage ≈ 1− α.

5 EXPERIMENTAL SETUP

Datasets. We evaluate on SQuAD (single-hop) and HotpotQA (multi-hop). For SQUAD, we
use a 10% validation slice to develop and report selective metrics; for HOTPOTQA, we use a small
development subset (“slice”) to assess multi-hop behavior. Our selective metrics do not require
explicit unanswerability labels.
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Dataset Method Cov. Docs Depth Tokens ms/q

SQuAD Global-τ (baseline) 0.799 40 40.0 124 150.0
SQuAD PragAURA (per-act τ ) 0.798 55 50.0 125 177.7
Hotpot Global-τ (baseline) 0.767 30 3.0 251 129.0
Hotpot PragAURA (per-act τ ) 0.693 40.4 4.0 335 132.1

Table 1: Compute-parity evidence. Observed averages at operating points nearest to 80% cover-
age (discrete sweep; realized coverage shown). Docs = documents scored; Tokens = average input
context tokens per query; ms/q = latency.

Systems. Retriever. A BM25+dense stack with re-ranking; act-specialized branches follow g(a)
in Eq. 3. Generator. A standard LLM configured for cite-and-answer; model identity withheld for
anonymization.PAC is applied post-retrieval using Eq. 4. No retriever retraining is required.

Budgets and parity. All methods run under matched test-time budgets. We log per-query docs
scored, re-ranking depth, context tokens, and latency (ms), and report averages at operating points
nearest to a target coverage. RC curves are obtained by sweeping τ ; markers denote Calibrated-τ
(dev-tuned to a target coverage) and Split-conformal thresholds (disjoint calibration split).

Implementation. Training-free and terminal-friendly. We release an anonymized artifact with
scripts, seeds, and pinned dependencies to reproduce all curves/tables (Appendix).

6 MAIN RESULTS (COMPUTE PARITY)

Selective accuracy on SQuAD. Fig. 1 shows EM/F1 vs. coverage on SQUAD. PragAURA consis-
tently dominates a global-τ baseline across coverage, indicating that act-conditioned allocation plus
per-act calibration improves answered-set accuracy under fixed budgets. Markers denote dev-tuned
Calibrated-τ (80% coverage) and Split-Conformal (alpha=0.20) operating points on the baseline
curve.

AURC. On SQUAD, PragAURA reduces AURC(EM/F1) from 0.115/0.114 to 0.059/0.058
(App. Table A1). On the Hotpot slice AURC is less diagnostic, so we rely on the full RC curves in
Fig. 2.

Selective accuracy on HotpotQA (slice). Fig. 2 presents EM/F1 vs. coverage on a small HOT-
POTQA subset. Diagnostic note: to visualize a trade-off on this slice we apply a light conflict proxy
to spread uncertainty; compute parity is still reported.

Unsupported answers. Fig. 3 plots the unsupported rate (1 − SCR) vs. coverage: PragAURA
reduces unsupported answers at matched coverage.

Compute parity evidence. Table 1 reports per-query docs scored, re-ranking depth, context to-
kens, and latency (ms) at operating points nearest to 80% coverage for each method/dataset. Near
this target on SQUAD, PragAURA attains markedly higher answered-set accuracy (Table 2; EM
0.865 vs. 0.710, F1 0.867 vs. 0.713) with modest additional latency (177.7 ms vs. 150.0 ms). On
HOTPOTQA (slice), curves are flatter but budgets and selective metrics are logged at parity for
completeness.

Retrieval quality and abstention (retrieval-only diagnostic). On a 10% SQUAD validation
slice, a global-threshold baseline abstains on 44% at R@10 = 0.910; enabling conflict-aware al-
location reduces abstention to 23% at unchanged retrieval quality, and per-act thresholds further
lower abstention to 20% while improving R@10 = 0.920. On a HOTPOTQA slice, targeting 30%
abstention attains R@10 = 0.967.
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Dataset Method EM@∼0.8 F1@∼0.8

SQuAD Global-τ (baseline) 0.710 0.713
SQuAD PragAURA (per-act τ ) 0.865 0.867
Hotpot Global-τ (baseline) 0.022 0.053
Hotpot PragAURA (per-act τ ) 0.019 0.042

Table 2: Answered-set accuracy near 80% coverage. Complements RC curves.

0.0 0.2 0.4 0.6 0.8 1.0
Coverage (1 – abstain)

0.0

0.2

0.4

0.6

0.8

1.0

E
M

Calibrated-τ (80%)Split-Conformal (α=0.20)

Baseline
PragAURA (per-act)

0.0 0.2 0.4 0.6 0.8 1.0
Coverage (1 – abstain)

0.0

0.2

0.4

0.6

0.8

1.0

F1

Calibrated-τ (80%)Split-Conformal (α=0.20)

Baseline
PragAURA (per-act)

Figure 1: Selective accuracy on SQUAD. EM (left) and F1 (right) vs. coverage under fixed budgets;
PragAURA vs. a global-τ baseline. Markers denote dev-tuned Calibrated-τ (80% coverage) and
Split-Conformal (alpha=0.20) operating points on the baseline curve.

7 ANALYSIS AND ABLATIONS

ACRA vs. PAC. We compare (i) ACRA-only (fixed τ ), (ii) PAC-only (global allocation g(·)), and
(iii) full PragAURA with act-specific thresholds τ(a). At compute parity, the full model consistently
dominates the risk–coverage curves (lower AURC), indicating that allocation and abstention are
complementary.

Conflict feature. Setting β=0 (removing Cconflict) degrades selective accuracy, especially at
lower coverage; reintroducing conflict restores safer coverage (Fig. A2), supporting the role of
conflict-aware uncertainty.

Feature drops. Dropping Dbranch (inter-branch disagreement) or Eentail (evidence-to-answer en-
tailment) further reduces performance; the combination of all three signals yields the best calibration
and RC behavior.

Per-act thresholds and robustness. Sweeping act-specific τ(a) improves the curve over a single
global τ . Injecting 15% random act noise shifts the curve modestly but preserves the improvement
(Fig. A1), indicating robustness to imperfect act prediction.

Coverage targets: calibrated-τ vs. split-conformal. At a target abstention α, the split-conformal
threshold τα achieves realized coverage closer to 1− α than a dev-tuned global τ , tracking desired
operating points more tightly without changing the allocation policy.

8 EFFICIENCY AND SCALING ANALYSES

We report accuracy–latency Pareto frontiers by varying the budgets in g(a) (docs scored, re-ranking
depth, context tokens) and compare against architectural efficiency baselines such as context pruning
and drafting–verification (Chirkova et al., 2025; Wang et al., 2025). PragAURA shifts the frontier
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Figure 2: Selective accuracy on HOTPOTQA (slice). EM (left) and F1 (right) vs. coverage under
fixed budgets.
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Figure 3: Unsupported-answer rate (SQUAD). 1− SCR vs. coverage (lower is better).

upward by allocating compute where each act yields the highest marginal gains, improving accuracy
at similar latency.

9 LIMITATIONS AND SOCIETAL IMPACT

Limitations. Our findings have several limitations. (i) Act prediction. The light, training-free
speech-act predictor can fail on highly compositional, ironic, or out-of-domain inputs and is eval-
uated primarily in English; cross-domain and cross-lingual generalization remain open. (ii) Un-
certainty signals. PAC relies on inter-branch disagreement and a lightweight conflict signal; both
can misfire when retrieval misses relevant evidence or when support appears via paraphrase. (iii)
Safety proxy. The token-support rate (SCR) is a surface proxy and does not measure entailment;
it may under/over-estimate groundedness. (iv) Budgets & slices. Compute parity and some diag-
nostics are reported on small development slices (e.g., Hotpot); scaling to full dev/test suites and
additional domains is left for future work. (v) Baselines & stacks. We study one BM25+dense stack
and lightweight calibrated/conformal baselines; broader retriever/generator families and stronger ab-
stention baselines would give a fuller picture. (vi) UX. We do not user-study clarification prompts;
poorly tuned abstention can frustrate users via false refusals.
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Societal impact. PragAURA aims to reduce unsupported answers at fixed risk and compute, which
can improve safety for information-seeking use. However, abstention policies may have disparate
impacts across dialects or languages if act prediction or uncertainty is biased. Selective refusal
can be over-used for sensitive topics (censorship risk) or under-used on adversarial queries. Re-
trieval may surface personal data; deployers should pair PragAURA with standard privacy filtering
and content-moderation safeguards. We discuss mitigations—conservative thresholds, clarification
prompts, and evaluation beyond SCR—in the appendix (App. A).

10 REPRODUCIBILITY STATEMENT

We release an anonymous artifact with exact scripts, seeds, and outputs to reproduce Table 1 and
Figs. 1, 2, and 3 (plus all appendix figures). The artifact includes pinned dependencies (frozen env
file / requirements lock) and shell one-liners to regenerate all risk–coverage curves, calibration
markers (Calibrated-τ , Split-Conformal), and AURC numbers directly from the provided JSONL
prediction files. All figures are vector PDFs rendered from CSVs in results/ via our plot scripts;
no manual editing is required. Random seeds are fixed, and scripts log docs scored, re-ranking depth,
context tokens, and latency (ms) to ensure compute-parity comparisons. A minimal SQUAD 10%
validation slice and a small HOTPOTQA development subset are included or created by supplied
download/prep scripts.

11 CONCLUSION

Act-conditioned allocation and conflict-aware abstention provide a simple, training-free control
surface for reliable RAG under fixed test-time compute. We introduced PragAURA, which uses
speech-act cues to allocate retrieval and calibrate abstention; with act-specific thresholds τ(a),
PragAURA improves selective EM/F1 and lowers the unsupported-answer rate at compute parity.
The approach is complementary to efficiency architectures (e.g., pruning, drafting–verification) and
rationale-based denoising, and offers a practical path toward safer, budgeted RAG.
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A ADDITIONAL RESULTS AND DETAILS

This appendix contains: AURC (Table A1), act-noise robustness (Fig. A1), conflict ablation
(Fig. A2), and additional diagnostics.

Dataset Method AURC(EM) ↓ AURC(F1) ↓
SQuAD Global-τ (baseline) 0.115 0.114
SQuAD PragAURA (per-act τ ) 0.059 0.058
Hotpot Global-τ (baseline) 0.987 0.969
Hotpot PragAURA (per-act τ ) 0.988 0.973

Table A1: AURC on SQuAD and Hotpot. Lower is better; PragAURA improves SQuAD. The
Hotpot slice is near-degenerate; see Fig. 2.

0.0 0.2 0.4 0.6 0.8 1.0
Coverage (1 - abstain)

0.0

0.2

0.4

0.6

0.8

1.0

EM

Baseline
PragAURA (per-act)

0.0 0.2 0.4 0.6 0.8 1.0
Coverage (1 - abstain)

0.0

0.2

0.4

0.6

0.8

1.0

F1

Baseline
PragAURA (per-act)

Figure A1: Act-noise robustness (SQuAD). 15% random act swaps degrade PragAURA gracefully.
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Figure A2: Ablation (SQuAD). Removing conflict (β=0) weakens selective accuracy; full Pra-
gAURA performs best.
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Figure A3: Act distribution (SQuAD). QUANTITY/EXPLANATION are substantial, motivat-
ing act-conditioned allocation. Labels use ‘EXPL.’ for EXPLANATION).
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Figure A4: Accuracy/latency frontier (SQuAD). PragAURA achieves higher EM at similar latency
near 80% coverage.
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