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Abstract
Recommender systems (RS) play important roles
to match users’ information needs for Internet ap-
plications. In natural language processing (NLP)
domains, large language model (LLM) has shown
astonishing emergent abilities (e.g., instruction fol-
lowing, reasoning), thus giving rise to the promis-
ing research direction of adapting LLM to RS
for performance enhancements and user experi-
ence improvements. In this paper, we conduct a
comprehensive survey on this research direction
from an application-oriented view. We first sum-
marize existing research works from two orthogo-
nal perspectives: where and how to adapt LLM to
RS. For the “WHERE” question, we discuss the
roles that LLM could play in different stages of
the recommendation pipeline, i.e., feature engineer-
ing, feature encoder, scoring/ranking function, and
pipeline controller. For the “HOW” question, we
investigate the training and inference strategies, re-
sulting in two fine-grained taxonomy criteria, i.e.,
whether to tune LLMs or not, and whether to in-
volve conventional recommendation model (CRM)
for inference. Detailed analysis and general devel-
opment trajectories are provided for both questions,
respectively. Then, we highlight key challenges in
adapting LLM to RS from three aspects, i.e., effi-
ciency, effectiveness, and ethics. Finally, we sum-
marize the survey and discuss the future prospects.
We also actively maintain a GitHub repository for
papers and other related resources in this rising di-
rection1.

1 Background
With the rapid development of online services, recommender
systems (RS) have become increasingly important to match
users’ information needs [Dai et al., 2021; Fu et al., 2023b]
and alleviate the problem of information overloading [Guo

1https://github.com/CHIANGEL/Awesome-LLM-for-RecSys
* Jianghao Lin and Xinyi Dai are the co-first authors.
† Ruiming Tang and Weinan Zhang are the co-corresponding
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Figure 1: The decomposition of the research question about adapting
large language models to recommender systems. We analyze the
question from two orthogonal perspectives: (1) where to adapt LLM,
and (2) how to adapt LLM.

et al., 2017]. Despite the different forms of application
tasks (e.g., top-N recommendation, or sequential recommen-
dation), the common learning objective for a deep learning
based recommender system is to estimate a given user’s pref-
erence towards each candidate item, and finally arrange a
ranked list of items presented to the user [Lin et al., 2021;
Xi et al., 2023a].

On the other hand, in the field of natural language process-
ing (NLP), large language model (LLM) has shown impres-
sive emergent abilities (e.g., reasoning [Huang and Chang,
2022], in-context few-shot learning [Brown et al., 2020]),
as well as the vast reservoir of open-world knowledge com-
pressed in their pretrained model parameters [Zhao et al.,
2023]. While LLM is making remarkable breakthroughs in
various deep learning applications, it is natural to propose the
following research question:

How can recommender systems benefit from large lan-
guage models for performance enhancements and user expe-
rience improvements?

In this paper, we aim to conduct an in-depth survey on the
adaption of large language models to recommender systems.
We study this research question from an application-oriented
view and cover a broad range of the latest research works,
which we argue is valuable and instructive for recommender
system developments. As shown in Figure 1, we comprehen-
sively analyze the latest research progresses, and decompose
the research question above from two perspectives:

• “WHERE” question focuses on where to adapt LLM for
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RS, and discusses the roles that LLM could play at differ-
ent parts of the modern deep learning based recommender
system pipeline, i.e., feature engineering, feature encoder,
scoring/ranking function, and pipeline controller.

• “HOW” question centers on how to adapt LLM for RS,
where two orthogonal taxonomy criteria are carried out:
(1) whether we will freeze the parameters of the large lan-
guage model during the training phase, and (2) whether we
will involve conventional recommendation models (CRM)
during the inference phase.

Moreover, we would like to make two further statements
before we move on to the details of this survey paper:

• To provide a thorough survey and a clear development tra-
jectory, we broaden the scope of large language models,
and bring those relatively smaller language models (e.g.,
BERT [Devlin et al., 2018], GPT2 [Radford et al., 2019])
into the discussion as well.

• We focus on works that leverage LLM together with
their pretrained parameters to handle textual features via
prompting, and exclude works that simply apply pretrain-
ing paradigms from NLP domains to pure ID-based tra-
ditional recommendation models (e.g., BERT4Rec [Sun et
al., 2019]). Interested readers can refer to [Yu et al., 2022a;
Liu et al., 2023b].

The rest of this paper is organized as follows. Section 2 and
Section 3 thoroughly analyze the aforementioned taxonomies
from two perspectives (i.e., “WHERE” and “HOW”), fol-
lowed by detailed discussion and analysis of the general de-
velopment trajectories. In Section 4, we highlight five key
challenges for the adaption of LLM to RS from three aspects
(i.e., efficiency, effectiveness, and ethics), which mainly
arise from the unique characteristics of recommender sys-
tems especially in industrial applications. Finally, Section 5
concludes this survey and draws a hopeful vision for future
prospects in research communities of LLM-enhanced recom-
mender systems.

2 Where to Adapt LLM
To answer the “WHERE” question about adapting LLM to
the recommendation domain, we first analyze the pipeline of
modern deep learning based recommender systems, and ab-
stract it into several key components as follows:

• User data collection collects users’ explicit (ratings) or
implicit (click signals) feedback from online services by
presenting recommended items to users.

• Feature engineering is the process of selecting, manip-
ulating, transforming, and augmenting the raw data col-
lected online into structured data (e.g., one-hot encoding).

• Feature encoder takes as input the structured data, and
generates the neural embeddings for scoring/ranking func-
tions in the next stage. In most cases, it is formulated as the
embedding layer for one-hot encoded categorical features.

• Scoring/Ranking function is the core part of recommen-
dation, where various neural methods are designed to select
the top-relevant items to satisfy users’ information needs.
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Figure 2: The illustration of deep learning based recommender sys-
tem pipeline. We list representative works that adapt LLM to differ-
ent parts of the system pipeline denoted by different colors.

• Pipeline controller monitors and controls the operations
of the recommendation pipeline mentioned above. It can
even provide fine-grained control over different stages for
recommendation (e.g., matching, ranking, reranking)
Next, we will elaborate on the adaptation of LLM to dif-

ferent parts of the recommendation pipeline, except for user
data collection.

2.1 LLM for Feature Engineering
In the feature engineering stage, LLM takes as input the orig-
inal data (e.g., user profiles, item descriptions), and gener-
ates auxiliary textual features as data augmentations, where
prompting and templating techniques are involved to extract
the open-world knowledge and reasoning ability from the
LLM. GReaT [Borisov et al., 2023] tunes a generative lan-
guage model to synthesize realistic tabular data as augmen-
tations for the training phase. Carranza et al. [2023] explore
to train a differentially private (DP) large language model for
synthetic user query generation, in order to address the pri-
vacy problem in recommender systems. GENRE [Liu et al.,
2023c] applies manually designed prompts to obtain addi-
tional news summarization, user profiles, and synthetic news
pieces for news recommendation. KAR [Xi et al., 2023b]
extracts the reasoning knowledge on user preferences and
the factual knowledge on items from LLM, which can be
proactively acquired by the designed factorization prompt-
ing. The obtained knowledge serves as augmented features
to promote the performance of recommendation models in
a model-agnostic manner. MINT [Mysore et al., 2023] in-
structs LLM to generate synthetic queries from existing user-
item interactions and thus enrich the training set for narrative-
driven recommendations. AnyPredict [Wang et al., 2023]
leverages LLM to consolidate datasets with different feature
fields, and align out-domain datasets for a shared target task.
Other works also utilize LLM to further enrich the training
data from different perspectives, e.g., knowledge graph com-
pletion [Chen et al., 2023], tag generation [Li et al., 2023a],
and user interest modeling [Christakopoulou et al., 2023].

2.2 LLM as Feature Encoder
In conventional recommender systems, the structured data
are usually formulated as one-hot encodings, and a simple



embedding layer is adopted as the feature encoder to obtain
dense embeddings. With the emergence of language models,
researchers propose to adopt LLM as auxiliary textual fea-
ture encoders to gain two major benefits: (1) further enrich-
ing the user/item representations with semantic information
for the later neural recommendation models; (2) achieving
cross-domain2 recommendation with natural language as the
bridge, where feature fields might not be shared.

For item representation enhancement, LLM is leveraged as
feature encoders for scenarios with abundant textual features
available (e.g., item title, textual body, description), includ-
ing but not limited to: document ranking [Zou et al., 2021;
Liu et al., 2021], news recommendation [Zhang et al., 2021a;
Wu et al., 2021; Wu et al., 2022; Yu et al., 2022b; Liu et al.,
2022b], tweet search [Zhang et al., 2022], tag selection [He
et al., 2022], and code example recommendation [Rahmani
et al., 2023]. TCF [Li et al., 2023d] further explores the per-
formance limits of such a LLM-as-item-encoder paradigm by
scaling the size of LLM up to 175 billions. As for user-side
enrichment, U-BERT [Qiu et al., 2021] ameliorates the user
representation by encoding review texts into dense vectors via
BERT.

Apart from user/item representation improvement, adopt-
ing LLM as feature encoders also enables transfer learning
and cross-domain recommendation, where natural language
serves as the bridge to link the heterogeneous information
from different domains. ZESRec [Ding et al., 2021] ap-
plies BERT to convert item descriptions into universal con-
tinuous representations for zero-shot recommendation. Wang
et al. [2022] train a general-purpose recommendation model
based on items with mixture-of-modality features, which
are encoded by language or vision foundation models. In
UniSRec [Hou et al., 2022], the item representations are
learned for cross-domain sequential recommendation via a
fixed BERT model followed by a lightweight MoE-enhanced
network. Built upon UniSRec, VQ-Rec [Hou et al., 2023a]
introduces vector quantization techniques to better align the
textual embeddings generated by LLMs to the recommenda-
tion space. Fu et al. [2023a] further explore layerwise adap-
tor tuning on the language model to obtain better embeddings
over textual features from different domains.

2.3 LLM as Scoring/Ranking Function
In the stage of scoring/ranking, the ultimate goal of LLM is to
provide a ranked list of items [ik]Nk=1, ik ∈ I, where I is the
universal item set (next item prediction is a special case where
N = 1). Such a goal could be achieved by various kinds of
tasks specially designed for LLM (e.g., rating prediction, item
ID generation). According to different tasks to be solved by
LLM, we classify them into three categories: (1) item scoring
task, (2) item generation task, and (3) hybrid task.

Item Scoring Task
In item scoring tasks, the large language model serves as a
pointwise function F (u, i),∀u ∈ U ,∀i ∈ I, which estimates
the score of each candidate item i for the target user u. Here U
and I denote the universal set of users and items, respectively.

2Different domains means data sources with different distribu-
tions, e.g., scenarios, datasets, platforms, etc.

The final ranked list of items is obtained by sorting the score,
requiring N forwards of function F (u, i):

[ik]
N
k=1 = Sort

(
{F (u, ik)}Nk=1

)
. (1)

PTab [Liu et al., 2022a] models the prediction task as a
text classification problem, and tunes the language model
based on pure textual inputs generated by prompting. Kang
et al. [2023] finetune large language model for rating predic-
tion in a regression manner, which exhibit a surprising per-
formance by scaling the model size of finetuned LLM up to
11 billion. RecFormer [Li et al., 2023b] estimates the match-
ing score between the semantic representation of user inter-
action sequence and candidate items, respectively. Another
line of research intends to concatenate the item description
(e.g., title) to the user behavior history with different prompts,
and estimates the score as the overall perplexity [Mao et al.,
2023], log-likelihood [Sileo et al., 2022], or joint probabil-
ity [Zhang et al., 2021b] of the prompting text.

The methods mentioned above generally follow the con-
ventional paradigm of recommendation models, where the
output of LLM is fed into a delicately designed projection
layer to calculate the final score for classification or regres-
sion tasks. Recently, researchers also propose to enable LLM
to directly output the score or user’s preference towards a
target item in natural language manners (e.g., integers 1-5
for rating, yes/no for preference). Prompt4NR [Zhang and
Wang, 2023] transforms the score estimation into a cloze
[MASK] prediction task for binary key answer words (e.g.,
related/unrelated, good/bad) with multi-prompt ensembling.
TabLLM [Hegselmann et al., 2023] and TALLRec [Bao et
al., 2023] train the decoder-only LLM to follow instructions
and answer a binary question appended behind the contex-
tual prompting information. PBNR [Li et al., 2023f] tunes an
encoder-decoder LLM (i.e., T5) to predict the yes/no answer
about user preference towards each candidate news article.
Zhiyuli et al. [2023] instruct LLM to predict the user rating
in a textual manner, and restrict the output format as a value
with two decimal places through manually designed prompts.

Item Generation Task
In item generation tasks, the large language model serves as a
generative function F (u) to directly produce the final ranked
list of items, requiring only one forward of function F (u):

[ik]
N
k=1 = F (u), s.t. ik ∈ I, k = 1, · · · , N. (2)

GPT4Rec [Li et al., 2023c] tunes a large language model to
produce the title of next item according to the user’s behavior
history via multi-beam generation. VIP5 [Geng et al., 2023]
and GPTRec [Petrov and Macdonald, 2023] frame the next
item recommendation task as a generative task, and utilizes a
sequence-to-sequence model to generate the index of the next
recommended item. Hua et al. [2023b] also explore better
ways for item indexing (e.g., sequential indexing, collabora-
tive indexing) in order to enhance the performance of such in-
dex generation tasks. Chen [2023], Wang and Lim [2023], Li
et al. [2023g], and Hou et al. [2023b] apply LLM to directly
produce the final ranked list with an optional pre-filtered set
of item candidates in the input prompts. This task highly re-
lies on the intrinsic reasoning ability of LLM. Besides, FaiR-



LLM [Zhang et al., 2023a] and UP5 [Hua et al., 2023a] in-
tend to address the fairness issue when adapting LLM for item
generation tasks.

Hybrid Task
In hybrid tasks, the large language model serves in a multi-
task manner, where both the item scoring and generation tasks
could be handled by a single LLM through a unified lan-
guage interface. The basis for supporting this hybrid func-
tionality is that large language models are inherent multi-
task learners [Brown et al., 2020; Ouyang et al., 2022].
P5 [Geng et al., 2022], M6-Rec [Cui et al., 2022] and Instruc-
tRec [Zhang et al., 2023b] tune the encoder-decoder models
for better alignment towards a series of recommendation tasks
including both item scoring and generation tasks via differ-
ent prompting templates. Other works [Liu et al., 2023a;
Sun et al., 2023; Dai et al., 2023] manually design task-
specific prompts to call a unified central LLM (e.g., ChatGPT
API) to perform multiple tasks, including but not restricted
to pointwise rating prediction, pairwise item comparison, and
listwise ranking list generation.

2.4 LLM for Pipeline Controller
As the model size scales up, LLM tends to exhibit emergent
behaviors that may not be observed in previous smaller lan-
guage models, e.g., in-context learning and logical reason-
ing [Wei et al., 2022; Zhao et al., 2023]. With such emergent
abilities, LLM is no longer just a part of the recommender
system mentioned above, but could actively participate in the
pipeline control over the system, possibly leading to a more
interactive and explainable recommendation process. Chat-
REC [Gao et al., 2023] leverages ChatGPT to bridge the con-
versational interface and traditional recommender systems,
where it is required to infer user preferences, decide whether
or not to call the backend recommendation API, and further
modify (e.g., filter, rerank) the returned item candidates be-
fore presenting them to the user. RecLLM [Friedman et al.,
2023] further extends the permission of LLM, and proposes
a roadmap for building an integrated conversational recom-
mender system, where LLM is able to manage the dialogue,
understand user preference, arrange the ranking stage, and
even provide a controllable LLM-based user simulator to gen-
erate synthetic conversations.

2.5 Discussion
We could observe that the development trajectory about
where to adapt LLM to RS is fundamentally aligned with
the progress of large language models. Back to year 2021
and early days in 2022, the parameter sizes of pretrained lan-
guage models are still relatively small (e.g., 340M for BERT,
1.5B for GPT2-XL). Therefore, earlier works usually tend to
either incorporate these small-scale language models as sim-
ple textual feature encoders, or as scoring/ranking functions
finetuned to fit the data distribution from recommender sys-
tems.

As the model size gradually increases, researchers dis-
cover that large language models have gained emergent abil-
ities (e.g., instruction following, reasoning), as well as a vast
amount of open-world knowledge with powerful text gen-
eration capacities. Equipped with these amazing features
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Figure 3: Four-quadrant classification about how to adapt LLM to
RS. Each circle in the quadrants denotes one research work with the
corresponding model name attached below the circle. The size of
each circle means the largest size of LLM leveraged in the research
work. The color of each circle indicates the best compared baseline
that the proposed model defeats as reported in the corresponding
paper. For example, the green circle of Chat-REC in quadrant 3
denotes that it utilizes a large language model with size larger than
100B (i.e., ChatGPT) and defeats the MF baseline. Besides, we sum-
marize the general development trajectory with light-colored arrows.
Abbreviations: MF is short for matrix factorization; MLP is short for
multi-layer perceptron.

brought by large-scale parameters, LLM starts to not only
deepen the usage in the feature encoder and scoring/ranking
function stage, but also move beyond and extend their roles
into other stages of the recommendation pipeline. For in-
stance, in the feature engineering stage, we could instruct
LLM to generate reliable auxiliary features and synthetic
training data [Liu et al., 2023c]. In this way, open-world
knowledge from LLM is injected into the recommendation
model, which is usually a closed-domain system. Not to
mention, participating in the pipeline control further requires
sufficient logical reasoning and tool utilization capabilities,
which are possessed by LLM.

In summary, we believe that, as the abilities of large lan-
guage models are further explored, they will form gradually
deeper couplings and bindings with multiple stages of the rec-
ommendation pipeline. Even further, we might need to cus-
tomize large language models specifically tailored to satisfy
the unique requirements of recommender systems [Lin and
Zhang, 2023].

3 How to Adapt LLM
To answer the “HOW” question about adapting LLM to RS,
we carry out two orthogonal taxonomy criteria to distinguish
the adaptation of LLMs to RS, resulting in a four-quadrant
classification shown in Figure 3:

• Tune/Not Tune LLM denotes whether we will tune LLM
during the training phase. The definition of tuning LLM
includes both full finetuning and other parameter-efficient
finetuning methods (e.g., LoRA [Hu et al., 2021]).

• Infer with/without CRM denotes whether we will involve
conventional recommendation models (CRM) during the



inference phase. Note that there are works that only use
CRM to serve as independent pre-ranking functions to gen-
erate candidate item set for LLM. We categorize them as
“infer without CRM”, since the CRM is independent of
LLM, and could be decoupled from the final recommenda-
tion task.
In Figure 3, we use different marker sizes to indicate the

size of the large language model the research works adapt,
and use different colors to indicate the best baseline they
have defeated in terms of item recommendation. Thus, a
few works are not included since they do not provide tradi-
tional recommendation evaluation, e.g., RecLLM [Friedman
et al., 2023] only investigates the system architecture design
to involve LLM for RS pipeline control without experimental
evaluation.

Given the four-quadrant taxonomy, the overall develop-
ment trajectory generally follows the light-colored arrows in
Figure 3. Accordingly, we will introduce the latest research
works in the order of quadrant 1, 3, 2, 4.

3.1 Tune LLM; Infer with CRM (Quadrant 1)
Existing works in quadrant 1 mainly focus on applying rel-
atively smaller pretrained language models (e.g., BERT) to
the field of news recommendation [Zhang et al., 2021a;
Wu et al., 2021; Liu et al., 2022b; Yu et al., 2022b] and e-
commercial advertisement [Muhamed et al., 2021; Li et al.,
2023e]. As discussed in Section 2.5, the primary roles of
these small-scale language models are only to serve as feature
encoders for semantic representation enhancement. Conse-
quently, a conventional recommendation model (CRM) is re-
quired to make the final recommendation, with generated tex-
tual embeddings as auxiliary inputs. Additionally, the small
model size makes it affordable to fully finetune the language
model during the training phase. TransRec [Fu et al., 2023a]
proposes layerwise adaptor tuning over BERT and ViT mod-
els to ensure the training efficiency and multi-modality en-
hanced representations. As shown in Figure 3, since CRM is
involved and LLM is tunable, the research works in quadrant
1 could better align to the data distribution of recommender
systems and thus all achieve satisfying performance. How-
ever, they only leverage small-scale language models as fea-
ture encoders, and thus the key capacities (e.g., reasoning,
instruction following) of large foundation models still remain
underexplored in this quadrant.

3.2 Not Tune LLM; Infer w/o CRM (Quadrant 3)
With the emergence of large foundation models, especially
ChatGPT, researchers intend to analyze the zero-shot or
few-shot performance of LLM in recommendation domains,
where LLM is frozen and CRM is not involved. Sileo et
al. [2022] apply zero-shot learning on GPT-2 by inferring
the next item according to the user’s behavior history, which
merely defeats the random baseline. Other works [Wang and
Lim, 2023; Liu et al., 2023a; Sun et al., 2023; Dai et al., 2023;
Li et al., 2023g] investigate zero-shot and few-shot recom-
mendation setting based on the ChatGPT API, with delicate
prompt engineering to instruct the LLM to perform tasks like
rating prediction, pairwise comparison, and listwise rank-
ing. Chat-REC [Gao et al., 2023] instructs ChatGPT to not

only serve as the score/ranking function, but also take con-
trol over the recommendation pipeline, e.g., deciding when
to call an independent pre-ranking model API. As illustrated
in Figure 3, although a larger model size might bring per-
formance improvement, the zero-shot or few-shot learning of
LLM is still much inferior compared with the light-weight
CRM tuned on the training data, indicating the importance of
in-domain collaborative knowledge from recommender sys-
tems.

3.3 Not Tune LLM; Infer with CRM (Quadrant 2)
Research works in quadrant 2 utilize different key capabilities
(e.g., rich semantic information, reasoning ability) of LLM
without tuning to assist CRM in better completing recom-
mendation tasks.

Early works [Ding et al., 2021; Hou et al., 2022; Hou et
al., 2023a] propose to extract transferable text embeddings
from a fixed BERT model with rich semantic information.
The text embeddings are then fed into several projection lay-
ers to better produce the cross-domain representations for
trainable conventional recommendation models. The projec-
tion layers are designed as a single-layer neural network for
ZESRec [Ding et al., 2021], a self-attention layer for Tran-
sRec [Wang et al., 2022], an MoE-enhanced network for
UniSRec [Hou et al., 2022], and a vector quantization based
embedding lookup table for VQ-Rec [Hou et al., 2023a]. We
can observe from Figure 3 that the direct usage of a single-
layer neural network as an adapter does not yield satisfactory
results. However, with a carefully designed adapter module,
the semantic representations from the fixed BERT parame-
ters can be better aligned with the subsequent recommenda-
tion module, leading to impressive recommendation perfor-
mances.

As discussed in Section 2.5, the emergent abilities and
abundant open-world knowledge enable large foundation
models to extend their roles to the feature engineering stage.
MINT [Mysore et al., 2023] synthesizes training query ex-
amples with InstructGPT for narrative-driven recommenda-
tions. KAR [Xi et al., 2023b] extracts both the reason-
ing and factual knowledge from LLM to enhance the per-
formance of arbitrary downstream recommendation models.
AnyPredict [Wang et al., 2023] leverages ChatGPT APIs to
consolidate tabular samples to overcome the barrier across
tables with varying schema, resulting in unified expanded
training data for the follow-up conventional predictive mod-
els. GENRE [Liu et al., 2023c] utilizes ChatGPT to per-
form news piece generation, user profiling, and news summa-
rization, and thus augments the news recommendation model
with LLM-generated features.

In these works, although LLM is frozen, the involvement
of CRM for the inference phase generally guarantees better
recommendation performance, comparing with works from
quadrant 3 in Section 3.2 in terms of the best baseline they
defeat.

3.4 Tune LLM; Infer w/o CRM (Quadrant 4)
Research works in quadrant 4 aim to finetune the large lan-
guage models to serve as the scoring/ranking function based



on the training data from recommender systems, excluding
the involvement of CRM.

As an early attempt, LMRecSys [Zhang et al., 2021b]
tunes language models to estimate the score of each candi-
date item, resulting in unsatisfying performance. The rea-
son might be that its scoring manners are somehow problem-
atic, which may result from the limitations of the designed
scoring method. Prompt4NR [Zhang and Wang, 2023] fine-
tunes BERT by predicting the key answer words based on
the prompting templates. PTab [Liu et al., 2022a] transforms
tabular data into text and finetunes a BERT model based on
a masked language modeling task and classification tasks.
UniTRec [Mao et al., 2023] finetunes a BART model with
a joint contrastive loss to optimize the discriminative score
and a perplexity-based score. RecFormer [Li et al., 2023b]
adopts two-stage finetuning based on masked language mod-
eling loss and item-item contrastive loss with LongFormer as
the backbone model. P5 [Geng et al., 2022], FLAN-T5 [Kang
et al., 2023], PBNR [Li et al., 2023f] and InstructRec [Zhang
et al., 2023b] adopt T5 [Raffel et al., 2020] as the back-
bone, and train the model in a sequence-to-sequence manner.
GPT4Rec [Li et al., 2023c] and GPTRec [Petrov and Mac-
donald, 2023] tune GPT models as a generative function for
next item prediction via causal language modeling.

The works mentioned above all adopt full finetuning,
which could be considerably expensive and unscalable as
the size of the language model continuously increases. To
this end, PALR [Chen, 2023] fully finetunes LLaMA [Tou-
vron et al., 2023] based on only 20% of the user data, which
not only achieves overall training efficiency but also demon-
strates strong inductive learning capabilities of LLM. Be-
sides, parameter-efficient finetuning methods are usually re-
quired to efficiently adapt LLM to RS, e.g., option tuning
for M6-Rec [Cui et al., 2022], layerwise adaptor tuning for
VIP5 [Geng et al., 2023], and low-rank adaption (LoRA) [Hu
et al., 2021] for TALLRec [Bao et al., 2023].

As shown in Figure 3, the performance of finetuning LLM
based on recommendation data is promising with proper task
formulation, even if the model size is still relatively small.

3.5 Discussion
We first conclude the necessity of collaborative knowledge
injection when adapting LLM to RS, and then cast discus-
sion on the relationship between the recommendation per-
formance and the size of adapted LLM. Finally, we discuss
an interesting property found in ChatGPT-like large language
models.

Collaborative Knowledge is Needed
From Figure 3, we could observe a clear performance bound-
ary between works from quadrant 3 and quadrant 1, 2, 4. Re-
search works from quadrant 3 are inferior even though they
adapt large-scale models, i.e., ChatGPT. This indicates that
the recommender system is a highly specialized area, which
demands a lot of in-domain collaborative knowledge. LLM
cannot learn such knowledge from its general pretraining cor-
pus. Therefore, we have to involve in-domain collaborative
knowledge for better performance when adapting LLM to RS,

and there are generally two ways to achieve the goal (corre-
sponding to quadrant 1, 2, 4):
• Tune LLM during the training phase, which injects collab-

orative knowledge from a data-centric aspect.
• Infer with CRM during the inference phase, which injects

collaborative knowledge from a model-centric aspect.
As shown in Figure 3, we could observe a clear trajec-

tory evolving from quadrant 3 to quadrant 2 and 4 through
in-domain collaborative knowledge injection. Therefore, it is
natural to draw the future prospect to further fill in the blank
in quadrant 1, where we tune large foundation models for
alignments and also involve CRM for inference.

Is Bigger Always Better?
By injecting in-domain collaborative knowledge from ei-
ther data-centric or model-centric aspects, research works
from quadrant 1, 2, 4 can achieve satisfying recommenda-
tion performance compared with attention-based baselines,
except for a few cases. Among these studies, although we
could observe that the size of adapted LLM gradually in-
creases according to the timeline, a fine-grained cross com-
parison among them (i.e., a unified benchmark) remains va-
cant. Hence, it is difficult to directly conclude that larger
model size of LLM can definitely yield better results for rec-
ommender systems. We prefer to leave this as a open ques-
tion for future works: Is bigger language models always bet-
ter for recommender systems? Or is it good enough to use
small-scale language models in combination with collabora-
tive knowledge injection?

LLM is Good at Reranking Hard Samples
Although works in quadrant 3 suffer from inferior perfor-
mance for zero/few-shot learning since little in-domain col-
laborative knowledge is involved, researchers [Ma et al.,
2023; Hou et al., 2023b] have found that large language mod-
els such as ChatGPT are more likely to be a good reranker for
hard samples. They introduce the filter-then-rerank paradigm
which leverages a pre-ranking function from traditional rec-
ommender systems (e.g., matching or pre-ranking stage in in-
dustrial applications) to pre-filter those easy negative items,
and thus generate a set of candidates with harder samples for
LLM to rerank. In this way, the listwise reranking perfor-
mance of LLM (especially ChatGPT-like APIs) could be pro-
moted. This finding is instructive for industrial applications,
where we could require LLM to only handle hard samples
and leave other samples for light-weight models for saving
computational costs.

4 Challenges from Industrial Applications
Since the research of recommender systems is highly
application-oriented, in this section, we highlight the key
challenges in adapting LLM to RS, which mainly arise from
the unique characteristics of recommender systems and in-
dustrial applications. Accordingly, we will also discuss the
preliminary efforts done by existing works, as well as other
possible solutions. The following challenges are proposed
from three aspects: (1) efficiency (training efficiency, infer-
ence latency), (2) effectiveness (in-domain long text model-
ing, ID indexing & modeling), and (3) ethics (fairness).



4.1 Training Efficiency
There are two key aspects to keep good performance of mod-
ern deep learning based recommender systems: (1) enlarge
the volumes of training data (e.g., billion-level training sam-
ples), and (2) increase the model update frequency (from
day-level to hour-level, or even minute-level). Both of them
highly require the training efficiency. Although, as suggested
in Section 3.5, tuning LLM (possibly with CRM) is a promis-
ing approach to align LLM to RS for better performance, it
actually brings prohibitive adaptation costs in terms of both
memory usage and time consumption. Therefore, how to
ensure the efficiency when we involve LLM in the training
phase is a key challenge for industrial applications.

Existing works mainly propose to leverage parameter-
efficient finetuning strategies (e.g., option tuning [Cui et al.,
2022] and layerwise adaptor tuning [Geng et al., 2023]),
which mainly solve the memory usage problem, but the time
consumption is still high.

From an industrial perspective, we suggest adopting the
long-short update strategy, when we leverage LLM for fea-
ture engineering and feature encoder. To be specific, we
can cut down the training data volume and relax the update
frequency for LLM (e.g.week-level) while maintaining full
training data and high update frequency for CRM. The ba-
sis to support this approach is that researchers [Chen, 2023;
Zhou et al., 2023] point out that LLM has strong inductive
learning capacities to produce generalized and reliable out-
puts via a handful of supervisions. In this way, LLM can
provide aligned in-domain knowledge to CRM, while CRM
act as a frequently updated adapter for LLM.

4.2 Inference Latency
Online recommender systems are usually real-time services
and extremely time-sensitive, where all stages (e.g., match-
ing, ranking, reranking) should be done within around tens
of milliseconds. The involvement of LLM during the infer-
ence phase gives rise to the inference latency problem. The
inference time of the LLM is expensive, not to mention the
additional time cost brought by prompt template generation.

Pre-computing and caching the outputs or middle repre-
sentations of LLM is the common strategy to ensure low-
latency inference when involving LLM during the inference
phase. When adapting the LLM as the scoring/ranking func-
tions, M6-Rec [Cui et al., 2022] proposes the multi-segment
late interaction strategy. The textual features of user and item
are split into finer-grained segments that are more static, e.g.,
by representing each clicked item as an individual segment.
Then, we can pre-compute and cache the encoded representa-
tions of each segment using the first several transformer lay-
ers, while the rest of the layers are leveraged to perform late
interaction between segments when the recommendation re-
quest arrives. Other works like UniSRec [Hou et al., 2022]
and VQ-Rec [Hou et al., 2023a] simply adopt language mod-
els as feature encoders. Hence it is straightforward to di-
rectly cache the dense embeddings produced by the language
model.

Moreover, we could seek ways to reduce the size of model
for final inference, where methods have been well explored
in other deep learning domains, e.g., distillation [Jiao et al.,

2019], pruning [Chen et al., 2020], and quantization [Zafrir
et al., 2019]. For instance, CTRL [Li et al., 2023e] propose
to perform contrastive learning to distill the semantic knowl-
edge from LLM to CRM which is then finetuned for the in-
ference phase. These strategies generally serve as a tradeoff
between the model performance and inference latency. Al-
ternatively, we could involve LLM in the feature engineering
stage, which does not bring extra burden of computation to
the inference phase.

4.3 In-Domain Long Text Modeling
When adapting LLM, we have to construct in-domain tex-
tual inputs via prompting templates and insert proper instruc-
tions and demonstrations at the front if needed. However, the
general guideline of industrial recommender systems requires
longer user history, larger candidate set and more features to
achieve better recommendation performance, possibly lead-
ing to long-text inputs for LLM. Such long-text inputs from
RS domains (i.e., in-domain long texts) could result in two
key challenges as follows.

First, Hou et al. [2023b] discover that LLM has difficulty
in dealing with long texts especially when we extend the text
with longer user history or larger candidate set, even though
the total number of input tokens does not exceed the length
of the context window (e.g., 512 for BERT, 4096 for Chat-
GPT). The reason might be that the distribution of in-domain
long text is quite different from the pretraining corpora of
LLM. Furthermore, an excessively long-text input will cause
the memory inefficiency problem, and might even break the
context window limitation, leading to partial information lost
and inferior outputs from LLM.

To this end, it is of great importance to investigate how
to properly filter, select, and arrange the textual information
as the input for LLM during prompting engineering, as well
as how to instruct or tune the LLM to better align with the
distribution of these in-domain long-text inputs. Besides, in
NLP domains, a range of works are proposed to address the
context window limitation (e.g., sliding windows [Wang et
al., 2019], memory mechanism [Ding et al., 2020]), which
could be considered in recommender systems.

4.4 ID Indexing & Modeling
In recommender systems, there exists a kind of pure ID fea-
tures that inherently contains no semantic information (e.g.,
user ID, item ID). If we include these ID features in the
prompting text, the tokenization is actually unmeaningful
to language models (e.g., user ID AX1265 might be tok-
enized as [AX, 12, 65]). Many works [Cui et al., 2022;
Hou et al., 2023a] tend to directly abandon these ID fea-
tures (e.g., replacing item IDs with item titles or descriptions)
for unified cross-domain recommendation via the natural lan-
guage interface, since the IDs are usually not shared in dif-
ferent domains. However, some works [Geng et al., 2022;
Yuan et al., 2023] point out that bringing ID features can
greatly promote the recommendation performance, although
sacrificing the cross-domain generalization ability. There-
fore, it is still an open question about whether we should re-
tain the ID features or not, which divides the key challenges
regarding ID indexing & modeling into two directions.



On the one hand, we could sacrifice the cross-domain gen-
eralization ability to obtain better in-domain recommendation
performance by keeping the ID features. P5 [Geng et al.,
2022] and its variants [Geng et al., 2023; Hua et al., 2023a;
Hua et al., 2023b] remain the ID features as textual inputs in
the prompting templates. P5 designs a whole-word embed-
ding layer to assign the same whole-word embedding for to-
kens from the same ID feature. The whole-word embeddings
will be added to the token embeddings in the same way as
position embeddings in language models. Based on P5, Hua
et al. [2023b] further explore various item ID indexing strate-
gies (e.g., sequential indexing, collaborative indexing) to en-
sure the IDs of similar items consist of similar sub-tokens.
RecFormer [Li et al., 2023b] and UniSRec [Hou et al., 2022]
omit the item IDs in prompting texts, but introduce additional
ID embeddings at either bottom embedding layer or top pro-
jection layer. In this line, researchers should focus on how
to associate LLM with ID features via carefully designed ID
indexing & modeling strategies.

On the other hand, we could abandon the ID features
to achieve unified cross-domain recommendation via natural
language interface. Maintaining a unified model to serve var-
ious domains is very promising, especially when we involve
large language model [Cui et al., 2022; Hou et al., 2023a].
In this direction, in order to achieve similar performance to
those works that keep ID features, researchers could inves-
tigate ways to introduce ID features in an implicit manner,
e.g., contrastive learning between representations of LLMs
and corresponding ID embeddings.

4.5 Fairness
Researchers have discovered that bias in the pretraining cor-
pus could mislead LLM to generate harmful or offensive con-
tent, e.g., discriminating against disadvantaged groups. Al-
though there are strategies (e.g., RLHF [Ouyang et al., 2022])
to reduce the harmfulness of LLM, existing works have al-
ready detected the unfairness problem in recommender sys-
tems brought by LLM from both user-side [Hua et al., 2023a;
Zhang et al., 2023a] and item-side [Hou et al., 2023b] per-
spectives.

The user-side fairness in recommender systems requires
similar users to be treated similarly at either individual level
or group level. The user sensitive attributes should not be
preset during recommendation (e.g., gender, race). To this
end, UP5 [Hua et al., 2023a] proposes counterfactually fair
prompting (CFP), which consists of a personalized prefix
prompt and a prompt mixture to ensure fairness w.r.t. a set
of sensitive attributes. Besides, Zhang et al. [2023a] intro-
duce a benchmark named FaiRLLM, where authors comprise
carefully crafted metrics and a dataset that accounts for eight
sensitive attributes in recommendation scenarios where LLM
is involved. Yet these studies only focus on the fairness issue
in specific recommendation tasks (e.g., item generation task)
with limited evaluation metrics.

The item-side fairness in recommender systems ensures
that each item or item group receives a fair chance to be rec-
ommended (e.g., proportional to its merits or utility) [Patro et
al., 2020; Liu et al., 2019; Singh and Joachims, 2018]. How-
ever, how to improve item-side fairness in LLM remains less

explored. As a preliminary study, Hou et al. [2023b] observe
that popularity bias exists when LLM serves as a ranking
function, and alleviate the bias to some extents by designing
prompts to guide the LLM focusing on users’ historical inter-
actions. Further studies on popularity bias and other potential
item-wise fairness issues are still needed.

5 Conclusion and Future Prospects
This survey comprehensively summarizes the recent progress
in adapting large language models to recommender systems
from two perspectives: where and how to adapt LLM to RS.

• For the “WHERE” question, we analyze the roles that
LLM could play at different stages of the recommendation
pipeline, i.e., feature engineering, feature encoder, scor-
ing/ranking function, and pipeline controller.

• For the “HOW” question, we analyze the training and in-
ference strategies, resulting in two orthogonal classifica-
tion criteria, i.e., whether to tune LLM, and whether to in-
volve CRM for inference.

Detailed discussions and insightful development trajecto-
ries are also provided for each taxonomy perspective. As for
future prospects, apart from the three aspects we have already
highlighted in Section 4 (i.e., efficiency, effectiveness and
ethics), we would like to further express our hopeful vision
for the future development of combining large language mod-
els and recommender systems:

• A unified public benchmark is of an urgent need to
provide reasonable and convincing evaluation protocols,
since (1) the fine-grained cross comparison among exist-
ing works remains vacant, and (2) it is quite expensive and
difficult to reproduce the experimental results of recom-
mendation models combined with LLM.

• A customized large foundation model for recommenda-
tion domains, which can take over control of the entire rec-
ommendation pipeline, enabling a new level of automation
in recommender systems.
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Table 1: An organization of works on adapting large language models (LLM) to recommender systems (RS). We use the following abbrevi-
ations. FFT: full finetuning. PT: prompt tuning. LAT: layerwise adapter tuning. OT: option tuning. T-FEW: few-shot parameter efficient
tuning. Note that only the largest models used in the corresponding papers are listed. If the version of the pretrained language model is not
specified, we assume it to be the base version.

Model Name LLM Backbone LLM Tuning Strategy RS Task RS Scenario

Feature Engineering

GReaT [Borisov et al., 2023] GPT2-medium (355M) FFT N/A Tabular

GENRE [Liu et al., 2023c] ChatGPT Frozen Retrieval
Sequential RS News

AnyPredict [Wang et al., 2023] ChatGPT Frozen N/A Tabular

LLM4KGC [Chen et al., 2023] PaLM (540B)
ChatGPT Frozen N/A E-commerce

TagGPT [Li et al., 2023a] ChatGPT Frozen Item Tagging Food
Video

ICPC [Christakopoulou et al., 2023] LaMDA (137B) FFT/PT User Profiling N/A

DPLLM [Carranza et al., 2023] T5-XL (3B) FFT Retrieval
Privacy Web Search

KAR [Xi et al., 2023b] ChatGPT Frozen CTR Prediction Movie

MINT [Petrov and Macdonald, 2023] GPT-3 (175B) Frozen Narrative RS POI

Feature Encoder

U-BERT [Qiu et al., 2021] BERT-base (110M) FFT Rating Prediction Business
E-commerce

UNBERT [Zhang et al., 2021a] BERT-base (110M) FFT Sequential RS News

PLM-NR [Wu et al., 2021] RoBERTa-base (125M) FFT Sequential RS News

Pyramid-ERNIE [Zou et al., 2021] ERNIE (110M) FFT Ranking Web Search

ERNIE-RS [Liu et al., 2021] ERNIE (110M) FFT Retrieval Web Search

CTR-BERT [Muhamed et al., 2021] Customized BERT (1.5B) FFT CTR Prediction E-commerce

ZESRec [Ding et al., 2021] BERT-base (110M) Frozen Sequential RS E-commerce

UniSRec [Hou et al., 2022] BERT-base (110M) Frozen Sequential RS E-commerce

PREC [Liu et al., 2022b] BERT-base (110M) FFT CTR Prediction News

MM-Rec [Wu et al., 2022] BERT-base (110M) FFT Sequential RS News

Tiny-NewsRec [Yu et al., 2022b] UniLMv2-base (110M) FFT Sequential RS News

PTM4Tag [He et al., 2022] CodeBERT (125M) FFT Top-N RS posts

TwHIN-BERT [Zhang et al., 2022] BERT-base (110M) FFT Social RS posts

TransRec [Wang et al., 2022] BERT-base (110M) FFT Cross-domain RS
Sequential RS

News
Video

VQ-Rec [Hou et al., 2023a] BERT-base (110M) Frozen Sequential RS E-commerce

IDRec vs MoRec [Yuan et al., 2023] BERT-base (110M) FFT Sequential RS
News
Video

E-commerce

TransRec [Fu et al., 2023a] RoBERTa-base (125M) LAT Cross-domain RS
Sequential RS

News
Video

E-commerce

LSH [Rahmani et al., 2023] BERT-base (110M) FFT Top-N RS Code

TCF [Li et al., 2023d] OPT-175B (175B) Frozen/FFT Sequential RS
Top-N RS

News
Video

Clothes



Table 1 continued from previous page
Model Name LLM Backbone LLM Tuning Strategy RS Task RS Scenario

Scoring/Ranking Function (Item Scoring Task)

LMRecSys [Zhang et al., 2021b] GPT2-XL (1.5B) FFT Top-N RS Movie

PTab [Liu et al., 2022a] BERT-base (110M) FFT N/A Tabular

UniTRec [Mao et al., 2023] BART (406M) FFT Sequential RS
News

Question
Social Media

Prompt4NR [Zhang and Wang, 2023] BERT-base (110M) FFT Sequential RS News

RecFormer [Li et al., 2023b] LongFormer (149M) FFT Sequential RS Product

TabLLM [Hegselmann et al., 2023] T0 (11B) T-FEW N/A Tabular

Zero-shot GPT [Sileo et al., 2022] GPT2-medium (355M) Frozen Rating Prediction Movie

FLAN-T5 [Kang et al., 2023] FLAN-T5-XXL (11B) FFT Rating Prediction Book
Movie

BookGPT [Zhiyuli et al., 2023] ChatGPT Frozen
Sequential RS

Top-N RS
Summary Recommendation

Book

TALLRec [Bao et al., 2023] LLaMA (7B) LoRA Sequential RS Book
Movie

PBNR [Li et al., 2023f] T5-small (60M) FFT Sequential RS News

Scoring/Ranking Function (Item Generation Task)

GPT4Rec [Li et al., 2023c] GPT2 (110M) FFT Sequential RS E-commerce

UP5 [Hua et al., 2023a] T5-base (223M) FFT Retrieval
Sequential RS

Movie
Insurance

VIP5 [Geng et al., 2023] T5-base (223M) LAT
Sequential RS

Top-N RS
Explaination Generation

E-commerce

P5-ID [Hua et al., 2023b] T5-small (61M) FFT Sequential RS Business
E-commerce

FaiRLLM [Zhang et al., 2023a] ChatGPT Frozen Top-N RS Music
Movie

PALR [Chen, 2023] LLaMA (7B) FFT Sequential RS Movie
E-commerce

ChatGPT-3 [Hou et al., 2023b] ChatGPT Frozen Sequential RS Movie
E-commerce

AGR [Lin and Zhang, 2023] ChatGPT Frozen Conversational RS N/A

NIR [Wang and Lim, 2023] GPT-3 (175B) Frozen Sequential RS Movie

GPTRec [Petrov and Macdonald, 2023] GPT2-medium (355M) FFT Sequential RS Movie

ChatNews [Li et al., 2023g] ChatGPT Frozen Sequential RS News

Scoring/Ranking Function (Hybrid Task)

P5 [Geng et al., 2022] T5-base (223M) FFT

Rating Prediction
Top-N RS

Sequential RS
Explanation Generation
Review Summarization

Business
E-commerce

M6-Rec [Cui et al., 2022] M6-base (300M) OT

Retrieval
Ranking

Explanation Generation
Conversational RS

E-commerce



Table 1 continued from previous page
Model Name LLM Backbone LLM Tuning Strategy RS Task RS Scenario

InstructRec [Zhang et al., 2023b] Flan-T5-XL (3B) FFT

Sequential RS
Product Search

Personalized Search
Matching-then-reranking

E-commerce

ChatGPT-1 [Liu et al., 2023a] ChatGPT Frozen

Rating Prediction
Top-N RS

Sequential RS
Explanation Generation
Review Summarization

E-commerce

ChatGPT-2 [Dai et al., 2023] ChatGPT Frozen
Pointwise Ranking
Pairwise Ranking
List-wise Ranking

News
Movie

E-commerce

ChatGPT-4 [Sun et al., 2023] ChatGPT Frozen Passage Reranking Web Search

Pipeline Controller

Chat-REC [Gao et al., 2023] ChatGPT Frozen Rating Prediction
Top-N RS Movie

RecLLM [Friedman et al., 2023] LLaMA (7B) FFT Conversational RS Video
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