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Abstract

Proactively and naturally guiding the dialog001
from the non-recommendation context (e.g.,002
Chit-chat) to the recommendation scenario is003
crucial for the Conversational Recommender004
System (CRS). Prior studies mainly focus on005
planning the next dialog goal (e.g., chat on a006
movie star) conditioned on the previous dia-007
log. However, we find the dialog goals can008
be simultaneously observed at different levels,009
which can be utilized to improve CRS. In this010
paper, we propose the Dual-space Hierarchical011
Learning (DHL) to leverage multi-level goal012
sequences and their hierarchical relationships013
for conversational recommendation. Specifi-014
cally, we exploit multi-level goal sequences015
from both the representation space and the opti-016
mization space. In the representation space, we017
propose the hierarchical representation learning018
where a cross attention module derives mutu-019
ally enhanced multi-level goal representations.020
In the optimization space, we devise the hi-021
erarchical weight learning to reweight lower-022
level goal sequences, and introduce bi-level023
optimization for stable update. Additionally,024
we propose a soft labeling strategy to gradually025
guide the optimization direction. Experiments026
on two real-world datasets verify the effective-027
ness of our approach.028

1 Introduction029

Recent years have witnessed the fast develop-030

ment of the Conversational Recommender Sys-031

tem (CRS) (Sun and Zhang, 2018; Konstantina032

et al., 2018; Zhang et al., 2018; Yu et al., 2019; Lei033

et al., 2020a,b), which aims to recommend proper034

items through human-machine natural language035

interactions. Compared with traditional recom-036

mender systems which rely on historical logs, CRS037

captures dynamic user interests by interacting with038

users in a more free-form way (i.e. asking ques-039

tions or recommending items). Therefore, CRS has040

been widely adopted for various recommendation041

Figure 1: An illustrative example of muti-level goal
sequences in a human-machine conversation.

scenarios, including e-commerce, search engine, 042

and virtual assistant. 043

Rather than assuming users always bear in 044

mind what they want, one emerging direction (Liu 045

et al., 2020; Zhou et al., 2020) in CRS is to ex- 046

plore proactively discovering users’ interests and 047

naturally leading the conversation from the non- 048

recommendation context to the recommendation 049

scenario. As illustrated in Figure 1, the CRS can in- 050

telligently lead the goal type from QA to Chit-chat 051

on Stars and finally reach the goal of Music Rec. 052

To achieve this transition, the study in (Liu et al., 053

2020) explicitly constructs dialog goal sequences 054

and proposes a CNN based model to plan the next 055

goal. Besides, the study in (Zhou et al., 2020) com- 056

bines the sequential recommendation model and 057

the pre-trained language model to guide topic tran- 058

sitions by leveraging various conversation signals. 059
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In summary, such methods learn a single represen-060

tation of previous goals to guide the conversation061

towards the final recommendation goal.062

However, after exploring large-scale recommen-063

dation dialogs, we observe the sequence of dialog064

goals co-exists in multiple levels. Take the dialog065

in Figure 1 again for example, we can observe the066

sequence of dialog goals in at least two levels: the067

goal type level and the goal entity level. To be spe-068

cific, the goal type of the dialog first transits from069

QA to Chit-chat on Stars and then reaches Music070

Rec. The corresponding goal entity sequence can071

be summarized as Blood Brothers → Jacky Che-072

ung → Cut My Heart. Such multi-level dialog goal073

sequences are correlated and contain an intrinsic074

dependency hierarchy, which can be leveraged to075

enhance the next goal planning capability and im-076

prove the effectiveness of CRS.077

To this end, in this paper, we propose the Dual-078

space Hierarchical Learning (DHL) to exploit079

multi-level goal sequences for proactive and natu-080

ral conversational recommendation. Specifically,081

DHL models the hierarchical and sequential struc-082

ture of dialog goals from two spaces. In the rep-083

resentation space, we propose the hierarchical rep-084

resentation learning where a cross attention mod-085

ule captures the hierarchical dependency between086

multi-level goal sequences. In particular, the cross087

attention module consists of two symmetric com-088

ponents, type2entity and entity2type, to derive mu-089

tually enhanced representations of multi-level goal090

sequences. In the optimization space, a hierarchical091

weight learning module is introduced to reweight092

goal sequences based on intermediate prediction re-093

sults for better information use. More specifically,094

higher accuracy of high-level prediction indicates095

more useful information for low-level goal plan-096

ning task, which is assigned with a larger hierarchi-097

cal weight. To avoid trivial solutions of joint model098

parameter and hierarchical weight optimization, we099

introduce bi-level optimization (Luca et al., 2018)100

to distill weak supervision signals from the training101

data for the stable update of hierarchical weights.102

Additionally, we propose a soft labeling strategy103

to guide the dialog to the final recommendation104

goal gradually. By assigning a small parameter105

of the final recommendation goal to each one-hot106

encoded current goal, the soft label can incorporate107

the global optimization direction information in the108

model training phase. In summary, we make the109

following three major contributions.110

• To model hierarchical relationships between 111

multi-level goal sequences in the representa- 112

tion space, we propose the hierarchical repre- 113

sentation learning in which a cross attention 114

module derives multi-grained goal representa- 115

tions in a mutual reinforcement way. 116

• To leverage the hierarchical structure of goal 117

sequences in the optimization space, we de- 118

velop the hierarchical weight learning to adap- 119

tively reweight multi-level goal planning tasks. 120

The bi-level optimization is introduced to sta- 121

bilize the update of hierarchical weights. 122

• To guide the conversation to the final recom- 123

mendation goal, we propose a novel soft label- 124

ing strategy to adjust the global optimization 125

direction information. 126

We have conducted extensive experiments on 127

two real-world conversational recommendation 128

datasets, and the results demonstrate the effective- 129

ness of our approach. 130

2 Preliminaries 131

We first introduce some important definitions and 132

then formalize the problem we aim to investigate. 133

Let D = {dk}Nd
k=1 denote a set of dialogs, where 134

Nd is the total number of dialogs in the dataset. 135

Each dialog dk ∈ D consists of multiple utterances 136

between user and machine. 137

Definition 1. Goal. A goal g is defined as the topic 138

or knowledge (e.g., an event, a movie star, etc.) 139

the utterances focus on to keep the conversation 140

natural and engaging. 141

Depend on the granularity, the goal can be de- 142

fined at different levels. In this paper, we define dia- 143

log goals in three levels, (1) goal type gp (e.g., QA, 144

Chit-chat and recommendation), (2) goal entity ge 145

(e.g., movie star, music), and (3) goal attribute gr 146

(e.g., descriptions about the movie star). We use 147

Np, Ne and Nr to denote the number of goal type, 148

goal entity, and goal attribute in D. Note that some 149

consecutive utterances may share the same goal. 150

Definition 2. Goal sequence. Given a dialog di, 151

the goal sequence gi = [g1, g2, . . . , gf ] is defined 152

as a knowledge path that describes the semantic 153

transition of topics in di. 154

Note that gf denotes the final recommendation 155

goal, which is given before the dialog. To ensure 156

consistency, we constrain all goals in a goal se- 157

quence at the same level. We denote gp as the goal 158
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type sequence, ge as the goal entity sequence, and159

gr as the goal attribute sequence. Consider a goal160

sequence [g1, g2, . . . , gt] in a particular level, de-161

note the fixed-length initialization for each goal as162

[x1,x2, . . . ,xt].163

Definition 3. Adjacency matrix. The adjacency164

matrix Cpe ∈ RNp×Ne captures the co-occurrence165

relationship between the goal type and the goal166

entity, where cpeij ∈ Cpe between goal type gpi and167

goal entity gej is defined as168

cpeij =

{
1.0 if gpi and gej co-occurred in D
ϵ otherwise

,

(1)169

where ϵ is a small number. Similarly, the adjacency170

matrix Cer is constructed by considering the co-171

occurrence relationship between goal entities and172

goal attributes.173

Problem statement. Given a dialog context X of174

previous utterances and the predefined final rec-175

ommendation goal gf , we aim to simultaneously176

plan multi-level goal sequences gp, ge, and gr to177

proactively and naturally lead the conversation to178

reach the final recommendation goal. Based on179

the item recommendation requirement of CRS, we180

regard the entity level goal planning as the main181

task, the type level and attribute level goal planning182

as auxiliary tasks.183

3 Method184

3.1 Framework Overview185

Figure 2 shows an overview of DHL that includes186

the following three tasks, (1) learning enhanced187

multi-level goal representations in a shared latent188

space, (2) robustly optimizing goal representations189

by exploiting cross-level supervision signals, and190

(3) guiding the optimization direction of goal se-191

quences toward the final recommendation goal. For192

the first task, we construct a two-layer goal se-193

quence hierarchy between goal type and goal en-194

tity, and propose the hierarchical representation195

learning to obtain goal representations by captur-196

ing cross-level dependencies in a mutual reinforce-197

ment way. For the second task, we propose the198

hierarchical weight learning to achieve robust goal199

representation optimization by reweighting multi-200

level goal sequences via bi-level optimization. For201

the third task, we propose a soft labeling strategy to202

gradually enforce the global optimization direction203

by attaching information of the final recommenda-204

tion target to the goal sequence.205

3.2 Base Model 206

We adopt LSTM (Sepp and Jürgen, 1997) as the ba- 207

sic building block for proactive goal planning, with 208

the consideration of sequential and hierarchical re- 209

lationships in multi-level dialog goal sequences. 210

Sequential representation learning. We first de- 211

vise multiple LSTMs for goal sequence depen- 212

dency learning. We derive the hidden representa- 213

tion of the goal sequence by hi = LSTM(xi,hi−1) 214

where LSTM(·, ·) is the LSTM function and i 215

ranges from 1 to t. Then we can derive the logit of 216

the next goal by 217

lt+1 = MLP(ht), (2) 218

where lt+1 is a logit vector for all goals, and 219

MLP(·) is a fully connected neural network. 220

Hierarchical information exchange. The multi- 221

level goal sequences describe the dialog topic in 222

multiple granularities, which can be exploited to 223

improve the goal prediction. For instance, if the 224

logit score of goal type Music Rec is high and it 225

ever co-occurred with a goal entity Cut My Heart in 226

historical dialogs, the likelihood of the goal entity 227

Cut My Heart should be relatively larger than oth- 228

ers. To incorporate such hierarchical knowledge, 229

we integrate high-level information into low-level 230

tasks based on Cpe and Cer: 231

le = le + softmax(lp) ·Cpe,

lr = lr + softmax(le) ·Cer,
(3) 232

where lp ∈ RNp , le ∈ RNe and lr ∈ RNr are 233

the logit vectors of goal type, the goal entity and 234

the goal attribute derived from Eq. (2), and · is the 235

matrix multiplication operation. The next goal type, 236

the next goal entity and the next goal attribute can 237

be calculated as the one with the largest logit in lp, 238

le and lr, respectively. 239

Optimization. We optimize multi-level goal plan- 240

ning tasks jointly. Take goal entity for instance, 241

we optimize the cross-entropy loss Le(θ) between 242

the one-hot encoded next goal entity ge
next and the 243

goal entity probability vector softmax(le), where 244

θ are learnable model parameters. The goal type 245

loss Lp(θ) and the goal attribute loss Lr(θ) can be 246

calculated similarly. The overall learning objective 247

can be written as L = Lp(θ) + Le(θ) + Lr(θ). 248

3.3 Hierarchical Representation Learning 249

Then we introduce the hierarchical representation 250

learning to further exploit relationships between 251
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Figure 2: Overview of DHL. Taking the goal type sequence and the goal entity sequence as input, DHL outputs the
next goal entity to lead the conversation via dual-space hierarchical learning and soft labeling guidance.

multi-level goal sequences. In particular, we pro-252

pose the cross attention module to learn enhanced253

goal representations, which including two sym-254

metric components: the type2entity attention com-255

ponent and the entity2type attention component.256

Specifically, the type2entity attention component257

adaptively absorbs the goal type knowledge dur-258

ing the goal entity sequence learning, and the en-259

tity2type attention component dynamically inte-260

grates the goal entity knowledge during the goal261

type sequence learning. Due to page limit, we use262

the type2entity attention component for illustration,263

and the entity2type attention component works in264

a similar way.265

Formally, consider the sequence of goal entity266

embeddings [xe
1,x

e
2, . . . ,x

e
t ] and the hidden state267

of the goal type sequence hp
t derived from the268

LSTM encoder. We transform the sequence of269

goal entity embeddings as the sequence of key em-270

beddings [xk
1,x

k
2, . . . ,x

k
t ] and value embeddings271

[xv
1,x

v
2, . . . ,x

v
t ] by MLPs and treat hp

t as the query272

embedding. The distilled knowledge representation273

by the type2entity component is defined by274

hpe =

t∑
j=1

f(hp
t ,x

k
j )∑t

l=1 f(h
p
t ,x

k
l )
xv
j , (4)275

where f(hp
t ,x

k
j ) represents the exponential kernel276

exp(
hp
t (x

k
j )

T

√
d

) and d denotes the embedding size.277

Then we simply concatenate hpe with he
t to inte- 278

grate the distilled knowledge into the next goal 279

entity prediction. 280

3.4 Hierarchical Weight Learning 281

Besides capturing the hierarchical relationship in 282

the representation space, we also propose the hi- 283

erarchical weight learning to leverage the goal se- 284

quence hierarchy in the optimization space. 285

Hierarchical weight. Intuitively, an accurate pre- 286

diction of the high-level goal (e.g., goal type) can 287

provide much useful information to guide the op- 288

timization of the low-level prediction task (e.g., 289

goal entity prediction), which can be leveraged for 290

model training. Therefore, we introduce the hier- 291

archical weight for the low-level prediction task, 292

where a more accurate high-level prediction indi- 293

cates a larger hierarchical weight for the low-level 294

prediction task. 295

However, assigning a scalar weight for each goal 296

sequence is not scalable due to the large number of 297

goal sequences in real-world datasets. Therefore, 298

we approximate the weight for each goal sequence 299

via a neural network. Inspired by (Shu et al., 2019), 300

we adopt an MLP network followed by a sigmoid 301

function to output the hierarchical weight. Specifi- 302

cally, the MLP network takes the loss of goal type 303

as input and outputs the hierarchical weight for the 304

goal entity loss. And the same weight assignment 305
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operation can be applied for goal attributes based306

on goal entities. Denote the MLP parameters as307

α, the hierarchical weighted loss function can be308

written as:309

L(θ, α)=Lp(θ)+ωα
e (Lp)Le(θ)+ωα

r (Le)Lr(θ)
(5)310

where ωα
e (Lp) and ωα

r (Le) denote the hierarchi-311

cal weights for the goal entity loss and the goal312

attribute loss, respectively. In the following, we de-313

note ωα
e (Lp) as ωα

e and ωα
r (Le) as ωα

r for brevity.314

Bi-level optimization for weight learning. Di-315

rectly optimizing Eq. (5) may lead to a trivial so-316

lution where all hierarchical weights reduce to ze-317

ros. In this work, we propose to formulate hierar-318

chical weight learning as a bi-level optimization319

problem (Luca et al., 2018) where the hierarchical320

weight is decided by an outer level learning task:321

min
α

Lout=Lp(θ
∗(α))+Le(θ

∗(α))+Lr(θ
∗(α))

s.t. θ∗(α)=argmin
θ

Lp(θ)+ωα
e Le(θ)+ωα

r Lr(θ)
.

(6)322

In this formulation, the inner variable is the model323

parameters θ and the outer variable is the MLP324

network parameters α. We build the connection325

between θ and α in the inner loop via a gradient326

descent step, and optimize α in the outer loop. De-327

note Lin = Lp(θ) + ωα
e Le(θ) + ωα

r Lr(θ). For the328

the inner level loop, we have:329

θ∗(α) ≈ θ − η
∂Lin(θ, α)

∂θ
. (7)330

In the outer level, we update α by minimizing331

Lout(θ
∗(α)) via the gradient descent method with332

the learning rate η
′
:333

α∗ ≈ α− η
′ ∂Lout(θ

∗(α))

∂α
. (8)334

In this way, we can leverage the weak supervi-335

sion signals derived from the outer level task to336

update hierarchical weights stably. We calculate337

the weighted loss in Eq. (5) by using the newly338

updated hierarchical weights ωα
e and ωα

r .339

3.5 Soft Labeling340

As the number of goals is finite, the next goal pre-341

diction task can be formulated as a multi-class clas-342

sification task. Traditional classification tasks opti-343

mize the cross-entropy loss between the probability344

score and the one-hot label. Different from such345

formulation, one unique characteristic of the goal346

Figure 3: An illustrative example of the soft labeling
strategy. A soft parameter 0.02 is attached to the one-
hot goal label, which guides the prediction to approach
the final recommendation goal News Rec.

guided conversational recommender system is to 347

proactively and naturally lead the user to the fi- 348

nal recommendation goal when planning the short- 349

term goal in each step. 350

In this work, we achieve gradual guidance by in- 351

troducing the soft labeling strategy, which enforces 352

the prediction closer to the final goal as the conver- 353

sation went on. As shown in Figure 3, we attach 354

the one-hot goal label with a soft parameter in the 355

final goal position. As the goal sequence unrolls, 356

we gradually increase the soft parameter. The soft 357

parameter sp is calculated as 358

sp = s0min (
L

10
, 1), (9) 359

where L is the goal sequence length and s0 = 0.02 360
is a hyper-parameter that controls the strength of 361

soft labeling. From Eq. (9), We can observe that sp 362

increases as L increases and it remains unchanged 363

when L is larger than 10. Denote the soft label of 364

goal entity as ge
soft, the goal entity loss can be com- 365

puted by Le(θ) = CE(ge
soft, softmax(le)) where 366

CE(·) is the cross entropy loss function. The loss 367

function for other levels of goals can be computed 368

similarly. By leveraging the soft labeling strategy, 369

the goal sequence transits to the final recommenda- 370

tion goal gradually. 371

4 Experiments 372

4.1 Datasets 373

We perform experiments on two datasets: DuRec- 374

Dial(Liu et al., 2020) and TG-ReDial(Zhou et al., 375

2020). Note that there are type level, entity level 376

and attribute level goals in DuRecDial while there 377

are no explicit goal attributes in TG-ReDial. There- 378

fore, we only consider goal type prediction as the 379

auxiliary task in the experiments on TG-ReDial. 380

See Appendix 7.1 for the details of datasets. 381

4.2 Baselines 382

We have chosen five baselines for comparison: 383
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Table 1: Overall Results on DuRecDial Dataset.

Metrics Next LSTM CNN TG MGNN DHL

Acc(%) 68.75 78.24 81.85 79.48 67.31 83.51
Rec(%) 59.34 46.56 55.84 51.21 25.95 62.62
Prec(%) 66.34 54.33 61.82 61.79 26.81 72.52
F1(%) 61.37 48.29 56.50 54.31 23.91 65.25
LS(%) 11.49 13.38 12.87 14.22 14.46 13.52

• Next simply chooses the last goal entity as the384

prediction of the next goal entity;385

• LSTM leverages an LSTM to model the goal386

entity sequence dependency;387

• CNN (Liu et al., 2020) proposes a CNN for388

the goal entity sequence learning;389

• TG (Zhou et al., 2020) uses the dot product390

between the learned representation and every391

goal entity embedding for ranking;392

• MGNN (Xu et al., 2020a) is the state-of-the-393

art graph neural network based model for di-394

alog generation policy learning. Compared395

with the original paper, we construct graphs396

for each level based on the goal co-occurrence397

relationship and use these graphs to enhance398

the goal representation learning.399

4.3 Implementation Details400

For all methods, we set the embedding size of goal401

type, goal entity and goal attribute as 256 and the402

batchsize as 128. We use the dev dataset to tune403

other hyper-parameters such as the learning rate.404

For the evaluation metrics, we adopt the accura-405

cy/recall/precision/F1 scores to evaluate the perfor-406

mance of the goal entity prediction on all methods.407

Besides, we use the dialog-leading success rate408

metric(LS) to measure how well a model can lead409

the dialog to approach the final recommendation410

goal. More specifically, LS is the ratio of the num-411

ber of achieved final recommendation goals over412

the number of all goal predictions. Please refer to413

Appendix 7.2 for more training details.414

4.4 Overall Results415

Table 1 and Table 2 summarize the results for all416

methods where the best results are in bold and417

the second-best results are marked by underlines.418

Firstly, we can observe that DHL outperforms all419

comparison methods in all metrics except for the420

LS metric on DuRecDial . TG and MGNN perform421

slightly better in terms of the LS metric but get422

Table 2: Overall Results on TGReDial Dataset.

Metrics Next LSTM CNN TG MGNN DHL

Acc(%) 33.59 37.98 38.78 37.06 36.98 39.99
Rec(%) 15.17 18.19 17.60 14.10 12.56 20.78
Prec(%) 29.18 24.26 15.63 8.98 7.76 46.32
F1(%) 12.76 17.68 14.45 10.23 8.74 20.43
LS(%) 0.00 9.26 20.16 19.29 2.79 24.82

Table 3: Ablation Study on DuRecDial Dataset.

Metrics base w/o att w/o weight w/o soft DHL

Acc(%) 82.39 82.54 82.95 82.80 83.51
Rec(%) 58.72 60.82 61.34 60.27 62.62
Prec(%) 67.34 69.84 69.20 67.81 72.52
F1(%) 60.40 62.98 62.90 61.73 65.25
LS(%) 12.84 13.46 13.24 12.95 13.52

relatively low performance in other metrics. We 423

increase s0 in Eq. (9) from 0.02 to 0.20 in DHL 424

and get better performance than TG and MGNN 425

in terms of all metrics on DuRecDial (Accuracy: 426

82.65%; Recall: 61.56%; Precision: 65.45%; LS: 427

17.00%). Furthermore, we notice that the Next 428

method gets much better performance in DuRec- 429

Dial compared with the experimental results in TG- 430

ReDial. The reason is that the goal entity sequence 431

in DuRecDial contains more consecutive goal en- 432

tities than that in TG-ReDial, and thus setting the 433

last goal entity as the prediction of the next goal 434

entity prediction performs better in DuRecDial . 435

Last but not least, CNN serves as a good baseline 436

in both datasets. One possible explanation is that 437

the next goal entity prediction highly relies on the 438

last several goal entities and CNN can model this 439

relation well via a small sliding window. We also 440

analyze the computational efficiency of all compar- 441

ison methods in Appendix 7.3. 442

4.5 Ablation Study 443

We have also conducted additional experiments 444

on both DuRecDial and TG-ReDial with ablation 445

consideration. More specifically, we remove the hi- 446

erarchical representation learning, the hierarchical 447

Table 4: Ablation Study on TGReDial Dataset.

Metrics base w/o att w/o weight w/o soft DHL

Acc(%) 38.92 39.19 38.88 39.09 39.99
Rec(%) 18.56 20.00 20.17 20.72 20.78
Prec(%) 29.78 30.55 24.10 33.96 46.32
F1(%) 17.26 19.31 18.80 20.19 20.43
LS(%) 11.15 16.12 20.82 22.35 24.82
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(a) Soft parameter (b) Learning rate

Figure 4: Parameter sensitivity of DHL.

weight learning, and the soft labeling in DHL, and448

denote these variants as w/o att, w/o weight, w/o449

soft respectively. Besides, we denote DHL with-450

out all the three designs as base. The results are451

reported in Table 3 and Table 4.452

Firstly, we can observe that DHL outperforms453

base by a large margin (1.12% accuracy, 3.90%454

recall, 5.18% precision, 4.85% F1 and 0.68% LS)455

in DuRecDial and (1.07% accuracy, 2.22% recall,456

16.54% precision, 3.17% F1 and 13.67% LS) in457

TG-ReDial. This validates the effectiveness of the458

proposed DHL. Secondly, we can observe that the459

hierarchical representation learning and the hierar-460

chical weight learning both play important roles461

in DHL. In the DuRecDial experiments, the pre-462

cision score drops 2.68% without the hierarchical463

representation learning and drops 3.32% without464

the hierarchical weight learning. A similar trend is465

observed in TG-ReDial experiments: 15.77% and466

22.22% precision score drop after removing the hi-467

erarchical representation learning and the hierarchi-468

cal weight learning respectively. Last not but least,469

as shown in Table 3 and Table 4, DHL gets lower470

LS after removing the soft labeling strategy (from471

13.52% to 12.95% in the DuRecDial experiments472

and from 24.82% to 22.35% in the TG-ReDial ex-473

periments). This can be explained as the lack of474

the gradual guidance to the final recommendation475

goal. We further notice that the other four metrics476

degrade slightly (accuracy from 83.51% to 82.80%477

in the DuRecDial experiments and from 39.99%478

to 39.09% in the TG-ReDial experiments) and the479

reason may be the soft labeling strategy also acts480

as an implicit regularization which improves the481

model training(Christian et al., 2016).482

4.6 Parameter Sensitivity483

We further analyze the parameter sensitivity of484

DHL in DuRecDial .485

Soft parameter. We first examine the soft param-486

eter and results are shown in Figure 4(a). It can487

be observed that as s0 increases from 0 to 0.32,488

(a) Visualization of cross attention weights.

(b) Visualization of hierarchical weights.

Figure 5: Case study.

the LS score increases from 12.95% to 22.70%. 489

This verifies that the soft labeling strategy can lead 490

the conversation to the final recommendation goal. 491

Other metrics including the accuracy, the recall, 492

the precision and the F1 score, increase at first and 493

then decrease as s0 becomes larger than 0.02. The 494

increase may be explained by that the soft labeling 495

serves as an implicit regularization to improve the 496

model training (Christian et al., 2016) while the 497

reason for the decrease is that the soft label gradu- 498

ally becomes a noisy label when s0 becomes large. 499

We choose s0 = 0.02 in our experiments. 500

Learning rate. Besides, we examine the sensitiv- 501

ity of the learning rate. As shown in Figure 4(b), 502

given a small learning rate of 1e−4, the model gets 503

poor performance. As the learning rate increases 504

from 1e−3.5 to 1e−1.5, the model performs well 505

and is not sensitive to the learning rate during this 506

period. It can be observed that the 1e−3 learn- 507

ing rate performs best for most metrics. When the 508

learning rate becomes large as 1e−1, the model 509

collapses and all goal entity predictions become 510

the final recommendation goal. 511

4.7 Case Study 512

To qualitatively analyze the effectiveness of DHL, 513

we visualize the cross attention weights and the 514

hierarchical weights in DuRecDial . 515

Cross attention weights. We extract the goal type 516

sequence and the goal entity sequence from a dia- 517

log. Please refer to Appendix 7.4 for dialog details. 518

As shown in Figure 5(a), we list the goal type se- 519

quence and the goal entity sequence, and visualize 520

the cross attention weights between the hidden state 521
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and the goal embeddings. We can observe the cross522

attention weight, between the goal type hidden state523

and the goal entity embeddings, increases as the524

goal sequence unrolls. This makes sense, since the525

last goal entities have more influence on the next526

goal entity prediction. To be specific, highlighted527

by the goal type hidden state, the goal entity Jay528

Chou contributes a lot to the next goal entity pre-529

diction as Jay Chou’s news. Similarly, stressed by530

the goal entity hidden state, the goal type Chit-chat531

on Stars contributes much to the next goal type532

prediction as News Rec. The above observations533

further validate the effectiveness of the hierarchical534

representation learning.535

Hierarchical weights. As shown in Figure 5(b),536

we visualize the MLP weight network and the hi-537

erarchical weight for the goal entity task decreases538

as the goal type loss increases. This makes sense:539

given a small goal type loss, the goal type pre-540

diction is accurate and thus provides much useful541

information for the goal entity prediction. There-542

fore the goal entity prediction deserves a large task543

weight for optimization.544

Furthermore, in the example of Figure 5(a), we545

find the goal type loss is 0.012 and this small loss546

corresponds to a large task weight 0.96 for the goal547

entity prediction in Figure 5(b). Following Eq. (3),548

we compute the goal type prediction’s contribution549

score to the goal entity prediction as550

lp2e = softmax(lp) ·Cpe. (10)551

The ground-truth goal entity position of552

softmax(lp2e) is 1.17%, much larger than553

the average score 1
1385 = 0.07% (1385 is the class554

number of the goal entity in DuRecDial.) The555

above results further validate the effectiveness of556

hierarchical weight learning.557

5 Related work558

This work is related to conversational recommender559

system and hierarchical structure modeling.560

Conversational recommender system. The re-561

search on the conversational recommender system562

has two research lines. One is from the recom-563

mender system and another is from the dialogue564

system. The research works of the first one (Sun565

and Zhang, 2018; Konstantina et al., 2018; Zhang566

et al., 2018; Yu et al., 2019; Lei et al., 2020a,b)567

aim to infer user’s interest by historical interactions568

and the system generally consider two actions: ask569

questions or recommend items. The second line570

from the dialogue system aims to enforce natural 571

semantic transitions in multi-turn human-machine 572

natural language interactions. For example, (Xu 573

et al., 2020a) proposed to leverage the information 574

of global graph structure to enhance goal embed- 575

ding learning, and (Liu et al., 2020; Zhou et al., 576

2020) incorporated topic threads to enforce natural 577

semantic transitions towards recommendation. 578

Hierarchical structure modeling. Hierarchical 579

structure modeling has attracted lots of research 580

attention in many fields including recommender 581

system (Xu et al., 2020b; Qi et al., 2021) and natu- 582

ral language processing (Su et al., 2021; Hu et al., 583

2021; Wu et al., 2021; Chen et al., 2021; Wang 584

et al., 2021). To name a few, (Xu et al., 2020b; 585

Qi et al., 2021) model the user’s interest hierarchy 586

from a higher level to a lower level. To train the 587

matching model in an "easy-to-difficult" scheme, 588

(Su et al., 2021) proposed a hierarchical curricu- 589

lum learning framework that consists of the corpus- 590

level curriculum and the instance-level curriculum. 591

(Hu et al., 2021) introduced a recursive transformer 592

to model multiple levels of granularity (e.g., words, 593

phrases, and sentences) and (Wu et al., 2021) pro- 594

posed a Hi-Transformer which models documents 595

in a hierarchical way. 596

In this paper, we exploit the hierarchical struc- 597

ture of goal sequences from dual spaces, including 598

representation space and optimization space. 599

6 Conclusion 600

In this paper, we propose DHL to enhance the 601

proactive goal planning in CRS by exploiting the 602

hierarchical structure of multi-level goal sequences. 603

Specifically, we propose the hierarchical represen- 604

tation learning in the representation space and the 605

hierarchical weight learning in the optimization 606

space to model hierarchical goal sequences. In 607

addition, we develop a novel soft labeling strat- 608

egy, which can gradually guide the conversation to 609

the final recommendation goal. We conduct exten- 610

sive experiments on the DuRecDial dataset and the 611

TG-ReDial dataset and the results demonstrate the 612

effectiveness of DHL. 613
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7 Appendix 724

7.1 Dataset 725

DuRecDial contains 10.2k dialogues, 15.5k utter- 726

ances and 1362 seekers and TG-ReDial contains 727

10.0k dialogues, 129.4k utterances and 1482 seek- 728

ers. Following the original paper, we randomly 729
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Figure 6: The sampled dialog in the DuRecDial dataset for case study.

sampling 65%/10%/25% data in DuRecDial at the730

level of seekers to form the train/dev/test datasets.731

As for TG-ReDial, we extract the topic as the goal732

entity, and reduce the number of goal entity by733

clustering and manual processing. We treat the ac-734

tion in TG-ReDial as the goal type and follow the735

train/dev/test splitting in the original paper.736

7.2 Training Details737

The hidden size of LSTM is set to 256. We adopt738

the cosine learning rate decay schedule for a total of739

30 epochs for all comparison methods. We use the740

dev set to tune learning rate from [1e−4, 1e−3.5,741

1e−3, 1e−2.5, 1e−2, 1e−1.5, 1e−1]. The Adam742

optimizer (Kingma and Ba, 2015) is used in train-743

ing the model parameters. For the hierarchical744

weight learning, we set the embedding size of the745

MLP as 100 and optimize the MLP via the Adam 746

optimizer with a 1e−5 learning rate. We tune the 747

soft parameter from [0, 0.01, 0.02, 0.04, 0.08, 0.16, 748

0.32] via the performance of the dev set. All exper- 749

iments are performed on a single Tesla P40. 750

7.3 Computational Efficiency 751

As for the computational efficiency, on a single 752

Tesla P40, MHFL takes 28.87s to finish the in- 753

ference on the whole DuRecDial test set (LSTM: 754

27.85s; CNN: 24.86s; TG: 24.70s; MGCG: 755

29.06s). Note that the inference speed of all meth- 756

ods are similar and MHFL is a little slower due to 757

the introduction of the cross attention module. 758

7.4 Dialog Details 759

The dialog is shown in Figure 6. 760
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