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Abstract

Proactively and naturally guiding the dialog
from the non-recommendation context (e.g.,
Chit-chat) to the recommendation scenario is
crucial for the Conversational Recommender
System (CRS). Prior studies mainly focus on
planning the next dialog goal (e.g., chat on a
movie star) conditioned on the previous dia-
log. However, we find the dialog goals can
be simultaneously observed at different levels,
which can be utilized to improve CRS. In this
paper, we propose the Dual-space Hierarchical
Learning (DHL) to leverage multi-level goal
sequences and their hierarchical relationships
for conversational recommendation. Specifi-
cally, we exploit multi-level goal sequences
from both the representation space and the opti-
mization space. In the representation space, we
propose the hierarchical representation learning
where a cross attention module derives mutu-
ally enhanced multi-level goal representations.
In the optimization space, we devise the hi-
erarchical weight learning to reweight lower-
level goal sequences, and introduce bi-level
optimization for stable update. Additionally,
we propose a soft labeling strategy to gradually
guide the optimization direction. Experiments
on two real-world datasets verify the effective-
ness of our approach.

1 Introduction

Recent years have witnessed the fast develop-
ment of the Conversational Recommender Sys-
tem (CRS) (Sun and Zhang, 2018; Konstantina
et al., 2018; Zhang et al., 2018; Yu et al., 2019; Lei
et al., 2020a,b), which aims to recommend proper
items through human-machine natural language
interactions. Compared with traditional recom-
mender systems which rely on historical logs, CRS
captures dynamic user interests by interacting with
users in a more free-form way (i.e. asking ques-
tions or recommending items). Therefore, CRS has
been widely adopted for various recommendation
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User  Hi, do you know the leading actor of
?

Bot Yeah, | know,

User  Really, you are awesome!

Bot Besides, is the best male singer
in the Golden Melody Awards.

User  He is the God of the singer!
Bot Yeah, he is a perfect man.

User  Sure, anyone who watches his concert says he
is the best in both movie and music.

Bot Do you want to listen to his “ 20t
is a classic of lyrical pop songs.

User  Does it sound good?

Bot It sounds great and all of his songs sound
good.

User  Wow, then I'd like to listen to it.

Figure 1: An illustrative example of muti-level goal
sequences in a human-machine conversation.

scenarios, including e-commerce, search engine,
and virtual assistant.

Rather than assuming users always bear in
mind what they want, one emerging direction (Liu
et al., 2020; Zhou et al., 2020) in CRS is to ex-
plore proactively discovering users’ interests and
naturally leading the conversation from the non-
recommendation context to the recommendation
scenario. As illustrated in Figure 1, the CRS can in-
telligently lead the goal type from QA to Chit-chat
on Stars and finally reach the goal of Music Rec.
To achieve this transition, the study in (Liu et al.,
2020) explicitly constructs dialog goal sequences
and proposes a CNN based model to plan the next
goal. Besides, the study in (Zhou et al., 2020) com-
bines the sequential recommendation model and
the pre-trained language model to guide topic tran-
sitions by leveraging various conversation signals.



In summary, such methods learn a single represen-
tation of previous goals to guide the conversation
towards the final recommendation goal.

However, after exploring large-scale recommen-
dation dialogs, we observe the sequence of dialog
goals co-exists in multiple levels. Take the dialog
in Figure 1 again for example, we can observe the
sequence of dialog goals in at least two levels: the
goal type level and the goal entity level. To be spe-
cific, the goal type of the dialog first transits from
QA to Chit-chat on Stars and then reaches Music
Rec. The corresponding goal entity sequence can
be summarized as Blood Brothers — Jacky Che-
ung — Cut My Heart. Such multi-level dialog goal
sequences are correlated and contain an intrinsic
dependency hierarchy, which can be leveraged to
enhance the next goal planning capability and im-
prove the effectiveness of CRS.

To this end, in this paper, we propose the Dual-
space Hierarchical Learning (DHL) to exploit
multi-level goal sequences for proactive and natu-
ral conversational recommendation. Specifically,
DHL models the hierarchical and sequential struc-
ture of dialog goals from two spaces. In the rep-
resentation space, we propose the hierarchical rep-
resentation learning where a cross attention mod-
ule captures the hierarchical dependency between
multi-level goal sequences. In particular, the cross
attention module consists of two symmetric com-
ponents, type2Zentity and entity2type, to derive mu-
tually enhanced representations of multi-level goal
sequences. In the optimization space, a hierarchical
weight learning module is introduced to reweight
goal sequences based on intermediate prediction re-
sults for better information use. More specifically,
higher accuracy of high-level prediction indicates
more useful information for low-level goal plan-
ning task, which is assigned with a larger hierarchi-
cal weight. To avoid trivial solutions of joint model
parameter and hierarchical weight optimization, we
introduce bi-level optimization (Luca et al., 2018)
to distill weak supervision signals from the training
data for the stable update of hierarchical weights.
Additionally, we propose a soft labeling strategy
to guide the dialog to the final recommendation
goal gradually. By assigning a small parameter
of the final recommendation goal to each one-hot
encoded current goal, the soft label can incorporate
the global optimization direction information in the
model training phase. In summary, we make the
following three major contributions.

* To model hierarchical relationships between
multi-level goal sequences in the representa-
tion space, we propose the hierarchical repre-
sentation learning in which a cross attention
module derives multi-grained goal representa-
tions in a mutual reinforcement way.

* To leverage the hierarchical structure of goal
sequences in the optimization space, we de-
velop the hierarchical weight learning to adap-
tively reweight multi-level goal planning tasks.
The bi-level optimization is introduced to sta-
bilize the update of hierarchical weights.

* To guide the conversation to the final recom-
mendation goal, we propose a novel soft label-
ing strategy to adjust the global optimization
direction information.

We have conducted extensive experiments on
two real-world conversational recommendation
datasets, and the results demonstrate the effective-
ness of our approach.

2 Preliminaries

We first introduce some important definitions and
then formalize the problem we aim to investigate.

Let D = {dk}ffil denote a set of dialogs, where
Ny is the total number of dialogs in the dataset.
Each dialog di, € D consists of multiple utterances
between user and machine.

Definition 1. Goal. A goal g is defined as the topic
or knowledge (e.g., an event, a movie star, etc.)
the utterances focus on to keep the conversation
natural and engaging.

Depend on the granularity, the goal can be de-
fined at different levels. In this paper, we define dia-
log goals in three levels, (1) goal type g, (e.g., QA,
Chit-chat and recommendation), (2) goal entity g
(e.g., movie star, music), and (3) goal attribute g,
(e.g., descriptions about the movie star). We use
Np, N and N, to denote the number of goal type,
goal entity, and goal attribute in D. Note that some
consecutive utterances may share the same goal.

Definition 2. Goal sequence. Given a dialog d;,
the goal sequence g; = [g1, g2, - . ., gy is defined
as a knowledge path that describes the semantic
transition of topics in d;.

Note that g, denotes the final recommendation
goal, which is given before the dialog. To ensure
consistency, we constrain all goals in a goal se-
quence at the same level. We denote g” as the goal



type sequence, g© as the goal entity sequence, and
g" as the goal attribute sequence. Consider a goal
sequence [g1,92,- - -, gt] in a particular level, de-
note the fixed-length initialization for each goal as
.y Xt] .

Definition 3. Adjacency matrix. The adjacency
matrix CP¢ € RNv*Ne captures the co-occurrence
relationship between the goal type and the goal
entity, where cfje € CP¢ between goal type gf and
goal entity g5 is defined as

[x1, X2, ..

ij ’
(1)
where € is a small number. Similarly, the adjacency
matrix C®" is constructed by considering the co-
occurrence relationship between goal entities and

goal attributes.

e 1.0 ifg? and g5 co-occurred in D
€ otherwise

Problem statement. Given a dialog context X of
previous utterances and the predefined final rec-
ommendation goal g, we aim to simultaneously
plan multi-level goal sequences g, g¢, and g" to
proactively and naturally lead the conversation to
reach the final recommendation goal. Based on
the item recommendation requirement of CRS, we
regard the entity level goal planning as the main
task, the type level and attribute level goal planning
as auxiliary tasks.

3 Method

3.1 Framework Overview

Figure 2 shows an overview of DHL that includes
the following three tasks, (1) learning enhanced
multi-level goal representations in a shared latent
space, (2) robustly optimizing goal representations
by exploiting cross-level supervision signals, and
(3) guiding the optimization direction of goal se-
quences toward the final recommendation goal. For
the first task, we construct a two-layer goal se-
quence hierarchy between goal type and goal en-
tity, and propose the hierarchical representation
learning to obtain goal representations by captur-
ing cross-level dependencies in a mutual reinforce-
ment way. For the second task, we propose the
hierarchical weight learning to achieve robust goal
representation optimization by reweighting multi-
level goal sequences via bi-level optimization. For
the third task, we propose a soft labeling strategy to
gradually enforce the global optimization direction
by attaching information of the final recommenda-
tion target to the goal sequence.

3.2 Base Model

We adopt LSTM (Sepp and Jiirgen, 1997) as the ba-
sic building block for proactive goal planning, with
the consideration of sequential and hierarchical re-
lationships in multi-level dialog goal sequences.
Sequential representation learning. We first de-
vise multiple LSTMs for goal sequence depen-
dency learning. We derive the hidden representa-
tion of the goal sequence by h; = LSTM(x;, hij_;)
where LSTM(+, ) is the LSTM function and ¢
ranges from 1 to ¢. Then we can derive the logit of
the next goal by

L1 = MLP(hy), )

where 1,4 is a logit vector for all goals, and
MLP(-) is a fully connected neural network.
Hierarchical information exchange. The multi-
level goal sequences describe the dialog topic in
multiple granularities, which can be exploited to
improve the goal prediction. For instance, if the
logit score of goal type Music Rec is high and it
ever co-occurred with a goal entity Cut My Heart in
historical dialogs, the likelihood of the goal entity
Cut My Heart should be relatively larger than oth-
ers. To incorporate such hierarchical knowledge,
we integrate high-level information into low-level
tasks based on CP¢ and C*":

1° = 1° + softmax(I?) - CP°, 3

1" =1" + softmax(1°) - C*, ©)
where IP? € RM_ 1¢ € RV and I” € RM are
the logit vectors of goal type, the goal entity and
the goal attribute derived from Eq. (2), and - is the
matrix multiplication operation. The next goal type,
the next goal entity and the next goal attribute can
be calculated as the one with the largest logit in 17,
1¢ and I", respectively.
Optimization. We optimize multi-level goal plan-
ning tasks jointly. Take goal entity for instance,
we optimize the cross-entropy loss L. () between
the one-hot encoded next goal entity g¢ .., and the
goal entity probability vector softmax(1¢), where
0 are learnable model parameters. The goal type
loss £,,(6) and the goal attribute loss £,.(¢) can be
calculated similarly. The overall learning objective
can be written as £ = L£,(6) + L.(6) + L,.(6).

3.3 Hierarchical Representation Learning

Then we introduce the hierarchical representation
learning to further exploit relationships between
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Figure 2: Overview of DHL. Taking the goal type sequence and the goal entity sequence as input, DHL outputs the
next goal entity to lead the conversation via dual-space hierarchical learning and soft labeling guidance.

multi-level goal sequences. In particular, we pro-
pose the cross attention module to learn enhanced
goal representations, which including two sym-
metric components: the type2entity attention com-
ponent and the entity2type attention component.
Specifically, the type2entity attention component
adaptively absorbs the goal type knowledge dur-
ing the goal entity sequence learning, and the en-
tity2type attention component dynamically inte-
grates the goal entity knowledge during the goal
type sequence learning. Due to page limit, we use
the type2entity attention component for illustration,
and the entity2type attention component works in
a similar way.

Formally, consider the sequence of goal entity
embeddings [x{, XS, ..., x{] and the hidden state
of the goal type sequence h? derived from the
LSTM encoder. We transform the sequence of
goal entity embeddings as the sequence of key em-
beddings [x¥,x5,...,xF] and value embeddings
[xY,xY,...,x}] by MLPs and treat hY as the query
embedding. The distilled knowledge representation
by the type2entity component is defined by

t Pk
e =y JH0%) X)) o @
t 9y
j=1 Zl:l f(hfv Xéc) ’
where f(h?, x?) represents the exponential kernel

P (k)T
exp(ht(\/é)

) and d denotes the embedding size.

Then we simply concatenate h?”® with h{ to inte-
grate the distilled knowledge into the next goal
entity prediction.

3.4 Hierarchical Weight Learning

Besides capturing the hierarchical relationship in
the representation space, we also propose the hi-
erarchical weight learning to leverage the goal se-
quence hierarchy in the optimization space.
Hierarchical weight. Intuitively, an accurate pre-
diction of the high-level goal (e.g., goal type) can
provide much useful information to guide the op-
timization of the low-level prediction task (e.g.,
goal entity prediction), which can be leveraged for
model training. Therefore, we introduce the hier-
archical weight for the low-level prediction task,
where a more accurate high-level prediction indi-
cates a larger hierarchical weight for the low-level
prediction task.

However, assigning a scalar weight for each goal
sequence is not scalable due to the large number of
goal sequences in real-world datasets. Therefore,
we approximate the weight for each goal sequence
via a neural network. Inspired by (Shu et al., 2019),
we adopt an MLP network followed by a sigmoid
function to output the hierarchical weight. Specifi-
cally, the MLP network takes the loss of goal type
as input and outputs the hierarchical weight for the
goal entity loss. And the same weight assignment



operation can be applied for goal attributes based
on goal entities. Denote the MLP parameters as
a, the hierarchical weighted loss function can be
written as:

L0, @)= L,(0) +02 (Ly) Le(0) +w (L) £ (0)
(&)
where w¢'(L,,) and w(L.) denote the hierarchi-
cal weights for the goal entity loss and the goal
attribute loss, respectively. In the following, we de-
note wd (L) as wd and w (L) as wg* for brevity.
Bi-level optimization for weight learning. Di-
rectly optimizing Eq. (5) may lead to a trivial so-
lution where all hierarchical weights reduce to ze-
ros. In this work, we propose to formulate hierar-
chical weight learning as a bi-level optimization
problem (Luca et al., 2018) where the hierarchical
weight is decided by an outer level learning task:

min Lowt=Lp(0" () +Le(0 () + L (0% ()
s.t.0% (o) = arggmin Ly(0)+ws Le(0)+we L,(6)
(6)

In this formulation, the inner variable is the model
parameters 6 and the outer variable is the MLP
network parameters a. We build the connection
between # and « in the inner loop via a gradient
descent step, and optimize « in the outer loop. De-
note Lip, = L,(0) +wSLe(0) + wi L,.(6). For the
the inner level loop, we have:

OLin (0, )

7
50 (7

0*(a) =~ 0 —n
In the outer level, we update o by minimizing
Loyt (0% () via the gradient descent method with
the learning rate n/:
1 OL ot (0*
of A a—n M. (8)
Ja
In this way, we can leverage the weak supervi-
sion signals derived from the outer level task to
update hierarchical weights stably. We calculate
the weighted loss in Eq. (5) by using the newly
updated hierarchical weights w¢ and w.

3.5 Soft Labeling

As the number of goals is finite, the next goal pre-
diction task can be formulated as a multi-class clas-
sification task. Traditional classification tasks opti-
mize the cross-entropy loss between the probability
score and the one-hot label. Different from such
formulation, one unique characteristic of the goal

Chit-chat QA
[020] [ o0s50]
Lo ]
[0.00 |

Music Rec  News Rec

[020] [o010]

Prediction

One-hot label L] [o] [o]

Soft label [098 | [o00] [o002]

Figure 3: An illustrative example of the soft labeling
strategy. A soft parameter (.02 is attached to the one-
hot goal label, which guides the prediction to approach
the final recommendation goal News Rec.

guided conversational recommender system is to
proactively and naturally lead the user to the fi-
nal recommendation goal when planning the short-
term goal in each step.

In this work, we achieve gradual guidance by in-
troducing the soft labeling strategy, which enforces
the prediction closer to the final goal as the conver-
sation went on. As shown in Figure 3, we attach
the one-hot goal label with a soft parameter in the
final goal position. As the goal sequence unrolls,

. we gradually increase the soft parameter. The soft

parameter sy, is calculated as

L
707 1)) (9)

sp = somin (1

where L is the goal sequence length and so = 0.02
is a hyper-parameter that controls the strength of

soft labeling. From Eq. (9), We can observe that s,
increases as L increases and it remains unchanged
when L is larger than 10. Denote the soft label of
goal entity as g¢_ o the goal entity loss can be com-
puted by L.(0) = CE(gS s ,softmax(1°)) where
CE(+) is the cross entropy loss function. The loss
function for other levels of goals can be computed
similarly. By leveraging the soft labeling strategy,
the goal sequence transits to the final recommenda-
tion goal gradually.

4 Experiments

4.1 Datasets

We perform experiments on two datasets: DuRec-
Dial(Liu et al., 2020) and TG-ReDial(Zhou et al.,
2020). Note that there are type level, entity level
and attribute level goals in DuRecDial while there
are no explicit goal attributes in TG-ReDial. There-
fore, we only consider goal type prediction as the
auxiliary task in the experiments on TG-ReDial.
See Appendix 7.1 for the details of datasets.

4.2 Baselines

We have chosen five baselines for comparison:



Table 1: Overall Results on DuRecDial Dataset.

Table 2: Overall Results on TGReDial Dataset.

Metrics Next LSTM CNN TG MGNN DHL Metrics Next LSTM CNN TG MGNN DHL
Acc(%) 68.75 78.24 81.85 79.48 67.31 83.51 Acc(%) 33.59 37.98 38.78 37.06 36.98 39.99
Rec(%) 59.34 46.56 55.84 51.21 2595 62.62 Rec(%) 15.17 18.19 17.60 14.10 12.56  20.78
Prec(%) 66.34 54.33 61.82 61.79 26.81 72.52 Prec(%) 29.18 24.26 15.63 8.98 7.76 46.32
F1(%) 61.37 4829 56.50 54.31 23.91 65.25 F1(%) 12.76 17.68 14.45 10.23 8.74 20.43
LS(%) 11.49 13.38 12.87 14.22 1446 13.52 LS(%) 0.00 9.26 20.16 19.29 2.79 24.82

» Next simply chooses the last goal entity as the
prediction of the next goal entity;

* LSTM leverages an LSTM to model the goal
entity sequence dependency;

* CNN (Liu et al., 2020) proposes a CNN for
the goal entity sequence learning;

* TG (Zhou et al., 2020) uses the dot product
between the learned representation and every
goal entity embedding for ranking;

¢ MGNN (Xu et al., 2020a) is the state-of-the-
art graph neural network based model for di-
alog generation policy learning. Compared
with the original paper, we construct graphs
for each level based on the goal co-occurrence
relationship and use these graphs to enhance
the goal representation learning.

4.3 Implementation Details

For all methods, we set the embedding size of goal
type, goal entity and goal attribute as 256 and the
batchsize as 128. We use the dev dataset to tune
other hyper-parameters such as the learning rate.
For the evaluation metrics, we adopt the accura-
cy/recall/precision/F1 scores to evaluate the perfor-
mance of the goal entity prediction on all methods.
Besides, we use the dialog-leading success rate
metric(LS) to measure how well a model can lead
the dialog to approach the final recommendation
goal. More specifically, LS is the ratio of the num-
ber of achieved final recommendation goals over
the number of all goal predictions. Please refer to
Appendix 7.2 for more training details.

4.4 Overall Results

Table 1 and Table 2 summarize the results for all
methods where the best results are in bold and
the second-best results are marked by underlines.
Firstly, we can observe that DHL outperforms all
comparison methods in all metrics except for the
LS metric on DuRecDial . TG and MGNN perform
slightly better in terms of the LS metric but get

Table 3: Ablation Study on DuRecDial Dataset.

Metrics base w/oatt w/o weight w/osoft DHL
Acc(%) 82.39 82.54 82.95 82.80  83.51
Rec(%) 58.72  60.82 61.34 60.27  62.62
Prec(%) 67.34 69.84 69.20 67.81  72.52
F1(%) 60.40 62.98 62.90 61.73  65.25
LS(%) 12.84 13.46 13.24 12.95 13.52

relatively low performance in other metrics. We
increase sg in Eq. (9) from 0.02 to 0.20 in DHL
and get better performance than TG and MGNN
in terms of all metrics on DuRecDial (Accuracy:
82.65%; Recall: 61.56%; Precision: 65.45%; LS:
17.00%). Furthermore, we notice that the Next
method gets much better performance in DuRec-
Dial compared with the experimental results in TG-
ReDial. The reason is that the goal entity sequence
in DuRecDial contains more consecutive goal en-
tities than that in TG-ReDial, and thus setting the
last goal entity as the prediction of the next goal
entity prediction performs better in DuRecDial .
Last but not least, CNN serves as a good baseline
in both datasets. One possible explanation is that
the next goal entity prediction highly relies on the
last several goal entities and CNN can model this
relation well via a small sliding window. We also
analyze the computational efficiency of all compar-
ison methods in Appendix 7.3.

4.5 Ablation Study

We have also conducted additional experiments
on both DuRecDial and TG-ReDial with ablation
consideration. More specifically, we remove the hi-
erarchical representation learning, the hierarchical

Table 4: Ablation Study on TGReDial Dataset.

Metrics base w/oatt w/oweight w/osoft DHL
Acc(%) 38.92 39.19 38.88 39.09  39.99
Rec(%) 18.56  20.00 20.17 20.72  20.78
Prec(%) 29.78 30.55 24.10 33.96  46.32
F1(%) 17.26 19.31 18.80 20.19 2043
LS(%) 11.15 16.12 20.82 22.35 24.82
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Figure 4: Parameter sensitivity of DHL.

weight learning, and the soft labeling in DHL, and
denote these variants as w/o att, w/o weight, w/o
soft respectively. Besides, we denote DHL with-
out all the three designs as base. The results are
reported in Table 3 and Table 4.

Firstly, we can observe that DHL outperforms
base by a large margin (1.12% accuracy, 3.90%
recall, 5.18% precision, 4.85% F1 and 0.68% LS)
in DuRecDial and (1.07% accuracy, 2.22% recall,
16.54% precision, 3.17% F1 and 13.67% LS) in
TG-ReDial. This validates the effectiveness of the
proposed DHL. Secondly, we can observe that the
hierarchical representation learning and the hierar-
chical weight learning both play important roles
in DHL. In the DuRecDial experiments, the pre-
cision score drops 2.68% without the hierarchical
representation learning and drops 3.32% without
the hierarchical weight learning. A similar trend is
observed in TG-ReDial experiments: 15.77% and
22.22% precision score drop after removing the hi-
erarchical representation learning and the hierarchi-
cal weight learning respectively. Last not but least,
as shown in Table 3 and Table 4, DHL gets lower
LS after removing the soft labeling strategy (from
13.52% to 12.95% in the DuRecDial experiments
and from 24.82% to 22.35% in the TG-ReDial ex-
periments). This can be explained as the lack of
the gradual guidance to the final recommendation
goal. We further notice that the other four metrics
degrade slightly (accuracy from 83.51% to 82.80%
in the DuRecDial experiments and from 39.99%
to 39.09% in the TG-ReDial experiments) and the
reason may be the soft labeling strategy also acts
as an implicit regularization which improves the
model training(Christian et al., 2016).

4.6 Parameter Sensitivity

We further analyze the parameter sensitivity of
DHL in DuRecDial .

Soft parameter. We first examine the soft param-
eter and results are shown in Figure 4(a). It can
be observed that as sy increases from 0 to 0.32,
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Figure 5: Case study.

the LS score increases from 12.95% to 22.70%.
This verifies that the soft labeling strategy can lead
the conversation to the final recommendation goal.
Other metrics including the accuracy, the recall,
the precision and the F1 score, increase at first and
then decrease as so becomes larger than 0.02. The
increase may be explained by that the soft labeling
serves as an implicit regularization to improve the
model training (Christian et al., 2016) while the
reason for the decrease is that the soft label gradu-
ally becomes a noisy label when sy becomes large.
We choose sg = 0.02 in our experiments.
Learning rate. Besides, we examine the sensitiv-
ity of the learning rate. As shown in Figure 4(b),
given a small learning rate of 1le—4, the model gets
poor performance. As the learning rate increases
from le—3.5 to le—1.5, the model performs well
and is not sensitive to the learning rate during this
period. It can be observed that the 1e—3 learn-
ing rate performs best for most metrics. When the
learning rate becomes large as le—1, the model
collapses and all goal entity predictions become
the final recommendation goal.

4.7 Case Study

To qualitatively analyze the effectiveness of DHL,
we visualize the cross attention weights and the
hierarchical weights in DuRecDial .

Cross attention weights. We extract the goal type
sequence and the goal entity sequence from a dia-
log. Please refer to Appendix 7.4 for dialog details.
As shown in Figure 5(a), we list the goal type se-
quence and the goal entity sequence, and visualize
the cross attention weights between the hidden state



and the goal embeddings. We can observe the cross
attention weight, between the goal type hidden state
and the goal entity embeddings, increases as the
goal sequence unrolls. This makes sense, since the
last goal entities have more influence on the next
goal entity prediction. To be specific, highlighted
by the goal type hidden state, the goal entity Jay
Chou contributes a lot to the next goal entity pre-
diction as Jay Chou’s news. Similarly, stressed by
the goal entity hidden state, the goal type Chit-chat
on Stars contributes much to the next goal type
prediction as News Rec. The above observations
further validate the effectiveness of the hierarchical
representation learning.

Hierarchical weights. As shown in Figure 5(b),
we visualize the MLP weight network and the hi-
erarchical weight for the goal entity task decreases
as the goal type loss increases. This makes sense:
given a small goal type loss, the goal type pre-
diction is accurate and thus provides much useful
information for the goal entity prediction. There-
fore the goal entity prediction deserves a large task
weight for optimization.

Furthermore, in the example of Figure 5(a), we
find the goal type loss is 0.012 and this small loss
corresponds to a large task weight 0.96 for the goal
entity prediction in Figure 5(b). Following Eq. (3),
we compute the goal type prediction’s contribution
score to the goal entity prediction as

L2 = softmax(l,) - CP°. (10)
The ground-truth goal entity position of
softmax(lp2e) is 1.17%, much larger than
the average score ﬁ = 0.07% (1385 is the class
number of the goal entity in DuRecDial.) The
above results further validate the effectiveness of
hierarchical weight learning.

5 Related work

This work is related to conversational recommender
system and hierarchical structure modeling.
Conversational recommender system. The re-
search on the conversational recommender system
has two research lines. One is from the recom-
mender system and another is from the dialogue
system. The research works of the first one (Sun
and Zhang, 2018; Konstantina et al., 2018; Zhang
et al., 2018; Yu et al., 2019; Lei et al., 2020a,b)
aim to infer user’s interest by historical interactions
and the system generally consider two actions: ask
questions or recommend items. The second line

from the dialogue system aims to enforce natural
semantic transitions in multi-turn human-machine
natural language interactions. For example, (Xu
et al., 2020a) proposed to leverage the information
of global graph structure to enhance goal embed-
ding learning, and (Liu et al., 2020; Zhou et al.,
2020) incorporated topic threads to enforce natural
semantic transitions towards recommendation.

Hierarchical structure modeling. Hierarchical
structure modeling has attracted lots of research
attention in many fields including recommender
system (Xu et al., 2020b; Qi et al., 2021) and natu-
ral language processing (Su et al., 2021; Hu et al.,
2021; Wu et al., 2021; Chen et al., 2021; Wang
et al., 2021). To name a few, (Xu et al., 2020b;
Qi et al., 2021) model the user’s interest hierarchy
from a higher level to a lower level. To train the
matching model in an "easy-to-difficult" scheme,
(Su et al., 2021) proposed a hierarchical curricu-
lum learning framework that consists of the corpus-
level curriculum and the instance-level curriculum.
(Hu et al., 2021) introduced a recursive transformer
to model multiple levels of granularity (e.g., words,
phrases, and sentences) and (Wu et al., 2021) pro-
posed a Hi-Transformer which models documents
in a hierarchical way.

In this paper, we exploit the hierarchical struc-
ture of goal sequences from dual spaces, including
representation space and optimization space.

6 Conclusion

In this paper, we propose DHL to enhance the
proactive goal planning in CRS by exploiting the
hierarchical structure of multi-level goal sequences.
Specifically, we propose the hierarchical represen-
tation learning in the representation space and the
hierarchical weight learning in the optimization
space to model hierarchical goal sequences. In
addition, we develop a novel soft labeling strat-
egy, which can gradually guide the conversation to
the final recommendation goal. We conduct exten-
sive experiments on the DuRecDial dataset and the
TG-ReDial dataset and the results demonstrate the
effectiveness of DHL.
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7 Appendix

7.1 Dataset

DuRecDial contains 10.2k dialogues, 15.5k utter-
ances and 1362 seekers and TG-ReDial contains
10.0k dialogues, 129.4k utterances and 1482 seek-
ers. Following the original paper, we randomly



Goal type/entity

Goal type: greeting

Goal entity: greeting

Goal type: music
recommendation

Goal entity: Kang
ding Love Song

Goal type: chitchat
about stars

Goal entity: Jay Chou

Goal type: news
recommendation

Goal entity: Jay

Hierarchical Goal Guided Conversation

1. Bot: {REFM, XJEE,
up to lately?)

2. User: fR&FM, SIECESAF, EEEM. (Hi, 'm busy with looking
after my grandson, and | feel quite tired.)

3. Bot: AL, /N FIEE RSN, RUEERREE! (Yeah, kids are
quite naughty and you probably need some rest!)

4. User: HMigly, XA AhFHEER T 5B =L, (Thanks! | am resting now
while my grandson is asleep.)

5. Bot: RERBARKARIE, BIARRH [REBRK] | wmEMRKM BT
AEWMBEX AL, FERESER! (Have arelax ! Jay Chou's
"Kangding Love Song" is elegant and he sings this song very well. Hope
you'd like it!)

6. User: AEFREN, EHAF AT, (Sorry, | don't want any song now.)

7. Bot: 7IE, FBIEAKI—HIEARMLIE, Mo 2F/KRA"H. (Okay,
let's talk about Jay Chou, and he is a real genius in music.)

8. User: MIREXRAMME, REAEMN—1 KT (I like him very much, a
very talented singer.)

9.Bot: X, fIRRFT ALK, KERMBEHAZTRAREHHFEXZ
A, BABEXAZERMAI L, (Yeah, he has won many awards and
he is the best-selling Chinese artist in the 4th World Music Awards. No
wonder he has so many fans.)

10. User: IRIR, FLEHEFZ—, SREFIMBEOFEERRIEEEE
%&. (Hey, | am one of them, and | feel very happy every time | hear his
new album.)

11. Bot: RARIX AEXAM, XEXTMAFEIEAIRITT, 5827 BFKE
EENERYE LUE RBEMN LA E TN FEEGEXEE
13?7 "(Since you like him so much, let's talk about some news on him. On
May 27th, Nian Chen challenged Jay Chou on a live broadcast platform,
"Is your breathless song the aesthetics of traditional Chinese culture? )

12. User: AR AR T, FHERMEGE, MRNARXAREKINMRARET,

ITITMEUE? (Hi, Lu ping, what have you been

Chou’s news

HEZBRARZMR! (I really hate him. He looks down Jay Chou, which

doesn't mean that Jay Chou is not talented. He is so self-righteous!)

Figure 6: The sampled dialog in the DuRecDial dataset for case study.

sampling 65%/10%/25% data in DuRecDial at the
level of seekers to form the train/dev/test datasets.
As for TG-ReDial, we extract the topic as the goal
entity, and reduce the number of goal entity by
clustering and manual processing. We treat the ac-
tion in TG-ReDial as the goal type and follow the
train/dev/test splitting in the original paper.

7.2 Training Details

The hidden size of LSTM is set to 256. We adopt
the cosine learning rate decay schedule for a total of
30 epochs for all comparison methods. We use the
dev set to tune learning rate from [le—4, le—3.5,
le—3, 1e—2.5, 1le—2, 1le—1.5, le—1]. The Adam
optimizer (Kingma and Ba, 2015) is used in train-
ing the model parameters. For the hierarchical
weight learning, we set the embedding size of the
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MLP as 100 and optimize the MLP via the Adam
optimizer with a 1le—>5 learning rate. We tune the
soft parameter from [0, 0.01, 0.02, 0.04, 0.08, 0.16,
0.32] via the performance of the dev set. All exper-
iments are performed on a single Tesla P40.

7.3 Computational Efficiency

As for the computational efficiency, on a single
Tesla P40, MHFL takes 28.87s to finish the in-
ference on the whole DuRecDial test set (LSTM:
27.85s; CNN: 24.86s; TG: 24.70s; MGCG:
29.06s). Note that the inference speed of all meth-
ods are similar and MHFL is a little slower due to
the introduction of the cross attention module.

7.4 Dialog Details

The dialog is shown in Figure 6.



