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ABSTRACT

Significant progression has been made in active learning algorithms for graph net-
works in various tasks. However real-world applications frequently involve in-
complete graphs with missing links, which pose the challenge that existing ap-
proaches might not adequately address. This paper presents an active learning ap-
proach tailored specifically for handling incomplete graphs, termed ALIN. Our al-
gorithm employs graph neural networks (GNN) to generate node embeddings and
calculates losses for both node classification and link prediction tasks. The losses
are combined with appropriate weights and iteratively updating the GNN, ALIN
efficiently queries nodes in batches, thereby achieving a balance between training
feedbacks and resource utilization. Our empirical experiments have shown ALIN
can surpass state-of-the-art baselines on Cora, Citeseer, Pubmed, and Coauthor-
CS datasets.

Keywords— Active Learning, Incomplete Graphs, Graph Neural Networks, Node Classification, Link Predic-
tion, Semi-Supervised Learning, Joint Loss Function

1 INTRODUCTION

The concept of graphs (or networks) has become pervasive across numerous domains, such as citation graphs
and social graphs. Similar to other forms of data, graph data are undergoing rapid expansion, presently attaining
substantial magnitudes. Consequently, the expanding dimensions of these graphs pose formidable challenges
in attempting to analyze such type of data comprehensively.

Graph embeddings, the technique that transforms a given graph into a lower-dimensional space while preserving
its underlying structural attributes and other inherent characteristics, are now gaining considerable attention in
research areas (Goyal & Ferrara, 2018, Wang et al., 2023). By generating node embeddings, a spectrum of
graph analytical tasks, including but not limited to node classification, node clustering, and link prediction, can
be executed with heightened efficiency, optimizing both temporal and spatial considerations Ou et al. (2016).
The semi-supervised graph embedding algorithms typically assume the training labeled data are given, which
may not be always true in real practice Song et al. (2022). Given a labeling budget, the strategic selection of
training labeled nodes to maximize eventual performance is thus of great importance. Addressing this concern,
the concept of Active Learning (AL) has been introduced as a solution Xie et al. (2022). AL strategies offer
a highly efficient mechanism for enhancing the process of data annotation by prioritizing the identification
and labeling of the most informative instances. This, in turn, serves to optimize the efficiency and overall
performance of machine learning models. Significantly, the domain of graph-based tasks, including many
applications such as social network analysis, recommendation systems, and biological network inference, has
benefited greatly from these developments (Deng, 2022, Vatter et al., 2023).

Recent AL-based approaches on graphs often assume the underlying network is fully known (Ma et al., 2022).
However, this assumption tends to be overly simplistic as the underlying network cannot be fully observed
in many real-world applications of network analyses (Valente & Pumpuang, 2007, Rice et al., 2012). While,
in theory, it is conceivable to allocate additional resources towards the exhaustive exploration of the entire
network, the endeavor to acquire a comprehensive network structure frequently proves to be prohibitively costly,
demanding in terms of labor, or entirely unfeasible in practice (Valente & Pumpuang, 2007). For example,
network data extracted from social media platforms bear privacy concern limitations as a substantial 52.6% of
Facebook users took measures to conceal their friends’ connections during a demographic analysis of Facebook
in New York City in June 2011.1 Consequently, when working with graph data, one should assume a more
practical case that only a part of the network structure is available in practice (Hou et al., 2022, Teji et al., 2022,

1We refer to Dey et al. (2012) for the statistics.
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Tran et al., 2021). This raises a critical challenge: How do we adapt AL methods to effectively operate on such
incomplete graphs?

To tackle this pressing challenge, we introduce a new active learning framework explicitly tuned to handle
incomplete networks: ALIN (Active Learning for Incomplete Networks). We propose a framework that incor-
porates an edge-based scoring mechanism into the AL framework. Conventionally, AL approaches in graphs
have prioritized node-centric objectives, such as optimizing node classification accuracy, which is no longer
sufficient and there is an inherent need to strategically select nodes that contribute to graph completeness.
However, simply introducing edge scores can compromise the primary goal of node classification, leading to
reduced overall accuracy. To strike a balance between enhancing graph completeness and preserving node
classification accuracy, we introduce a two-phase training. In the initial epochs, we focus on link prediction
as an auxiliary task. This early phase aims to establish an effective synergy between node scores and edge
scores, facilitating the creation of informative edges within the incomplete graph. In the subsequent epochs,
our approach seamlessly transitions towards prioritizing the core task of node classification, ensuring that the
final objective is met with high accuracy. By combining the objectives of improving graph completeness and
enhancing node classification accuracy, our proposed AL framework addresses the unique challenges posed by
incomplete graphs. This innovative approach not only extends the applicability of AL techniques to real-world
scenarios but also opens doors to more comprehensive and accurate graph-based data analysis.

In this paper, we present a comprehensive set of contributions, each addressing a distinct facet of the active
learning problem in the context of incomplete graphs:

• We introduce the novel Active Learning on Incomplete Graphs (ALIN) framework that is metic-
ulously designed to tackle the unique challenges posed by incomplete graph structures, offering a
robust end-to-end solution.

• We extend the conventional node scoring approach by introducing edge scores. This innovation caters
specifically to the optimization needs of incomplete graphs, allowing for more effective query node
selection.

• We propose a novel joint loss function that seamlessly combines node classification and link predic-
tion. This integration ensures that the interplay between these two critical components is optimized.
Furthermore, we introduce a method to harmonize these two losses, thereby achieving superior results
in the ultimate task of node classification.

• Our contributions are substantiated through an extensive series of experiments conducted on datasets.
These experiments not only establish the superior performance of ALIN when compared to con-
ventional active learning methods on benchmark graphs but also underscore the robustness of our
approach across various datasets and with different GNN backbones.

2 RELATED WORK

The framework that we proposed is related to the following three research lines.

Active Learning. Traditional active learning algorithms operate by querying individual samples for labeling in
a sequential manner. However, such an approach proves to be suboptimal when applied to deep learning models
as it frequently retrains but updates little, and it is prone to overfitting Ren et al. (2021). Therefore, in deep
active learning, the batch-mode setting, where a diverse set of instances are sampled and queried, is more often
considered. In recent years, the optimal experimental design principle (Pukelsheim, 2006, Allen-Zhu et al.,
2021) motivated the machine learning community to minimize the use of training resources and avoid tuning
on a validation set. Combining the settings of one-shot learning and batch-mode active learning, several recent
studies (Contardo et al., 2017, Wu et al., 2019) adopted a one-step batch-mode active learning setting.

Based on the query strategy, the majority of work can be divided into three categories Aggarwal et al.
(2014): heterogeneity-based, performance-based, and representativeness-based. Heterogeneity-based Zhang
et al. (2017) labeled the instances that are most different from the current known model. Performance-based
Guo & Greiner (2007) minimize labeled uncertainty of the remaining unlabelled instance. Representativeness-
based Li & Guo (2013) labeled the instance that can represent the underlying distribution of training instances

Active Learning on Graphs. The majority of work can be divided into four categories, including: EER,
Heuristics, Uncertainty, and GraphPart. EER (Expected Error Reduction) (Xiaojin Zhu, 2003, Macskassy,
2009, Gu & Han, 2012) is a criterion in active learning that selects instances with the highest expected re-
duction in classification error, aiming to improve model performance efficiently. Heuristics (Macskassy, 2009,
Hongyun Cai, 2017) are rule-of-thumb strategies used in active learning to guide the selection of informative
data points for labeling, often based on measures like uncertainty, diversity, or disagreement among models.
Uncertainty sampling (Ma & Yifei, 2013, Hongyun Cai, 2017, Wu et al., 2019, Ma et al., 2022) is an active
learning method that selects instances for labeling based on the uncertainty of their predicted class probabili-
ties, targeting instances where the model is least confident in its predictions. Recently, GraphPart (Ma et al.,
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2022) first splits the graph into disjoint partitions and then selects representative nodes within each partition to
query. It is worth noting that all prior work operated under the assumption of complete graphs, which diverges
from reality given the incomplete nature characteristic of most real-world graphs. In Table 1, we summarize
the aforementioned AL methods for the node classification task.

Experiment Method Incomplete Network AdaptiveEER Heuristics Uncertainty GraphPart
Xiaojin Zhu, 2003 x No No
Macskassy, 2009 x x No Yes
Gu & Han, 2012 x No No
Ma & Yifei, 2013 x No No

Hongyun Cai, 2017 x x No Yes
Wu et al., 2019 x No Yes
Ma et al., 2022 x x No Yes
ALIN (ours) x x Yes Yes

Table 1: Summary of active learning techniques for node classification on graphs. Here, the Adap-
tive column indicates that the active learner is updated based on the newly labeled instances.
Link Prediction is a fundamental problem that attempts to estimate the likelihood of the existence of a link
between two nodes Lu & Zhou (2010). This process enhances our comprehension of the connection between
specific nodes and the evolution of the entire network. Link prediction has been widely applied to a variety
of fields such as biology Lei & Ruan (2013) and social networks Liben-Nowell & Kleinberg (2007); Bonchi
et al. (2011). A multitude of methodologies exist for the prediction of links within networks. Heemakshi Malhi
(2016) provided an extensive survey that encompasses diverse link prediction algorithms, with a particular
emphasis on scrutinizing the limitations inherent in such methods. Lei & Ruan (2013) presented an excellent
survey by summarizing different approaches, introducing typical applications, and outlining future challenges
of link prediction algorithms. Building upon this foundation, Martı́nez et al. (2016) furnished a more contem-
porary perspective by incorporating recent methodologies and conducting a meticulous comparative analysis
of similarity-based techniques. Since it is difficult to identify a method that has the best performance in all
complex networks, which strongly depends on the structural properties of the network, the authors in (Wu
et al., 2022) categorized various link prediction strategies, including common neighbors-based, paths-based,
probabilistic and statistical models based, classifier based, and network embedding based techniques.

3 PROBLEM FORMULATION

In this section, we describe a formal definition of the problem of active learning on an incomplete graph under
iterative batch-mode settings and introduce a uniform set of notations.

Let us denote an underlying network G = (V, E) with N nodes vi ∈ V , edges (vi, vj) ∈ E , its node feature
matrix X ∈ RN×F (i.e., F dimensional feature vector for N nodes), label matrix for labeled nodes Y ∈ RN×C

(C is the number of node classes) (i.e., Yij = 1 indicates node i has label j), an oracle to label a query node
and its associated edges, and a labeling budget B.

In this study, we follow the iterative batch-mode setting Wu et al., 2019. In this setting, for each iteration,
we deplete a predetermined resource budget to select a batch of nodes for labeling, streamlining the querying
process to minimize redundant retraining. We entail segmenting a given budget B into K equitably sized
partitions. During each iteration k, b = [B/K] nodes are selected for querying, which form a set of selected
nodes, denoted asQ(k)

b . The primary objective underlying this approach is to harness the informative feedback
derived from the training process, while simultaneously safeguarding against excessive resource consumption.
This contrasts with the fundamental AL setup, where only a solitary node is chosen at a time, potentially
imposing considerable training overhead.

Since we tackle a setting where graph data is incomplete, for each iteration k = {0, · · · ,K}, we are given an
incomplete graph G̃(k) = (V, Ẽ(k)) and an incomplete label set Ỹ(k)

, where Ẽ(k) ⊂ E and Ỹ(k) ⊂ Y are the
edge set and the set of updated node labels at k-th iteration, respectively. At k-th iteration, by querying b nodes,
we obtain Ỹ(k)

q and Ẽ(k)q as the sets of newly obtained node labels and edges after querying, respectively.

Additionally, we denote Ỹ(k)
u and Ẽ(k)u as the sets of updated node labels and updated edges set at the k-th

iteration. Thus, we have Ỹ(k)
u = Ỹ(k) ∪ Ỹ(k)

q and Ẽ(k)u = Ẽ(k) ∪ Ẽ(k)q ; and the budget b is the maximum number
of updated node labels. In this setting, we assume that the node feature matrix X is fully observable.

We aim to train a GNN-based classification model by iteratively updating its parameters θ(k). The GNN model
maps (Ẽ(k)u , X) to prediction vectors Ŷ

(k)
and Ê(k). From the prediction and the observation, we compute node
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Figure 1: A schematic overview of our proposed ALIN framework.

classification loss lNC(Ỹ
(k)
u , Ŷ

(k)
) and link prediction loss lLP (Ẽ(k)u , Ê(k)). To combine both losses, we sum

lNC and lLP with a hyperparameter weight β, denoted as L(k).

Our goal is to minimize the loss under a given budget b at the k-th iteration:

min
θ(k),Qb

L(k) (1)

4 ALIN FRAMEWORK

In this section, we represent ALIN, a comprehensive solution designed to address the challenge of active learn-
ing within the context of an incomplete graph. The process underlying our framework is illustrated in Algo-
rithm 1, which can be dissected into two principal components: the query phase and the training phase, both
composed of distinct functions as follows:

• Query Phase: This phase encompasses node selection and subsequent updates, detailed in lines 3–
15 of Algorithm 1. During the initial node selection, we utilize the InitNodes function (line 4). In
subsequent iterations, we calculate node scores (line 8), edge scores (line 9), and combine them (line
10) to identify the most informative node (line 11). We then update the selected nodes and the lost
edges associated with them (lines 13 –15).

• Training Phase: In this phase, we focus on the core of our methodology: a unified loss function that
combines node classification and link loss prediction, as described in lines 16–19.

Example 1. A schematic overview of our proposed ALIN framework is visualized in Fig. 1, where we depict the
initial two iterations of the ALIN framework. In first iteration, (X, Ỹ(0)

, Ẽ(0)) contains eight unlabeled nodes
and six missing edges. During the Query Phase, two nodes, namely 4 and 5 (highlighted by yellow circles),
are chosen for labeling. Consequently, the three edges connected to these nodes are integrated, resulting in the
updated (X, Ỹ(0)

u , Ẽ(0)u ). Subsequently, (X, Ỹ(0)
u , Ẽ(0)u ) undergoes the GNN model to generate node embeddings

and to predict both Ŷ
(0)

and Ê(0). From (Ỹ(0)
u , Ẽ(0)u ) and (Ŷ

(0)
, Ê(0)), we compute lNC and lLP and its

amalgamation L(0), which is subsequently utilized in the backpropagation process into the GNN. Moving
on to the second iteration, we obtain (Ỹ(1)

, Ẽ(1) ← (Ỹ(0)
u , Ẽ(0)u ) and two additional nodes, namely 2 and 3

(highlighted by yellow circles), are selected for labeling. As a result, the two associated edges are incorporated,
leading to the update of (X, Ỹ(1)

u , Ẽ(1)u ).

The technical details of the two phases are described in the following.
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Algorithm 1 ALIN Algorithm

Require: X, Ẽ(0), Ỹ
(0)

= ∅, Hyperparameters (B, α, β), Trainable model parameters θ(0), Training
iterations T , iteration k = 0

Ensure: G̃(K), θ(K)

1: while k < K do
2: b← [B/K]
3: if k = 0 then ▷ Start Query Phase
4: Q(k)

b ← InitNodes(Ẽ(0),X)
5: else
6: Ỹ

(k) ← Ỹ
(k−1)

u

7: Ẽ(k) ← Ẽ(k−1)
u

8: ϕ
(k)
NS ← calculate Node Score for each node following (2)

9: ϕ
(k)
ES ← calculate Edge Score for each node following (3)

10: ϕ
(k)
CS ← α · ϕ(k)

NS + (1− α) · ϕ(k)
ES

11: Q(k)
b ← Top b nodes from ϕ

(k)
CS

12: end if
13: From Q(k)

b update selected nodes and associated edges from the oracle to Ỹ
(k)

q , Ẽ(k)q

14: Ỹ
(k)

u ← Ỹ
(k) ∪ Ỹ

(k)

q

15: Ẽ(k)u ← Ẽ(k) ∪ Ẽ(k)q ▷ End Query Phase
16: for t = 1 to T do ▷ Start Training Phase

17: From θ(k), calculate Ŷ
(k)

and Ê(k)

18: L(k) ← β · lNC(Ỹ
(k)

u , Ŷ
(k)

) + (1− β) · lLP (Ẽ(k)u , Ê(k))
19: Backpropagation to θ(k)

20: end for ▷ End Training Phase
21: k ← k + 1
22: end while

4.1 QUERY PHASE

4.1.1 INITNODES

As our framework relies on hidden representations of nodes or the predicted class distribution from the initial
model, we operate within iterative settings, necessitating an initial model trained with the seed set. Conse-
quently, we require the ’InitNodes’ function to select the initial set of nodes. This function allows us to employ
various selection strategies, such as random selection or employing recent methods such as FeatProp (Wu et al.,
2019), Centrality (Hongyun Cai, 2017), GraphPart (Ma et al., 2022). For the implementation of ALIN, we em-
ploy GraphPart as the ’InitNodes’ function. GraphPart works by dividing the graph into separate partitions and
then selecting representative nodes within each partition for active learning with GNN. To mitigate interference
across partitions in GraphPart, Ma et al., 2022 also introduce GraphPartFar, a method that penalizes select-
ing nodes close to medoids chosen in prior partitions, thereby promoting diversity among the returned nodes.
According to two variants of GraphPart, we also present another variant of ALIN, termed ALINFar. The dis-
tinction between ALIN and ALINFar lies in their respective utilization of the ’InitNodes’ function, i.e., ALIN
employs the GraphPart function for this purpose, whereas ALINFar opts for the utilization of GraphPartFar as
the initialization function.

4.1.2 COMBINE SCORE

In the context of querying the constituents of the graph, given a prescribed number of b queries, the query
function is constructed based on an equilibrium criterion encompassing the informational value of nodes into
node score ϕ

(k)
NS and the informational value of edges into edge score ϕ

(k)
ES . The amalgamation of ϕ(k)

NS and
ϕ
(k)
ES with a weight parameter denoted as α yields the composite score ϕ

(k)
CS .

Node Score. The use of entropy as a scoring metric provides valuable insights into the confidence of the GNN
model’s predictions for individual nodes. Higher entropy values indicate greater uncertainty, suggesting that a
node’s classification is less certain and may require further exploration or refinement in subsequent iterations
of the process. In contrast, lower entropy values signify a higher level of confidence in the node’s classification,
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making it less likely to be selected for additional query iterations. Following by Hongyun Cai (2017), ϕNS of
candidate node vi at the k-th iteration is calculated as follows:

ϕ
(k)
NS(vi) = −

C∑
c=1

M
(k)
ic logM

(k)
ic , (2)

where M(k)
ic = P(Ỹ(k)

ic = 1|G̃(k), Ỹ(k)
,X) is the probability of node vi belonging to class c predicted by

GNN at the k-th iteration; Ỹ(k)
ic = 1 indicates node i has label c. Furthermore, the efficiency of our entropy-

based node scoring approach plays a crucial role in accelerating the overall query process. With reduced
computational overhead, our framework facilitates faster exploration of the graph and enhances the overall
efficiency of the active learning framework.

Edge Score. In scenarios where the graph is incomplete, we aim to not only select nodes with high entropy but
also nodes to allow the model to learn on a more complete graph. Intuitively, nodes with a larger difference in
observable and predicted degrees are prioritized for inclusion in the active learning process since they offer the
potential for improving the overall graph representation and classification performance. Thus, ϕES of node vi
at the k-th iteration is calculated as follows:

ϕ
(k)
ES(vi) =

N∑
n=1

P(Ẽ(k)in = 1|G̃(k), Ẽ(k),X)−Dvi(Ẽ
(k)), (3)

where
∑N

n=1P(Ẽ
(k)
in = 1|G̃(k), Ẽ(k),X) is the probability of node vi has connect to node vn and Dvi(Ẽ(k)) is

the degree of node vi in Ẽ(k); Ẽ(k)in = 1 indicates node i has a connection to node n at the k-th. Intuitively,
phi

(k)
ES(vi) can be interpreted as the residual degree of a node vi. By incorporating the ϕ

(k)
ES alongside the

ϕ
(k)
NS , our active learning framework ensures the selection of nodes that not only exhibit uncertainty but also

contribute to enhancing the graph’s completeness and discriminative power.

The combination of ϕ(k)
NS and ϕ

(k)
ES represents a promising direction for active learning in graph-based settings.

By leveraging uncertainty and graph completeness, our approach strikes a balance between exploration and
exploitation, thereby achieving efficient and reliable active learning in real-world scenarios. The versatility of
our approach makes it well-suited for a wide range of applications, including social networks, recommendation
systems, and bioinformatics, among others

4.2 TRAINING PHASE

GNN model training: In our active learning framework, we utilize two loss functions during the training of the
Graph Neural Network (GNN) model. For node classification, we employ the cross entropy loss function, and
for link prediction, we utilize the binary cross entropy with logits loss function. The rationale behind using a
combined loss is that both ϕ

(k)
NS and ϕ

(k)
ES are influenced by the predictive power of the GNN model. By simul-

taneously retraining both the node classifier and the edge classifier models, we ensure that the combined score
captures valuable information about both node attribute information and the structural information surrounding
each node. This concurrent retraining of the edge classifier is motivated by the objective to query nodes that
offer a high value of information for both aspects, thereby enhancing the overall representation of the graph.
During the model retraining phase, we update the GNN model based on the newly acquired information from
the queried nodes. This iterative improvement of the GNN model helps refine the parameters θ(k) with each
query round, resulting in an increasingly accurate and informative model.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Dataset. To compare against state-of-the-art methods, we experiment on 4 benchmark datasets, including
citation networks Citeseer, Cora, and Pubmed (Sen et al., 2008) and co-authorship networks (Shchur et al.,
2018). The summary statistics of the datasets are provided in Table 2. The homophily ratio is defined following
(Zhu et al., 2020). In the experimental range with simulated conditions, we remove 30% of the total edges to
create incomplete graphs.

GNN Models. We perform experiments over three popular GNN models, including a 3-layer GCN (Kipf &
Welling, 2016) with hidden neurons are 128 and 64, respectively, a 3-layer GraphSAGE (Hamilton et al., 2017)
with hidden neurons are 128 and 64, respectively, and a 8 attention head-GAT (Hamilton et al., 2017) with 2
hidden layers of size 16 and 8, respectively. To train each model, we use an Adam optimizer with an initial
learning rate of 1 × 10−2 and weight decay of 5 × 10−4. As in the active learning setup, there should not be
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Dataset #Nodes #Edges #Features #Classes (C) Homophily
Cora 2,708 5,278 1,433 7 0.810
Citeseer 3,327 4,552 3,703 6 0.736
Pubmed 19,717 44,324 500 3 0.802
Coauthor-CS 18,333 81,894 6,805 6 0.808

Table 2: Summary statistics of datasets.

enough labeled samples to be used as a validation set, we train the GNN model with fixed 200 epochs in all the
experiments and evaluate over the full graph.

Competitive methods. We compare active learning methods that can be applied to the iterative setting, divided
into two categories: 1) general-purpose methods that are agnostic to the graph structure, namely Random,
Density, Uncertainty, and CoreSet; and 2) methods tailored for graph-structured data, including Centrality,
AGE, FeatProp, GraphPartFar, ALINFar.

• Random: Randomly chooses nodes without any specific criteria.

• Density (Hongyun Cai, 2017): Initially applies clustering to the hidden representations of nodes. It
then selects nodes with the highest density score, which is roughly inversely related to the l2-distance
between each node and its respective cluster center.

• Uncertainty (Settles & Craven, 2008): Selects nodes with the highest entropy in their predicted class
distribution.

• CoreSet (Sener & Savarese, 2017): Utilizes K-Center clustering on the hidden representations of
nodes. Given the scalability issues of the MIP optimized version, a time-efficient greedy approxima-
tion, as described in the original work, is used.

• Centrality: Chooses nodes with the highest values in graph centrality metrics. Notably, this approach
only considers the graph structure and does not take into account node features. Empirical evidence
from (Hongyun Cai, 2017) suggests that Degree centrality and PageRank centrality tend to outper-
form other metrics and thus we employ Degree and PageRank as two baselines for comparison.

• AGE (Hongyun Cai, 2017): Quantifies the informativeness of nodes by linearly combining three
metrics: centrality, density, and uncertainty. It then selects nodes with the highest combined scores.

• FeatProp (Wu et al., 2019): First conducts K-Means clustering on the aggregated node features and
subsequently selects nodes that are closest to the cluster centers.

• GraphPart and GraphPartFar (Ma et al., 2022): First obtains a K-partition of a graph using the
Clauset-Newman-Moore greedy modularity maximization (Clauset et al., 2004) method. In each part,
cluster on the aggregated node features and then choose the nodes closest to the cluster centers.

Following (Wu et al., 2019), we evaluate each baseline with a series of label budgets and report the Macro-F1
performance for node classification over the full graph. We note that the results are the average of repeated
experiments with 3 random seeds

5.2 EXPERIMENT RESULTS ON GCN

The performance comparison between all competitive methods is presented in Table 3. Note worthy findings
are summarized as follows:

• Our proposed ALIN and ALINFar, substantially outperform over baseline methods across various
budget constraints. Notably, these improvements persist until performance plateaus.

• On smaller datasets like Cora and Citeseer, where the number of nodes and edges is relatively modest,
our proposed framework exhibits remarkable superiority, surpassing baseline methods by a notable
margin, typically around 1-1.5%. This enhanced performance can be attributed to the framework’s
adept utilization of feedback from the training process.

• For datasets with more extensive node and edge counts, such as Pubmed and Coauthor-CS, ALIN
demonstrates clear advantages over baseline methods, particularly outperforming GraphPart, the
state-of-the-art method. Notably, on larger datasets like Pubmed and Coauthor-CS, ALIN proves
most effective with smaller budgets, typically around 200-230. However, with a more substantial
budget (260), AGE edges slightly ahead of ALIN by approximately 0.2-0.5%, as larger budgets tend
to lead to performance saturation.

• GraphPartFar exhibits commendable performance on Cora, trailing ALINFar by a mere 1-2%. How-
ever, as datasets expand in size, the loss of numerous edges affects partitioning significantly. Conse-
quently, on Pubmed and Coauthor-CS, GraphPartFar lags behind ALINFar by approximately 4-5%.
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Baselines Cora Citeseer
Buget 200 230 260 200 230 260
Random 76.6 ± 0.8 78.6 ± 2.2 79.4 ± 0.5 61.8 ± 0.3 61.0 ± 0.4 63.1 ± 1.4
Density 73.1 ± 1.1 74.5 ± 1.6 76.4 ± 1.9 61.6 ± 0.6 60.4 ± 1.3 58.4 ± 1.4
Uncertainty 78.7 ± 0.7 80.6 ± 0.9 80.5 ± 1.2 63.3 ± 1.1 64.2 ± 1.3 64.5 ± 0.7
CoreSet 77.9 ± 1.8 79.1 ± 0.8 79.9 ± 0.2 61.2 ± 0.2 61.7 ± 1.4 65.8 ± 0.6
Degree 72.2 ± 0.4 73.5 ± 0.8 75.7 ± 1.2 53.9 ± 1.8 54.9 ± 1.1 56.4 ± 1.7
Pagerank 77.8 ± 0.5 78.5 ± 0.1 79.5 ± 0.6 63.1 ± 0.2 63.6 ± 0.1 64.1 ± 0.2
AGE 77.6 ± 0.9 77.7 ± 1.2 79.6 ± 0.2 63.2 ± 0.2 64.1 ± 0.9 66.0 ± 1.5
FeatProp 72.1 ± 1.9 73.1 ± 0.8 74.5 ± 0.6 50.6 ± 1.3 55.8 ± 0.5 57.2 ± 2.2
GraphPart 72.8 ± 1.8 73.7 ± 1.2 75.1 ± 0.6 54.1 ± 0.4 54.8 ± 1.1 57.2 ± 1.7
GraphPartFar 77.8 ± 0.3 78.4 ± 0.5 78.4 ± 0.6 60.9 ± 2.0 61.4 ± 2.1 62.3 ± 1.7
ALIN 79.8 ± 1.3 80.4 ± 0.6 81.6 ± 1.0 63.4 ± 1.1 63.9 ± 1.2 66.1 ± 0.9
ALINFar 78.9 ± 1.2 81.2 ± 1.1 81.4 ± 1.7 64.4 ± 1.3 64.7 ± 1.1 66.4 ± 0.6
Baselines Pubmed Coauthor-CS
Buget 200 230 260 200 230 260
Random 77.1 ± 0.5 77.5 ± 1.3 78.8 ± 1.0 77.8 ± 0.4 82.6 ± 2.6 81.3 ± 3.1
Density 77.2 ± 0.4 76.9 ± 1.2 77.6 ± 0.9 79.3 ± 1.5 75.0 ± 0.8 79.3 ± 4.0
Uncertainty 77.3 ± 0.4 78.5 ± 1.5 79.0 ± 0.3 84.3 ± 1.0 85.4 ± 1.5 85.6 ± 0.4
CoreSet 76.4 ± 0.9 77.3 ± 0.8 77.1 ± 0.7 57.2 ± 3.1 62.7 ± 5.2 64.1 ± 3.8
Degree 76.1 ± 1.2 75.7 ± 0.5 75.7 ± 0.5 60.0 ± 0.2 59.9 ± 0.1 60.2 ± 0.5
Pagerank 75.8 ± 0.8 76.2 ± 0.2 77.5 ± 0.4 84.4 ± 0.7 84.0 ± 1.6 84.3 ± 1.0
AGE 78.3 ± 1.0 79.0 ± 0.2 79.6 ± 0.6 85.1 ± 0.3 85.5 ± 1.1 86.6 ± 0.3
FeatProp 74.0 ± 0.8 73.4 ± 0.7 73.6 ± 1.4 72.7 ± 4.7 77.7 ± 1.8 78.3 ± 1.0
GraphPart 73.8 ± 0.6 74.5 ± 0.8 74.2 ± 0.9 77.0 ± 3.6 79.0 ± 2.6 80.9 ± 2.4
GraphPartFar 75.1 ± 0.5 75.1 ± 0.6 74.8 ± 0.7 80.2 ± 1.7 84.9 ± 1.3 85.0 ± 0.8
ALIN 79.0 ± 0.8 79.3 ± 0.5 80.1 ± 0.6 85.4 ± 1.2 86.1 ± 0.7 85.8 ± 0.5
ALINFar 75.0 ± 1.6 77.7 ± 1.7 78.0 ± 0.9 84.3 ± 1.1 84.8 ± 0.3 85.6 ± 0.5

Table 3: Summary of the performance of GCN on each benchmark. The bold marker denotes the
best performance and the underlined marker denotes the second-best performance.

• In the context of the second-best performing methods, both ALINFar and Uncertainty shine on Cora
and Citeseer. However, on Pubmed and Coauthor-CS, Uncertainty’s performance is lackluster, with
AGE emerging as the second-best performer. The discrepancy arises because Uncertainty operates
independently of the graph structure, which becomes problematic for larger datasets where edge
loss entails more significant information loss. In contrast, AGE amalgamates centrality, density, and
uncertainty scores, proving advantageous in scenarios where data lacks edges in extensive graphs.
Consequently, AGE consistently outperforms Uncertainty in these settings.

Overall, our experimental results showcase the robustness and versatility of the ALIN framework and its exten-
sions, shedding light on their adaptability across diverse graph datasets and budget constraints.

5.3 GENERALIZABILITY TO OTHER GNNS

We further present experiment results of all competitive methods on other GNN architectures in Table 4, in
which the GCN backbone is replaced by GAT and GraphSAGE accordingly. Our proposed framework consis-
tently demonstrates its capacity to enhance the accuracy of node classification tasks, even when transitioning
GAT and GraphSAGE. This substantiates the framework’s robust applicability across diverse GNN models.

Notably, among the benchmark methods including Random, Density, CoreSet, Pagerank, GraphPartFar, and
ALINFar, CoreSet exhibits exceptional performance on GAT, surpassing GraphSAGE by approximately 4%.
In contrast, the other baseline methods exhibit a narrower performance gap of around 1-2% when comparing
GAT to GraphSAGE. This superiority of CoreSet on GAT underscores GAT’s effectiveness in capturing perti-
nent information from neighboring nodes, even in scenarios with missing connections, courtesy of its adaptive
attention mechanism that judiciously weighs the significance of various neighbors.

Conversely, on GraphSAGE, Uncertainty, Degree, and FeatProp consistently outperform GAT, achieving im-
provements of roughly 0.5-1%. Notably, GraphSAGE is favored for its computational efficiency and scalability,
making it well-suited for large graph datasets. Its resilience to the absence of edges between nodes is attributed
to its neighbor sampling strategy.
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Baselines GAT GraphSAGE
Buget 200 230 260 200 230 260
Random 78.4 ± 0.6 78.0 ± 1.1 79.5 ± 0.3 76.2 ± 0.5 78.2 ± 0.7 78.7 ± 0.4
Density 77.2 ± 0.9 80.1 ± 0.3 79.9 ± 0.4 77.4 ± 0.4 80.6 ± 1.5 81.7 ± 1.6
Uncertainty 79.8 ± 1.0 81.3 ± 1.4 81.5 ± 1.0 79.4 ± 0.7 80.8 ± 1.3 81.3 ± 0.7
CoreSet 66.5 ± 1.4 65.7 ± 2.7 66.1 ± 3.7 61.0 ± 4.2 62.5 ± 2.4 62.1 ± 3.2
Degree 74.7 ± 1.1 75.3 ± 1.1 76.8 ± 0.4 76.4 ± 0.7 76.7 ± 0.6 79.1 ± 0.6
Pagerank 77.7 ± 0.5 78.9 ± 0.3 80.3 ± 0.6 77.6 ± 0.3 77.9 ± 0.5 80.1 ± 0.7
AGE 78.8 ± 0.1 79.9 ± 0.5 80.7 ± 0.1 77.3 ± 1.6 80.0 ± 0.4 80.8 ± 0.4
FeatProp 72.2 ± 0.7 73.8 ± 0.4 75.9 ± 0.4 73.1 ± 0.6 75.0 ± 0.8 76.1 ± 1.2
GraphPart 72.8 ± 0.9 74.3 ± 0.9 75.1 ± 0.3 74.4 ± 0.7 74.7 ± 1.0 75.0 ± 0.7
GraphPartFar 77.9 ± 0.4 76.9 ± 0.6 78.6 ± 0.8 76.7 ± 0.9 76.8 ± 0.5 77.6 ± 0.1
ALIN 80.5 ± 0.9 81.4 ± 1.2 81.8 ± 0.7 79.0 ± 0.5 79.9 ± 1.8 81.6 ± 1.4
ALINFar 79.7 ± 0.9 82.1 ± 0.2 82.7 ± 0.8 79.9 ± 0.8 81.7 ± 0.3 82.4 ± 0.4

Table 4: Summary of the performance of others GNN on Cora dataset. The bold marker denotes
the best performance and the underlined marker denotes the second-best performance.

It is noteworthy that both CoreSet and FeatProp rely on K-means clustering based on hidden node represen-
tations, which introduces sensitivity to different runs, particularly when applied to a limited number of labels.
Consequently, these two baseline methods exhibit a considerably higher standard deviation compared to the
other baselines.

5.4 HYPERPARAMETER SENSITIVITY

We further the experiment results on tuning hyperparameters, and carry out experiments as
follows in Fig. 2, we investigate the impact of hyperparameters α, which adjusts the bal-
ance between two terms for the query node selection at line 10 of the algorithm 1, on
the performance of both ALIN and ALINFar when B = 230 and K = 8 on Cora dataset.

Figure 2: The expected influence by
ALIN and ALINFar according to differ-
ent values hyperparameters α

In these experiments, we only show the results from the GCN
model since those from the other GNN models follow a similar
trend. We observe the following:

• The case of α = 0.5 exhibits the best performance
almost consistently.

• When α = 1, ALIN and ALINFar only depend on the
node score, resulting low performance.

• Setting α to 0.3 lead to a much lower performance as
this setting overemphasizes the edge score, detracting
from our ultimate goal of node classification.

These findings emphasize the delicate interplay between node
uncertainty, edge information, and the overarching goal of ac-
curate node classification within the ALIN framework.

6 CONCLUSION AND DISCUSSION

In this work, we embarked on a comprehensive exploration of the active learning paradigm tailored specifically
for Graph Neural Networks (GNNs) operating on incomplete graphs. Drawing inspiration from the synergy
between node and edge information, we introduced a novel framework designed to harness the unique potential
inherent in incomplete graph structures. Our experiments yielded compelling evidence of the efficacy of our
proposed framework. We demonstrated that it not only outperforms existing state-of-the-art baseline active
learning methods but does so consistently across a variety of real-world datasets and scenarios. These findings
underscore the pivotal role of our approach in advancing active learning strategies in the context of incomplete
graph data.

Several avenues for future research may include: 1) Investigating dynamic edge scoring mechanisms that adapt
to the evolving graph structure could be fruitful and 2) Exploring the synergy between our active learning
framework and graph generative models could open doors to novel applications.
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A WEIGHT GROWTH OF β

In this section, we delve into the intricate dynamics of β and its evolution across epochs, achieved through
the utilization of a growth function. Recall that β is the weight of combined loss at line 18 of Algorithm 1,
which plays a pivotal role in balancing the trade-off between two essential tasks: optimal link prediction and
the ultimate goal of node classification.

At the outset of training, during the initial epochs, we set β to a value of 0.05. This choice steers the model’s fo-
cus primarily towards solving the optimal link prediction problem. In contrast, as we approach the final epochs,
our objective is to set β to 1, emphasizing the model’s commitment to the ultimate task of node classification.

Figure 3: Weight growth functions

Achieving this gradual transition in β necessitates
the implementation of a suitable growth function.
We explored various weight growth functions to
identify the most effective approach, weight growth
functions shown in Fig. 3. The results of these exper-
iments are summarized in Table 5, revealing distinct
performance characteristics among different growth
functions.

Notably, the Cosine Annealing, Step, and Expo-
nential growth functions emerge as superior choices
when compared to the Inverse Time growth func-
tion. Both the Cosine Annealing and Step growth
functions exhibit an advantageous pattern of grad-
ually increasing the β parameter during the middle
epochs. This characteristic aligns seamlessly with
the requirements of the Link Prediction task, which
thrives on sustained training over multiple epochs, rather than experiencing a premature reduction in emphasis.
Furthermore, the Exponential growth function proves notable for its ability to swiftly approach a β value close
to 1 during the latter epochs. This rapid convergence to a higher β value positions the Exponential growth
function as a compelling choice, outperforming the Cosine Annealing growth function in terms of accuracy.

In summary, our approach to the weight growth of β involves a thoughtful selection of growth functions,
ultimately tailored to strike the right balance between optimizing link prediction and achieving robust node
classification. The choice of growth function is a critical aspect of our framework, as it ensures that the model
evolves and adapts its focus in a manner that aligns with the evolving requirements of the tasks at hand.

Weight Growth Function Baselines Budget
200 230 260

Step Growth ALIN 79.8 ± 1.3 80.4 ± 0.6 81.6 ± 1.0
ALINFar 78.9 ± 1.2 81.2 ± 1.1 81.4 ± 1.7

Inverse Time Growth ALIN 63.3 ± 1.7 62.3 ± 2.3 65.2 ± 0.6
ALINFar 63.0 ± 2.1 64.3 ± 1.7 65.6 ± 0.4

Exponential Growth ALIN 78.2 ± 0.5 77.6 ± 1.5 79.7 ± 0.6
ALINFar 78.6 ± 1.5 77.7 ± 1.1 80.1 ± 0.5

Cosine Annealing Growth ALIN 76.0 ± 0.6 78.1 ± 0.8 76.8 ± 2.0
ALINFar 74.7 ± 1.8 75.8 ± 0.4 76.7 ± 0.7

Table 5: Summary of the performance of weight growth functions using GNN on Cora dataset. The
numerical values represent the average Macro-F1 score of 3 independent trials. The bold marker
denotes the best performance and the underlined marker denotes the second-best performance.
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