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Abstract

Distinctiveness is a desirable feature of image
captions. Captions should cover the charac-
teristic details of input images. However, re-
cent high-performing captioning models that
are trained with reinforcement learning (RL)
tend to generate overly generic captions de-
spite their high performance in various other
criteria. Interestingly, it has also been reported
that their outputs are composed of a limited
number of common words and rarely contain
tail-class words, i.e., low-frequency words in
the training corpus. Vocabulary size is closely
related to distinctiveness as it is difficult for
a model to describe details beyond its vocabu-
lary. Based on this insight, we hypothesize that
the limited vocabulary of RL models is the ma-
jor factor limiting their distinctiveness. We re-
cast distinctive image captioning as a simpler
task of long-tail classification to increase the
vocabulary and then propose lightweight fine-
tuning methods to encourage tail-class word
generation. The experimental results demon-
strate that our methods significantly enhance
the distinctiveness of existing RL models as
well as their vocabulary size, without sacri-
ficing quality. Our methods also outperform
previous distinctiveness-aware methods with a
small computational cost of minor modifica-
tions to pre-trained RL models.'

1 Introduction

Image captioning plays a fundamental role at the in-
tersection of computer vision and natural language
processing by converting the information in im-
ages into natural language descriptions. Generated
captions can be used in various downstream tasks,
such as aiding visually impaired users (Gurari et al.,
2020), visual question answering on images and
videos (Fisch et al., 2020; Kim et al., 2020), visual
dialogue (White et al., 2021), and news genera-
tion (Zhang et al., 2021b).

"The code will be made available on our website.
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Figure 1: Caption examples in the MS COCO valida-
tion set. Transformer RL is a Transformer captioning
model trained with RL and +wFT is our fine-tuning
method. Transformer RL generates exactly the same
caption for the four images. The underlined words in-
dicate the characteristic information that are not men-
tioned by Transformer RL, and the blue words are those
that have never appeared in the outputs of the model.
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For those downstream tasks, the generated cap-
tions should be distinctive: captions should cover
the characteristic and important details of the input
images. However, current captioning models tend
to generate overly generic captions (Dai and Lin,
2017; Dai et al., 2017; Wang and Chan, 2019; Wang
et al., 2020c). For example, a high-performing
captioning model based on Transformer (Vaswani
et al., 2017) generates exactly the same caption
for the four different images shown in Figure 1,
ignoring the other salient details of each image.

To address the problem of overly generic cap-
tions, some studies have been conducted on dis-
tinctive image captioning, which is also called
descriptive image captioning or discriminative im-
age captioning. Previous research has created new
rewards regarding distinctiveness or new model
architectures to enhance distinctiveness. These ap-
proaches improved the performance with regard to
distinctiveness and other evaluation metrics; how-
ever, their models come with additional computa-
tions and require training from scratch.

Instead of creating or paying those computa-
tional costs, we first analyze the cause of the current



overly generic captions to explore ways to improve
the distinctiveness of pre-trained, existing models.
In particular, we focus on high-performing caption-
ing models that are trained with the standard re-
inforcement learning (RL) (Rennie et al., 2017),
which is the de facto standard training method in
current image captioning (Stefanini et al., 2021).
Those models have greater room to improve dis-
tinctiveness as they unexpectedly perform poor in
distinctiveness despite the significant advantages
in various other criteria (Liu et al., 2019; Wang
et al., 2020a). Interestingly, some previous studies
have reported that RL decreased the vocabulary
size of output captions (Wang and Chan, 2019; Liu
et al., 2019; Wang et al., 2020a). Vocabulary size
is closely related to distinctiveness as it is difficult
for a model to describe details beyond its vocab-
ulary. Based on this insight, we hypothesize that
the limited vocabulary of RL models is the major
factor limiting their distinctiveness.

To directly increase the vocabulary of RL mod-
els, we recast distinctive image captioning as a
simpler task of long-tail classification. Unlike pre-
vious approaches, our methods do not require any
distinctiveness reward, new model architecture, or
training from scratch. Our methods focus on gen-
erating tail-class words, i.e., low-frequency words
in the training corpus. Owing to their simplicity,
our methods can be realized by single-epoch fine-
tuning of pre-trained, existing RL models.

The experimental results confirm our hypoth-
esis by revealing that our methods significantly
boost both vocabulary size and distinctiveness from
existing RL models. We also demonstrate that
our methods outperform previous distinctiveness-
aware methods with a small computational cost of
minor modifications to pre-trained RL models.

2 RL Model Distinctiveness and Limited
Vocabulary

Currently, RL is the de facto standard training
method for models used in image captioning be-
cause it significantly improves the performance in
various evaluation metrics (Stefanini et al., 2021).
However, it does not improve distinctiveness and
may even decrease it (Liu et al., 2019; Wang et al.,
2020a). In this section, we examine the cause of
overly generic captions generated by RL models
and hypothesize that their limited vocabulary hin-
ders their distinctiveness.

2.1 RL in Image Captioning

We provide a brief overview of the standard RL al-
gorithm used in image captioning. It was proposed
by Ranzato et al. (2015) and refined by Rennie et al.
(2017). Their goal was to directly optimize non-
differentiable test-time metrics by minimizing the
negative expected reward:

LrL(0) = —Eys wpy(wsplr(w®)], (1)

where w® = (wf{,...,w}) is a sequence sampled
from a policy pg, I is the input image, and r(-) is
a reward function that returns a reward for w®. To
compute the gradient of £(6), Ranzato et al. (2015)
applied the REINFORCE algorithm (Williams,
1992) to text generation. In their algorithm, the
model parameters 6 are updated with the following
gradient:

VoLrr(0) = —(r(w®) —b)Vglogpg(w® | I).
2
Here, b is a baseline reward that reduces the vari-
ance in the gradient. Typically, the reward function
7(+) is CIDEr (Vedantam et al., 2015), and the base-
line reward b is a reward for a sequence sampled
with greedy decoding (Rennie et al., 2017).

2.2 RL Results in Limited Vocabulary

Despite its effectiveness, RL has been found to
decrease distinctiveness and the number of unique
n-grams in output captions (Liu et al., 2019; Wang
et al., 2020a). As the relation between RL and
those negative effects is not obvious, it was just
considered a curious case.

However, recent research on the weaknesses
of RL has revealed the relation between RL and
a limited vocabulary. Recently, Choshen et al.
(2020) and Kiegeland and Kreutzer (2021) em-
pirically showed that RL. makes the output dis-
tribution peaky. As shown in Section 2.1, RL
samples sequences from policy pg. Typically,
policy pg is computed using a captioning model
pre-trained with the Cross-Entropy (CE) loss on
ground-truth captions. However, text-generation
models in general are known to output skewed dis-
tributions. Specifically, the distributions tend to
be skewed towards head-class words, i.e., high-
frequency words in the training corpus (Nguyen
and Chiang, 2018; Raunak et al., 2020; Demeter
et al., 2020; Holtzman et al., 2020). Thus, RL can
sample and reward head-class words but cannot
sample or reward tail-class words during training.
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Figure 2: Relative frequency of the words in the se-
quences sampled for the training images. Five se-
quences were sampled for each image. The words
(9,486 unique words excluding an out-of-vocabulary
token (unk)) are sorted by their frequency in ground-
truth captions and divided into 200 bins. We show the
first 10 bins and the sum of the rest. GT is the ground-
truth caption of the training images, CE is the output of
a captioning model trained with the CE loss, and RL is
the output of a captioning model trained with RL. Here,
we used the Transformer captioning model.

This imbalance results in shifts of the probability
mass from tail-class words to head-class words, fur-
ther limiting the vocabulary to head-class words.

Figure 2 confirms this phenomenon in image
captioning by plotting the relative frequency of the
words sampled for the training images. The words
are sorted by their frequency in ground-truth cap-
tions and divided into 200 bins. Compared to the
ground-truth captions and sequences sampled with
a CE model, the sequences sampled with an RL
model are clearly limited to the head-class words,
forming a peaky distribution?.

2.3 Limited Vocabulary Results in Overly
Generic Captions

Standard encoder—decoder captioning models gen-
erate captions using sequential vocabulary-size
classification. However, the actual vocabulary a
model can generate is much smaller than the en-
tire vocabulary as the output distribution is highly
skewed towards head-class words. If the actual
vocabulary cannot cover the details of an image,
the model is forced to avoid those details and out-
put only the information that can be described by

2 Although Figure 2 shows only the results obtained with
the Transformer captioning model, we also confirmed that
other models output peaky distributions (Rennie et al., 2017;
Anderson et al., 2018). See Appendix A for the details.

head-class words. For example, the blue words in
Figure 1 are not in the actual vocabulary of the RL
model; these words have never been generated by
the RL model. As a result, the RL model had to
ignore the characteristic relations tied and docked
and ended up describing exactly the same informa-
tion for all four images.

Based on the above observations, we hypothe-
size that the limited vocabulary of RL models hin-
ders their distinctiveness. To directly address this
limitation, we recast distinctive image captioning
as a simpler task of increasing the actual vocabu-
lary.

3 Long-Tail Classification to Remedy the
Side Effects of RL

RL results in the limited vocabulary because it
steals the probability mass from tail-class words of
ground-truth captions. Thus, those tail-class words
are the key to addressing the limitation. Wang and
Chan (2019) jointly optimized both the RL loss
and the CE loss on ground-truth captions so that
the tail-class words in ground-truth captions would
be more likely to be sampled during RL training.
However, this approach still relies on the sampling
from a skewed policy and requires training from
scratch.

To increase the actual vocabulary more effec-
tively and efficiently, we propose two fine-tuning
methods based on long-tail classification. Our
methods are designed to directly encourage the gen-
eration of tail-class words with only single-epoch
fine-tuning on pre-trained, existing RL models.

3.1 Simple Fine-Tuning

The first method is a simple fine-tuning (sFT)
method for ground-truth captions. It is based on a
decoupled two-stage training (Kang et al., 2020),
which is a current strong baseline model for long-
tail classification (Tang et al., 2020; Menon et al.,
2020; Wang et al., 2020b). Kang et al. (2020) de-
coupled the learning procedure into representation
learning and classification, and then found that clas-
sification is critical for long-tail classification. They
decoupled the classification model fy(-) into an en-
coder gy, (+) and a classifier consisting of weight
and bias parameters: fg(r) = W gy (x) + b. In
the first stage of training, they trained the entire
classification model fy(-) on a full training dataset.
In the second stage, they fixed the encoder param-
eters 0. and adjusted only the classifier parame-



ters. For the second-stage adjustment, they applied
class-balanced sampling to encourage learning on
tail-class labels.

Following Kang et al. (2020), we decouple a cap-
tioning model into an encoder and a classifier. In
image captioning, the first-stage training of Kang
et al. (2020) corresponds to RL training on the
full training dataset. Likewise, the second-stage
training corresponds to adjusting the classifier pa-
rameters on the vocabulary-balanced sequences.
However, sampling from the skewed policy of text-
generation models cannot provide sequences con-
taining tail-class words (Section 2.2). Thus, we
use ground-truth captions as relatively vocabulary-
balanced samples. sFT simply fine-tunes the clas-
sifier parameters of a pre-trained RL captioning
model by minimizing the CE loss on ground-truth
captions:

T
Lon(d) =~ logpyluf |wl, 1), ()
t=1
where w9 = (w{, ..., w¥) is a ground-truth caption
of image I, and the model parameters 6 are initial-
ized with RL training. The conditional probability
po(w] | w,,I)is computed using the following
softmax function:

exp(Bz,9)
w; EW exp(ﬁzwi)’
z2=WT'lg (Wi, I)+b, (5)

po(wi | wZ;, I) = 5 @)

where z € RWI, W e R&>IWI and b € RWI.
W is the entire vocabulary, and d is the dimension
of the hidden states of an encoder gy, (-). 2z, in-
dicates the element of z at the index of a word
w; € W. [ is an inverse-temperature hyperparam-
eter that controls the steepness of the softmax dis-
tribution. We use LSTM (Hochreiter and Schmid-
huber, 1997) or Transformer (Vaswani et al., 2017)
for gp, (-). During fine-tuning, only the classifier
parameters {W, b} € 0 are updated with the gra-

~ A~

dients Vyw Lcg(0) and VLog(0), respectively.
3.2 Weighted Fine-Tuning

Ground-truth captions contain more tail-class
words than sampled sequences, but some tail-class
words are still difficult to learn because of their
low frequency. Our second method is weighted
fine-tuning (WFT), which further pursues vocabu-
lary balance by rebalancing the loss for head-class
words and tail-class words in ground-truth captions.

Loss Function
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Figure 3: Visualization of the CE loss — log pg(w;)
and BP loss —log pg ¢/ (w;). To compute the BP loss,
we need the entire distribution of {pg(w;)}w,ew and
{po (w;) }w,ew. Here, we set the index i to 1 and as-
signed 1 (1 — py(w1)) to the words of the next five in-
dices, wo, ..., wg. This is because we observed that the
five most probable words occupied 99% of the proba-
bility in the output distribution of the RL models. We
assumed that the five most probable words were the
same between py and pys as the parameters were ini-
tialized with the same RL model. Thus, we assigned
£(1 — por(w1)) to the words of the next five indices,
wa, ..., We, likewise py. Here, B was set to 1.

To rebalance the loss, we exploit the head-class
bias of RL models: RL models overly assign prob-
ability to head-class words, but not to tail-class
words. Based on the head-class bias, a ground-
truth word that an RL model is confident of should
be a head-class word that the model is refrained
from further learning, whereas a ground-truth word
that an RL model is not confident of should be
a tail-class word for the model to learn intensely.
wFT incorporates these heuristics by modifying the
probability pg of Lo to the probability of the bias
product (BP) (Clark et al., 2019; He et al., 2019),
Do.¢'» as follows:

pog (wi | wly, I) =

expleb(uf) +sh(ut)) o
> wew XD (sh(wi) + sp (w;))’
where
sh(w;) = log pg(w; | wly, I), @)
s (w;) = log pgr (w; | wey, I). (8)

By inserting py ¢ into Lcg, we define the objective
of wFT as follows:

T
A 1
Lpp(0) = ~7 Zlogp@é,(wf | wg<t,I). 9)
t=1



Similar to sFT, both parameters 6 and @' are initial-
ized with a captioning model pre-trained with RL.
The difference is that, although the classifier param-
eters of 6 are updated, all the parameters of ¢’ are
fixed during fine-tuning. Figure 3 shows the change
in the BP loss compared to the CE loss. The BP
severely suppresses the loss when the head-class-
biased policy pyr is confident, and largely increases
the loss when py: is not confident. In this way, the
BP allows models to unlearn the head-class bias
learned with RL. As with sFT, only the classifier
parameters {W, b} € 0 are updated with the gra-
dients VWEBp(é) and VbEBp(é), respectively.

We follow Clark et al. (2019) and He et al. (2019)
at the evaluation stage, too. We use the probability
pg with updated parameters rather than the BP prob-
ability pg ¢ to avoid incorporating the head-class
bias of py into the predictions.

4 Experiments

4.1 Setup

Dataset and Metrics. We used the MS COCO
captioning dataset® (Lin et al., 2014; Chen et al.,
2015) with Karpathy splitting (Karpathy and Fei-
Fei, 2015). After preprocessing, the entire vocabu-
lary size |[W| was 9,487*. In the evaluation, the
captions were decoded using a beam search of
size 5 and evaluated using various evaluation met-
rics’: BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), METEOR (Denkowski and Lavie, 2014),
CIDEr (Vedantam et al., 2015), SPICE (Anderson
et al., 2016), and RefCLIP (Hessel et al., 2021).
Following the previous studies (Liu et al., 2019;
Wang et al., 2020a; Shi et al., 2021b), we eval-
uated distinctiveness with R@K scores: the per-
centage of captions with which an image—text re-
trieval model® (Faghri et al., 2018) could correctly
retrieve the original images from the entire valida-
tion/test images within the rank of K € {1, 5, 10}.

3This dataset was intended for image captioning, which
is consistent with our use. The dataset was created with the
instruction to anonymize people’s proper names (Chen et al.,
2015). The dataset was licensed under CC BY 4.0. Each split
of training/validation/test set contained 113,287/5,000/5,000
images, and each image had five ground-truth captions.

*The words that occur less than five times in the training
captions were converted to (unk) token.

SWe used the following library, and all the hyperparameters
were set to the default values: https://github.com/
jmhessel/pycocoevalcap (All Rights Reserved)

SFollowing Liu et al. (2019), we used a pre-trained model,
coco_vse++_resnet_restval_finetune, which
is available at https://github.com/fartashf/
vsepp (Apache License, Version 2.0)

A higher R@K indicates that the model captures
more characteristic information of images and gen-
erates more distinctive captions. Evaluation was
conducted in a single run for each model.

Comparison Models. Following Wang et al.
(2020a), we used Att2in (Rennie et al., 2017),
UpDown (Anderson et al., 2018), and Trans-
former (Vaswani et al., 2017) as the baseline mod-
els. The models were pre-trained with the standard
RL (Rennie et al., 2017) and are publicly available’.
In addition to the baseline models, we compared
our models with state-of-the-art distinctiveness-
aware models: CIDErBtw (Wang et al., 2020a),
NLI (Shi et al., 2021b), DiscCap (Luo et al., 2018),
and Visual Paraphrase (Liu et al., 2019). The first
three created new distinctiveness rewards to be opti-
mized with RL. Visual Paraphrase introduced a new
model architecture to paraphrase simpler captions
to more complex captions. As we mentioned in the
beginning of Section 3, the CE loss on ground-truth
captions can be utilized in a different way from our
methods. We report the results of jointly optimiz-
ing the RL loss and CE loss (Joint CE (Wang and
Chan, 2019; Edunov et al., 2018)), and also those
of solely optimizing the CE loss (Only CE) as the
baseline without using RL2.

Hyperparameters. Our models used the same
hyperparameters as the baseline models, except for
the epoch size, learning rate, and (3 in Eq. 4. We set
the epoch size for fine-tuning to 1 and searched for
the best learning rate from {1e-3, le-4, le-5, 1le-6}.
We set 5 to 1 for py and searched for the best 3
of the fixed policy py: from {0.1,1}. The best hy-
perparameters were chosen according to the R@1
scores in the validation set. See Appendix B for
the best hyperparameters.

All the models except Visual Paraphrase had
the same parameter size as their baseline models’.

"https://github.com/ruotianluo/
self-critical.pytorch (MIT License): {Att2in,
UpDown, Transformer}+self_critical models.

SWe optimized Ljoint(0) = ALrL(6) + (1 — A)Lcr(0)
during RL training. We explored A € {0.2,0.5,0.8}. A =
0.8 for Transformer and A = 0.2 for the others achieved the
best R@1 scores in the validation set. A = 0 for Only CE.
As with our models, all hyperparameters were set to the same
as the baseline models except for the A and scheduled sam-
pling (Bengio et al., 2015). We disabled scheduled sampling
for the CE loss to strictly separate it from the RL loss.

°The exact number of parameters was 14,451,985 for
Att2in, 52,125,025 for UpDown, and 57,474,832 for Trans-
former. Note that the fixed parameters §’ were not included
because they were neither trained nor used in the prediction.
Visual Paraphrase has double decoders of Att2in.
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Vocabulary

Standard Evaluation

Distinctiveness

Unique-1 Unique-S Length BLEU-4 METEOR ROUGE-L CIDEr SPICE RefCLIP R@1 R@5 R@10

Att2in RL 445 2,524 9.3 353 27.1 56.7 1174 205 79.7 163 419 572

+ sFT (Ours) 880 3,156 9.0 35.6 27.0 56.5 1154 204 80.3 20.1 48.0 628

o  +WFT (Ours) 1,091 3,749 9.0 32.6 26.4 54.9 108.6 199 80.3 21.7 508 652
& CIDErBtw 470 2,630 9.3 35.7 27.2 56.9 119.0 207 79.8 172 441 587
H NLI 465 2,626 9.2 35.7 27.2 57.0 119.0  20.6 79.9 17.6 444 598
< DiscCap! 3,093 9.3 36.1 1142 21.0 21.6 503 654
Joint CE 700 2,907 9.1 36.0 27.3 56.4 111.7 19.9 80.0 19.1 467 615
Only CE 689 2,845 9.2 35.7 27.1 56.1 110.7  20.1 79.9 19.0 466 61.1

"~ Visual Paraphrase’ 4576 129 270 8.9 211 263 572 708

UpDown RL 571 3,103 9.5 36.7 27.9 57.6 122.7 215 80.5 21.1 499 64.6

+ sFT (Ours) 1,190 3,788 9.2 35.7 27.5 56.5 1159  21.0 80.9 250 568 71.2

§  +WFT (Ours) 1,227 4,263 9.3 32.0 26.5 54.3 1079 204 80.9 255 58.0 726
S CIDErBtw 582 3,108 9.4 36.7 28.0 57.7 1224 214 80.7 219 509 659
S NLI 575 3,144 9.4 36.7 28.0 57.7 1224 214 80.6 21.5 507 656
Joint CE 857 3,120 9.4 35.4 27.6 56.0 111.8 205 80.2 21.8 512 652
Only CE 878 3,126 9.4 34.2 27.3 55.5 109.2  20.1 80.0 21.8 499 645
Transformer RL 753 3,433 9.2 39.0 28.7 58.7 127.7 225 81.3 26.6 562 705

@  +sFT (Ours) 1,458 3,959 9.1 36.9 28.2 57.2 118.7  21.7 81.5 306 623 757
; + WFT (Ours) 1,776 4,274 9.1 31.3 26.2 53.0 103.1 20.0 81.2 325 645 7711
o CIDErBtw 837 3,609 9.5 38.6 28.8 58.6 1282 226 81.2 277 576 716
£ NLI 876 3,744 9.5 38.9 28.9 58.5 129.1  23.0 81.5 29.8 599 734
& Joint CE 1,083 3,491 9.3 38.6 29.0 58.3 123.8 219 81.2 273 572 708
Only CE 935 3,599 9.4 35.0 27.7 56.0 1122 208 80.9 26.5 558  69.7

Table 1: Comparison with the baseline models and state-of-the-art distinctiveness-aware models. Automatic eval-
uation results on the MS COCO test set. Unique-1 and Unique-S indicate the number of unique unigrams and
sentences, respectively. Length is the average length of the output captions. Scores with { were reported by Liu
et al. (2019). Other scores were reproduced by us. The results of our models are colored in gray.

Our fine-tuning was completed in approximately
10 minutes for each model using a single GPU of
16 GB memory.

4.2 Comparison with Baseline Models and
Distinctiveness-Aware Models

Table 1 shows the results compared with those ob-
tained with the baseline models and state-of-the-art
distinctiveness-aware models.

Vocabulary. First, we observed that our meth-
ods (sFT and wFT) successfully increased the ac-
tual vocabulary size: both of them considerably
increased Unique-1 compared to all the baseline
models. wFT increased the vocabulary more than
sFT, indicating that rebalancing the loss further en-
couraged tail-class word generation. The increased
vocabulary resulted in the captions more specific to
each image: Unique-S also increased significantly.
Consistent with previous studies (Wang and Chan,
2019; Liu et al., 2019; Wang et al., 2020a), the mod-
els trained with the CE loss (Joint CE and Only CE)
achieved the larger vocabulary than the baseline RL
models. The improvement of our methods were
even larger than these CE models. Despite the sig-
nificant increase in the vocabulary size, our method
kept the captions concise: the average sentence
length was similar to that of the baseline models.

Distinctiveness. Our goal was to address the lim-
ited vocabulary of RL models in order to increase
their distinctiveness. As expected, our methods
increased distinctiveness compared to the baseline
models: the R@K scores of our models were con-
siderably higher than those of all the baseline mod-
els. Corresponding to the better improvement in vo-
cabulary size, wFT increased distinctiveness more
than sFT. These results confirm our hypothesis that
the major bottleneck for distinctiveness is the lim-
ited vocabulary of RL models.

Among the Att2in-based models, Visual Para-
phrase achieved the highest distinctiveness. How-
ever, this model is not directly comparable be-
cause it increases the parameters for its special-
ized model architecture. DiscCap performed com-
parably with our models, but its reward requires
high computational costs. CIDErBtw and NLI pro-
posed more lightweight rewards to be applicable
to larger models, but they still need training from
scratch. Among the larger models (UpDown and
Transformer), our models achieved the highest dis-
tinctiveness despite the small computational cost.

Standard Evaluation. Our models degraded the
performance in the text-based evaluation met-
rics (BLEU-4, METEOR, ROUGE-L, CIDEr, and
SPICE), but they rather outperformed the baseline



Distinctiveness  Correctness  Fluency
Transformer RL  3.00 4.42 4.83
+ WFT (Ours) 3.34** 4.45 4.84
NLI 3.18** 4.54 4.76

Table 2: Human evaluation results on the subset of the
MS COCO test set. The distinctiveness score of Trans-
former RL was fixed at 3.00 because we set it as the
baseline model. ** indicates a model scored higher than
the baseline model with statistical significance (t-test
with p < 0.01): one-sample t-test for distinctiveness
and independent two-sample t-test for the other criteria.
The results of our model are colored in gray.

models in the text-and-image-based evaluation met-
ric (RefCLIP). Because RefCLIP correlates with
human evaluation better than text-based evaluation
metrics (Hessel et al., 2021; Kasai et al., 2021), the
high performance in RefCLIP demonstrates that
our methods do not sacrifice the quality of captions.
We found that our models tended to generate tail-
class words that were correct but not covered by
ground-truth captions, which unfairly lowered the
scores in the text-based evaluation metrics. Ap-
pendix C shows those underrated captions.

4.3 Human Evaluation

We conducted human evaluations using Amazon
Mechanical Turk (AMT) on three criteria: distinc-
tiveness, correctness, and fluency. Correctness and
fluency are absolute scores: we instructed workers
to give a maximum score 5 to captions that did
not contain incorrect information (ungrammatical
or unnatural expressions) in terms of correctness
(fluency). In contrast, distinctiveness is designed
as a relative score because it is difficult to set an
absolute standard for distinctiveness; unlike cor-
rectness or fluency, we cannot perfectly define dis-
tinctive captions across images. Following Wang
et al. (2020a), we instructed the workers to deter-
mine the distinctiveness of a caption by comparing
the caption with that of a baseline model'°.

We evaluated the Transformer-based models,
which performed the best in the automatic eval-
uation. We randomly selected 50 images from the
MS COCO test set and assigned five workers to
each image. See Appendix D for more details
on the AMT instruction. Table 2 shows the re-

10Tf a target caption describes the same information as a
baseline caption, the workers give the target caption a score
of 3; if the target caption describes more (less) characteristic
information than the baseline caption, the workers give the
target caption a score of 4 or 5 (1 or 2).

sults. wFT, which had the highest R@K scores,
also achieved the highest distinctiveness here. wFT
did not achieve the highest correctness or fluency
but achieved the same or higher correctness and
fluency than the baseline model. This is consistent
with the scores of RefCLIP, confirming again that
our methods do not degrade the quality of captions.

4.4 Qualitative Analysis

Figure 1 shows the caption examples in the
MS COCO validation set. The blue words are those
that have never appeared in the output captions of
the baseline model. The number of blue words in-
dicates that our model successfully increased the
vocabulary of the baseline model. Furthermore, we
observed that these blue words were utilized in the
description of the characteristic information of the
images. See Appendix E for more examples.

5 Related Work

Image Captioning is the task of describing im-
ages in natural languages. The quality of cap-
tions has been remarkably improved by recent
advances such as the encoder—decoder caption-
ing model (Vinyals et al., 2015), attention mecha-
nism (Xu et al., 2015), RL training (Ranzato et al.,
2015; Rennie et al., 2017), attention over bound-
ing box features (Anderson et al., 2018), large-
scale pre-training (Li et al., 2020b), and large-
scale captioning datasets (Young et al., 2014; Lin
et al., 2014; Chen et al., 2015; Krishna et al., 2017;
Sharma et al., 2018). Despite these advancements,
current captioning models generate overly generic
captions (Dai and Lin, 2017; Dai et al., 2017; Wang
and Chan, 2019; Wang et al., 2020c).

Distinctive Image Captioning has been ex-
plored to generate more informative captions.
Sadovnik et al. (2012) were the first to study it.
They considered the more concise and more infor-
mative captions as those that describe information
distinctive from distractor images, i.e., images sim-
ilar to an input image. Andreas and Klein (2016)
proposed neural listener and speaker models that
cooperate to generate distinctive captions for ab-
stract scenes. Monroe et al. (2017) adapted the
models to single-colored images. Vedantam et al.
(2017) and Cohn-Gordon et al. (2018) extended
the domain to real images and improved inference
efficiency. Recently, Wang et al. (2021) proposed a
memory attention network to describe objects that
are unique among distractor images.



These approaches require selecting distractor im-
ages for inference. Luo et al. (2018) and Liu et al.
(2018) proposed the methods that do not require
this step. Their models learn to generate distinc-
tive captions by optimizing the R@K scores for
sampled captions using RL (Rennie et al., 2017).
The R@K scores are computed with a pre-trained
image—text retrieval model (Faghri et al., 2018)
over images in a mini batch. Vered et al. (2019)
proposed a method to jointly train the image—text
retrieval model and captioning model. Despite their
effectiveness, R@K scores are associated with high
computational costs and require a large batch size.
Recently, Wang et al. (2020a) and Shi et al. (2021b)
achieved state-of-the-art distinctiveness with more
lightweight rewards. They weighted the contri-
bution of ground-truth captions for the CIDEr re-
ward according to their differences from similar
but different captions (Wang et al., 2020a) or their
entailment scores against other ground-truth cap-
tions (Shi et al., 2021b). Another approach ex-
ploited unrelated captions as negative examples and
trained caption generators with contrastive learn-
ing (Dai and Lin, 2017) or GAN (Dai and Lin,
2017; Goodfellow et al., 2014).

Liu et al. (2019) and Wu et al. (2021) are related
to our work in that they exploited low-frequency n-
grams to enhance distinctiveness. Liu et al. (2019)
divided ground-truth captions into two subsets ac-
cording to n-gram TF-IDF scores and proposed a
new model architecture to paraphrase low TF-IDF
captions into high TF-IDF ones. Wu et al. (2021)
proposed the use of n-gram TF-IDF scores as an
additional reward to a variant of R@K reward.

Different from above approaches, our objective
is set to remedy the low distinctiveness of exist-
ing RL models. Our models can be achieved with
single-epoch fine-tuning of pre-trained RL mod-
els, without requiring either drastic changes in the
model architecture (Liu et al., 2019), additional
computational cost of rewards (Wu et al., 2021), or
training of a model from scratch.

Diverse Image Captioning is the task of gen-
erating a set of diverse captions for a given im-
age (Wang et al., 2016). Diverse image captioning
is aimed at enumerating various pieces of infor-
mation with a set of captions, whereas distinctive
image captioning aims to concisely describe the
most characteristic information with a single cap-
tion. Similar to this study, some studies utilized
captions that contained more tail-class words, such

as ground-truth captions (Wang and Chan, 2019;
Luo and Shakhnarovich, 2020) or captions sampled
from CE models (Shi et al., 2021a). Their models
learn to generate these captions in addition to the
captions sampled from RL models. However, these
approaches still rely on sampling from skewed poli-
cies and require training of a model from scratch.

Long-Tail Classification has been studied exten-
sively in various tasks as label imbalance is preva-
lent across datasets (Zhang et al., 2021a; Li et al.,
2020a). In text-generation tasks, label imbalance
exists in the frequency of words. Previous ap-
proaches have addressed this imbalance by nor-
malizing classifier weights (Nguyen and Chiang,
2018; Raunak et al., 2020) or using variants of Fo-
cal loss (Raunak et al., 2020; Gu et al., 2020; Jiang
et al., 2019; Wu et al., 2020; Lin et al., 2017). In
contrast to these approaches, we adopted long-tail
classification to mitigate the side effects of RL in
the context of distinctive image captioning. We also
tried these approaches and found that our methods
performed the best. See Appendix F for the details.

6 Limitations and Risks

Our experiments were limited to the MS COCO
captioning dataset, which is the standard dataset for
image captioning. The images belong to the gen-
eral domain (real images of common objects) and
the captions are in English only. The dataset con-
tains social biases and captioning models have the
risk of amplifying those biases (Zhao et al., 2021,
2017; Hendricks et al., 2018). Our methods are not
free from the risk too as they are not designed to
reduce those biases from existing models.

7 Conclusion

In this study, we have investigated the problem of
overly generic captions of RL captioning models
with the hypothesis that their limited vocabulary is
the major hindrance to distinctiveness. We recast
distinctive image captioning as a simpler task of
long-tail classification to increase the vocabulary
and then propose lightweight fine-tuning methods
to encourage tail-class word generation. The exper-
imental results confirm our hypothesis by demon-
strating that our methods significantly enhance the
distinctiveness of existing RL models as well as
their vocabulary size. Our methods also outper-
form previous distinctiveness-aware methods with
a small computational cost of minor modifications
to pre-trained RL models.
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Figure 4: Relative frequency of the words in the se-
quences sampled for the training images. Five se-
quences were sampled for each image. The words
(9,486 unique words excluding an out-of-vocabulary
token (unk)) are sorted by their frequency in ground-
truth captions and divided into 200 bins. We show the
first 10 bins and the sum of the rest. GT is the ground-
truth caption of the training images, CE is the output of
a captioning model trained with the CE loss, and RL is
the output of a captioning model trained with RL.

A Peaky Distributions in Other Models

Figure 4 shows the results of the plotting in Fig-
ure 2 for the LSTM-based models: Att2in (Ren-
nie et al., 2017) and UpDown (Anderson et al.,
2018). Similar to the Transformer model, the se-
quences sampled with the LSTM-based RL models
are clearly limited to head-class words, forming the
peaky distributions.

B Best Hyperparameters

As described in Section 4.1, we searched for the
best hyperparameters for the learning rate (LR)
from {le-3,1e-4,1le-5,1e-6}, and the inverse-
temperature hyperparameter 3 of the fixed policy
per from {0.1,1}. Note that sFT does not use py.
The best hyperparameters were as follows.
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Transformer RL:
a dog laying on top of a couch
CIDEr: 133.3, RefCLIP: 77.7

3 +wWFT:

? a dog curled up asleep on a cushion
CIDEr: 38.7, RefCLIP: 79.2

Human:

an adorable dog laying down on a dog bed

a dog and cat sleeping together on a dog bed

a dog laying in a doggy bed with a cat

a black down lounging on its pet bed

black and white dog laying down on bed

Transformer RL:
a person flying a kite in the ocean
CIDEr: 60.2, RefCLIP: 79.8

+WFT:

a man kiteboarding on top of a body
of water

CIDEr: 3.5, RefCLIP: 79.2

Human:

a person windsurfing with a grey sky in the background
a person parasailing in the middle of the ocean

a person riding a parachute surf board

a man surfing alone on the ocean waters

a man parasailing in the ocean all by himself

Transformer RL:

a vase filled with yellow flowers on a
table

CIDEr: 216.7, RefCLIP: 78.5

+WFT:

| aclear vase filled with multi
| colored flowers

CIDEr: 94.0, RefCLIP: 82.0

several flowers in a glass jar with water in it near a unpainted
wall

a vase filled with yellow and purple flowers

some colorful flowers sitting on vase on the wall

a vase of flowers on a table

an arrangement of flowers in a clear glass canning jar haging
on a wall

Figure 5: Underrated captions in the MS COCO vali-
dation set. The blue words are those that have never
appeared in the output captions of the baseline model
(Transformer RL). Human shows the full reference cap-
tions (ground-truth captions) of each image.

Att2in RL + sFT: LR = 1le-4,

Att2in RL + wFT: LR = 1le-4, 8 =1,
UpDown RL + sFT: LR = le-4,

UpDown RL + wFT: LR = 1le-4, 5 =1,
Transformer RL + sFT: LR = 1le-5,
Transformer RL + wFT: LR = 1le-5, 5 = 0.1.

C Examples of Underrated Captions

Figure 5 shows caption examples, reference cap-
tions, and their automatic evaluation scores. It is
clear that our +wFT model correctly described all
three images with diverse vocabulary. However, the
CIDEr scores were quite low compared with those
of the baseline model, Transformer RL. The cause



Caption-A and Caption-B are the captions of the following image.
Please rate the captions using the sliders below.

Caption-A: a cat laying on top of a red chair

Caption-B: a cat curled up asleep on a red chair

« How distinctive is Caption-B?
o 5: Caption-B describes more characteristic information than Caption-A
o 3: Caption-B describes the same information as Caption-A
o 1: Caption-B describes less characteristic information than Caption-A

« How correct is Caption-A?
o 5: Correct
o 3: Slightly incorrect, but correct in the most salient contents
o 1: Totally incorrect

« How correct is Caption-B?
o 5: Correct
o 3: Slightly incorrect, but correct in the most salient contents
o 1: Totally incorrect

« How fluent is Caption-A?
o 5: Fluent
o 3: Slightly ungrammatical or unnatural, but understandable
o 1: Totally ungrammatical or unnatural

« How fluent is Caption-B?
o 5: Fluent
o 3: Slightly ungrammatical or unnatural, but understandable
o 1: Totally ungrammatical or unnatural

Figure 6: A screenshot of our AMT interface.

of this underrating is the small coverage of the refer-
ence captions: the reference captions rarely contain
the tail-class words colored in blue, probably due to
their low frequency. Text-based evaluation metrics
such as CIDEr cannot evaluate the expressions that
are correct but not covered by reference captions.
In contrast, RefCLIP incorporates image features
and can consider information that is not covered by
reference captions. We observed that the RefCLIP
scores were more plausible in these examples.

D Details of Human Evaluation

We show our AMT interface in Figure 6. Each
image was evaluated with the five questions in the
discrete 5-point scale. We required workers to sat-
isfy the following qualifications: being an AMT
Master and living in the U.S. Workers were notified
that this experiment was intended to evaluate cap-
tion quality. We paid $0.1 for each image, and the
median of the actual working time was 41 seconds
per image. The hourly reward was estimated as
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Transformer RL: a tower with a clock on
top of it

+WFT: a clock tower with a weather vane
on top

NLI: a tower with a clock on the top of it
Human: a weather vane atop a cathedral
clock tower

Transformer RL: a group of birds standing
in the water
+wWFT: a large group of flamingos stand in
| shallow water

NLI: a group of pink umbrellas are standing
4 in the water
Human: a flock of pink flamingos standing
in shallow water

Transformer RL: a black cat wearing a hat
on top of a table

+WFT: a cat wears a funny hat while
staring straight ahead

" NLI: a black cat wearing a hat sitting on a
table

Human: the cute black cat is wearing a
bee's hat

e Transformer RL: a group of people riding
motorcycles on a road

+WFT: a group of people racing
motorcycles on a race track

NLI: a group of people riding motorcycles
on a race track

Human: people are racing motorcycles on
arace track

Transformer RL: a dog next to a cup of
coffee

+WFT: a dog is sniffing a cup of coffee
NLI: a dog standing next to a coffee cup on
a table

Human: a squinting dog on a brick patio
sniffs a cup of coffee

Figure 7: Caption examples in the MS COCO vali-
dation set. The blue words are those that have never
appeared in the output captions of the baseline model
(Transformer RL). Human shows a ground-truth cap-
tion of each image.

$8.78, which is higher than the minimum wage in
the U.S., $7.25 per hour.

E Detailed Qualitative Analysis

Figure 7 shows more caption examples in the
MS COCO validation set. The blue words are those
that have never appeared in the output captions of
the baseline model. We observed that these blue
words expressed various types of characteristic in-
formation of the images. Here, weather vane and
flamingos are characteristic objects of the images
(a) and (b); shallow, funny, and staring straight
ahead are characteristic attributes of the images (b)
and (c); and racing and sniffing are characteristic
relations in the images (d) and (e). These exam-
ples further support our hypothesis that the limited
vocabulary of RL models hinders their distinctive-
ness.



Vocabulary Standard Evaluation Distinctiveness

Unique-1 Unique-S Length BLEU-4 METEOR ROUGE-L CIDEr SPICE RefCLIP R@1 R@5 R@I0

Att2in RL 445 2,524 9.3 353 27.1 56.7 1174 205 79.7 163 419 572
+ sFT (Ours) 880 3,156 9.0 35.6 27.0 56.5 1154 204 80.3 20.1 480 628
+ WFT (Ours) 1,091 3,749 9.0 32.6 26.4 54.9 108.6 19.9 80.3 21.7 508 65.2
+ T-norm 437 2,414 9.1 354 27.0 56.7 117.3 20.4 79.7 154 407 5538
+FL 902 3,236 9.0 352 27.0 56.4 1146 203 80.3 203 484 634
+ AFL 886 3,104 9.0 354 27.0 56.6 1152 204 80.3 19.6 475 627

UpDown RL 577 3,103 9.5 36.7 279 57.6 122.7 215 80.5 21.1 499 64.6
+ sFT (Ours) 1,190 3,788 9.2 35.7 27.5 56.5 1159  21.0 80.9 250 56.8 712
+ WFT (Ours) 1,227 4,263 9.3 32.0 26.5 54.3 107.9 204 80.9 255 58.0 72.6
+ T-norm 576 2,967 9.3 37.0 2717 57.7 1226 213 80.5 19.6 481 634
+FL 1,208 3,838 9.2 35.4 27.4 56.3 114.8 20.8 80.9 253 572 710
+ AFL 1,168 3,746 9.2 359 27.5 56.7 1164 209 80.9 247 565 705

Transformer RL 753 3,433 9.2 39.0 28.7 58.7 127.7 225 81.3 26.6 562 705
+ sFT (Ours) 1,458 3,959 9.1 36.9 28.2 57.2 118.7 21.7 81.5 306 623 757
+ WFT (Ours) 1,776 4,274 9.1 313 26.2 53.0 103.1 20.0 81.2 325 645 771
+ T-norm 1,027 3,483 9.2 38.5 28.4 583 1244 221 81.2 26.1 558  69.7
+FL 1,523 4,018 9.1 36.1 28.0 56.6 116.5 214 81.5 312 63.1 76.3
+ AFL 1,402 3,908 9.1 37.4 28.3 57.5 120.5 21.9 81.6 30.0 62.1 75.9

Table 3: Comparison with the other long-tail classification methods. Automatic evaluation results on the
MS COCO test set. Unique-1 and Unique-S indicate the number of unique unigrams and sentences, respectively.
Length is the average length of output captions. The results of our models are colored in gray.

F Comparison with Other Long-Tail written as follows:
Classification Methods

T
LrL(0) = —% > (1—pp)Tlogpp, (1)
We adapted the long-tail classification method of t=1
Kang et al. (2020) to remedy the side effects of RL 1 &
and proposed sFT and wFT. Both methods were LarL(0) = T Z (1+ apgﬁ log péa (12)
t=1

carefully designed for RL models, but these were
not the only way to employ long-tail classification ~ where v and « are hyperparamters that control the
methods. In this section, we discuss the other pos-  degree of the reweighting. Other work also ex-
sible adaptations based on Raunak et al. (2020). plored ways to employ long-tail classification meth-

Raunak et al. (2020) explored ways to employ ods to text generation, but those approaches can be
long-tail classification methods to machine trans- ~ categorized as either 7-norm (Nguyen and Chiang,
lation. Their first method was 7-normalization (7-  2018) or the variants of FL (Gu et al., 2020; Jiang
norm), which directly adopted the method of Kang €t al., 2019; Wu et al., 2020), which we already
et al. (2020). To simply make the output distribu- explored above.

tions flatter, they normalized the classifier weight We compared our methods (SFT and wFT) with
W as follows: 7-norm, FL, and AFL. In our experiments, we nor-

malized the bias term b'! in addition to the weight

N W, term W as we found it performed better than nor-
Wy, = 7%7, (10)  malizing the weight term only. For a fair compar-
Wl ison with our methods, we applied FL and AFL

at the fine-tuning of RL models. That is, we op-

where W,,, € R? indicates a vector at the index of ~ timized Ly, (0) and Larr(0), where ¢ were ini-

that controls the degree of the normalization. the best hyperparameters reported in Raunak et al.

The other methods of Raunak et al. (2020) were (2020): 7 =0.2,7 = 1,and a = 1. Similar to our

Focal loss (FL) and Anti-Focal loss (AFL). AFL m(;dels, otgerbhyple.rp aramdet;:rs were tseft toﬂtlhe samﬁ
is a variant of FL (Lin et al., 2017), which was values as the baseline Moders, except for the epoc

. L . size and learning rate. We explored the same values
aimed at reweighting the loss according to the con- & P

fidence of the model predictions. Let p), = pg(w{ | ""b = %=, where the value of the hyperparameter T was

w?,,T). FL and AFL in image captioning are then  set to the same as that of w.
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Vocabulary

Standard Evaluation Distinctiveness

Unique-1 Unique-S Length BLEU-4 METEOR ROUGE-L CIDEr SPICE RefCLIP R@1 R@5 R@I10
Att2in RL 435 2,583 9.3 35.0 27.0 56.7 116.5  20.3 79.8 162 425 570
+ sFT (Ours) 874 3,189 9.0 35.0 27.0 56.3 113.7  20.1 80.3 192 479 629
+ WFT (Ours) 1,092 3,806 9.0 32.5 26.4 54.8 107.2 19.7 80.4 206 507 653
UpDown RL 563 3,161 9.5 36.7 27.9 57.7 1223 213 80.6 20.6 502 657
+ sFT (Ours) 1,222 3,805 9.2 354 27.4 56.7 115.3 20.7 80.9 246 562 709
+ wFT (Ours) 1,230 4,311 9.3 31.8 26.4 54.3 106.5 20.2 81.0 259 582 73.6
Transformer RL 713 3,432 9.2 38.9 28.7 58.7 1264 221 81.2 254 563 6938
+ sFT (Ours) 1,496 3,953 9.1 37.5 28.3 57.4 118.4 214 81.5 302 627 758
+ WFT (Ours) 1,836 4,268 9.1 31.1 26.3 53.3 102.2 19.8 81.3 322 643 768

Table 4: Automatic evaluation results on the MS COCO validation set. Unique-1 and Uniqgue-S indicate the number
of unique unigrams and sentences, respectively. Length is the average length of output captions. The results of our

models are colored in gray.

for these hyperparameters as our models: we set
the epoch size for fine-tuning to 1 and searched for
the best learning rate from {1e-3, le-4, le-5, 1le-6}.
The best learning rates were chosen according to
the R@1 scores in the validation set'?. Note that
we did not explore the learning rate for 7-norm
because it does not require training.

Table 3 shows the results. In contrast to the re-
sults reported in machine translation (Raunak et al.,
2020; Nguyen and Chiang, 2018), 7-norm models
performed lower than the baseline models. These
results indicate that simply flattening the output
distributions does not work in image captioning.
Although FL and AFL increased the vocabulary
size and distinctiveness, the gains were smaller
than those of wFT.

To analyze the cause of the difference between
the FL, AFL, and the BP loss (WFT), we visualized
the losses in Figure 8. FL suppresses the loss when
a model is confident, whereas AFL increases the
loss when a model is moderately confident. Com-
pared with these losses, BP changes the loss more
drastically. When the head-class-biased policy py-
is highly confident, BP strictly suppresses the loss
to prevent further learning on that word; when py-
is not confident, BP highly increases the loss to
encourage the learning on that word. This dras-
tic rebalancing of the loss resulted in the larger
vocabulary size and higher distinctiveness of wFT.

G Validation Performance for
Reproduction

Table 4 shows the performance of our models on
the MS COCO validation set. We report these re-
sults for the future reproduction of our experiments.

2The best learning rates were le-4 for Att2in RL +

FL/AFL, 1e-4 for UpDown RL + FL/AFL, and le-5 for Trans-
former RL + FL/AFL.
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Figure 8: Visualization of the losses: CE — log pg(w;),
BP —log pe,or (wi), FL (1 — pg(w;))” log pg(w;), and
AFL (1 4+ apg(w;))” log pg(w;). Here, we set 8 = 1,
vy=1l,and a = 1.

The code will be also available on our website for
the reproduction.



