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Abstract

Distinctiveness is a desirable feature of image001
captions. Captions should cover the charac-002
teristic details of input images. However, re-003
cent high-performing captioning models that004
are trained with reinforcement learning (RL)005
tend to generate overly generic captions de-006
spite their high performance in various other007
criteria. Interestingly, it has also been reported008
that their outputs are composed of a limited009
number of common words and rarely contain010
tail-class words, i.e., low-frequency words in011
the training corpus. Vocabulary size is closely012
related to distinctiveness as it is difficult for013
a model to describe details beyond its vocabu-014
lary. Based on this insight, we hypothesize that015
the limited vocabulary of RL models is the ma-016
jor factor limiting their distinctiveness. We re-017
cast distinctive image captioning as a simpler018
task of long-tail classification to increase the019
vocabulary and then propose lightweight fine-020
tuning methods to encourage tail-class word021
generation. The experimental results demon-022
strate that our methods significantly enhance023
the distinctiveness of existing RL models as024
well as their vocabulary size, without sacri-025
ficing quality. Our methods also outperform026
previous distinctiveness-aware methods with a027
small computational cost of minor modifica-028
tions to pre-trained RL models.1029

1 Introduction030

Image captioning plays a fundamental role at the in-031

tersection of computer vision and natural language032

processing by converting the information in im-033

ages into natural language descriptions. Generated034

captions can be used in various downstream tasks,035

such as aiding visually impaired users (Gurari et al.,036

2020), visual question answering on images and037

videos (Fisch et al., 2020; Kim et al., 2020), visual038

dialogue (White et al., 2021), and news genera-039

tion (Zhang et al., 2021b).040

1The code will be made available on our website.

Transformer RL:  
a group of boats
sitting in the water 
 
+wFT: a body of
water with boats on
it

Transformer RL:  
a group of boats
sitting in the water 
 
+wFT: a black and
white photo of boats
docked at a pier

Transformer RL:  
a group of boats
sitting in the water 
 
+wFT: many small
boats tied together
at night

Transformer RL:  
a group of boats
sitting in the water 
 
+wFT: a row of
small boats tied to a
dock

Figure 1: Caption examples in the MS COCO valida-
tion set. Transformer RL is a Transformer captioning
model trained with RL and +wFT is our fine-tuning
method. Transformer RL generates exactly the same
caption for the four images. The underlined words in-
dicate the characteristic information that are not men-
tioned by Transformer RL, and the blue words are those
that have never appeared in the outputs of the model.

For those downstream tasks, the generated cap- 041

tions should be distinctive: captions should cover 042

the characteristic and important details of the input 043

images. However, current captioning models tend 044

to generate overly generic captions (Dai and Lin, 045

2017; Dai et al., 2017; Wang and Chan, 2019; Wang 046

et al., 2020c). For example, a high-performing 047

captioning model based on Transformer (Vaswani 048

et al., 2017) generates exactly the same caption 049

for the four different images shown in Figure 1, 050

ignoring the other salient details of each image. 051

To address the problem of overly generic cap- 052

tions, some studies have been conducted on dis- 053

tinctive image captioning, which is also called 054

descriptive image captioning or discriminative im- 055

age captioning. Previous research has created new 056

rewards regarding distinctiveness or new model 057

architectures to enhance distinctiveness. These ap- 058

proaches improved the performance with regard to 059

distinctiveness and other evaluation metrics; how- 060

ever, their models come with additional computa- 061

tions and require training from scratch. 062

Instead of creating or paying those computa- 063

tional costs, we first analyze the cause of the current 064
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overly generic captions to explore ways to improve065

the distinctiveness of pre-trained, existing models.066

In particular, we focus on high-performing caption-067

ing models that are trained with the standard re-068

inforcement learning (RL) (Rennie et al., 2017),069

which is the de facto standard training method in070

current image captioning (Stefanini et al., 2021).071

Those models have greater room to improve dis-072

tinctiveness as they unexpectedly perform poor in073

distinctiveness despite the significant advantages074

in various other criteria (Liu et al., 2019; Wang075

et al., 2020a). Interestingly, some previous studies076

have reported that RL decreased the vocabulary077

size of output captions (Wang and Chan, 2019; Liu078

et al., 2019; Wang et al., 2020a). Vocabulary size079

is closely related to distinctiveness as it is difficult080

for a model to describe details beyond its vocab-081

ulary. Based on this insight, we hypothesize that082

the limited vocabulary of RL models is the major083

factor limiting their distinctiveness.084

To directly increase the vocabulary of RL mod-085

els, we recast distinctive image captioning as a086

simpler task of long-tail classification. Unlike pre-087

vious approaches, our methods do not require any088

distinctiveness reward, new model architecture, or089

training from scratch. Our methods focus on gen-090

erating tail-class words, i.e., low-frequency words091

in the training corpus. Owing to their simplicity,092

our methods can be realized by single-epoch fine-093

tuning of pre-trained, existing RL models.094

The experimental results confirm our hypoth-095

esis by revealing that our methods significantly096

boost both vocabulary size and distinctiveness from097

existing RL models. We also demonstrate that098

our methods outperform previous distinctiveness-099

aware methods with a small computational cost of100

minor modifications to pre-trained RL models.101

2 RL Model Distinctiveness and Limited102

Vocabulary103

Currently, RL is the de facto standard training104

method for models used in image captioning be-105

cause it significantly improves the performance in106

various evaluation metrics (Stefanini et al., 2021).107

However, it does not improve distinctiveness and108

may even decrease it (Liu et al., 2019; Wang et al.,109

2020a). In this section, we examine the cause of110

overly generic captions generated by RL models111

and hypothesize that their limited vocabulary hin-112

ders their distinctiveness.113

2.1 RL in Image Captioning 114

We provide a brief overview of the standard RL al- 115

gorithm used in image captioning. It was proposed 116

by Ranzato et al. (2015) and refined by Rennie et al. 117

(2017). Their goal was to directly optimize non- 118

differentiable test-time metrics by minimizing the 119

negative expected reward: 120

LRL(θ) = −Ews∼pθ(ws|I)[r(w
s)], (1) 121

where ws = (ws1, ..., w
s
T ) is a sequence sampled 122

from a policy pθ, I is the input image, and r(·) is 123

a reward function that returns a reward for ws. To 124

compute the gradient of L(θ), Ranzato et al. (2015) 125

applied the REINFORCE algorithm (Williams, 126

1992) to text generation. In their algorithm, the 127

model parameters θ are updated with the following 128

gradient: 129

∇θLRL(θ) ≈ −(r(ws)− b)∇θ log pθ(ws | I).
(2) 130

Here, b is a baseline reward that reduces the vari- 131

ance in the gradient. Typically, the reward function 132

r(·) is CIDEr (Vedantam et al., 2015), and the base- 133

line reward b is a reward for a sequence sampled 134

with greedy decoding (Rennie et al., 2017). 135

2.2 RL Results in Limited Vocabulary 136

Despite its effectiveness, RL has been found to 137

decrease distinctiveness and the number of unique 138

n-grams in output captions (Liu et al., 2019; Wang 139

et al., 2020a). As the relation between RL and 140

those negative effects is not obvious, it was just 141

considered a curious case. 142

However, recent research on the weaknesses 143

of RL has revealed the relation between RL and 144

a limited vocabulary. Recently, Choshen et al. 145

(2020) and Kiegeland and Kreutzer (2021) em- 146

pirically showed that RL makes the output dis- 147

tribution peaky. As shown in Section 2.1, RL 148

samples sequences from policy pθ. Typically, 149

policy pθ is computed using a captioning model 150

pre-trained with the Cross-Entropy (CE) loss on 151

ground-truth captions. However, text-generation 152

models in general are known to output skewed dis- 153

tributions. Specifically, the distributions tend to 154

be skewed towards head-class words, i.e., high- 155

frequency words in the training corpus (Nguyen 156

and Chiang, 2018; Raunak et al., 2020; Demeter 157

et al., 2020; Holtzman et al., 2020). Thus, RL can 158

sample and reward head-class words but cannot 159

sample or reward tail-class words during training. 160
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Figure 2: Relative frequency of the words in the se-
quences sampled for the training images. Five se-
quences were sampled for each image. The words
(9,486 unique words excluding an out-of-vocabulary
token 〈unk〉) are sorted by their frequency in ground-
truth captions and divided into 200 bins. We show the
first 10 bins and the sum of the rest. GT is the ground-
truth caption of the training images, CE is the output of
a captioning model trained with the CE loss, and RL is
the output of a captioning model trained with RL. Here,
we used the Transformer captioning model.

This imbalance results in shifts of the probability161

mass from tail-class words to head-class words, fur-162

ther limiting the vocabulary to head-class words.163

Figure 2 confirms this phenomenon in image164

captioning by plotting the relative frequency of the165

words sampled for the training images. The words166

are sorted by their frequency in ground-truth cap-167

tions and divided into 200 bins. Compared to the168

ground-truth captions and sequences sampled with169

a CE model, the sequences sampled with an RL170

model are clearly limited to the head-class words,171

forming a peaky distribution2.172

2.3 Limited Vocabulary Results in Overly173

Generic Captions174

Standard encoder–decoder captioning models gen-175

erate captions using sequential vocabulary-size176

classification. However, the actual vocabulary a177

model can generate is much smaller than the en-178

tire vocabulary as the output distribution is highly179

skewed towards head-class words. If the actual180

vocabulary cannot cover the details of an image,181

the model is forced to avoid those details and out-182

put only the information that can be described by183

2Although Figure 2 shows only the results obtained with
the Transformer captioning model, we also confirmed that
other models output peaky distributions (Rennie et al., 2017;
Anderson et al., 2018). See Appendix A for the details.

head-class words. For example, the blue words in 184

Figure 1 are not in the actual vocabulary of the RL 185

model; these words have never been generated by 186

the RL model. As a result, the RL model had to 187

ignore the characteristic relations tied and docked 188

and ended up describing exactly the same informa- 189

tion for all four images. 190

Based on the above observations, we hypothe- 191

size that the limited vocabulary of RL models hin- 192

ders their distinctiveness. To directly address this 193

limitation, we recast distinctive image captioning 194

as a simpler task of increasing the actual vocabu- 195

lary. 196

3 Long-Tail Classification to Remedy the 197

Side Effects of RL 198

RL results in the limited vocabulary because it 199

steals the probability mass from tail-class words of 200

ground-truth captions. Thus, those tail-class words 201

are the key to addressing the limitation. Wang and 202

Chan (2019) jointly optimized both the RL loss 203

and the CE loss on ground-truth captions so that 204

the tail-class words in ground-truth captions would 205

be more likely to be sampled during RL training. 206

However, this approach still relies on the sampling 207

from a skewed policy and requires training from 208

scratch. 209

To increase the actual vocabulary more effec- 210

tively and efficiently, we propose two fine-tuning 211

methods based on long-tail classification. Our 212

methods are designed to directly encourage the gen- 213

eration of tail-class words with only single-epoch 214

fine-tuning on pre-trained, existing RL models. 215

3.1 Simple Fine-Tuning 216

The first method is a simple fine-tuning (sFT) 217

method for ground-truth captions. It is based on a 218

decoupled two-stage training (Kang et al., 2020), 219

which is a current strong baseline model for long- 220

tail classification (Tang et al., 2020; Menon et al., 221

2020; Wang et al., 2020b). Kang et al. (2020) de- 222

coupled the learning procedure into representation 223

learning and classification, and then found that clas- 224

sification is critical for long-tail classification. They 225

decoupled the classification model fθ(·) into an en- 226

coder gθe(·) and a classifier consisting of weight 227

and bias parameters: fθ(x) = W>gθe(x) + b. In 228

the first stage of training, they trained the entire 229

classification model fθ(·) on a full training dataset. 230

In the second stage, they fixed the encoder param- 231

eters θe and adjusted only the classifier parame- 232
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ters. For the second-stage adjustment, they applied233

class-balanced sampling to encourage learning on234

tail-class labels.235

Following Kang et al. (2020), we decouple a cap-236

tioning model into an encoder and a classifier. In237

image captioning, the first-stage training of Kang238

et al. (2020) corresponds to RL training on the239

full training dataset. Likewise, the second-stage240

training corresponds to adjusting the classifier pa-241

rameters on the vocabulary-balanced sequences.242

However, sampling from the skewed policy of text-243

generation models cannot provide sequences con-244

taining tail-class words (Section 2.2). Thus, we245

use ground-truth captions as relatively vocabulary-246

balanced samples. sFT simply fine-tunes the clas-247

sifier parameters of a pre-trained RL captioning248

model by minimizing the CE loss on ground-truth249

captions:250

LCE(θ̂) = −
1

T

T∑
t=1

log pθ̂(w
g
t | w

g
<t, I), (3)251

where wg = (wg1, ..., w
g
T ) is a ground-truth caption252

of image I , and the model parameters θ̂ are initial-253

ized with RL training. The conditional probability254

pθ(w
g
t | w

g
<t, I) is computed using the following255

softmax function:256

pθ(w
g
t | w

g
<t, I) =

exp(βzwgt )∑
wi∈W exp(βzwi)

, (4)257

z = W>gθe(w
g
<t, I) + b, (5)258

where z ∈ R|W|, W ∈ Rd×|W|, and b ∈ R|W|.259

W is the entire vocabulary, and d is the dimension260

of the hidden states of an encoder gθe(·). zwi in-261

dicates the element of z at the index of a word262

wi ∈ W . β is an inverse-temperature hyperparam-263

eter that controls the steepness of the softmax dis-264

tribution. We use LSTM (Hochreiter and Schmid-265

huber, 1997) or Transformer (Vaswani et al., 2017)266

for gθe(·). During fine-tuning, only the classifier267

parameters {W , b} ∈ θ̂ are updated with the gra-268

dients∇WLCE(θ̂) and ∇bLCE(θ̂), respectively.269

3.2 Weighted Fine-Tuning270

Ground-truth captions contain more tail-class271

words than sampled sequences, but some tail-class272

words are still difficult to learn because of their273

low frequency. Our second method is weighted274

fine-tuning (wFT), which further pursues vocabu-275

lary balance by rebalancing the loss for head-class276

words and tail-class words in ground-truth captions.277

Figure 3: Visualization of the CE loss − log pθ(wi)
and BP loss − log pθ,θ′(wi). To compute the BP loss,
we need the entire distribution of {pθ(wi)}wi∈W and
{pθ′(wi)}wi∈W . Here, we set the index i to 1 and as-
signed 1

5 (1 − pθ(w1)) to the words of the next five in-
dices, w2, ..., w6. This is because we observed that the
five most probable words occupied 99% of the proba-
bility in the output distribution of the RL models. We
assumed that the five most probable words were the
same between pθ and pθ′ as the parameters were ini-
tialized with the same RL model. Thus, we assigned
1
5 (1 − pθ′(w1)) to the words of the next five indices,
w2, ..., w6, likewise pθ. Here, β was set to 1.

To rebalance the loss, we exploit the head-class 278

bias of RL models: RL models overly assign prob- 279

ability to head-class words, but not to tail-class 280

words. Based on the head-class bias, a ground- 281

truth word that an RL model is confident of should 282

be a head-class word that the model is refrained 283

from further learning, whereas a ground-truth word 284

that an RL model is not confident of should be 285

a tail-class word for the model to learn intensely. 286

wFT incorporates these heuristics by modifying the 287

probability pθ of LCE to the probability of the bias 288

product (BP) (Clark et al., 2019; He et al., 2019), 289

pθ,θ′ , as follows: 290
291

pθ,θ′(w
g
t | w

g
<t, I) = 292

exp(stθ(w
g
t ) + stθ′(w

g
t ))∑

wi∈W exp(stθ(wi) + stθ′(wi))
, (6) 293

where 294

stθ(wi) = log pθ(wi | wg<t, I), (7) 295

stθ′(wi) = log pθ′(wi | wg<t, I). (8) 296

By inserting pθ,θ′ into LCE, we define the objective 297

of wFT as follows: 298

LBP(θ̂) = −
1

T

T∑
t=1

log pθ̂,θ̂′(w
g
t | w

g
<t, I). (9) 299
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Similar to sFT, both parameters θ̂ and θ̂′ are initial-300

ized with a captioning model pre-trained with RL.301

The difference is that, although the classifier param-302

eters of θ̂ are updated, all the parameters of θ̂′ are303

fixed during fine-tuning. Figure 3 shows the change304

in the BP loss compared to the CE loss. The BP305

severely suppresses the loss when the head-class-306

biased policy pθ′ is confident, and largely increases307

the loss when pθ′ is not confident. In this way, the308

BP allows models to unlearn the head-class bias309

learned with RL. As with sFT, only the classifier310

parameters {W , b} ∈ θ̂ are updated with the gra-311

dients∇WLBP(θ̂) and ∇bLBP(θ̂), respectively.312

We follow Clark et al. (2019) and He et al. (2019)313

at the evaluation stage, too. We use the probability314

pθ with updated parameters rather than the BP prob-315

ability pθ,θ′ to avoid incorporating the head-class316

bias of pθ′ into the predictions.317

4 Experiments318

4.1 Setup319

Dataset and Metrics. We used the MS COCO320

captioning dataset3 (Lin et al., 2014; Chen et al.,321

2015) with Karpathy splitting (Karpathy and Fei-322

Fei, 2015). After preprocessing, the entire vocabu-323

lary size |W| was 9,4874. In the evaluation, the324

captions were decoded using a beam search of325

size 5 and evaluated using various evaluation met-326

rics5: BLEU (Papineni et al., 2002), ROUGE (Lin,327

2004), METEOR (Denkowski and Lavie, 2014),328

CIDEr (Vedantam et al., 2015), SPICE (Anderson329

et al., 2016), and RefCLIP (Hessel et al., 2021).330

Following the previous studies (Liu et al., 2019;331

Wang et al., 2020a; Shi et al., 2021b), we eval-332

uated distinctiveness with R@K scores: the per-333

centage of captions with which an image–text re-334

trieval model6 (Faghri et al., 2018) could correctly335

retrieve the original images from the entire valida-336

tion/test images within the rank of K ∈ {1, 5, 10}.337

3This dataset was intended for image captioning, which
is consistent with our use. The dataset was created with the
instruction to anonymize people’s proper names (Chen et al.,
2015). The dataset was licensed under CC BY 4.0. Each split
of training/validation/test set contained 113,287/5,000/5,000
images, and each image had five ground-truth captions.

4The words that occur less than five times in the training
captions were converted to 〈unk〉 token.

5We used the following library, and all the hyperparameters
were set to the default values: https://github.com/
jmhessel/pycocoevalcap (All Rights Reserved)

6Following Liu et al. (2019), we used a pre-trained model,
coco_vse++_resnet_restval_finetune, which
is available at https://github.com/fartashf/
vsepp (Apache License, Version 2.0)

A higher R@K indicates that the model captures 338

more characteristic information of images and gen- 339

erates more distinctive captions. Evaluation was 340

conducted in a single run for each model. 341

Comparison Models. Following Wang et al. 342

(2020a), we used Att2in (Rennie et al., 2017), 343

UpDown (Anderson et al., 2018), and Trans- 344

former (Vaswani et al., 2017) as the baseline mod- 345

els. The models were pre-trained with the standard 346

RL (Rennie et al., 2017) and are publicly available7. 347

In addition to the baseline models, we compared 348

our models with state-of-the-art distinctiveness- 349

aware models: CIDErBtw (Wang et al., 2020a), 350

NLI (Shi et al., 2021b), DiscCap (Luo et al., 2018), 351

and Visual Paraphrase (Liu et al., 2019). The first 352

three created new distinctiveness rewards to be opti- 353

mized with RL. Visual Paraphrase introduced a new 354

model architecture to paraphrase simpler captions 355

to more complex captions. As we mentioned in the 356

beginning of Section 3, the CE loss on ground-truth 357

captions can be utilized in a different way from our 358

methods. We report the results of jointly optimiz- 359

ing the RL loss and CE loss (Joint CE (Wang and 360

Chan, 2019; Edunov et al., 2018)), and also those 361

of solely optimizing the CE loss (Only CE) as the 362

baseline without using RL8. 363

Hyperparameters. Our models used the same 364

hyperparameters as the baseline models, except for 365

the epoch size, learning rate, and β in Eq. 4. We set 366

the epoch size for fine-tuning to 1 and searched for 367

the best learning rate from {1e-3, 1e-4, 1e-5, 1e-6}. 368

We set β to 1 for pθ and searched for the best β 369

of the fixed policy pθ′ from {0.1, 1}. The best hy- 370

perparameters were chosen according to the R@1 371

scores in the validation set. See Appendix B for 372

the best hyperparameters. 373

All the models except Visual Paraphrase had 374

the same parameter size as their baseline models9. 375

7https://github.com/ruotianluo/
self-critical.pytorch (MIT License): {Att2in,
UpDown, Transformer}+self_critical models.

8We optimized LJoint(θ) = λLRL(θ) + (1− λ)LCE(θ)
during RL training. We explored λ ∈ {0.2, 0.5, 0.8}. λ =
0.8 for Transformer and λ = 0.2 for the others achieved the
best R@1 scores in the validation set. λ = 0 for Only CE.
As with our models, all hyperparameters were set to the same
as the baseline models except for the λ and scheduled sam-
pling (Bengio et al., 2015). We disabled scheduled sampling
for the CE loss to strictly separate it from the RL loss.

9The exact number of parameters was 14,451,985 for
Att2in, 52,125,025 for UpDown, and 57,474,832 for Trans-
former. Note that the fixed parameters θ′ were not included
because they were neither trained nor used in the prediction.
Visual Paraphrase has double decoders of Att2in.

5

https://github.com/jmhessel/pycocoevalcap
https://github.com/jmhessel/pycocoevalcap
https://github.com/fartashf/vsepp
https://github.com/fartashf/vsepp
https://github.com/ruotianluo/self-critical.pytorch
https://github.com/ruotianluo/self-critical.pytorch


Vocabulary Standard Evaluation Distinctiveness

Unique-1 Unique-S Length BLEU-4 METEOR ROUGE-L CIDEr SPICE RefCLIP R@1 R@5 R@10

A
t
t
2
i
n

Att2in RL 445 2,524 9.3 35.3 27.1 56.7 117.4 20.5 79.7 16.3 41.9 57.2
+ sFT (Ours) 880 3,156 9.0 35.6 27.0 56.5 115.4 20.4 80.3 20.1 48.0 62.8
+ wFT (Ours) 1,091 3,749 9.0 32.6 26.4 54.9 108.6 19.9 80.3 21.7 50.8 65.2

CIDErBtw 470 2,630 9.3 35.7 27.2 56.9 119.0 20.7 79.8 17.2 44.1 58.7
NLI 465 2,626 9.2 35.7 27.2 57.0 119.0 20.6 79.9 17.6 44.4 59.8
DiscCap† 3,093 9.3 36.1 114.2 21.0 21.6 50.3 65.4
Joint CE 700 2,907 9.1 36.0 27.3 56.4 111.7 19.9 80.0 19.1 46.7 61.5
Only CE 689 2,845 9.2 35.7 27.1 56.1 110.7 20.1 79.9 19.0 46.6 61.1
Visual Paraphrase† 4,576 12.9 27.1 86.9 21.1 26.3 57.2 70.8

U
p
D
o
w
n

UpDown RL 577 3,103 9.5 36.7 27.9 57.6 122.7 21.5 80.5 21.1 49.9 64.6
+ sFT (Ours) 1,190 3,788 9.2 35.7 27.5 56.5 115.9 21.0 80.9 25.0 56.8 71.2
+ wFT (Ours) 1,227 4,263 9.3 32.0 26.5 54.3 107.9 20.4 80.9 25.5 58.0 72.6

CIDErBtw 582 3,108 9.4 36.7 28.0 57.7 122.4 21.4 80.7 21.9 50.9 65.9
NLI 575 3,144 9.4 36.7 28.0 57.7 122.4 21.4 80.6 21.5 50.7 65.6
Joint CE 857 3,120 9.4 35.4 27.6 56.0 111.8 20.5 80.2 21.8 51.2 65.2
Only CE 878 3,126 9.4 34.2 27.3 55.5 109.2 20.1 80.0 21.8 49.9 64.5

T
r
a
n
s
f
o
r
m
e
r

Transformer RL 753 3,433 9.2 39.0 28.7 58.7 127.7 22.5 81.3 26.6 56.2 70.5
+ sFT (Ours) 1,458 3,959 9.1 36.9 28.2 57.2 118.7 21.7 81.5 30.6 62.3 75.7
+ wFT (Ours) 1,776 4,274 9.1 31.3 26.2 53.0 103.1 20.0 81.2 32.5 64.5 77.1

CIDErBtw 837 3,609 9.5 38.6 28.8 58.6 128.2 22.6 81.2 27.7 57.6 71.6
NLI 876 3,744 9.5 38.9 28.9 58.5 129.1 23.0 81.5 29.8 59.9 73.4
Joint CE 1,083 3,491 9.3 38.6 29.0 58.3 123.8 21.9 81.2 27.3 57.2 70.8
Only CE 935 3,599 9.4 35.0 27.7 56.0 112.2 20.8 80.9 26.5 55.8 69.7

Table 1: Comparison with the baseline models and state-of-the-art distinctiveness-aware models. Automatic eval-
uation results on the MS COCO test set. Unique-1 and Unique-S indicate the number of unique unigrams and
sentences, respectively. Length is the average length of the output captions. Scores with † were reported by Liu
et al. (2019). Other scores were reproduced by us. The results of our models are colored in gray.

Our fine-tuning was completed in approximately376

10 minutes for each model using a single GPU of377

16 GB memory.378

4.2 Comparison with Baseline Models and379

Distinctiveness-Aware Models380

Table 1 shows the results compared with those ob-381

tained with the baseline models and state-of-the-art382

distinctiveness-aware models.383

Vocabulary. First, we observed that our meth-384

ods (sFT and wFT) successfully increased the ac-385

tual vocabulary size: both of them considerably386

increased Unique-1 compared to all the baseline387

models. wFT increased the vocabulary more than388

sFT, indicating that rebalancing the loss further en-389

couraged tail-class word generation. The increased390

vocabulary resulted in the captions more specific to391

each image: Unique-S also increased significantly.392

Consistent with previous studies (Wang and Chan,393

2019; Liu et al., 2019; Wang et al., 2020a), the mod-394

els trained with the CE loss (Joint CE and Only CE)395

achieved the larger vocabulary than the baseline RL396

models. The improvement of our methods were397

even larger than these CE models. Despite the sig-398

nificant increase in the vocabulary size, our method399

kept the captions concise: the average sentence400

length was similar to that of the baseline models.401

Distinctiveness. Our goal was to address the lim- 402

ited vocabulary of RL models in order to increase 403

their distinctiveness. As expected, our methods 404

increased distinctiveness compared to the baseline 405

models: the R@K scores of our models were con- 406

siderably higher than those of all the baseline mod- 407

els. Corresponding to the better improvement in vo- 408

cabulary size, wFT increased distinctiveness more 409

than sFT. These results confirm our hypothesis that 410

the major bottleneck for distinctiveness is the lim- 411

ited vocabulary of RL models. 412

Among the Att2in-based models, Visual Para- 413

phrase achieved the highest distinctiveness. How- 414

ever, this model is not directly comparable be- 415

cause it increases the parameters for its special- 416

ized model architecture. DiscCap performed com- 417

parably with our models, but its reward requires 418

high computational costs. CIDErBtw and NLI pro- 419

posed more lightweight rewards to be applicable 420

to larger models, but they still need training from 421

scratch. Among the larger models (UpDown and 422

Transformer), our models achieved the highest dis- 423

tinctiveness despite the small computational cost. 424

Standard Evaluation. Our models degraded the 425

performance in the text-based evaluation met- 426

rics (BLEU-4, METEOR, ROUGE-L, CIDEr, and 427

SPICE), but they rather outperformed the baseline 428
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Distinctiveness Correctness Fluency

Transformer RL 3.00 4.42 4.83
+ wFT (Ours) 3.34∗∗ 4.45 4.84

NLI 3.18∗∗ 4.54 4.76

Table 2: Human evaluation results on the subset of the
MS COCO test set. The distinctiveness score of Trans-
former RL was fixed at 3.00 because we set it as the
baseline model. ∗∗ indicates a model scored higher than
the baseline model with statistical significance (t-test
with p < 0.01): one-sample t-test for distinctiveness
and independent two-sample t-test for the other criteria.
The results of our model are colored in gray.

models in the text-and-image-based evaluation met-429

ric (RefCLIP). Because RefCLIP correlates with430

human evaluation better than text-based evaluation431

metrics (Hessel et al., 2021; Kasai et al., 2021), the432

high performance in RefCLIP demonstrates that433

our methods do not sacrifice the quality of captions.434

We found that our models tended to generate tail-435

class words that were correct but not covered by436

ground-truth captions, which unfairly lowered the437

scores in the text-based evaluation metrics. Ap-438

pendix C shows those underrated captions.439

4.3 Human Evaluation440

We conducted human evaluations using Amazon441

Mechanical Turk (AMT) on three criteria: distinc-442

tiveness, correctness, and fluency. Correctness and443

fluency are absolute scores: we instructed workers444

to give a maximum score 5 to captions that did445

not contain incorrect information (ungrammatical446

or unnatural expressions) in terms of correctness447

(fluency). In contrast, distinctiveness is designed448

as a relative score because it is difficult to set an449

absolute standard for distinctiveness; unlike cor-450

rectness or fluency, we cannot perfectly define dis-451

tinctive captions across images. Following Wang452

et al. (2020a), we instructed the workers to deter-453

mine the distinctiveness of a caption by comparing454

the caption with that of a baseline model10.455

We evaluated the Transformer-based models,456

which performed the best in the automatic eval-457

uation. We randomly selected 50 images from the458

MS COCO test set and assigned five workers to459

each image. See Appendix D for more details460

on the AMT instruction. Table 2 shows the re-461

10If a target caption describes the same information as a
baseline caption, the workers give the target caption a score
of 3; if the target caption describes more (less) characteristic
information than the baseline caption, the workers give the
target caption a score of 4 or 5 (1 or 2).

sults. wFT, which had the highest R@K scores, 462

also achieved the highest distinctiveness here. wFT 463

did not achieve the highest correctness or fluency 464

but achieved the same or higher correctness and 465

fluency than the baseline model. This is consistent 466

with the scores of RefCLIP, confirming again that 467

our methods do not degrade the quality of captions. 468

4.4 Qualitative Analysis 469

Figure 1 shows the caption examples in the 470

MS COCO validation set. The blue words are those 471

that have never appeared in the output captions of 472

the baseline model. The number of blue words in- 473

dicates that our model successfully increased the 474

vocabulary of the baseline model. Furthermore, we 475

observed that these blue words were utilized in the 476

description of the characteristic information of the 477

images. See Appendix E for more examples. 478

5 Related Work 479

Image Captioning is the task of describing im- 480

ages in natural languages. The quality of cap- 481

tions has been remarkably improved by recent 482

advances such as the encoder–decoder caption- 483

ing model (Vinyals et al., 2015), attention mecha- 484

nism (Xu et al., 2015), RL training (Ranzato et al., 485

2015; Rennie et al., 2017), attention over bound- 486

ing box features (Anderson et al., 2018), large- 487

scale pre-training (Li et al., 2020b), and large- 488

scale captioning datasets (Young et al., 2014; Lin 489

et al., 2014; Chen et al., 2015; Krishna et al., 2017; 490

Sharma et al., 2018). Despite these advancements, 491

current captioning models generate overly generic 492

captions (Dai and Lin, 2017; Dai et al., 2017; Wang 493

and Chan, 2019; Wang et al., 2020c). 494

Distinctive Image Captioning has been ex- 495

plored to generate more informative captions. 496

Sadovnik et al. (2012) were the first to study it. 497

They considered the more concise and more infor- 498

mative captions as those that describe information 499

distinctive from distractor images, i.e., images sim- 500

ilar to an input image. Andreas and Klein (2016) 501

proposed neural listener and speaker models that 502

cooperate to generate distinctive captions for ab- 503

stract scenes. Monroe et al. (2017) adapted the 504

models to single-colored images. Vedantam et al. 505

(2017) and Cohn-Gordon et al. (2018) extended 506

the domain to real images and improved inference 507

efficiency. Recently, Wang et al. (2021) proposed a 508

memory attention network to describe objects that 509

are unique among distractor images. 510
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These approaches require selecting distractor im-511

ages for inference. Luo et al. (2018) and Liu et al.512

(2018) proposed the methods that do not require513

this step. Their models learn to generate distinc-514

tive captions by optimizing the R@K scores for515

sampled captions using RL (Rennie et al., 2017).516

The R@K scores are computed with a pre-trained517

image–text retrieval model (Faghri et al., 2018)518

over images in a mini batch. Vered et al. (2019)519

proposed a method to jointly train the image–text520

retrieval model and captioning model. Despite their521

effectiveness, R@K scores are associated with high522

computational costs and require a large batch size.523

Recently, Wang et al. (2020a) and Shi et al. (2021b)524

achieved state-of-the-art distinctiveness with more525

lightweight rewards. They weighted the contri-526

bution of ground-truth captions for the CIDEr re-527

ward according to their differences from similar528

but different captions (Wang et al., 2020a) or their529

entailment scores against other ground-truth cap-530

tions (Shi et al., 2021b). Another approach ex-531

ploited unrelated captions as negative examples and532

trained caption generators with contrastive learn-533

ing (Dai and Lin, 2017) or GAN (Dai and Lin,534

2017; Goodfellow et al., 2014).535

Liu et al. (2019) and Wu et al. (2021) are related536

to our work in that they exploited low-frequency n-537

grams to enhance distinctiveness. Liu et al. (2019)538

divided ground-truth captions into two subsets ac-539

cording to n-gram TF-IDF scores and proposed a540

new model architecture to paraphrase low TF-IDF541

captions into high TF-IDF ones. Wu et al. (2021)542

proposed the use of n-gram TF-IDF scores as an543

additional reward to a variant of R@K reward.544

Different from above approaches, our objective545

is set to remedy the low distinctiveness of exist-546

ing RL models. Our models can be achieved with547

single-epoch fine-tuning of pre-trained RL mod-548

els, without requiring either drastic changes in the549

model architecture (Liu et al., 2019), additional550

computational cost of rewards (Wu et al., 2021), or551

training of a model from scratch.552

Diverse Image Captioning is the task of gen-553

erating a set of diverse captions for a given im-554

age (Wang et al., 2016). Diverse image captioning555

is aimed at enumerating various pieces of infor-556

mation with a set of captions, whereas distinctive557

image captioning aims to concisely describe the558

most characteristic information with a single cap-559

tion. Similar to this study, some studies utilized560

captions that contained more tail-class words, such561

as ground-truth captions (Wang and Chan, 2019; 562

Luo and Shakhnarovich, 2020) or captions sampled 563

from CE models (Shi et al., 2021a). Their models 564

learn to generate these captions in addition to the 565

captions sampled from RL models. However, these 566

approaches still rely on sampling from skewed poli- 567

cies and require training of a model from scratch. 568

Long-Tail Classification has been studied exten- 569

sively in various tasks as label imbalance is preva- 570

lent across datasets (Zhang et al., 2021a; Li et al., 571

2020a). In text-generation tasks, label imbalance 572

exists in the frequency of words. Previous ap- 573

proaches have addressed this imbalance by nor- 574

malizing classifier weights (Nguyen and Chiang, 575

2018; Raunak et al., 2020) or using variants of Fo- 576

cal loss (Raunak et al., 2020; Gu et al., 2020; Jiang 577

et al., 2019; Wu et al., 2020; Lin et al., 2017). In 578

contrast to these approaches, we adopted long-tail 579

classification to mitigate the side effects of RL in 580

the context of distinctive image captioning. We also 581

tried these approaches and found that our methods 582

performed the best. See Appendix F for the details. 583

6 Limitations and Risks 584

Our experiments were limited to the MS COCO 585

captioning dataset, which is the standard dataset for 586

image captioning. The images belong to the gen- 587

eral domain (real images of common objects) and 588

the captions are in English only. The dataset con- 589

tains social biases and captioning models have the 590

risk of amplifying those biases (Zhao et al., 2021, 591

2017; Hendricks et al., 2018). Our methods are not 592

free from the risk too as they are not designed to 593

reduce those biases from existing models. 594

7 Conclusion 595

In this study, we have investigated the problem of 596

overly generic captions of RL captioning models 597

with the hypothesis that their limited vocabulary is 598

the major hindrance to distinctiveness. We recast 599

distinctive image captioning as a simpler task of 600

long-tail classification to increase the vocabulary 601

and then propose lightweight fine-tuning methods 602

to encourage tail-class word generation. The exper- 603

imental results confirm our hypothesis by demon- 604

strating that our methods significantly enhance the 605

distinctiveness of existing RL models as well as 606

their vocabulary size. Our methods also outper- 607

form previous distinctiveness-aware methods with 608

a small computational cost of minor modifications 609

to pre-trained RL models. 610
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Figure 4: Relative frequency of the words in the se-
quences sampled for the training images. Five se-
quences were sampled for each image. The words
(9,486 unique words excluding an out-of-vocabulary
token 〈unk〉) are sorted by their frequency in ground-
truth captions and divided into 200 bins. We show the
first 10 bins and the sum of the rest. GT is the ground-
truth caption of the training images, CE is the output of
a captioning model trained with the CE loss, and RL is
the output of a captioning model trained with RL.

A Peaky Distributions in Other Models875

Figure 4 shows the results of the plotting in Fig-876

ure 2 for the LSTM-based models: Att2in (Ren-877

nie et al., 2017) and UpDown (Anderson et al.,878

2018). Similar to the Transformer model, the se-879

quences sampled with the LSTM-based RL models880

are clearly limited to head-class words, forming the881

peaky distributions.882

B Best Hyperparameters883

As described in Section 4.1, we searched for the884

best hyperparameters for the learning rate (LR)885

from {1e-3, 1e-4, 1e-5, 1e-6}, and the inverse-886

temperature hyperparameter β of the fixed policy887

pθ′ from {0.1, 1}. Note that sFT does not use pθ′ .888

The best hyperparameters were as follows.889

Transformer RL: 
a person flying a kite in the ocean 
CIDEr: 60.2, RefCLIP: 79.8 
 
+wFT: 
a man kiteboarding on top of a body
of water 
CIDEr: 3.5, RefCLIP: 79.2 

Transformer RL:  
a dog laying on top of a couch 
CIDEr: 133.3, RefCLIP: 77.7 
 
+wFT: 
a dog curled up asleep on a cushion 
CIDEr: 38.7, RefCLIP: 79.2 

Transformer RL: 
a vase filled with yellow flowers on a
table 
CIDEr: 216.7, RefCLIP: 78.5 
 
+wFT: 
a clear vase filled with multi
colored flowers 
CIDEr: 94.0, RefCLIP: 82.0

Human: 
an adorable dog laying down on a dog bed 
a dog and cat sleeping together on a dog bed 
a dog laying in a doggy bed with a cat 
a black down lounging on its pet bed 
black and white dog laying down on bed 

Human: 
a person windsurfing with a grey sky in the background 
a person parasailing in the middle of the ocean 
a person riding a parachute surf board 
a man surfing alone on the ocean waters 
a man parasailing in the ocean all by himself 

Human: 
several flowers in a glass jar with water in it near a unpainted
wall 
a vase filled with yellow and purple flowers 
some colorful flowers sitting on vase on the wall 
a vase of flowers on a table 
an arrangement of flowers in a clear glass canning jar haging
on a wall

Figure 5: Underrated captions in the MS COCO vali-
dation set. The blue words are those that have never
appeared in the output captions of the baseline model
(Transformer RL). Human shows the full reference cap-
tions (ground-truth captions) of each image.

Att2in RL + sFT: LR = 1e-4, 890

Att2in RL + wFT: LR = 1e-4, β = 1, 891

UpDown RL + sFT: LR = 1e-4, 892

UpDown RL + wFT: LR = 1e-4, β = 1, 893

Transformer RL + sFT: LR = 1e-5, 894

Transformer RL + wFT: LR = 1e-5, β = 0.1. 895

C Examples of Underrated Captions 896

Figure 5 shows caption examples, reference cap- 897

tions, and their automatic evaluation scores. It is 898

clear that our +wFT model correctly described all 899

three images with diverse vocabulary. However, the 900

CIDEr scores were quite low compared with those 901

of the baseline model, Transformer RL. The cause 902
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Figure 6: A screenshot of our AMT interface.

of this underrating is the small coverage of the refer-903

ence captions: the reference captions rarely contain904

the tail-class words colored in blue, probably due to905

their low frequency. Text-based evaluation metrics906

such as CIDEr cannot evaluate the expressions that907

are correct but not covered by reference captions.908

In contrast, RefCLIP incorporates image features909

and can consider information that is not covered by910

reference captions. We observed that the RefCLIP911

scores were more plausible in these examples.912

D Details of Human Evaluation913

We show our AMT interface in Figure 6. Each914

image was evaluated with the five questions in the915

discrete 5-point scale. We required workers to sat-916

isfy the following qualifications: being an AMT917

Master and living in the U.S. Workers were notified918

that this experiment was intended to evaluate cap-919

tion quality. We paid $0.1 for each image, and the920

median of the actual working time was 41 seconds921

per image. The hourly reward was estimated as922

Transformer RL: a group of birds standing
in the water 
+wFT: a large group of flamingos stand in
shallow water 
NLI: a group of pink umbrellas are standing
in the water 
Human: a flock of pink flamingos standing
in shallow water

Transformer RL: a tower with a clock on
top of it 
+wFT: a clock tower with a weather vane
on top 
NLI: a tower with a clock on the top of it 
Human: a weather vane atop a cathedral
clock tower

Transformer RL: a black cat wearing a hat
on top of a table 
+wFT: a cat wears a funny hat while
staring straight ahead 
NLI: a black cat wearing a hat sitting on a
table 
Human: the cute black cat is wearing a
bee's hat

Transformer RL: a group of people riding
motorcycles on a road 
+wFT: a group of people racing
motorcycles on a race track 
NLI: a group of people riding motorcycles
on a race track 
Human: people are racing motorcycles on
a race track

Transformer RL: a dog next to a cup of
coffee 
+wFT: a dog is sniffing a cup of coffee 
NLI: a dog standing next to a coffee cup on
a table 
Human: a squinting dog on a brick patio
sniffs a cup of coffee

(a)

(b)

(c)

(d)

(e)

Figure 7: Caption examples in the MS COCO vali-
dation set. The blue words are those that have never
appeared in the output captions of the baseline model
(Transformer RL). Human shows a ground-truth cap-
tion of each image.

$8.78, which is higher than the minimum wage in 923

the U.S., $7.25 per hour. 924

E Detailed Qualitative Analysis 925

Figure 7 shows more caption examples in the 926

MS COCO validation set. The blue words are those 927

that have never appeared in the output captions of 928

the baseline model. We observed that these blue 929

words expressed various types of characteristic in- 930

formation of the images. Here, weather vane and 931

flamingos are characteristic objects of the images 932

(a) and (b); shallow, funny, and staring straight 933

ahead are characteristic attributes of the images (b) 934

and (c); and racing and sniffing are characteristic 935

relations in the images (d) and (e). These exam- 936

ples further support our hypothesis that the limited 937

vocabulary of RL models hinders their distinctive- 938

ness. 939
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Vocabulary Standard Evaluation Distinctiveness

Unique-1 Unique-S Length BLEU-4 METEOR ROUGE-L CIDEr SPICE RefCLIP R@1 R@5 R@10

Att2in RL 445 2,524 9.3 35.3 27.1 56.7 117.4 20.5 79.7 16.3 41.9 57.2
+ sFT (Ours) 880 3,156 9.0 35.6 27.0 56.5 115.4 20.4 80.3 20.1 48.0 62.8
+ wFT (Ours) 1,091 3,749 9.0 32.6 26.4 54.9 108.6 19.9 80.3 21.7 50.8 65.2
+ τ -norm 437 2,414 9.1 35.4 27.0 56.7 117.3 20.4 79.7 15.4 40.7 55.8
+ FL 902 3,236 9.0 35.2 27.0 56.4 114.6 20.3 80.3 20.3 48.4 63.4
+ AFL 886 3,104 9.0 35.4 27.0 56.6 115.2 20.4 80.3 19.6 47.5 62.7

UpDown RL 577 3,103 9.5 36.7 27.9 57.6 122.7 21.5 80.5 21.1 49.9 64.6
+ sFT (Ours) 1,190 3,788 9.2 35.7 27.5 56.5 115.9 21.0 80.9 25.0 56.8 71.2
+ wFT (Ours) 1,227 4,263 9.3 32.0 26.5 54.3 107.9 20.4 80.9 25.5 58.0 72.6
+ τ -norm 576 2,967 9.3 37.0 27.7 57.7 122.6 21.3 80.5 19.6 48.1 63.4
+ FL 1,208 3,838 9.2 35.4 27.4 56.3 114.8 20.8 80.9 25.3 57.2 71.0
+ AFL 1,168 3,746 9.2 35.9 27.5 56.7 116.4 20.9 80.9 24.7 56.5 70.5

Transformer RL 753 3,433 9.2 39.0 28.7 58.7 127.7 22.5 81.3 26.6 56.2 70.5
+ sFT (Ours) 1,458 3,959 9.1 36.9 28.2 57.2 118.7 21.7 81.5 30.6 62.3 75.7
+ wFT (Ours) 1,776 4,274 9.1 31.3 26.2 53.0 103.1 20.0 81.2 32.5 64.5 77.1
+ τ -norm 1,027 3,483 9.2 38.5 28.4 58.3 124.4 22.1 81.2 26.1 55.8 69.7
+ FL 1,523 4,018 9.1 36.1 28.0 56.6 116.5 21.4 81.5 31.2 63.1 76.3
+ AFL 1,402 3,908 9.1 37.4 28.3 57.5 120.5 21.9 81.6 30.0 62.1 75.9

Table 3: Comparison with the other long-tail classification methods. Automatic evaluation results on the
MS COCO test set. Unique-1 and Unique-S indicate the number of unique unigrams and sentences, respectively.
Length is the average length of output captions. The results of our models are colored in gray.

F Comparison with Other Long-Tail940

Classification Methods941

We adapted the long-tail classification method of942

Kang et al. (2020) to remedy the side effects of RL943

and proposed sFT and wFT. Both methods were944

carefully designed for RL models, but these were945

not the only way to employ long-tail classification946

methods. In this section, we discuss the other pos-947

sible adaptations based on Raunak et al. (2020).948

Raunak et al. (2020) explored ways to employ949

long-tail classification methods to machine trans-950

lation. Their first method was τ -normalization (τ -951

norm), which directly adopted the method of Kang952

et al. (2020). To simply make the output distribu-953

tions flatter, they normalized the classifier weight954

W as follows:955

W̃wi =
Wwi

‖Wwi‖τ
, (10)956

where Wwi ∈ Rd indicates a vector at the index of957

a word wi and τ is a temperature hyperparameter958

that controls the degree of the normalization.959

The other methods of Raunak et al. (2020) were960

Focal loss (FL) and Anti-Focal loss (AFL). AFL961

is a variant of FL (Lin et al., 2017), which was962

aimed at reweighting the loss according to the con-963

fidence of the model predictions. Let ptθ = pθ(w
g
t |964

wg<t, I). FL and AFL in image captioning are then965

written as follows: 966

LFL(θ) = −
1

T

T∑
t=1

(1− ptθ)γ log ptθ, (11) 967

LAFL(θ) = −
1

T

T∑
t=1

(1 + αptθ)
γ log ptθ, (12) 968

where γ and α are hyperparamters that control the 969

degree of the reweighting. Other work also ex- 970

plored ways to employ long-tail classification meth- 971

ods to text generation, but those approaches can be 972

categorized as either τ -norm (Nguyen and Chiang, 973

2018) or the variants of FL (Gu et al., 2020; Jiang 974

et al., 2019; Wu et al., 2020), which we already 975

explored above. 976

We compared our methods (sFT and wFT) with 977

τ -norm, FL, and AFL. In our experiments, we nor- 978

malized the bias term b11 in addition to the weight 979

term W as we found it performed better than nor- 980

malizing the weight term only. For a fair compar- 981

ison with our methods, we applied FL and AFL 982

at the fine-tuning of RL models. That is, we op- 983

timized LFL(θ̂) and LAFL(θ̂), where θ̂ were ini- 984

tialized with the pre-trained RL models. We used 985

the best hyperparameters reported in Raunak et al. 986

(2020): τ = 0.2, γ = 1, and α = 1. Similar to our 987

models, other hyperparameters were set to the same 988

values as the baseline models, except for the epoch 989

size and learning rate. We explored the same values 990

11b̃ = b
‖b‖τ , where the value of the hyperparameter τ was

set to the same as that of W̃ .
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Vocabulary Standard Evaluation Distinctiveness

Unique-1 Unique-S Length BLEU-4 METEOR ROUGE-L CIDEr SPICE RefCLIP R@1 R@5 R@10

Att2in RL 435 2,583 9.3 35.0 27.0 56.7 116.5 20.3 79.8 16.2 42.5 57.0
+ sFT (Ours) 874 3,189 9.0 35.0 27.0 56.3 113.7 20.1 80.3 19.2 47.9 62.9
+ wFT (Ours) 1,092 3,806 9.0 32.5 26.4 54.8 107.2 19.7 80.4 20.6 50.7 65.3

UpDown RL 563 3,161 9.5 36.7 27.9 57.7 122.3 21.3 80.6 20.6 50.2 65.7
+ sFT (Ours) 1,222 3,805 9.2 35.4 27.4 56.7 115.3 20.7 80.9 24.6 56.2 70.9
+ wFT (Ours) 1,230 4,311 9.3 31.8 26.4 54.3 106.5 20.2 81.0 25.9 58.2 73.6

Transformer RL 713 3,432 9.2 38.9 28.7 58.7 126.4 22.1 81.2 25.4 56.3 69.8
+ sFT (Ours) 1,496 3,953 9.1 37.5 28.3 57.4 118.4 21.4 81.5 30.2 62.7 75.8
+ wFT (Ours) 1,836 4,268 9.1 31.1 26.3 53.3 102.2 19.8 81.3 32.2 64.3 76.8

Table 4: Automatic evaluation results on the MS COCO validation set. Unique-1 and Unique-S indicate the number
of unique unigrams and sentences, respectively. Length is the average length of output captions. The results of our
models are colored in gray.

for these hyperparameters as our models: we set991

the epoch size for fine-tuning to 1 and searched for992

the best learning rate from {1e-3, 1e-4, 1e-5, 1e-6}.993

The best learning rates were chosen according to994

the R@1 scores in the validation set12. Note that995

we did not explore the learning rate for τ -norm996

because it does not require training.997

Table 3 shows the results. In contrast to the re-998

sults reported in machine translation (Raunak et al.,999

2020; Nguyen and Chiang, 2018), τ -norm models1000

performed lower than the baseline models. These1001

results indicate that simply flattening the output1002

distributions does not work in image captioning.1003

Although FL and AFL increased the vocabulary1004

size and distinctiveness, the gains were smaller1005

than those of wFT.1006

To analyze the cause of the difference between1007

the FL, AFL, and the BP loss (wFT), we visualized1008

the losses in Figure 8. FL suppresses the loss when1009

a model is confident, whereas AFL increases the1010

loss when a model is moderately confident. Com-1011

pared with these losses, BP changes the loss more1012

drastically. When the head-class-biased policy pθ′1013

is highly confident, BP strictly suppresses the loss1014

to prevent further learning on that word; when pθ′1015

is not confident, BP highly increases the loss to1016

encourage the learning on that word. This dras-1017

tic rebalancing of the loss resulted in the larger1018

vocabulary size and higher distinctiveness of wFT.1019

G Validation Performance for1020

Reproduction1021

Table 4 shows the performance of our models on1022

the MS COCO validation set. We report these re-1023

sults for the future reproduction of our experiments.1024

12The best learning rates were 1e-4 for Att2in RL +
FL/AFL, 1e-4 for UpDown RL + FL/AFL, and 1e-5 for Trans-
former RL + FL/AFL.

Figure 8: Visualization of the losses: CE − log pθ(wi),
BP − log pθ,θ′(wi), FL (1 − pθ(wi))γ log pθ(wi), and
AFL (1 + αpθ(wi))

γ log pθ(wi). Here, we set β = 1,
γ = 1, and α = 1.

The code will be also available on our website for 1025

the reproduction. 1026
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