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Abstract

According to the U.S. National Institutes of
Health, approximately 5%—9% of children ex-
perience speech disorders that require clinical
intervention. However, the number of certified
speech-language pathologists (SLPs) is roughly
twenty times fewer than the number of affected
children, highlighting a significant gap in care
and a pressing need to automate aspects of SLP
workflows. Existing Al approaches for sup-
porting SLPs typically address individual tasks
in isolation, resulting in inconsistent perfor-
mance and high deployment costs. Moreover,
the scarcity of annotated datasets further lim-
its progress in this domain. Recent advances
in multimodal large language models (LLMs),
particularly speech LLMs, offer promising op-
portunities for automating key SLP tasks and
generating high-quality datasets. Despite this
potential, there has been limited exploration
of speech LLMs in this context. In this work,
we introduce the first unified and comprehen-
sive benchmarking framework for five core
SLP tasks: (1) disorder screening, (2) speech
transcription, (3) disorder-type classification,
(4) symptom identification, and (5) transcript-
based classification. Furthermore, we develop a
fine-tuning strategy based on cross-task knowl-
edge transfer, which enhances model perfor-
mance across multiple tasks. Our experiments
with 15 state-of-the-art LLMs show that while
base models perform adequately on coarse-
grained tasks, finetuning on the transcription
task can yield substantial improvements across
a broader set of tasks, demonstrating up to
more than 30% improvement over baseline ap-
proaches. We publicly release our datasets,
models, and benchmark framework to support
continued research in this area.

1 Introduction

Speech and language disorders in children can sig-
nificantly impact communication, academic devel-
opment, and long-term social outcomes (Hitchcock

et al., 2015; Foster et al., 2023). Early detection
and intervention by speech-language pathologists
are critical to mitigating these adverse effects (Gib-
bard et al., 2004; Centers for Disease Control and
Prevention, 2024). However, the availability of
qualified clinicians is characterized by an uneven
distribution across geographic and socioeconomic
contexts, with only an expert for every 20 affected
children, resulting in significant disparities in ac-
cess to care and leading to "missing intervention"
for many children who could benefit from timely
support (U.S. National Institute on Deafness and
Other Communication Disorders, 2025; Tucker and
McKinnon, 2020). This gap underscores an urgent
need for scalable and supportive technological solu-
tions to assist clinicians by augmenting their capac-
ity and extending the reach of vital interventions.
The shortage of qualified clinicians has led to
significant gaps in diagnostic capacity, particularly
in domains requiring specialized expertise such as
speech-language pathology (SLP). Recent advance-
ments in large language models (LLMs) present a
promising opportunity to partially automate or aug-
ment diagnostic workflows (Lammert et al., 2025;
Bhattacharya et al., 2024; Nagpal et al., 2025; Mag-
sood et al., 2024). Multimodal LLMs, including
GPT-4' and Gemini?, exhibit state-of-the-art ca-
pabilities in speech processing and contextual rea-
soning. Trained on diverse, large-scale datasets,
these models are robust to the variability of clin-
ical SLP data, making them well-suited for tasks
such as transcribing atypical speech and supporting
disorder screening and subtype classification.
Effective integration of LLMs into clinical SLP
requires rigorous, domain-specific evaluation to es-
tablish their clinical validity and utility (Cordella
et al., 2025). This process depends on large, high-
quality datasets that capture the variability of pedi-
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atric speech, especially disordered forms, and are
annotated with clinically relevant features. Cur-
rent progress is hindered by two key challenges:
the scarcity of well-curated pediatric speech cor-
pora and the lack of evaluation frameworks that
address the unique acoustic-phonetic features of
children’s speech, which are often overlooked by
general-purpose benchmarks (Suh et al., 2024).

In this work, we present a comprehensive ap-
proach to bridge these gaps. Our solution first in-
volves developing systematic procedures for anno-
tating child speech data, creating resources suitable
for SLP-focused model evaluation, and fine-tuning.
Second, leveraging these curated datasets, we ex-
tensively evaluate state-of-the-art speech-capable
LLMs for tasks pertinent to SLP. Our evaluation
utilizes a tailored benchmark built upon the HELM
framework (Liang et al., 2023). The benchmark
assesses models across five clinical scenarios cov-
ering a spectrum of tasks from foundational dis-
order detection to more granular symptoms, in-
cluding Disorder Diagnosis, Transcription-Based
Diagnosis, Transcription, Disorder Type Classifica-
tion, and Symptom Classification. This structured
investigation aims to quantify existing LLMs’ cur-
rent capabilities and limitations in SLP-relevant
contexts and explore avenues for enhancing their
performance through domain-specific adaptation.
The systematic assessment of current multimodal
models with this benchmark reveals sizeable perfor-
mance gaps: macro-F1 scores routinely fall below
clinically acceptable thresholds, especially on the
more fine-grained tasks. Additionally, our work in-
volves developing and evaluating fine-tuned speech
LLMs designed to push the boundaries of current
state-of-the-art results on these specialized tasks.
Our contributions are stated as follows.

* We release four curated pediatric speech
datasets comprising approximately 30,000
speech samples across English and French,
encompassing both typical and disordered
speech. These datasets provide a publicly
available, high-quality resource to support re-
producible benchmarking in SLP.

* We propose the first comprehensive eval-
uation framework for SLP, extending the
HELM paradigm to unify five essential clini-
cal tasks. This framework enables consistent,
task-aligned evaluation and facilitates direct
comparison of speech LLM performance un-
der a standardized protocol.

* We introduce fine-tuned speech LL.Ms that
achieve state-of-the-art performance across all
evaluated SLP tasks, illustrating the efficacy
of domain-specific adaptation in enhancing
diagnostic and transcriptional capabilities.

2 Related Works

Al in Speech Language Pathology Assessment
The use of artificial intelligence, particularly LLMs,
in clinical speech-language assessment has gained
increasing attention in recent years. Several recent
studies have demonstrated the utility of LLMs in
detecting and characterizing speech and language
disorders. For instance, Bhattacharya et al. showed
that pre-trained LLMs could effectively identify
both the presence and type of aphasia, suggesting
that these models can serve as viable tools for clin-
ical screening and diagnosis of language disorders
(Bhattacharya et al., 2024).

Beyond perception studies, a growing body of
technical literature examines the use of speech and
language features for automated assessment. Engel-
hardt et al. reviewed computational features used to
assess cognitive and thought disorders, highlight-
ing the relevance of acoustic and linguistic cues
in differential diagnosis (Engelhardt et al., 2021).
Similarly, (Heilmann et al., 2023) demonstrated
that automatic language sample analysis tools can
support clinical workflows, providing reliable lin-
guistic metrics with reduced human effort.

Several efforts have focused on building auto-
mated tools for therapy and assessment. (Deka
et al., 2025) systematically reviewed Al-based au-
tomated speech therapy tools for individuals with
speech sound disorders, underscoring their poten-
tial and emphasizing the need for clinically val-
idated benchmarks. (Themistocleous, 2024) in-
troduced a framework for automatic language as-
sessment using LL.Ms, proposing a scalable and
adaptable approach for linguistic evaluation.

LLMs for Disordered Speech Analysis A re-
cent survey of SLPs and graduate students revealed
a combination of cautious optimism and skepti-
cism regarding the integration of LLMs such as
ChatGPT into diagnostic and therapeutic work-
flows (Schwartz et al., 2024). These practitioner
attitudes highlight critical socio-technical barriers
to the clinical adoption of Al-driven systems in
speech-language pathology.

Recent research has explored the adaptation of
LLMs and related models for disordered speech



processing, with an emphasis on reinforcement
learning. Zhang et al. employed reinforcement
learning with human feedback (RLHF) to per-
sonalize automatic speech recognition (ASR) sys-
tems for disordered speech, demonstrating signifi-
cant improvements in recognition accuracy through
individual-level adaptation (Zhang et al., 2024).
Sanguedolce et al. proposed a more generalized
framework by fine-tuning Whisper on a dataset of
stroke patients, resulting in a universal disordered-
speech detection model. Their approach exhibited
strong generalization across multiple neurological
conditions, underscoring the potential of founda-
tion models for broad-spectrum clinical speech ap-
plications (Sanguedolce et al., 2024).

Benchmarking Efforts Benchmarking has been
instrumental in advancing speech-health research.
The ADReSS Challenge (Luz et al., 2020) estab-
lished a balanced benchmark for Alzheimer’s de-
tection from spontaneous speech, standardizing
evaluation via F1 and MMSE-regression metrics.
Similarly, the Children’s ASR Benchmark (Fan
et al., 2024) introduced standardized splits and
Whisper/Wav2Vec baselines for speech recogni-
tion in children aged 6-14, highlighting age-
specific acoustic challenges. Nonetheless, system-
atic benchmarking of speech LLMs in clinical con-
texts remains limited. To address this, we propose a
unified evaluation framework for assessing speech
LLMs across clinically relevant tasks, emphasizing
both diagnostic performance and usability.

3 Method

3.1 Clinically-Informed Data Annotation

Existing datasets for children’s speech-language
pathology (SLP) research primarily focus on tran-
scription and binary classification of speech as ei-
ther disordered or typical (Benway et al., 2022;
Eshky et al., 2018; Le Normand, 1997; Schneider
et al., 2006). However, as discussed previously,
critical SLP tasks involve finer-grained classifica-
tion, including the identification of specific disor-
der types and associated symptoms—categories for
which no large-scale publicly available datasets cur-
rently exist. Addressing this gap, we collaborated
closely with certified SLP professionals to develop
a detailed annotation schema that captures both dis-
order types and their characteristic symptoms. For
each speech sample, we assign the most prominent
disorder type and symptom, prioritizing the most

salient diagnostic features when multiple condi-
tions may co-occur. Speech samples exhibiting no
observable signs of speech disorder are annotated
as typical. Our annotation protocol and chosen tax-
onomy are informed by clinical guidelines from
the U.S. National Institutes of Health (Simon and
Rosenbaum, 2016) and SLP best practices (Ameri-
can Speech-Language-Hearing Association, 2016).
After initial manual labeling, we conducted a ver-
ification phase in which all annotations were re-
viewed by certified speech-language pathologists
to ensure consistency and clinical validity. This pro-
cedure resulted in a high-quality, expert-validated
dataset suitable for training and evaluating models
on clinically relevant SLP tasks.

3.2 Evaluation Pipelines

We evaluate five core tasks that collectively capture
the essential stages of pediatric SLP, from initial
screening to detailed diagnostic analysis: (1) Dis-
order Diagnosis, which assesses a model’s abil-
ity to distinguish between typical and disordered
speech—a critical early triage step for prioritizing
clinical resources; (2) Transcript-based Diagno-
sis, which serves as a baseline for diagnostic accu-
racy by testing the assumption that speech from
children with disorders deviates from expected
utterances. This approach operates by matching
model-generated transcripts to clinician prompts,
which offers a minimal, interpretation-free method
that could be readily deployed in clinical settings.
By benchmarking against this heuristic, we quan-
tify the value added by more sophisticated multi-
modal LLM reasoning; (3) Transcription, which
measures the fidelity of automatic speech recogni-
tion (ASR) systems on child and disordered speech,
a prerequisite for downstream diagnostic and doc-
umentation tasks; (4) Disorder Type Classifica-
tion, which probes whether models can differenti-
ate between articulation disorders—motor-based
speech errors such as lisps or distortions—and
phonological disorders, which involve rule-based
sound pattern errors like consistent substitution
of one phoneme for another (e.g., /k/ — /t/);(5)
Disorder Symptom Classification, a fine-grained
task, requires models to identify specific clinical
symptoms, including additions (insertion of extra
sounds), substitutions (replacing one sound with an-
other), omissions (dropping expected sounds), and
stuttering (disruptions in speech fluency). Figure 1
illustrates an overview of classification tasks in our
pipeline. To assess model capacity under differ-



ent prompting strategies, we evaluate performance
using both zero-shot and five-shot prompting. De-
tails of these prompts are presented in Appendix A.
Evaluation metrics for classification tasks include
Macro F1, Micro F1, and Exact Match Accuracy,
while transcription performance is assessed using
Word Error Rate (WER), Match Error Rate (MER),
and Word Information Preserved (WIP).

We develop SLPHelm, an evaluation framework
built upon the HELM benchmark (Liang et al.,
2023), to enable standardized, systematic assess-
ment across all tasks. By leveraging a unified
pipeline, SLPHelm ensures consistent evaluation
protocols and comparability across models and
prompting strategies. To promote reproducibility,
we publicly release all code, prompts, and configu-
ration files associated with our framework.

3.3 Finetuning Methods

To investigate the impact of fine-tuning on model
performance across multiple tasks, we explore
two fine-tuning strategies. Prior work has shown
that fine-tuning can facilitate cross-task and cross-
lingual knowledge transfer, wherein a model fine-
tuned on a simple task in a given language can
exhibit improved performance on a range of down-
stream tasks in the same language (Ye, 2024; Egon-
mwan et al., 2019).

Our first strategy involves fine-tuning the model
on a speech recognition task (Scenario 3, as de-
scribed above), relying on the model’s intrinsic
ability to transfer knowledge to improve perfor-
mance on related tasks. In this setup, both typical
and disordered speech samples are labeled with the
same expected transcriptions. However, assigning
identical transcriptions to acoustically distinct in-
puts may introduce ambiguity and limit the model’s
ability to learn disorder-specific patterns. To miti-
gate this, our second strategy modifies the labeling
of disordered speech by appending an asterisk to
each word in its transcription. This lightweight
labeling scheme serves to differentiate disordered
speech from typical speech, thereby guiding the
model to better recognize and transcribe disordered
speech patterns without altering the overall task
formulation. Details of fine-tuning prompts and
hyperparameters are presented in Appendix B.

Our central hypothesis is that fine-tuning on a
general task (e.g., speech recognition) alone is in-
sufficient to yield improvements on specialized
clinical tasks unless the fine-tuning data contains
explicit information relevant to those tasks. This

stems from the theoretical premise that general-
purpose models primarily optimize for surface-
level acoustic-linguistic alignment, which may not
encode the deeper, disorder-specific features, such
as atypical phonological patterns or motor-based
distortions, necessary for clinical inference (Shor
et al., 2019; Dorfner et al., 2024). We posit that en-
hanced task performance, particularly for disorder-
specific tasks, requires either systematic cues (as
in the second strategy) or explicit exposure to
disorder-relevant data.

4 Experimental Resutls

4.1 Datasets, Models, and Configurations

Datasets In this study, we utilize four publicly
available datasets: Ultrasuite(Eshky et al., 2018),
ENNI(Schneider et al., 2006), LeNormand(Le Nor-
mand, 1997), and Percept-GFTA(Benway et al.,
2022). These datasets encompass a range of child
speech samples, both typical and disordered, and
serve as the foundation for evaluating model per-
formance across diagnostic tasks. Detailed dataset
statistics are presented in Table 1. To ensure com-
putational efficiency while maintaining representa-
tiveness, we randomly sample up to 1000 instances
from each dataset for evaluation.

Table 1: Dataset statistics

Dataset # Children # Samples Age Range
Ultrasuite 66 8338 5-13
ENNI 377 16546 4-9
LeNormand (French) 17 329 3-8
PERCEPT-GFTA 350 3664 6-17
Models We evaluate a total of 15 speech LLMs,

encompassing both proprietary and open-source
systems. Among the closed-source models, our
evaluation includes the GPT-4 family (40-audio, 40-
mini-audio, 4o-transcribe, and 40-mini-transcribe),
Whisper, and the Gemini 2.0 family (2.0-flash, 2.0-
flash-lite). For open-source models, we consider
multiple versions and sizes from the Qwen fami-
lies (2.5-omni-7b, 2.5-omni-3b, 2-audio-7b, audio-
chat), the Phi-4, and IBM Granite series (3.3-8b,
3.3-3b, 3.2-8b). Models are assessed across differ-
ent parameter scales within each family to capture
performance variability due to model capacity.

Inference pipelines We implement two distinct
model inference pipelines within our evaluation
framework. The first, referred to as the audio-to-
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Figure 1: Taxonomy of classification tasks in SLPHelm. The benchmark includes three core diagnostic tasks: (i)
disorder diagnosis, (ii) disorder symptom classification, and (iii) disorder type classification.

LLM prompting pipeline, is designed for models
with native multimodal capabilities (e.g., GPT-40-
Audio, Gemini 2.0 Flash). In this setting, raw audio
inputs are passed directly to the model alongside
a task-specific prompt, enabling end-to-end pro-
cessing of both acoustic and textual information.
The second pipeline, termed transcription-based
prompting, targets language-only models (denoted
with the -transcribe suffix). Here, audio inputs
are first transcribed using a base automatic speech
recognition (ASR) model (e.g., Whisper or GPT-
40’s internal ASR), and the resulting text is em-
bedded into a structured prompt for downstream
reasoning. This two-pronged architecture enables
systematic comparison between models with na-
tive audio comprehension and those relying on cas-
caded ASR-to-LLM pipelines, providing insights
into the trade-offs between direct speech under-
standing and transcription-mediated processing.

4.2 Evaluation Results

Our findings indicate that current speech LLMs ex-
hibit substantial potential in augmenting core SLP
tasks. However, both existing proprietary and open-
source models currently fall short of clinically ac-
ceptable performance thresholds. This limitation is
likely attributable to the underrepresentation of dis-
ordered speech in training corpora, as such data is
significantly less prevalent than typical speech sam-
ples available online. For reference, existing FDA-
approved diagnostic systems typically achieve F1
scores in the range of 0.80 to 0.85 (Fanni et al.,
2023; Abramoff et al., 2018), which serves as a
practical standard for clinical viability. Further-
more, model performance varies markedly across
different task scenarios, highlighting the absence of
a universally robust model capable of consistently
addressing the diverse requirements of pediatric
SLP applications. Figure 2 presents an overview of
the performance of all models.

Scenario 1: Disorder Diagnosis In the dis-
order diagnosis task, performance remains lim-
ited, with no model exceeding a Macro Fl

score of 0.71. The best result is achieved by
Qwen 2.5-Omni-7B, outperforming GPT-40-Mini-
Transcribe (0.56). The fact that these mod-
els use different pipelines—audio-grounded vs.
ASR+text—suggests no clear advantage of one ap-
proach over the other. Smaller variants within each
family perform similarly, indicating diminishing
returns from increased parameter count. Audio-
grounded Granite models perform poorly (F1 <
0.1), likely due to their pretraining focus on speech-
to-text and translation tasks (IBM Granite Team,
2025). While their WER is competitive with other
audio models (e.g., Gemini 2.0 Flash (Saon et al.,
2025)), they appear to miss prosodic and articula-
tory cues critical for disorder detection. Overall,
even the strongest models misclassify nearly half
of the cases, underscoring the challenge of this
foundational diagnostic task.

Scenario 2: Transcription-based Diagnosis
Substituting the audio-grounded prompts with a
naive transcribe-and-compare baseline precipitates
a pronounced decline in performance. Macro-
F1 scores fall by roughly an order of magnitude:
the strongest system, GPT-4o0-Mini-Transcribe, at-
tains only 0.21, while most models approach
zero. Error propagation from automatic-speech-
recognition (ASR) output, compounded by brittle
string-matching heuristics, underscores the neces-
sity of end-to-end acoustic reasoning and estab-
lishes this baseline as a conservative lower bound.

Scenario 3: Transcription Word-error rates
(WER) vary widely—from 8.3% to 66.4%. Gemini-
2.0-Flash-Lite achieves the lowest WER (8.3%),
closely followed by Gemini-2.0-Flash (9.4%). Im-
portantly, transcription fidelity shows limited cor-
relation with diagnostic accuracy: GPT-40-Mini-
Transcribe records a moderate WER of 15.4% yet
ranks among the strongest classifiers in Scenario 1.
These findings indicate that high-quality transcripts
are neither necessary nor sufficient for dependable
clinical reasoning.



Disorder Diagnosis
Micro F1 Score 1

ASR-Based Disorder Diagnosis
Micro F1 Score 1

Disorder Type Classification
Micro F1 Score 1

Disorder Symptom Classification
icro F1 Score 1

Transcription Accuracy
Word Error Rate |

qwen2.5-omni-Th
gpt-do-mini-transcribe
gpt-do-transcribe
whispr+gptdo
gemini-2.0-flash
gemini-2.0-flash-lite
qwen2-audio-7h
gpt-do-audio
qwen2.5-omni-3b
Phi-4
gpt-2o-mini-audio
granite-speech-3.3-8b
granite-speech-3.2-8b

0.0 0.2 04 0.6 0.0 02 0.4 0.6 0.0

02 04 0.6 0.0 02 0.4 0.6 0 2 4 6 8

Figure 2: Metrics across all scenarios

Scenario 4: Disorder Type Classification In
this scenario, improved accuracy has direct clinical
implications: precise subtype identification sup-
ports more targeted and effective therapy plans,
potentially reducing treatment duration and im-
proving long-term speech outcomes. Closed-
source multimodal models—especially Gemini-
2.0-Flash—generally outperform open-source ones,
suggesting benefits from broader or more diverse
acoustic pretraining. However, Qwen2.5-7B is a
notable exception, outperforming all models re-
gardless of access or scale, hinting at architectural
or pretraining advantages. The performance gap be-
tween audio-grounded and transcript-only variants
is modest; for instance, GPT-40-Mini-Transcribe
lags its audio-capable version by just 6 Macro-F1
points. This indicates that LLMs can extract di-
agnostic signals from transcripts alone. Overall,
ASR+LLM pipelines, while not yet optimal, offer
a feasible alternative when audio is unavailable.

Scenario 5: Disorder Symptom Classification
Accurate identification of these symptoms directly
informs treatment goals and therapy design in
speech-language pathology. Qwen2.5-7B once
again leads in performance but still falls well
short of clinically actionable accuracy. Moreover,
transcription-first models underperform across all
metrics, underscoring that critical acoustic cues
needed for symptom detection are often lost or
degraded during transcription. Three consistent
trends emerge across tasks. First, audio grounding
becomes increasingly vital as tasks grow more gran-
ular: while the performance gap between audio-
first and transcript-only models is small for bi-
nary screening (Scenario 1), it widens significantly
for symptom-level tagging (Scenario 5). Second,
model scale is not the sole determinant of per-

formance—smaller, well-aligned models such as
Gemini-Flash-Lite achieve strong transcription re-
sults. Third, high transcription accuracy does not
imply clinical accuracy, as evidenced by a weak
correlation between performance on ASR and di-
agnostic tasks.

Finetuning results Fine-tuning large models can
significantly enhance their performance on down-
stream tasks. In our setting, fine-tuning solely
on automatic speech recognition (ASR) data, re-
gardless of whether disordered speech is explicitly
marked, leads to noticeable improvements in ASR-
based tasks (Scenarios 2 and 3). However, not dif-
ferentiating between typical and disordered speech
introduces ambiguity in the input-label mapping,
which in turn results in degraded performance. In-
corporating a simple asterisk mitigates this issue,
yielding more stable performance.

Cross Language Analysis Figure 4 shows a con-
sistent pattern: macro-F1 is higher in French than
in English, yet WER is markedly worse. A plausi-
ble explanation lies in the way these systems were
pre-trained. Their ASR components are heavily op-
timized on English text-to-speech pairs, so lexical
recognition degrades when confronted with French
phonotactics, inflating WER. By contrast, the diag-
nostic classifiers operate on higher-level acoustic
embeddings learned during large-scale audio pre-
training that is largely language-agnostic (Klempit
and Krupicka, 2024). Those embeddings could still
capture phonological and articulatory cues relevant
to speech-disorder detection, so classification ac-
curacy can rise even as word-level transcription
falters. In short, limited French supervision hurts
the ASR stage but leaves the downstream pathology
signal largely intact, highlighting that transcript fi-
delity and clinical utility depend on different slices
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Figure 4: Compares model performance with reasoning, robustness under noisy conditions, across gender and

languages

of the model’s pre-training pipeline. This once
again highlights the divergence and lack of correla-
tion between the diagnostic capabilities of a model
and its performance under transcription tasks

Cross Gender Analysis Figure 4 showcases that
across two diagnostic tasks, the models exhibit
a systematic gender performance gap that favors
male speech. For both tasks, we run model eval-
uation on 1000 utterances for each gender on the
UltraSuite dataset since it makes demographic iden-
tifiers available through its metadata. For the bi-
nary disorder-screening scenario, macro-F1 for
male speakers averages 0.59 versus 0.40 for female
speakers. The disparity persists, though it narrows
in disorder-type classification. This pattern is re-
markably consistent: almost every architecture in
the screening task posts a positive male-female dif-
ferential, and even that baseline reverses to a male
advantage once finer-grained labels are required.
Notably, the gap is not confined to a particular mod-
eling strategy; it appears in fully audio-grounded
systems (e.g., GPT-40-audio, Gemini-2.0-Flash)
as well as in transcript-conditioned variants, indi-
cating that either the upstream acoustic encoders
or the training data itself encode gender-skewed
priors. The magnitude of the divergence suggests
practical consequences for clinical deployment, as
female speech receives both lower sensitivity and
lower precision across disorder categories. Taken
together, the results underscore the need for tar-

geted auditing and, potentially, gender-balanced
fine-tuning to ensure equitable diagnostic perfor-
mance across child speakers.

Robustness Analysis We analyse model robust-
ness by having the models evaluate audio record-
ings with artificial 3 different perturbations added
to them - road noise, classroom noise, and office
noise; and aggregating the results to comprehen-
sively model performance under these conditions.
We added 20 dB of that background noise to ap-
proximately simulate conditions that a given LLM
might face in the clinical SLP setting. Figure 4
shows that the bulk of the metric degradation is con-
centrated in the disorder type diagnosis, while per-
formance for symptom diagnosis remains virtually
unchanged. These observations suggest that noise
resilience is not strictly a function of architecture
class - audio-grounded, and transcript-conditioned
pipelines each appear at both ends of the robustness
spectrum—>but is instead tied to model-specific de-
sign, scale, and potentially, training data. Critically,
the disproportionate degradation in Disorder Type
diagnosis indicates that intermediate-level labels
rely on acoustic cues most vulnerable to the in-
jected perturbations, whereas symptom-level tag-
ging may benefit from label sparsity that cushions
small score shifts.

Impact of Reasoning Introducing an explicit
chain-of-thought (CoT) prompt (“Let’s think step
by step ...”) systematically depressed F1 scores on



the intermediate Disorder-Type task but produced
a mixed picture on the more fine-grained Symptom
task. The pattern aligns with recent evidence that
CoT can hamper tasks where the optimal decision
boundary is compact or where answer formatting
is unforgiving, because the additional reasoning
tokens introduce distraction or bleed into the pre-
dicted label (Liu et al., 2024). Conversely, when
the label space becomes larger and more concep-
tually diffuse, as in symptom diagnosis, CoT can
help larger models articulate latent acoustic cues,
echoing earlier results that larger LLMs benefit
from self-generated rationales on complex prob-
lems (Kojima et al., 2022). Taken together, these
findings caution against the blanket adoption of
CoT in clinical speech pipelines: its utility is con-
tingent on task granularity and model capacity,
and careless deployment can hamper accuracy in
resource-constrained systems.

Impact of Fewshot examples The results of the
GPT-4 family across the first three scenarios under
few-shot prompting indicate that few-shot exam-
ples do not consistently enhance the model’s in-
trinsic capabilities; the benefits of prompting are
not uniformly evident. For instance, while few-
shot prompting significantly improves the perfor-
mance of GPT-40-Mini-Transcribe and GPT-40-
Transcribe in Scenario 1, it leads to reduced ac-
curacy in Scenario 2. This suggests that few-shot
prompts may introduce biases or hallucinations
that adversely affect model behavior. Our observa-
tions are consistent with prior findings on text-only
LLMs reported by Google (Jacovi et al., 2023).

5 Conclusion & Future Work

We present the first end-to-end benchmark for pedi-
atric SLP, constructed within the HELM framework
and encompassing four public corpora, five clin-
ically grounded tasks, and a representative set of
open- and closed-source LLMs. By standardizing
evaluation across the diagnostic spectrum—ifrom
binary disorder screening to symptom-level tag-
ging—this benchmark provides a rigorous and re-
producible testbed for assessing the clinical viabil-
ity of foundation models in SLP contexts.

Our empirical findings underscore the critical
role of acoustic input for accurate clinical reason-
ing. Models with direct access to audio consistently
outperform transcript-only pipelines on all tasks re-
quiring fine-grained reasoning, with performance
gaps ranging from several Macro-F1 points in bi-

nary classification to over 20 points in symptom-
level tagging. However, audio grounding alone
is insufficient: even the best-performing closed-
source models fall short of clinical-grade reliability,
revealing considerable room for improvement. Fur-
thermore, although Whisper achieves significantly
lower WER than most LLM-based ASR compo-
nents, it underperforms on downstream clinical
classification tasks, reinforcing that transcription
fidelity alone is a poor proxy for diagnostic util-
ity. Our fine-tuning experiments with the Qwen2.5
family demonstrate that performance can be sub-
stantially improved through knowledge transfer,
particularly for the Qwen2.5-Omni 7B model. This
highlights the effectiveness of task-specific adap-
tation and the potential for developing specialized
SLP models that generalize well across tasks.

The fairness analysis reveals a consistent male-
favored performance disparity in both screening
and disorder classification tasks, indicating an
urgent need for bias mitigation such as gender-
balanced fine-tuning and targeted data augmenta-
tion. Cross-linguistic evaluations show that audio-
grounded models maintain competitive diagnostic
performance even when transcription accuracy de-
teriorates, as seen in the LeNormand dataset. This
suggests that higher-order acoustic features may
support language-agnostic reasoning capabilities.
Our robustness experiments reveal that, despite
modest absolute F1 scores, model performance
remains stable under perturbation, indicating in-
herent resilience that could be enhanced through
further optimization.

By integrating these evaluations into the HELM
framework, our work transforms isolated model as-
sessments into a transparent, extensible benchmark.
It reveals both where foundation models already
offer clinical utility and where substantial limita-
tions persist—particularly in cross-lingual gener-
alization, symptom-level precision, and reliability
under real-world constraints.

Future work will extend this benchmark to con-
tinuous speech and conversational settings, expand
coverage to low-resource languages and neurodi-
verse populations, and evaluate model explanations
for clinical faithfulness. We also plan to investigate
privacy-preserving fine-tuning paradigms, such as
federated learning, to facilitate deployment in sensi-
tive pediatric settings. Collectively, these directions
aim to bridge the gap between promising laboratory
advances and the development of clinically robust,
ethically sound Al systems for SLP.



Limitations

Despite the promising results and the comprehen-
sive scope of our benchmark, several limitations
warrant discussion, particularly in the context of
ethical and practical considerations for clinical de-
ployment in SLP.

First, while our evaluation encompasses mul-
tiple clinically relevant tasks, the datasets em-
ployed—though diverse—remain limited in both
scale and demographic representation. The major-
ity of speech samples are drawn from English and
French speakers, resulting in underrepresentation
of other languages, dialects, and sociolinguistic
backgrounds. This constraint may limit the gen-
eralizability of our findings to more linguistically
and culturally diverse populations.

Second, our fairness analysis reveals systematic
performance disparities across gender, with male
speakers receiving consistently higher diagnostic
accuracy. This pattern suggests the presence of
gender-related biases, potentially inherited from
pretraining corpora or upstream acoustic encoders.
Such disparities pose ethical challenges, particu-
larly when AI outputs inform clinical decisions,
and underscore the importance of bias auditing and
mitigation to ensure fair and just outcomes across
patient groups.

Third, although our robustness experiments indi-
cate some degree of resilience to background noise,
these evaluations are not exhaustive. Real-world
clinical settings, especially pediatric and multilin-
gual environments, often involve significant acous-
tic variability. Without extensive training on noisy
or augmented data, the reliability of these models
in such conditions remains uncertain, highlighting
the need for further investigation.

Finally, ethical considerations surrounding pri-
vacy and consent are central to the deployment
of Al systems in sensitive clinical domains. Our
current setup does not yet incorporate privacy-
preserving learning/evaluation framework. Ad-
dressing these concerns is essential to safeguard
patient data and build trust among clinicians, pa-
tients, and caregivers.
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A Prompts

A.1 Scenario 1: Binary Classification

Prompt You are a highly experienced
Speech-Language Pathologist (SLP). An
audio recording will be provided,

typically consisting of a speech prompt
from a pathologist followed by a child’s
repetition. The prompt the child is
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trying to repeat is as follows: words.
Based on your professional expertise: 1.
Assess the child’s speech in the recording

for signs of typical development or
potential speech-language disorder. 2.
Conclude your analysis with one of
the following 1labels only: typically

developing or speech disorder. 3. Provide
your response as a single letter without
any additional explanation, commentary,
or unnecessary text.

A.2 Scenario 2: ASR-Based Classification

Prompt You are a highly experienced
Speech-Language Pathologist (SLP). An
audio recording 1is provided to you,

typically consisting of a speech prompt
from a pathologist followed by a child’s
repetition. Based on your expertise
transcribe the child’s speech into text.
Do not make any assumptions about the
words the child is expected to say. Only
transcribe based on the words that the
child actually says. Only respond with
the text transcription, no other text or
commentary.

A.3 Scenario 3: Transcription Accuracy

Prompt You are a highly experienced
Speech-Language Pathologist (SLP). An
audio recording will be provided,

typically consisting of a speech prompt
from a pathologist followed by a child’s
repetition. Based on your expertise
transcribe the child’s speech into text.
Try to understand what the child is
expected to say. And only respond with
the transcription of the child’s speech.
Not the pathologist’s prompt or any other
commentary. Only respond with the text
transcription, no other text, commentary
or punctuations.

A.4 Scenario 4: Disorder Type Classification

Prompt You are a highly experienced
Speech-Language Pathologist (SLP). An
audio recording will be provided,

typically consisting of a speech prompt
from a pathologist followed by a child’s

repetition. The prompt text the child
is trying to repeat is as follows:
words. Based on your professional
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expertise: 1. Assess the child’s speech
in the recording for signs of typical
development or potential speech-language
disorder. 2. Conclude your analysis
with one of the following labels only:
A ’typically developing’ (child’s
speech patterns and development are
within normal age-appropriate ranges), B
’articulation’ (difficulty producing
specific speech sounds correctly, such
as substituting, omitting, or distorting
sounds), C - ’phonological’ (difficulty
understanding and using the sound system
of 1language, affecting sounds of a
particular type). 3. Provide your
response as a single letter without any
additional explanation, commentary, or
unnecessary text

A.5 Scenario 5: Disorder Symptom

Classification
Prompt You are a highly experienced
Speech-Language Pathologist (SLP). An
audio recording will be provided,

typically consisting of a speech prompt
from a pathologist followed by a child’s
repetition. The target phrase the child
is attempting to repeat is: {words}.
Based on your professional expertise,
assess the child’s speech in the recording
and identify any abnormal features. These
features can be one of the following: A
— ’substitution’ (the child replaces one
word, syllable, or sound with another),
B — ’omission’ (the child omits a word,
syllable, or sound), C — ’addition’ (the
child adds an extra word, syllable, or
sound), D — ’typically developing’ (the
child’s speech is appropriate for their
age), or E ’stuttering’ (the child
exhibits repetition, prolongation, or
difficulty initiating speech). Provide
your response as a single letter (A-E)
only, without any additional explanation
or commentary.

B Fine-tuning details

We perform supervised fine-tuning on three mod-
els, including Qwen2-Audio 7B, Qwen2.5-Omni
3B, and Qwen2.5-Omni 7B using LLaMA-Factory
framework (Zheng et al., 2024). We set the same
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fine-tuning hyperparameters for those models, pre-
sented in Table 2 below. Regarding the prompts
used for the three ablation settings for fine-tuning
models, we present them as follows.

1. ASR-only without asterisk

<audio>Transcribe this sound into
text.

2. ASR-only with asterisk
<audio>Transcribe this sound into
text. If the speech is disordered,
please mark the words with an
asterisk.

Table 2: Finetuning hyperparameters
Hyperparameter Value
LoRA rank 32
LoRA alpha 64
LoRA modules all linear layers
Maximum token length 4096
Batch size 32
Epochs 3
Learning rate (LR) 0.0001
LR scheduling cosine
Warm-up ratio 0.1

C Detail Results

In this section, we present our evaluation results
of Scenrio 1 to Scenaario 5 in Table 3 to Table 4,
respectively. All experiments are conducted once.



Table 3: Model performance in Scenarios 1

Model Macro F11 ‘ Micro F11 ‘ Exact Matcht ‘
gemini-2.0-flash-lite 0.34 0.46 0.48
gemini-2.0-flash 0.33 0.46 0.46
gpt-4o-mini-audio 0.21 0.20 0.20
gpt-4o-audio 0.16 0.44 0.44
gpt-4o-mini-transcribe 0.34 0.56 0.56
gpt-4o-transcribe 0.37 0.47 0.47
whisper-gpt4o 0.37 0.47 0.47
qwen2.5-omni-7b 0.79 0.71 0.71
gwen2.5-omni-3b 0.59 0.42 0.42
gwen2-audio-7b-instruct 0.21 0.45 0.45
gwen-audio-chat 0.00 0.00 0.00
phi-multimodal 0.25 0.32 0.32
granite-speech-3.3-8b 0.00 0.00 0.00
granite-speech-3.3-2b 0.00 0.00 0.00
granite-speech-3.2-8b 0.00 0.00 0.00
Finetuned Models with Asterisk
gwen2.5-omni-7b (finetuned) 0.93 0.95 0.95
gwen2.5-omni-3b (finetuned) 0.76 0.89 0.89
gwen2-audio-instruct (finetuned) 0.01 0.30 0.30
Finetuned Models without Asterisk
gwen2.5-omni-7b (finetuned) 0.81 0.67 0.67
gwen2.5-omni-3b (finetuned) 0.20 0.25 0.25
gwen2-audio-instruct (finetuned) 0.01 0.36 0.36
Fewshot Prompting
gpt-4o-mini-audio 0.19 0.23 0.23
gpt-4o-audio 0.21 0.71 0.71
gpt-4o-mini-transcribe 0.44 0.72 0.72
gpt-4o-transcribe 0.45 0.72 0.72
whisper-gptdo 0.24 0.72 0.72
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Table 4: Model performance in Scenarios 2

Model Macro F11 ‘ Micro F11 ‘ Exact Match?t ‘
gemini-2.0-flash-lite 0.01 0.01 0.01
gemini-2.0-flash 0.00 0.00 0.00
gpt-4o-mini-audio 0.03 0.07 0.07
gpt-4o-audio 0.01 0.02 0.02
gpt-4o-transcribe 0.03 0.13 0.13
whisper-gpt4do 0.00 0.00 0.00
gwen2.5-omni-7b 0.01 0.07 0.07
gwen2.5-omni-3b 0.00 0.01 0.01
gwen2-audio-7b-instruct 0.00 0.03 0.03
gwen-audio-chat 0.00 0.00 0.00
phi-multimodal 0.00 0.06 0.06
granite-speech-3.3-8b 0.00 0.03 0.03
granite-speech-3.3-2b 0.00 0.02 0.02
granite-speech-3.2-8b 0.00 0.04 0.04
Finetuned Models with Asterisk
gwen2.5-omni-7b (finetuned) 0.06 0.44 0.44
gwen2.5-omni-3b (finetuned) 0.08 0.23 0.23
gwen2-audio-instruct (finetuned) 0.03 0.32 0.32
Finetuned Models without Asterisk
gwen2.5-omni-7b (finetuned) 0.06 0.44 0.44
gwen2.5-omni-3b (finetuned) 0.08 0.23 0.23
gwen2-audio-instruct (finetuned) 0.16 0.44 0.44
Fewshot Prompting
gpt-4o-mini-audio 0.03 0.09 0.09
gpt-4o-audio 0.04 0.12 0.12
gpt-4o-mini-transcribe 0.01 0.01 0.01
gpt-4o-transcribe 0.01 0.01 0.01
whisper-gpt4o 0.00 0.01 0.01
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Table 5: Model performance in Scenarios 3

Model | WER| | MER| | WIP |
gemini-2.0-flash-lite 0.83 0.68 0.21
gemini-2.0-flash 0.94 0.71 0.24
gpt-4o-mini-audio 1.40 0.68 0.26
gpt-4o-audio 2.25 0.70 0.26
gpt-4o0-mini-transcribe 1.54 0.75 0.19
gpt-4o-transcribe 1.31 0.74 0.23
whisper-gpt4o 2.84 0.75 0.18
qwen2.5-omni-7b 2.17 0.74 0.22
gwen2.5-omni-3b 4.98 0.75 0.22
gwen2-audio-7b-instruct 4.98 0.75 0.22
gwen-audio-chat 12.3 0.90 0.08
phi-multimodal 6.36 0.76 0.20
granite-speech-3.3-8b 13.50 0.93 0.05
granite-speech-3.3-2b 4.13 0.89 0.07
granite-speech-3.2-8b 6.64 0.66 0.14
Finetuned Models with Asterisk
gwen2.5-omni-7b (finetuned) 1.40 0.52 0.41
gwen2.5-omni-3b (finetuned) 0.97 0.53 0.39
gwen2-audio-instruct (finetuned) | 0.58 0.43 0.50

Finetuned Models without Asterisk

gwen2.5-omni-7b (finetuned) 1.76 0.46 0.47
gwen2.5-omni-3b (finetuned) 0.95 0.49 0.43
gwen2-audio-instruct (finetuned) 0.52 0.38 0.56
Fewshot Prompting
gpt-4o-mini-audio 1.58 0.65 0.28
gpt-4o-audio 1.73 0.62 0.30
gpt-4o-mini-transcribe 1.08 0.80 0.12
gpt-4o-transcribe 1.01 0.79 0.14
whisper-gptdo 1.89 0.77 0.16
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Table 6: Model performance in Scenarios 4

Model Macro F11 ‘ Micro F11 ‘ Exact Matcht ‘
gemini-2.0-flash-lite 0.17 0.19 0.19
gemini-2.0-flash 0.20 0.46 0.46
gpt-4o-mini-audio 0.12 0.15 0.15
gpt-4o-audio 0.14 0.36 0.36
gpt-4o-mini-transcribe 0.28 0.42 0.46
gpt-4o-transcribe 0.32 0.41 0.41
whisper-gpt4o 0.33 0.43 0.41
qwen2.5-omni-7b 0.79 0.71 0.71
gwen2.5-omni-3b 0.56 0.44 0.44
gwen2-audio-7b-instruct 0.20 0.33 0.33
gwen-audio-chat 0.00 0.00 0.00
phi-multimodal 0.18 0.37 0.37
granite-speech-3.3-8b 0.00 0.00 0.00
granite-speech-3.3-2b 0.00 0.00 0.00
granite-speech-3.2-8b 0.00 0.01 0.01
Finetuned Models with Asterisk
gwen2.5-omni-7b (finetuned) 0.93 0.95 0.95
gwen2.5-omni-3b (finetuned) 0.76 0.89 0.89
gwen2-audio-instruct (finetuned) 0.02 0.21 0.21
Finetuned Models without Asterisk
gwen2.5-omni-7b (finetuned) 0.28 0.40 0.40
gwen2.5-omni-3b (finetuned) 0.24 0.36 0.36
gwen2-audio-instruct (finetuned) 0.05 0.27 0.27
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Table 7: Model performance in Scenarios 5

Model Macro F11 ‘ Micro F11 ‘ Exact Matcht ‘
gemini-2.0-flash-lite 0.19 0.43 0.43
gemini-2.0-flash 0.09 0.22 0.22
gpt-4o-mini-audio 0.10 0.39 0.39
gpt-4o-audio 0.20 0.49 0.49
gpt-4o-mini-transcribe 0.15 0.26 0.26
gpt-4o-transcribe 0.13 0.28 0.28
whisper-gpt4o 0.18 0.36 0.36
qwen2.5-omni-7b 0.79 0.71 0.71
gwen2.5-omni-3b 0.56 0.44 0.44
gwen2-audio-7b-instruct 0.08 0.10 0.10
gwen-audio-chat 0.00 0.00 0.00
phi-multimodal 0.09 0.13 0.13
granite-speech-3.3-8b 0.00 0.00 0.00
granite-speech-3.3-2b 0.00 0.00 0.00
granite-speech-3.2-8b 0.06 0.20 0.20
Finetuned Models with Asterisk
gwen2.5-omni-7b (finetuned) 0.93 0.95 0.95
gwen2.5-omni-3b (finetuned) 0.76 0.89 0.89
gwen2-audio-instruct (finetuned) 0.00 0.07 0.07
Finetuned Models without Asterisk
gwen2.5-omni-7b (finetuned) 0.16 0.34 0.34
gwen2.5-omni-3b (finetuned) 0.08 0.16 0.16
gwen2-audio-instruct (finetuned) 0.01 0.08 0.08
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