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Abstract001

According to the U.S. National Institutes of002
Health, approximately 5%–9% of children ex-003
perience speech disorders that require clinical004
intervention. However, the number of certified005
speech-language pathologists (SLPs) is roughly006
twenty times fewer than the number of affected007
children, highlighting a significant gap in care008
and a pressing need to automate aspects of SLP009
workflows. Existing AI approaches for sup-010
porting SLPs typically address individual tasks011
in isolation, resulting in inconsistent perfor-012
mance and high deployment costs. Moreover,013
the scarcity of annotated datasets further lim-014
its progress in this domain. Recent advances015
in multimodal large language models (LLMs),016
particularly speech LLMs, offer promising op-017
portunities for automating key SLP tasks and018
generating high-quality datasets. Despite this019
potential, there has been limited exploration020
of speech LLMs in this context. In this work,021
we introduce the first unified and comprehen-022
sive benchmarking framework for five core023
SLP tasks: (1) disorder screening, (2) speech024
transcription, (3) disorder-type classification,025
(4) symptom identification, and (5) transcript-026
based classification. Furthermore, we develop a027
fine-tuning strategy based on cross-task knowl-028
edge transfer, which enhances model perfor-029
mance across multiple tasks. Our experiments030
with 15 state-of-the-art LLMs show that while031
base models perform adequately on coarse-032
grained tasks, finetuning on the transcription033
task can yield substantial improvements across034
a broader set of tasks, demonstrating up to035
more than 30% improvement over baseline ap-036
proaches. We publicly release our datasets,037
models, and benchmark framework to support038
continued research in this area.039

1 Introduction040

Speech and language disorders in children can sig-041

nificantly impact communication, academic devel-042

opment, and long-term social outcomes (Hitchcock043

et al., 2015; Foster et al., 2023). Early detection 044

and intervention by speech-language pathologists 045

are critical to mitigating these adverse effects (Gib- 046

bard et al., 2004; Centers for Disease Control and 047

Prevention, 2024). However, the availability of 048

qualified clinicians is characterized by an uneven 049

distribution across geographic and socioeconomic 050

contexts, with only an expert for every 20 affected 051

children, resulting in significant disparities in ac- 052

cess to care and leading to "missing intervention" 053

for many children who could benefit from timely 054

support (U.S. National Institute on Deafness and 055

Other Communication Disorders, 2025; Tucker and 056

McKinnon, 2020). This gap underscores an urgent 057

need for scalable and supportive technological solu- 058

tions to assist clinicians by augmenting their capac- 059

ity and extending the reach of vital interventions. 060

The shortage of qualified clinicians has led to 061

significant gaps in diagnostic capacity, particularly 062

in domains requiring specialized expertise such as 063

speech-language pathology (SLP). Recent advance- 064

ments in large language models (LLMs) present a 065

promising opportunity to partially automate or aug- 066

ment diagnostic workflows (Lammert et al., 2025; 067

Bhattacharya et al., 2024; Nagpal et al., 2025; Maq- 068

sood et al., 2024). Multimodal LLMs, including 069

GPT-41 and Gemini2, exhibit state-of-the-art ca- 070

pabilities in speech processing and contextual rea- 071

soning. Trained on diverse, large-scale datasets, 072

these models are robust to the variability of clin- 073

ical SLP data, making them well-suited for tasks 074

such as transcribing atypical speech and supporting 075

disorder screening and subtype classification. 076

Effective integration of LLMs into clinical SLP 077

requires rigorous, domain-specific evaluation to es- 078

tablish their clinical validity and utility (Cordella 079

et al., 2025). This process depends on large, high- 080

quality datasets that capture the variability of pedi- 081

1https://openai.com/index/gpt-4/
2https://gemini.google.com
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atric speech, especially disordered forms, and are082

annotated with clinically relevant features. Cur-083

rent progress is hindered by two key challenges:084

the scarcity of well-curated pediatric speech cor-085

pora and the lack of evaluation frameworks that086

address the unique acoustic-phonetic features of087

children’s speech, which are often overlooked by088

general-purpose benchmarks (Suh et al., 2024).089

In this work, we present a comprehensive ap-090

proach to bridge these gaps. Our solution first in-091

volves developing systematic procedures for anno-092

tating child speech data, creating resources suitable093

for SLP-focused model evaluation, and fine-tuning.094

Second, leveraging these curated datasets, we ex-095

tensively evaluate state-of-the-art speech-capable096

LLMs for tasks pertinent to SLP. Our evaluation097

utilizes a tailored benchmark built upon the HELM098

framework (Liang et al., 2023). The benchmark099

assesses models across five clinical scenarios cov-100

ering a spectrum of tasks from foundational dis-101

order detection to more granular symptoms, in-102

cluding Disorder Diagnosis, Transcription-Based103

Diagnosis, Transcription, Disorder Type Classifica-104

tion, and Symptom Classification. This structured105

investigation aims to quantify existing LLMs’ cur-106

rent capabilities and limitations in SLP-relevant107

contexts and explore avenues for enhancing their108

performance through domain-specific adaptation.109

The systematic assessment of current multimodal110

models with this benchmark reveals sizeable perfor-111

mance gaps: macro-F1 scores routinely fall below112

clinically acceptable thresholds, especially on the113

more fine-grained tasks. Additionally, our work in-114

volves developing and evaluating fine-tuned speech115

LLMs designed to push the boundaries of current116

state-of-the-art results on these specialized tasks.117

Our contributions are stated as follows.118

• We release four curated pediatric speech119

datasets comprising approximately 30,000120

speech samples across English and French,121

encompassing both typical and disordered122

speech. These datasets provide a publicly123

available, high-quality resource to support re-124

producible benchmarking in SLP.125

• We propose the first comprehensive eval-126

uation framework for SLP, extending the127

HELM paradigm to unify five essential clini-128

cal tasks. This framework enables consistent,129

task-aligned evaluation and facilitates direct130

comparison of speech LLM performance un-131

der a standardized protocol.132

• We introduce fine-tuned speech LLMs that 133

achieve state-of-the-art performance across all 134

evaluated SLP tasks, illustrating the efficacy 135

of domain-specific adaptation in enhancing 136

diagnostic and transcriptional capabilities. 137

2 Related Works 138

AI in Speech Language Pathology Assessment 139

The use of artificial intelligence, particularly LLMs, 140

in clinical speech-language assessment has gained 141

increasing attention in recent years. Several recent 142

studies have demonstrated the utility of LLMs in 143

detecting and characterizing speech and language 144

disorders. For instance, Bhattacharya et al. showed 145

that pre-trained LLMs could effectively identify 146

both the presence and type of aphasia, suggesting 147

that these models can serve as viable tools for clin- 148

ical screening and diagnosis of language disorders 149

(Bhattacharya et al., 2024). 150

Beyond perception studies, a growing body of 151

technical literature examines the use of speech and 152

language features for automated assessment. Engel- 153

hardt et al. reviewed computational features used to 154

assess cognitive and thought disorders, highlight- 155

ing the relevance of acoustic and linguistic cues 156

in differential diagnosis (Engelhardt et al., 2021). 157

Similarly, (Heilmann et al., 2023) demonstrated 158

that automatic language sample analysis tools can 159

support clinical workflows, providing reliable lin- 160

guistic metrics with reduced human effort. 161

Several efforts have focused on building auto- 162

mated tools for therapy and assessment. (Deka 163

et al., 2025) systematically reviewed AI-based au- 164

tomated speech therapy tools for individuals with 165

speech sound disorders, underscoring their poten- 166

tial and emphasizing the need for clinically val- 167

idated benchmarks. (Themistocleous, 2024) in- 168

troduced a framework for automatic language as- 169

sessment using LLMs, proposing a scalable and 170

adaptable approach for linguistic evaluation. 171

LLMs for Disordered Speech Analysis A re- 172

cent survey of SLPs and graduate students revealed 173

a combination of cautious optimism and skepti- 174

cism regarding the integration of LLMs such as 175

ChatGPT into diagnostic and therapeutic work- 176

flows (Schwartz et al., 2024). These practitioner 177

attitudes highlight critical socio-technical barriers 178

to the clinical adoption of AI-driven systems in 179

speech-language pathology. 180

Recent research has explored the adaptation of 181

LLMs and related models for disordered speech 182
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processing, with an emphasis on reinforcement183

learning. Zhang et al. employed reinforcement184

learning with human feedback (RLHF) to per-185

sonalize automatic speech recognition (ASR) sys-186

tems for disordered speech, demonstrating signifi-187

cant improvements in recognition accuracy through188

individual-level adaptation (Zhang et al., 2024).189

Sanguedolce et al. proposed a more generalized190

framework by fine-tuning Whisper on a dataset of191

stroke patients, resulting in a universal disordered-192

speech detection model. Their approach exhibited193

strong generalization across multiple neurological194

conditions, underscoring the potential of founda-195

tion models for broad-spectrum clinical speech ap-196

plications (Sanguedolce et al., 2024).197

Benchmarking Efforts Benchmarking has been198

instrumental in advancing speech-health research.199

The ADReSS Challenge (Luz et al., 2020) estab-200

lished a balanced benchmark for Alzheimer’s de-201

tection from spontaneous speech, standardizing202

evaluation via F1 and MMSE-regression metrics.203

Similarly, the Children’s ASR Benchmark (Fan204

et al., 2024) introduced standardized splits and205

Whisper/Wav2Vec baselines for speech recogni-206

tion in children aged 6–14, highlighting age-207

specific acoustic challenges. Nonetheless, system-208

atic benchmarking of speech LLMs in clinical con-209

texts remains limited. To address this, we propose a210

unified evaluation framework for assessing speech211

LLMs across clinically relevant tasks, emphasizing212

both diagnostic performance and usability.213

3 Method214

3.1 Clinically-Informed Data Annotation215

Existing datasets for children’s speech-language216

pathology (SLP) research primarily focus on tran-217

scription and binary classification of speech as ei-218

ther disordered or typical (Benway et al., 2022;219

Eshky et al., 2018; Le Normand, 1997; Schneider220

et al., 2006). However, as discussed previously,221

critical SLP tasks involve finer-grained classifica-222

tion, including the identification of specific disor-223

der types and associated symptoms—categories for224

which no large-scale publicly available datasets cur-225

rently exist. Addressing this gap, we collaborated226

closely with certified SLP professionals to develop227

a detailed annotation schema that captures both dis-228

order types and their characteristic symptoms. For229

each speech sample, we assign the most prominent230

disorder type and symptom, prioritizing the most231

salient diagnostic features when multiple condi- 232

tions may co-occur. Speech samples exhibiting no 233

observable signs of speech disorder are annotated 234

as typical. Our annotation protocol and chosen tax- 235

onomy are informed by clinical guidelines from 236

the U.S. National Institutes of Health (Simon and 237

Rosenbaum, 2016) and SLP best practices (Ameri- 238

can Speech-Language-Hearing Association, 2016). 239

After initial manual labeling, we conducted a ver- 240

ification phase in which all annotations were re- 241

viewed by certified speech-language pathologists 242

to ensure consistency and clinical validity. This pro- 243

cedure resulted in a high-quality, expert-validated 244

dataset suitable for training and evaluating models 245

on clinically relevant SLP tasks. 246

3.2 Evaluation Pipelines 247

We evaluate five core tasks that collectively capture 248

the essential stages of pediatric SLP, from initial 249

screening to detailed diagnostic analysis: (1) Dis- 250

order Diagnosis, which assesses a model’s abil- 251

ity to distinguish between typical and disordered 252

speech—a critical early triage step for prioritizing 253

clinical resources; (2) Transcript-based Diagno- 254

sis, which serves as a baseline for diagnostic accu- 255

racy by testing the assumption that speech from 256

children with disorders deviates from expected 257

utterances. This approach operates by matching 258

model-generated transcripts to clinician prompts, 259

which offers a minimal, interpretation-free method 260

that could be readily deployed in clinical settings. 261

By benchmarking against this heuristic, we quan- 262

tify the value added by more sophisticated multi- 263

modal LLM reasoning; (3) Transcription, which 264

measures the fidelity of automatic speech recogni- 265

tion (ASR) systems on child and disordered speech, 266

a prerequisite for downstream diagnostic and doc- 267

umentation tasks; (4) Disorder Type Classifica- 268

tion, which probes whether models can differenti- 269

ate between articulation disorders—motor-based 270

speech errors such as lisps or distortions—and 271

phonological disorders, which involve rule-based 272

sound pattern errors like consistent substitution 273

of one phoneme for another (e.g., /k/ → /t/);(5) 274

Disorder Symptom Classification, a fine-grained 275

task, requires models to identify specific clinical 276

symptoms, including additions (insertion of extra 277

sounds), substitutions (replacing one sound with an- 278

other), omissions (dropping expected sounds), and 279

stuttering (disruptions in speech fluency). Figure 1 280

illustrates an overview of classification tasks in our 281

pipeline. To assess model capacity under differ- 282
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ent prompting strategies, we evaluate performance283

using both zero-shot and five-shot prompting. De-284

tails of these prompts are presented in Appendix A.285

Evaluation metrics for classification tasks include286

Macro F1, Micro F1, and Exact Match Accuracy,287

while transcription performance is assessed using288

Word Error Rate (WER), Match Error Rate (MER),289

and Word Information Preserved (WIP).290

We develop SLPHelm, an evaluation framework291

built upon the HELM benchmark (Liang et al.,292

2023), to enable standardized, systematic assess-293

ment across all tasks. By leveraging a unified294

pipeline, SLPHelm ensures consistent evaluation295

protocols and comparability across models and296

prompting strategies. To promote reproducibility,297

we publicly release all code, prompts, and configu-298

ration files associated with our framework.299

3.3 Finetuning Methods300

To investigate the impact of fine-tuning on model301

performance across multiple tasks, we explore302

two fine-tuning strategies. Prior work has shown303

that fine-tuning can facilitate cross-task and cross-304

lingual knowledge transfer, wherein a model fine-305

tuned on a simple task in a given language can306

exhibit improved performance on a range of down-307

stream tasks in the same language (Ye, 2024; Egon-308

mwan et al., 2019).309

Our first strategy involves fine-tuning the model310

on a speech recognition task (Scenario 3, as de-311

scribed above), relying on the model’s intrinsic312

ability to transfer knowledge to improve perfor-313

mance on related tasks. In this setup, both typical314

and disordered speech samples are labeled with the315

same expected transcriptions. However, assigning316

identical transcriptions to acoustically distinct in-317

puts may introduce ambiguity and limit the model’s318

ability to learn disorder-specific patterns. To miti-319

gate this, our second strategy modifies the labeling320

of disordered speech by appending an asterisk to321

each word in its transcription. This lightweight322

labeling scheme serves to differentiate disordered323

speech from typical speech, thereby guiding the324

model to better recognize and transcribe disordered325

speech patterns without altering the overall task326

formulation. Details of fine-tuning prompts and327

hyperparameters are presented in Appendix B.328

Our central hypothesis is that fine-tuning on a329

general task (e.g., speech recognition) alone is in-330

sufficient to yield improvements on specialized331

clinical tasks unless the fine-tuning data contains332

explicit information relevant to those tasks. This333

stems from the theoretical premise that general- 334

purpose models primarily optimize for surface- 335

level acoustic-linguistic alignment, which may not 336

encode the deeper, disorder-specific features, such 337

as atypical phonological patterns or motor-based 338

distortions, necessary for clinical inference (Shor 339

et al., 2019; Dorfner et al., 2024). We posit that en- 340

hanced task performance, particularly for disorder- 341

specific tasks, requires either systematic cues (as 342

in the second strategy) or explicit exposure to 343

disorder-relevant data. 344

4 Experimental Resutls 345

4.1 Datasets, Models, and Configurations 346

Datasets In this study, we utilize four publicly 347

available datasets: Ultrasuite(Eshky et al., 2018), 348

ENNI(Schneider et al., 2006), LeNormand(Le Nor- 349

mand, 1997), and Percept-GFTA(Benway et al., 350

2022). These datasets encompass a range of child 351

speech samples, both typical and disordered, and 352

serve as the foundation for evaluating model per- 353

formance across diagnostic tasks. Detailed dataset 354

statistics are presented in Table 1. To ensure com- 355

putational efficiency while maintaining representa- 356

tiveness, we randomly sample up to 1000 instances 357

from each dataset for evaluation. 358

Table 1: Dataset statistics

Dataset # Children # Samples Age Range

Ultrasuite 66 8338 5–13
ENNI 377 16546 4–9
LeNormand (French) 17 329 3–8
PERCEPT-GFTA 350 3664 6–17

Models We evaluate a total of 15 speech LLMs, 359

encompassing both proprietary and open-source 360

systems. Among the closed-source models, our 361

evaluation includes the GPT-4 family (4o-audio, 4o- 362

mini-audio, 4o-transcribe, and 4o-mini-transcribe), 363

Whisper, and the Gemini 2.0 family (2.0-flash, 2.0- 364

flash-lite). For open-source models, we consider 365

multiple versions and sizes from the Qwen fami- 366

lies (2.5-omni-7b, 2.5-omni-3b, 2-audio-7b, audio- 367

chat), the Phi-4, and IBM Granite series (3.3-8b, 368

3.3-3b, 3.2-8b). Models are assessed across differ- 369

ent parameter scales within each family to capture 370

performance variability due to model capacity. 371

Inference pipelines We implement two distinct 372

model inference pipelines within our evaluation 373

framework. The first, referred to as the audio-to- 374
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Figure 1: Taxonomy of classification tasks in SLPHelm. The benchmark includes three core diagnostic tasks: (i)
disorder diagnosis, (ii) disorder symptom classification, and (iii) disorder type classification.

LLM prompting pipeline, is designed for models375

with native multimodal capabilities (e.g., GPT-4o-376

Audio, Gemini 2.0 Flash). In this setting, raw audio377

inputs are passed directly to the model alongside378

a task-specific prompt, enabling end-to-end pro-379

cessing of both acoustic and textual information.380

The second pipeline, termed transcription-based381

prompting, targets language-only models (denoted382

with the -transcribe suffix). Here, audio inputs383

are first transcribed using a base automatic speech384

recognition (ASR) model (e.g., Whisper or GPT-385

4o’s internal ASR), and the resulting text is em-386

bedded into a structured prompt for downstream387

reasoning. This two-pronged architecture enables388

systematic comparison between models with na-389

tive audio comprehension and those relying on cas-390

caded ASR-to-LLM pipelines, providing insights391

into the trade-offs between direct speech under-392

standing and transcription-mediated processing.393

4.2 Evaluation Results394

Our findings indicate that current speech LLMs ex-395

hibit substantial potential in augmenting core SLP396

tasks. However, both existing proprietary and open-397

source models currently fall short of clinically ac-398

ceptable performance thresholds. This limitation is399

likely attributable to the underrepresentation of dis-400

ordered speech in training corpora, as such data is401

significantly less prevalent than typical speech sam-402

ples available online. For reference, existing FDA-403

approved diagnostic systems typically achieve F1404

scores in the range of 0.80 to 0.85 (Fanni et al.,405

2023; Abràmoff et al., 2018), which serves as a406

practical standard for clinical viability. Further-407

more, model performance varies markedly across408

different task scenarios, highlighting the absence of409

a universally robust model capable of consistently410

addressing the diverse requirements of pediatric411

SLP applications. Figure 2 presents an overview of412

the performance of all models.413

Scenario 1: Disorder Diagnosis In the dis-414

order diagnosis task, performance remains lim-415

ited, with no model exceeding a Macro F1416

score of 0.71. The best result is achieved by 417

Qwen 2.5-Omni-7B, outperforming GPT-4o-Mini- 418

Transcribe (0.56). The fact that these mod- 419

els use different pipelines—audio-grounded vs. 420

ASR+text—suggests no clear advantage of one ap- 421

proach over the other. Smaller variants within each 422

family perform similarly, indicating diminishing 423

returns from increased parameter count. Audio- 424

grounded Granite models perform poorly (F1 < 425

0.1), likely due to their pretraining focus on speech- 426

to-text and translation tasks (IBM Granite Team, 427

2025). While their WER is competitive with other 428

audio models (e.g., Gemini 2.0 Flash (Saon et al., 429

2025)), they appear to miss prosodic and articula- 430

tory cues critical for disorder detection. Overall, 431

even the strongest models misclassify nearly half 432

of the cases, underscoring the challenge of this 433

foundational diagnostic task. 434

Scenario 2: Transcription-based Diagnosis 435

Substituting the audio-grounded prompts with a 436

naïve transcribe-and-compare baseline precipitates 437

a pronounced decline in performance. Macro- 438

F1 scores fall by roughly an order of magnitude: 439

the strongest system, GPT-4o-Mini-Transcribe, at- 440

tains only 0.21, while most models approach 441

zero. Error propagation from automatic-speech- 442

recognition (ASR) output, compounded by brittle 443

string-matching heuristics, underscores the neces- 444

sity of end-to-end acoustic reasoning and estab- 445

lishes this baseline as a conservative lower bound. 446

Scenario 3: Transcription Word-error rates 447

(WER) vary widely—from 8.3% to 66.4%. Gemini- 448

2.0-Flash-Lite achieves the lowest WER (8.3%), 449

closely followed by Gemini-2.0-Flash (9.4%). Im- 450

portantly, transcription fidelity shows limited cor- 451

relation with diagnostic accuracy: GPT-4o-Mini- 452

Transcribe records a moderate WER of 15.4% yet 453

ranks among the strongest classifiers in Scenario 1. 454

These findings indicate that high-quality transcripts 455

are neither necessary nor sufficient for dependable 456

clinical reasoning. 457
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Figure 2: Metrics across all scenarios

Scenario 4: Disorder Type Classification In458

this scenario, improved accuracy has direct clinical459

implications: precise subtype identification sup-460

ports more targeted and effective therapy plans,461

potentially reducing treatment duration and im-462

proving long-term speech outcomes. Closed-463

source multimodal models—especially Gemini-464

2.0-Flash—generally outperform open-source ones,465

suggesting benefits from broader or more diverse466

acoustic pretraining. However, Qwen2.5-7B is a467

notable exception, outperforming all models re-468

gardless of access or scale, hinting at architectural469

or pretraining advantages. The performance gap be-470

tween audio-grounded and transcript-only variants471

is modest; for instance, GPT-4o-Mini-Transcribe472

lags its audio-capable version by just 6 Macro-F1473

points. This indicates that LLMs can extract di-474

agnostic signals from transcripts alone. Overall,475

ASR+LLM pipelines, while not yet optimal, offer476

a feasible alternative when audio is unavailable.477

Scenario 5: Disorder Symptom Classification478

Accurate identification of these symptoms directly479

informs treatment goals and therapy design in480

speech-language pathology. Qwen2.5-7B once481

again leads in performance but still falls well482

short of clinically actionable accuracy. Moreover,483

transcription-first models underperform across all484

metrics, underscoring that critical acoustic cues485

needed for symptom detection are often lost or486

degraded during transcription. Three consistent487

trends emerge across tasks. First, audio grounding488

becomes increasingly vital as tasks grow more gran-489

ular: while the performance gap between audio-490

first and transcript-only models is small for bi-491

nary screening (Scenario 1), it widens significantly492

for symptom-level tagging (Scenario 5). Second,493

model scale is not the sole determinant of per-494

formance—smaller, well-aligned models such as 495

Gemini-Flash-Lite achieve strong transcription re- 496

sults. Third, high transcription accuracy does not 497

imply clinical accuracy, as evidenced by a weak 498

correlation between performance on ASR and di- 499

agnostic tasks. 500

Finetuning results Fine-tuning large models can 501

significantly enhance their performance on down- 502

stream tasks. In our setting, fine-tuning solely 503

on automatic speech recognition (ASR) data, re- 504

gardless of whether disordered speech is explicitly 505

marked, leads to noticeable improvements in ASR- 506

based tasks (Scenarios 2 and 3). However, not dif- 507

ferentiating between typical and disordered speech 508

introduces ambiguity in the input-label mapping, 509

which in turn results in degraded performance. In- 510

corporating a simple asterisk mitigates this issue, 511

yielding more stable performance. 512

Cross Language Analysis Figure 4 shows a con- 513

sistent pattern: macro-F1 is higher in French than 514

in English, yet WER is markedly worse. A plausi- 515

ble explanation lies in the way these systems were 516

pre-trained. Their ASR components are heavily op- 517

timized on English text-to-speech pairs, so lexical 518

recognition degrades when confronted with French 519

phonotactics, inflating WER. By contrast, the diag- 520

nostic classifiers operate on higher-level acoustic 521

embeddings learned during large-scale audio pre- 522

training that is largely language-agnostic (Klempíř 523

and Krupička, 2024). Those embeddings could still 524

capture phonological and articulatory cues relevant 525

to speech-disorder detection, so classification ac- 526

curacy can rise even as word-level transcription 527

falters. In short, limited French supervision hurts 528

the ASR stage but leaves the downstream pathology 529

signal largely intact, highlighting that transcript fi- 530

delity and clinical utility depend on different slices 531
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Figure 3: Model performance after finetuning

Figure 4: Compares model performance with reasoning, robustness under noisy conditions, across gender and
languages

of the model’s pre-training pipeline. This once532

again highlights the divergence and lack of correla-533

tion between the diagnostic capabilities of a model534

and its performance under transcription tasks535

Cross Gender Analysis Figure 4 showcases that536

across two diagnostic tasks, the models exhibit537

a systematic gender performance gap that favors538

male speech. For both tasks, we run model eval-539

uation on 1000 utterances for each gender on the540

UltraSuite dataset since it makes demographic iden-541

tifiers available through its metadata. For the bi-542

nary disorder-screening scenario, macro-F1 for543

male speakers averages 0.59 versus 0.40 for female544

speakers. The disparity persists, though it narrows545

in disorder-type classification. This pattern is re-546

markably consistent: almost every architecture in547

the screening task posts a positive male-female dif-548

ferential, and even that baseline reverses to a male549

advantage once finer-grained labels are required.550

Notably, the gap is not confined to a particular mod-551

eling strategy; it appears in fully audio-grounded552

systems (e.g., GPT-4o-audio, Gemini-2.0-Flash)553

as well as in transcript-conditioned variants, indi-554

cating that either the upstream acoustic encoders555

or the training data itself encode gender-skewed556

priors. The magnitude of the divergence suggests557

practical consequences for clinical deployment, as558

female speech receives both lower sensitivity and559

lower precision across disorder categories. Taken560

together, the results underscore the need for tar-561

geted auditing and, potentially, gender-balanced 562

fine-tuning to ensure equitable diagnostic perfor- 563

mance across child speakers. 564

Robustness Analysis We analyse model robust- 565

ness by having the models evaluate audio record- 566

ings with artificial 3 different perturbations added 567

to them - road noise, classroom noise, and office 568

noise; and aggregating the results to comprehen- 569

sively model performance under these conditions. 570

We added 20 dB of that background noise to ap- 571

proximately simulate conditions that a given LLM 572

might face in the clinical SLP setting. Figure 4 573

shows that the bulk of the metric degradation is con- 574

centrated in the disorder type diagnosis, while per- 575

formance for symptom diagnosis remains virtually 576

unchanged. These observations suggest that noise 577

resilience is not strictly a function of architecture 578

class - audio-grounded, and transcript-conditioned 579

pipelines each appear at both ends of the robustness 580

spectrum—but is instead tied to model-specific de- 581

sign, scale, and potentially, training data. Critically, 582

the disproportionate degradation in Disorder Type 583

diagnosis indicates that intermediate-level labels 584

rely on acoustic cues most vulnerable to the in- 585

jected perturbations, whereas symptom-level tag- 586

ging may benefit from label sparsity that cushions 587

small score shifts. 588

Impact of Reasoning Introducing an explicit 589

chain-of-thought (CoT) prompt (“Let’s think step 590

by step . . . ”) systematically depressed F1 scores on 591
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the intermediate Disorder-Type task but produced592

a mixed picture on the more fine-grained Symptom593

task. The pattern aligns with recent evidence that594

CoT can hamper tasks where the optimal decision595

boundary is compact or where answer formatting596

is unforgiving, because the additional reasoning597

tokens introduce distraction or bleed into the pre-598

dicted label (Liu et al., 2024). Conversely, when599

the label space becomes larger and more concep-600

tually diffuse, as in symptom diagnosis, CoT can601

help larger models articulate latent acoustic cues,602

echoing earlier results that larger LLMs benefit603

from self-generated rationales on complex prob-604

lems (Kojima et al., 2022). Taken together, these605

findings caution against the blanket adoption of606

CoT in clinical speech pipelines: its utility is con-607

tingent on task granularity and model capacity,608

and careless deployment can hamper accuracy in609

resource-constrained systems.610

Impact of Fewshot examples The results of the611

GPT-4 family across the first three scenarios under612

few-shot prompting indicate that few-shot exam-613

ples do not consistently enhance the model’s in-614

trinsic capabilities; the benefits of prompting are615

not uniformly evident. For instance, while few-616

shot prompting significantly improves the perfor-617

mance of GPT-4o-Mini-Transcribe and GPT-4o-618

Transcribe in Scenario 1, it leads to reduced ac-619

curacy in Scenario 2. This suggests that few-shot620

prompts may introduce biases or hallucinations621

that adversely affect model behavior. Our observa-622

tions are consistent with prior findings on text-only623

LLMs reported by Google (Jacovi et al., 2023).624

5 Conclusion & Future Work625

We present the first end-to-end benchmark for pedi-626

atric SLP, constructed within the HELM framework627

and encompassing four public corpora, five clin-628

ically grounded tasks, and a representative set of629

open- and closed-source LLMs. By standardizing630

evaluation across the diagnostic spectrum—from631

binary disorder screening to symptom-level tag-632

ging—this benchmark provides a rigorous and re-633

producible testbed for assessing the clinical viabil-634

ity of foundation models in SLP contexts.635

Our empirical findings underscore the critical636

role of acoustic input for accurate clinical reason-637

ing. Models with direct access to audio consistently638

outperform transcript-only pipelines on all tasks re-639

quiring fine-grained reasoning, with performance640

gaps ranging from several Macro-F1 points in bi-641

nary classification to over 20 points in symptom- 642

level tagging. However, audio grounding alone 643

is insufficient: even the best-performing closed- 644

source models fall short of clinical-grade reliability, 645

revealing considerable room for improvement. Fur- 646

thermore, although Whisper achieves significantly 647

lower WER than most LLM-based ASR compo- 648

nents, it underperforms on downstream clinical 649

classification tasks, reinforcing that transcription 650

fidelity alone is a poor proxy for diagnostic util- 651

ity. Our fine-tuning experiments with the Qwen2.5 652

family demonstrate that performance can be sub- 653

stantially improved through knowledge transfer, 654

particularly for the Qwen2.5-Omni 7B model. This 655

highlights the effectiveness of task-specific adap- 656

tation and the potential for developing specialized 657

SLP models that generalize well across tasks. 658

The fairness analysis reveals a consistent male- 659

favored performance disparity in both screening 660

and disorder classification tasks, indicating an 661

urgent need for bias mitigation such as gender- 662

balanced fine-tuning and targeted data augmenta- 663

tion. Cross-linguistic evaluations show that audio- 664

grounded models maintain competitive diagnostic 665

performance even when transcription accuracy de- 666

teriorates, as seen in the LeNormand dataset. This 667

suggests that higher-order acoustic features may 668

support language-agnostic reasoning capabilities. 669

Our robustness experiments reveal that, despite 670

modest absolute F1 scores, model performance 671

remains stable under perturbation, indicating in- 672

herent resilience that could be enhanced through 673

further optimization. 674

By integrating these evaluations into the HELM 675

framework, our work transforms isolated model as- 676

sessments into a transparent, extensible benchmark. 677

It reveals both where foundation models already 678

offer clinical utility and where substantial limita- 679

tions persist—particularly in cross-lingual gener- 680

alization, symptom-level precision, and reliability 681

under real-world constraints. 682

Future work will extend this benchmark to con- 683

tinuous speech and conversational settings, expand 684

coverage to low-resource languages and neurodi- 685

verse populations, and evaluate model explanations 686

for clinical faithfulness. We also plan to investigate 687

privacy-preserving fine-tuning paradigms, such as 688

federated learning, to facilitate deployment in sensi- 689

tive pediatric settings. Collectively, these directions 690

aim to bridge the gap between promising laboratory 691

advances and the development of clinically robust, 692

ethically sound AI systems for SLP. 693
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Limitations694

Despite the promising results and the comprehen-695

sive scope of our benchmark, several limitations696

warrant discussion, particularly in the context of697

ethical and practical considerations for clinical de-698

ployment in SLP.699

First, while our evaluation encompasses mul-700

tiple clinically relevant tasks, the datasets em-701

ployed—though diverse—remain limited in both702

scale and demographic representation. The major-703

ity of speech samples are drawn from English and704

French speakers, resulting in underrepresentation705

of other languages, dialects, and sociolinguistic706

backgrounds. This constraint may limit the gen-707

eralizability of our findings to more linguistically708

and culturally diverse populations.709

Second, our fairness analysis reveals systematic710

performance disparities across gender, with male711

speakers receiving consistently higher diagnostic712

accuracy. This pattern suggests the presence of713

gender-related biases, potentially inherited from714

pretraining corpora or upstream acoustic encoders.715

Such disparities pose ethical challenges, particu-716

larly when AI outputs inform clinical decisions,717

and underscore the importance of bias auditing and718

mitigation to ensure fair and just outcomes across719

patient groups.720

Third, although our robustness experiments indi-721

cate some degree of resilience to background noise,722

these evaluations are not exhaustive. Real-world723

clinical settings, especially pediatric and multilin-724

gual environments, often involve significant acous-725

tic variability. Without extensive training on noisy726

or augmented data, the reliability of these models727

in such conditions remains uncertain, highlighting728

the need for further investigation.729

Finally, ethical considerations surrounding pri-730

vacy and consent are central to the deployment731

of AI systems in sensitive clinical domains. Our732

current setup does not yet incorporate privacy-733

preserving learning/evaluation framework. Ad-734

dressing these concerns is essential to safeguard735

patient data and build trust among clinicians, pa-736

tients, and caregivers.737
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A Prompts958

A.1 Scenario 1: Binary Classification959

Prompt You are a highly experienced960

Speech-Language Pathologist (SLP). An961

audio recording will be provided,962

typically consisting of a speech prompt963

from a pathologist followed by a child’s964

repetition. The prompt the child is965

trying to repeat is as follows: words. 966

Based on your professional expertise: 1. 967

Assess the child’s speech in the recording 968

for signs of typical development or 969

potential speech-language disorder. 2. 970

Conclude your analysis with one of 971

the following labels only: typically 972

developing or speech disorder. 3. Provide 973

your response as a single letter without 974

any additional explanation, commentary, 975

or unnecessary text. 976

A.2 Scenario 2: ASR-Based Classification 977

Prompt You are a highly experienced 978

Speech-Language Pathologist (SLP). An 979

audio recording is provided to you, 980

typically consisting of a speech prompt 981

from a pathologist followed by a child’s 982

repetition. Based on your expertise 983

transcribe the child’s speech into text. 984

Do not make any assumptions about the 985

words the child is expected to say. Only 986

transcribe based on the words that the 987

child actually says. Only respond with 988

the text transcription, no other text or 989

commentary. 990

A.3 Scenario 3: Transcription Accuracy 991

Prompt You are a highly experienced 992

Speech-Language Pathologist (SLP). An 993

audio recording will be provided, 994

typically consisting of a speech prompt 995

from a pathologist followed by a child’s 996

repetition. Based on your expertise 997

transcribe the child’s speech into text. 998

Try to understand what the child is 999

expected to say. And only respond with 1000

the transcription of the child’s speech. 1001

Not the pathologist’s prompt or any other 1002

commentary. Only respond with the text 1003

transcription, no other text, commentary 1004

or punctuations. 1005

A.4 Scenario 4: Disorder Type Classification 1006

Prompt You are a highly experienced 1007

Speech-Language Pathologist (SLP). An 1008

audio recording will be provided, 1009

typically consisting of a speech prompt 1010

from a pathologist followed by a child’s 1011

repetition. The prompt text the child 1012

is trying to repeat is as follows: 1013

words. Based on your professional 1014
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expertise: 1. Assess the child’s speech1015

in the recording for signs of typical1016

development or potential speech-language1017

disorder. 2. Conclude your analysis1018

with one of the following labels only:1019

A - ’typically developing’ (child’s1020

speech patterns and development are1021

within normal age-appropriate ranges), B1022

- ’articulation’ (difficulty producing1023

specific speech sounds correctly, such1024

as substituting, omitting, or distorting1025

sounds), C - ’phonological’ (difficulty1026

understanding and using the sound system1027

of language, affecting sounds of a1028

particular type). 3. Provide your1029

response as a single letter without any1030

additional explanation, commentary, or1031

unnecessary text1032

A.5 Scenario 5: Disorder Symptom1033

Classification1034

Prompt You are a highly experienced1035

Speech-Language Pathologist (SLP). An1036

audio recording will be provided,1037

typically consisting of a speech prompt1038

from a pathologist followed by a child’s1039

repetition. The target phrase the child1040

is attempting to repeat is: {words}.1041

Based on your professional expertise,1042

assess the child’s speech in the recording1043

and identify any abnormal features. These1044

features can be one of the following: A1045

— ’substitution’ (the child replaces one1046

word, syllable, or sound with another),1047

B — ’omission’ (the child omits a word,1048

syllable, or sound), C — ’addition’ (the1049

child adds an extra word, syllable, or1050

sound), D — ’typically developing’ (the1051

child’s speech is appropriate for their1052

age), or E — ’stuttering’ (the child1053

exhibits repetition, prolongation, or1054

difficulty initiating speech). Provide1055

your response as a single letter (A–E)1056

only, without any additional explanation1057

or commentary.1058

B Fine-tuning details1059

We perform supervised fine-tuning on three mod-1060

els, including Qwen2-Audio 7B, Qwen2.5-Omni1061

3B, and Qwen2.5-Omni 7B using LLaMA-Factory1062

framework (Zheng et al., 2024). We set the same1063

fine-tuning hyperparameters for those models, pre- 1064

sented in Table 2 below. Regarding the prompts 1065

used for the three ablation settings for fine-tuning 1066

models, we present them as follows. 1067

1. ASR-only without asterisk 1068

<audio>Transcribe this sound into 1069

text. 1070

2. ASR-only with asterisk 1071

<audio>Transcribe this sound into 1072

text. If the speech is disordered, 1073

please mark the words with an 1074

asterisk. 1075

Table 2: Finetuning hyperparameters

Hyperparameter Value

LoRA rank 32
LoRA alpha 64
LoRA modules all linear layers
Maximum token length 4096
Batch size 32
Epochs 3
Learning rate (LR) 0.0001
LR scheduling cosine
Warm-up ratio 0.1

C Detail Results 1076

In this section, we present our evaluation results 1077

of Scenrio 1 to Scenaario 5 in Table 3 to Table 4, 1078

respectively. All experiments are conducted once. 1079
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Table 3: Model performance in Scenarios 1

Model Macro F1↑ Micro F1↑ Exact Match↑

gemini-2.0-flash-lite 0.34 0.46 0.48
gemini-2.0-flash 0.33 0.46 0.46
gpt-4o-mini-audio 0.21 0.20 0.20
gpt-4o-audio 0.16 0.44 0.44
gpt-4o-mini-transcribe 0.34 0.56 0.56
gpt-4o-transcribe 0.37 0.47 0.47
whisper-gpt4o 0.37 0.47 0.47
qwen2.5-omni-7b 0.79 0.71 0.71
qwen2.5-omni-3b 0.59 0.42 0.42
qwen2-audio-7b-instruct 0.21 0.45 0.45
qwen-audio-chat 0.00 0.00 0.00
phi-multimodal 0.25 0.32 0.32
granite-speech-3.3-8b 0.00 0.00 0.00
granite-speech-3.3-2b 0.00 0.00 0.00
granite-speech-3.2-8b 0.00 0.00 0.00

Finetuned Models with Asterisk

qwen2.5-omni-7b (finetuned) 0.93 0.95 0.95
qwen2.5-omni-3b (finetuned) 0.76 0.89 0.89
qwen2-audio-instruct (finetuned) 0.01 0.30 0.30

Finetuned Models without Asterisk

qwen2.5-omni-7b (finetuned) 0.81 0.67 0.67
qwen2.5-omni-3b (finetuned) 0.20 0.25 0.25
qwen2-audio-instruct (finetuned) 0.01 0.36 0.36

Fewshot Prompting

gpt-4o-mini-audio 0.19 0.23 0.23
gpt-4o-audio 0.21 0.71 0.71
gpt-4o-mini-transcribe 0.44 0.72 0.72
gpt-4o-transcribe 0.45 0.72 0.72
whisper-gpt4o 0.24 0.72 0.72
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Table 4: Model performance in Scenarios 2

Model Macro F1↑ Micro F1↑ Exact Match↑

gemini-2.0-flash-lite 0.01 0.01 0.01
gemini-2.0-flash 0.00 0.00 0.00
gpt-4o-mini-audio 0.03 0.07 0.07
gpt-4o-audio 0.01 0.02 0.02
gpt-4o-transcribe 0.03 0.13 0.13
whisper-gpt4o 0.00 0.00 0.00
qwen2.5-omni-7b 0.01 0.07 0.07
qwen2.5-omni-3b 0.00 0.01 0.01
qwen2-audio-7b-instruct 0.00 0.03 0.03
qwen-audio-chat 0.00 0.00 0.00
phi-multimodal 0.00 0.06 0.06
granite-speech-3.3-8b 0.00 0.03 0.03
granite-speech-3.3-2b 0.00 0.02 0.02
granite-speech-3.2-8b 0.00 0.04 0.04

Finetuned Models with Asterisk

qwen2.5-omni-7b (finetuned) 0.06 0.44 0.44
qwen2.5-omni-3b (finetuned) 0.08 0.23 0.23
qwen2-audio-instruct (finetuned) 0.03 0.32 0.32

Finetuned Models without Asterisk

qwen2.5-omni-7b (finetuned) 0.06 0.44 0.44
qwen2.5-omni-3b (finetuned) 0.08 0.23 0.23
qwen2-audio-instruct (finetuned) 0.16 0.44 0.44

Fewshot Prompting

gpt-4o-mini-audio 0.03 0.09 0.09
gpt-4o-audio 0.04 0.12 0.12
gpt-4o-mini-transcribe 0.01 0.01 0.01
gpt-4o-transcribe 0.01 0.01 0.01
whisper-gpt4o 0.00 0.01 0.01
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Table 5: Model performance in Scenarios 3

Model WER↓ MER↓ WIP↑

gemini-2.0-flash-lite 0.83 0.68 0.21
gemini-2.0-flash 0.94 0.71 0.24
gpt-4o-mini-audio 1.40 0.68 0.26
gpt-4o-audio 2.25 0.70 0.26
gpt-4o-mini-transcribe 1.54 0.75 0.19
gpt-4o-transcribe 1.31 0.74 0.23
whisper-gpt4o 2.84 0.75 0.18
qwen2.5-omni-7b 2.17 0.74 0.22
qwen2.5-omni-3b 4.98 0.75 0.22
qwen2-audio-7b-instruct 4.98 0.75 0.22
qwen-audio-chat 12.3 0.90 0.08
phi-multimodal 6.36 0.76 0.20
granite-speech-3.3-8b 13.50 0.93 0.05
granite-speech-3.3-2b 4.13 0.89 0.07
granite-speech-3.2-8b 6.64 0.66 0.14

Finetuned Models with Asterisk

qwen2.5-omni-7b (finetuned) 1.40 0.52 0.41
qwen2.5-omni-3b (finetuned) 0.97 0.53 0.39
qwen2-audio-instruct (finetuned) 0.58 0.43 0.50

Finetuned Models without Asterisk

qwen2.5-omni-7b (finetuned) 1.76 0.46 0.47
qwen2.5-omni-3b (finetuned) 0.95 0.49 0.43
qwen2-audio-instruct (finetuned) 0.52 0.38 0.56

Fewshot Prompting

gpt-4o-mini-audio 1.58 0.65 0.28
gpt-4o-audio 1.73 0.62 0.30
gpt-4o-mini-transcribe 1.08 0.80 0.12
gpt-4o-transcribe 1.01 0.79 0.14
whisper-gpt4o 1.89 0.77 0.16
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Table 6: Model performance in Scenarios 4

Model Macro F1↑ Micro F1↑ Exact Match↑

gemini-2.0-flash-lite 0.17 0.19 0.19
gemini-2.0-flash 0.20 0.46 0.46
gpt-4o-mini-audio 0.12 0.15 0.15
gpt-4o-audio 0.14 0.36 0.36
gpt-4o-mini-transcribe 0.28 0.42 0.46
gpt-4o-transcribe 0.32 0.41 0.41
whisper-gpt4o 0.33 0.43 0.41
qwen2.5-omni-7b 0.79 0.71 0.71
qwen2.5-omni-3b 0.56 0.44 0.44
qwen2-audio-7b-instruct 0.20 0.33 0.33
qwen-audio-chat 0.00 0.00 0.00
phi-multimodal 0.18 0.37 0.37
granite-speech-3.3-8b 0.00 0.00 0.00
granite-speech-3.3-2b 0.00 0.00 0.00
granite-speech-3.2-8b 0.00 0.01 0.01

Finetuned Models with Asterisk

qwen2.5-omni-7b (finetuned) 0.93 0.95 0.95
qwen2.5-omni-3b (finetuned) 0.76 0.89 0.89
qwen2-audio-instruct (finetuned) 0.02 0.21 0.21

Finetuned Models without Asterisk

qwen2.5-omni-7b (finetuned) 0.28 0.40 0.40
qwen2.5-omni-3b (finetuned) 0.24 0.36 0.36
qwen2-audio-instruct (finetuned) 0.05 0.27 0.27
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Table 7: Model performance in Scenarios 5

Model Macro F1↑ Micro F1↑ Exact Match↑

gemini-2.0-flash-lite 0.19 0.43 0.43
gemini-2.0-flash 0.09 0.22 0.22
gpt-4o-mini-audio 0.10 0.39 0.39
gpt-4o-audio 0.20 0.49 0.49
gpt-4o-mini-transcribe 0.15 0.26 0.26
gpt-4o-transcribe 0.13 0.28 0.28
whisper-gpt4o 0.18 0.36 0.36
qwen2.5-omni-7b 0.79 0.71 0.71
qwen2.5-omni-3b 0.56 0.44 0.44
qwen2-audio-7b-instruct 0.08 0.10 0.10
qwen-audio-chat 0.00 0.00 0.00
phi-multimodal 0.09 0.13 0.13
granite-speech-3.3-8b 0.00 0.00 0.00
granite-speech-3.3-2b 0.00 0.00 0.00
granite-speech-3.2-8b 0.06 0.20 0.20

Finetuned Models with Asterisk

qwen2.5-omni-7b (finetuned) 0.93 0.95 0.95
qwen2.5-omni-3b (finetuned) 0.76 0.89 0.89
qwen2-audio-instruct (finetuned) 0.00 0.07 0.07

Finetuned Models without Asterisk

qwen2.5-omni-7b (finetuned) 0.16 0.34 0.34
qwen2.5-omni-3b (finetuned) 0.08 0.16 0.16
qwen2-audio-instruct (finetuned) 0.01 0.08 0.08
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