
AutoIE-LLM: An Automated Information Extraction Framework from
Scientific Literature Based on the LLM

Anonymous ACL submission

Abstract001

Specialized research literature in PDF contains002
abundant domain-specific knowledge, yet ex-003
tracting critical information from these docu-004
ments remains a daunting challenge. To ad-005
dress this, we propose AutoIE-LLM, an inno-006
vative information extraction framework inte-007
grating Large Language Models (LLMs) with008
human-in-the-loop for domain-specific knowl-009
edge processing. The framework comprises010
layout analysis, key information extraction, and011
continuous learning modules. We introduce a012
novel dataset of 1,122 chemical molecular sieve013
documents to validate our approach. Experi-014
mental results demonstrate that AutoIE-LLM015
achieves 79% accuracy in named entity recog-016
nition and relation extraction tasks, a 10% im-017
provement over the baseline AutoIE model.018
The framework handles complex terminology019
and non-standard document structures, demon-020
strating its effectiveness in specialized domains.021
This study enhances LLMs’ capabilities in ex-022
pert fields and provides a valuable resource for023
future molecular sieve information extraction024
studies.025

1 Introduction026

In recent years, the rapid digitalization of scien-027

tific publishing has led to exponential growth in028

literature volume and has posed a significant chal-029

lenge for researchers and industry experts: effi-030

ciently extracting key information from complex031

documents. Traditional information extraction(IE)032

methods, such as rule-based systems and early ma-033

chine learning models, require extensive manual034

effort and face difficulties in generalizing across035

different domains or adapting to new types of doc-036

uments (Reichenpfader et al., 2023).037

The advent of deep learning, particularly038

Transformer-based models like BERT and GPT,039

has demonstrated exceptional capabilities in un-040

derstanding and generating human language, mak-041

ing them particularly suitable for tasks involving042

complex linguistic structures (Choi et al., 2023). 043

Despite the success of Transformer-based mod- 044

els in general NLP tasks, they still face signifi- 045

cant limitations when applied to scientific literature. 046

These limitations include difficulties in processing 047

long documents, understanding domain-specific 048

terminology, and extracting structured information 049

from unstructured text. Moreover, Large Language 050

Models (LLMs) often lack the specialized knowl- 051

edge required for specific scientific domains, poten- 052

tially producing hallucinations or inaccurate out- 053

puts (Hong et al., 2021). Recent studies have shown 054

that even state-of-the-art LLMs achieve only about 055

50-70% accuracy when dealing with highly special- 056

ized, complex scientific texts (Ghosh et al., 2024; 057

Rasool et al., 2024; Hartmann et al., 2023). 058

This study proposes AutoIE-LLM, an automated 059

IE framework that leverages Large Language Mod- 060

els with a human-in-the-loop mechanism to ad- 061

dress these challenges. It enables efficient and ac- 062

curate extraction of key information from complex 063

domain-specific scientific literature, significantly 064

reducing human effort and processing time. We val- 065

idate the framework through rigorous comparisons 066

with baseline models. 067

AutoIE-LLM comprises three modules: Layout 068

Analysis Unit for accurate parsing of document 069

structure; Key IE Unit leveraging large language 070

models for precise domain-specific extraction; Hu- 071

man Feedback Unit integrating expert knowledge 072

for continuous model refinement and bias reduc- 073

tion. 074

To validate the effectiveness of the AutoIE-LLM 075

framework, we conducted rigorous testing in the 076

specialised field of chemical molecular sieves. This 077

domain was chosen due to its complexity and ur- 078

gent need for precise IE. The results are com- 079

pelling: AutoIE-LLM achieved an average accu- 080

racy of 79%. These metrics not only demonstrate 081

the framework’s robust capabilities but also mark a 082

significant advancement in the field of specialised 083
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IE.084

In summary, the main contributions of this paper085

include:086

(1) We propose AutoIE-LLM, an end-to-end in-087

formation extraction framework that syner-088

gistically integrates large language models089

with human-in-the-loop feedback. This de-090

sign effectively addresses the challenges of091

extracting structured knowledge from com-092

plex, domain-specific scientific literature.093

(2) We construct and release a high-quality bench-094

mark datasetthe molecular sieve literature095

dataset of 1,122 molecular sieve papers, filling096

a critical gap in domain-specific IE research097

and enabling systematic evaluation of scien-098

tific IE models.099

(3) Through comprehensive experiments, we100

demonstrate that AutoIE-LLM significantly101

outperforms state-of-the-art baselines on this102

benchmark, achieving an average accuracy of103

79% and showcasing strong adaptability to104

specialised scientific domains.105

2 Related Work106

2.1 Challenges and Advances in Scientific107

Literature Information Extraction108

With the rapid increase in scientific publications,109

extracting key information efficiently and compre-110

hensively has become a pressing issue. Traditional111

IE methods, such as rule-based systems and early112

machine learning models, face significant chal-113

lenges when handling the complexity and diver-114

sity of scientific literature (Martsinkevich et al.,115

2023). These methods require substantial manual116

effort to create and maintain rule sets, and they117

struggle to generalize across domains or adapt to118

new types of documents. Recent deep learning119

approaches, particularly Transformer-based mod-120

els such as BERT and GPT, have significantly en-121

hanced IE performance (Xu et al., 2020). How-122

ever, applying these models directly to specialized123

scientific literature—where terminology, structure,124

and domain knowledge are highly complex—still125

poses considerable challenges. Empirical evidence126

indicates that LLMs often achieve only 50-70%127

accuracy in specialized domains (Pan et al., 2024;128

Hasan et al., 2020; Zhang et al., 2024b), highlight-129

ing the need for improved domain adaptation and130

knowledge integration methods.131

2.2 Applications of Large Language Models 132

in Scientific Literature Information 133

Extraction 134

Recent efforts to adapt LLMs for named entity 135

recognition (NER) and relation extraction (RE) 136

tasks in scientific documents have shown promise. 137

For instance, (Zhang et al., 2024a) leveraged Gem- 138

ini for pseudo-labeling and fine-tuned the GLM- 139

4 model to address overlapping entities in engi- 140

neering inspection data, offering insights for deal- 141

ing with unstructured specialized texts. Likewise, 142

(Uchida, 2024) demonstrated LLMs’ capacity for 143

corpus linguistics, indicating potential in handling 144

complex linguistic structures. In the NER con- 145

text, (Cheng et al., 2024) introduced a standardized 146

prompting strategy that improves cross-domain and 147

low-resource performance, complementing the “di- 148

vide and transfer” paradigm from (Zhang et al., 149

2024c). Additionally, (Xu et al., 2024) proposed a 150

Dual Contrastive Learning model to bolster LLMs’ 151

cross-domain extraction capabilities under limited 152

data, demonstrating the effectiveness of token- and 153

sentence-level contrastive learning. Despite these 154

advances, challenges persist in highly specialized 155

contexts like chemical zeolites, where complex doc- 156

uments and domain-specific terminology are preva- 157

lent. 158

2.3 The Role of Document Layout Analysis in 159

Information Extraction 160

Document layout analysis is important in scien- 161

tific literature IE, particularly for documents with 162

complex structures, such as chemical zeolite re- 163

search reports, which often contain tables, figures, 164

and non-standard structures. LayoutLM (Xu et al., 165

2020) and DocFormer (Appalaraju et al., 2021) 166

exemplify this trend by integrating visual, spatial, 167

and textual signals, thus enhancing document un- 168

derstanding tasks. These advanced layout analy- 169

sis techniques form a crucial foundation for the 170

AutoIE-LLM framework, enabling more accurate 171

recognition and processing of the complex struc- 172

tured information in chemical zeolite literature. 173

2.4 The Key Role of Human-Machine 174

Collaboration in Information Extraction 175

While LLMs have made strides in IE, human ex- 176

pertise remains critical for improving accuracy and 177

reliability. (Liu et al., 2024) introduced a human-in- 178

the-loop strategy that incrementally refines model 179

predictions with expert feedback, reducing man- 180
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ual effort while boosting performance in special-181

ized domains. Similarly, (Hsu et al., 2022) showed182

that incorporating human feedback helps models183

handle complex document layouts better. Active184

learning, online learning, and knowledge distilla-185

tion collectively enable the model to identify and186

address uncertainties, continuously refine extrac-187

tion patterns, and assimilate expert judgments. By188

incorporating these human-machine collaboration189

techniques, especially online learning, the AutoIE-190

LLM framework effectively addresses challenges191

posed by complex terminology and experimental192

data in chemical zeolite literature, enhancing sys-193

tem flexibility and precision.194

2.5 Specific Challenges and Solutions for195

Information Extraction in the Chemical196

Zeolite Domain197

IE in chemical zeolite research is complicated198

by specialized chemical structures, non-uniform199

data formats, and domain-specific terminology.200

(Meuschke et al., 2023) benchmarked text extrac-201

tion tools for scientific documents, highlighting202

the difficulties of dealing with complex domain203

literature. Likewise, (Sharma, 2023) combined ad-204

vanced OCR techniques with deep learning for205

chemical patents, underscoring the need for ro-206

bust solutions to handle specialized content. De-207

spite these efforts, existing methods struggle to208

balance accuracy, adaptability, and efficiency in209

highly specialized domains. Our proposed AutoIE-210

LLM framework integrates layout analysis, human-211

machine collaboration, and domain-adaptive learn-212

ing to mitigate these limitations. AutoIE-LLM213

aims to deliver a more reliable and flexible solution214

for extracting information from chemical zeolite215

literature by focusing on complex terminologies,216

non-standard structures, and continuous feedback217

loops.218

3 Framework219

This section elaborates on the architecture of our220

proposed AutoIE-LLM framework, providing a de-221

tailed explanation of our methodologies and algo-222

rithms. We comprehensively overview the frame-223

work’s processing pipeline (as illustrated in Fig-224

ure 1) and systematically introduce each compo-225

nent.226

3.1 Layout Analysis Unit227

As discussed in Section 2.1, extracting text from228

PDF documents is fundamental to information re-229

Layout analysis unit

Key information 

extraction unit

Human feedback and 

continuous learning unit

ViTLayout 

Algorithm

Functional 

Block 

Recognition 

Verify

Rule Information

Position 

Information

Field dictionary 

information

Initial 

intervention

Knowledge

Figure 1: The overall architecture of the AutoIE-LLM
framework comprises three core modules: the layout
analysis unit, the key information extraction unit, and
the Human-in-the-loop and continuous learning unit.

trieval. The inherent complexity of PDF layouts, 230

including non-standard fonts, graphics, and diverse 231

language and character encoding issues, poses sig- 232

nificant challenges for current technologies in pre- 233

serving the original logical structure during text 234

extraction. To address these challenges, we intro- 235

duce a sophisticated document layout analysis unit. 236

Our unit employs the VTLayout algorithm (Li 237

et al., 2021) to classify components within PDFs 238

(such as headings, text, and figures), ensuring pre- 239

cise identification and segmentation. Subsequently, 240

we implement scientific document functional block 241

identification techniques (Xu et al., 2020) to ana- 242

lyze text components in-depth, describing the log- 243

ical structure within the PDF and thus preserving 244

the document’s hierarchical organization. This ap- 245

proach facilitates the rearrangement of text in text 246

documents according to the original logical order, 247

significantly enhancing the accuracy of subsequent 248

IE processes. 249

To precisely locate important information, we 250

adopt a hybrid approach that combines traditional 251

rule-based methods enhanced by domain expertise 252

with logical layout analysis of the document. This 253

refined text is then transmitted to the key IE unit 254

for further processing. 255

Furthermore, our unit addresses several specific 256
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challenges in scientific PDF conversion:257

(1) Text formatting: We preserve the original text258

format by analyzing layout patterns in scien-259

tific literature and optimizing paragraph recog-260

nition processes. This mitigates issues such261

as improper line breaks or paragraph segmen-262

tation.263

(2) Unique characters and noise: We tackle chal-264

lenges posed by special characters, diacrit-265

ics, and formulas prevalent in scientific lit-266

erature. Our approach uses a rule-based de-267

noising method tailored for molecular sieve268

literature, significantly reducing the impact of269

noise on subsequent models.270

(3) Non-standard fonts: For older documents us-271

ing non-standard fonts, we implement Paddle-272

OCR technology combined with font recogni-273

tion algorithms, thereby improving processing274

accuracy.275

This comprehensive strategy significantly en-276

hances the efficiency and accuracy of text ex-277

traction from complex scientific PDF documents278

through advanced layout analysis and functional279

block identification techniques.280

3.2 Key Information Extraction Unit281

While traditional transformer-based models have282

demonstrated excellence in many IE tasks, they283

face limitations in handling long-distance depen-284

dencies and generalizing across different contexts.285

Our research leverages Large Language Models286

(LLMs), renowned for their powerful generaliza-287

tion capabilities and proficiency in managing long-288

distance textual relationships to address these chal-289

lenges.290

Our key IE unit operates as follows: Firstly, re-291

fined text from the layout analysis unit is input into292

the LLM for initial processing. Secondly, we em-293

ploy prompt engineering techniques supplemented294

with domain-specific datasets to offset potential295

deficiencies of general LLMs in domain-specific296

knowledge. We utilize the CRISPE framework297

to fine-tune the model’s domain adaptability and298

IE precision. Thirdly, we collaborate with do-299

main experts to compile fundamental principles300

and terminology related to molecular sieves. This301

domain-specific knowledge is integrated into the302

model through custom-designed knowledge injec-303

tion mechanisms, enhancing the model’s focus and304

enabling accurate identification and extraction of 305

domain-relevant information. Finally, The fine- 306

tuned and knowledge-enhanced LLM processes 307

the input text, extracting key information based 308

on predefined extraction tasks and domain-specific 309

requirements. 310

By combining the powerful processing capabili- 311

ties of LLMs with in-depth domain knowledge, our 312

approach transcends the limitations of traditional 313

models in managing long-distance dependencies 314

and domain-specific tasks. This approach signifi- 315

cantly improves the precision and efficiency of IE 316

in specialized domains. 317

3.3 Human-in-the-loop and Continuous 318

Learning Unit 319

To address the limitations of LLMs in specialized 320

scientific domains and reduce the high cost of man- 321

ual annotations, we design a Human-in-the-loop 322

and Continuous Learning Unit. This module en- 323

ables efficient expert intervention at the early stages 324

and progressively reduces the need for human input 325

as the system improves its domain-specific extrac- 326

tion capabilities. Specifically, once the model’s 327

performance on key domain-specific metrics (ex- 328

traction precision rate) stabilizes above a prede- 329

fined threshold, expert review becomes optional or 330

triggered only by system uncertainty. Compared to 331

traditional deep learning pipelines, this mechanism 332

achieves higher accuracy while requiring signifi- 333

cantly fewer labelled samples and computational 334

resources. The workflow of this unit is as follows: 335

• Key IE: Upon uploading new scientific docu- 336

ments, the system autonomously extracts key 337

information and displays it for review via a 338

web interface. 339

• Domain experts validate and correct the ex- 340

tracted results through an intuitive interface, 341

providing high-quality feedback with minimal 342

effort. 343

• Knowledge base update: Verified information 344

is integrated into a growing knowledge base, 345

which is subsequently used to Knowledge 346

base update: Verified information is integrated 347

into a growing knowledge base, which is sub- 348

sequently used to enrich fine-tuning datasets 349

with high-quality domain-specific samples, re- 350

fine prompt strategies and injection mecha- 351

nisms based on emerging domain patterns, 352

and adjust prompt engineering strategies to 353
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accommodate new patterns or requirements354

identified during expert reviews.355

• Adaptive Model Updating: The LLM is peri-356

odically fine-tuned using the enhanced knowl-357

edge base, leading to continual improvement358

in domain understanding and extraction preci-359

sion.360

This unit employs continuous learning, ensur-361

ing the framework enriches its domain knowledge362

from initial configuration through ongoing applica-363

tion. This strategy enhances the model’s accuracy364

and reliability and optimizes resource allocation365

by minimizing the need for substantial human and366

material investment in data annotation. This design367

supports a dynamic, self-improving learning loop.368

As the model matures, it relies less on expert input369

and delivers increasingly accurate results, making370

the framework more scalable, resource-efficient,371

and adaptable to evolving scientific domains.372

4 Chemical Molecular Sieve Literature373

Dataset Data Collection and Processing374

This section introduces and examines a ground-375

breaking Chemical Molecular Sieve Literature376

Dataset that represents a significant advance in the377

field. This curated resource, with portions available378

on GitHub, fills a critical gap in molecular sieve379

research by serving as a specialized, high-quality380

benchmark for IE models. By supporting deeper381

exploration of structure-property relationships, the382

dataset has the potential to substantially enhance383

our understanding of these materials.384

4.1 Data Source385

To maintain the specificity and depth of our re-386

search, we focused exclusively on literature about387

molecular sieves(as shown in Figure E4 of 8.2), a388

critical class of materials in various industrial ap-389

plications and scientific studies. Domain experts390

meticulously curated a dataset of 1,122 papers from391

1993 to 2022 (the data distribution of each year is392

shown in Figure 3), ensuring a representative sam-393

ple of key research within this specialized field.394

Our dataset covers 51 peer-reviewed journals with395

SJR scores ranging from 0.296 to 18.509. High-396

impact titles such as NATURE and SCIENCE and397

specialized journals like Microporous and Meso-398

porous Materials are included. We systematically399

extracted 1,575 unique data points from this cor-400

pus related to gel composition, a fundamental as-401

pect of molecular sieve synthesis and performance.402

This extensive data extraction process provides a ro- 403

bust foundation for our analysis and represents one 404

of the largest compilations of molecular sieve gel 405

composition data to date, offering significant poten- 406

tial for advancing our understanding of structure- 407

property relationships in these materials. 408

4.2 Annotation Process 409

Domain experts performed a comprehensive, multi- 410

stage annotation process on the sampled documents 411

to create a high-quality labelled dataset. Initially, a 412

large language model extracted information based 413

on a predefined dictionary (included terms and 414

parameters specific to molecular sieve research, 415

such as Zeolite types (e.g., ZSM-5, Beta, MOR), 416

templates (e.g., TPAOH, TEAOH), silica sources 417

(e.g., tetraethyl orthosilicate), Si/Al ratio, synthe- 418

sis temperature, crystallization time) and rule set 419

(as shown in Figure E6 of 8.2). Three domain 420

experts then reviewed and corrected these initial 421

extractions. Subsequently, two senior experts con- 422

ducted a final review of the corrected results. The 423

annotated information was stored as JSON files 424

(exemplified in 8.1 in a temporary repository) if 425

approved. 426

To ensure data quality, a Python script was em- 427

ployed to analyze all corrected JSON files, fol- 428

lowed by manual verification to identify potential 429

errors. After passing all quality checks, the JSON 430

files were stored in a database for future model fine- 431

tuning. This rigorous process ensured the identifica- 432

tion and correct labelling of key information fields 433

relevant to molecular sieve research, as demon- 434

strated by the annotation tools in Figure E5 of 8.2. 435

4.3 Data Cleaning and Verification 436

We implemented a multi-stage data cleaning and 437

verification process to ensure data quality and min- 438

imize noise, combining expert human judgment 439

with automated analysis techniques. Our approach 440

consisted of three key stages: 441

1. Stratified Expert Review: We employed a 442

tiered annotation system involving junior and 443

senior experts. Junior experts performed ini- 444

tial annotations in groups, followed by cross- 445

validation among these groups. Senior experts 446

then conducted a final review, ensuring com- 447

prehensive error detection and consistency 448

across the dataset. 449

2. Custom Python scripts (detailed in Appendix 450
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Figure 2: Data Distribution of Chemical Molecular
Sieve Dataset.

D, Section 8.4) performed advanced text anal-451

ysis tasks, including:452

• Syntactic and formatting consistency453

checks: Ensuring all data entries fol-454

low a uniform format, such as consistent455

units and standardized parameter names.456

• Semantic relevance analysis: Verifying457

that extracted data is relevant to molec-458

ular sieve research and excluding irrele-459

vant information.460

• Cross-document comparison: Detect-461

ing potential duplicate data or conflict-462

ing information across different publica-463

tions.464

• Statistical analysis of annotation dis-465

tribution: Evaluating the frequency and466

distribution of variables to identify out-467

liers or biases (some statistical infor-468

mation is shown in Appendix E, Sec-469

tion 8.5).470

3. Iterative Refinement: Anomaly reports gen-471

erated by our automated system were returned472

to annotators for correction. This iterative pro-473

cess rectified errors and helped continuously474

optimize our annotation guidelines, improving475

overall data quality.476

4.4 Data Distribution477

We analyzed the frequency of both bibliographic478

and chemical-specific fields (Figure 2). Biblio-479

graphic information (Title, Author, Date) occurs480

most frequently, while fields like Molecular Sieve481

Product and Gel Composition also appear promi-482

nently. Certain specialized parameters (e.g., Phos-483

phorus or Fluoride Source) are less common, re-484

flecting narrower research scopes.485

Figure 3: Data Distribution of Chemical Molecular
Sieve paper from 1993 to 2022.

Notable observations from the data distribu- 486

tion include: Bibliographic information (Title, Au- 487

thor(s), Publication Date) is the most consistently 488

available data across the dataset; Chemical-specific 489

information, such as Molecular Sieve Product and 490

Gel Composition, is also well-represented, though 491

less frequent than bibliographic data; Some special- 492

ized fields like Phosphorus Source, Boron Source, 493

and Fluoride Source have relatively low occurrence 494

rates (395, 301, and 98 occurrences, respectively), 495

indicating they may be relevant only for specific 496

molecular sieves or synthesis methods. 497

This data distribution provides insights into the 498

types of information most commonly reported 499

in molecular sieve literature and highlights areas 500

where data may be more scarce. Understanding this 501

distribution is crucial for developing effective IE 502

models and identifying potential gaps in reporting 503

practices within the field. 504

To promote reproducibility and facilitate further 505

research in this domain, we have made a subset of 506

our dataset publicly available on GitHub (accessi- 507

ble at: https://anonymous.4open.science/r/ 508

molecular-sieve-dataset-3CC6/). This subset 509

includes 500 data entries covering major synthesis 510

parameters and product characteristics. 511

This initiative addresses a significant gap in the 512

field, as, to our knowledge, no public IE dataset 513

specific to molecular sieves existed prior to this 514

work. While our dataset’s scale may be smaller 515

than general-purpose IE datasets, its high quality 516

and domain specificity offer unique advantages. 517

The specialized nature of our dataset enables supe- 518

rior generalization capabilities in molecular sieve- 519

related applications, as demonstrated by our exper- 520

imental results in Section 5.1. 521

The creation of this dataset represents a signif- 522

icant contribution to the molecular sieve research 523
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Hyper-
parameter

Value Hyper-
parameter

Value

Batch size 4 LoRA rank 16
Number of
iterations

1 LoRA
Alpha

32

Learning
rate

1e-6 LoRA
Dropout

0.1

Maximum
sentence
length

4096 Regularization
coefficient

0.01

Warmup ra-
tio

0.01

Table 1: Fine-tuning parameter values.

community. It provides a benchmark for evaluat-524

ing IE models in this domain and opens up new525

avenues for developing and fine-tuning specialized526

natural language processing models for domain-527

specific scientific literature analysis. Additional528

system interfaces are shown in Appendix C, Sec-529

tion 8.3.530

5 Experiment531

This section presents a comprehensive overview532

of our experimental design, including dataset con-533

struction, experimental setup, evaluation metrics,534

and results analysis. Our experiments aim to rigor-535

ously assess the performance of the AutoIE-LLM536

framework in processing scientific literature, focus-537

ing on IE in the domain of molecular sieves.538

5.1 Experimental Setup539

Our framework supports flexible integration with540

different LLMs. In this study, we selected the541

Llama-2-13B-v2 model as our backbone, fine-542

tuning it with the LoRA (Low-Rank Adaptation)543

method. This technique introduces low-rank ap-544

proximations in the linear layers to reduce parame-545

ter overhead and mitigate overfitting. The training546

process used a chemical zeolite domain dataset547

with 33,211 records, and key hyperparameters are548

listed in Table 1. To simulate the human-in-the-549

loop mechanism, we manually verified only 1/3550

of the training data, after which high-confidence551

predictions (confidence ≥ 0.9) were progressively552

incorporated without expert intervention.553

5.2 Evaluation Metrics554

To comprehensively assess the performance of our555

model, we employed accuracy measures of the556

Field Baseline LLMs AutoIE-
LLMs

Title 0.93 0.77 0.93
Journal 0.88 0.88 0.88
DOI 0.95 0.84 0.97
Gel Composition 0.57 0.85 0.92
Crystallization
Conditions-Time

0.77 0.56 0.91

Template 0.43 0.46 0.69
Alkali Source 0.54 0.59 0.64
Aluminum Source 0.53 0.50 0.62
Cation 0.60 0.42 0.61
Accuracy 0.69 0.65 0.79

Table 2: Accuracy comparison of baseline and LLM
methods across various information extraction fields.

overall correctness of the model’s predictions and 557

is computed as: 558

Accuracy =
TP + TN

TP + TN + FP + FN
(1) 559

Where TP, TN, FP, and FN represent True Pos- 560

itives, True Negatives, False Positives, and False 561

Negatives, respectively. 562

5.3 Results and Analysis 563

We evaluated five methods for information extrac- 564

tion: AutoIE, LLM, AutoIE-LLM (with LLM as 565

the backbone), FINE_TUNE, and AutoIE-LLM(F) 566

(with fine-tuned LLM as the backbone). We then 567

selected ten key fields from the dataset—Title, Jour- 568

nal, DOI, Gel Composition, Crystallization Condi- 569

tions Time, Template, Alkali Source, Aluminum 570

Source, and Cation—based on high data complete- 571

ness, direct relevance to zeolite synthesis, adequate 572

sample size, and a balanced number of fields to 573

mitigate overfitting. As Gel Composition already 574

integrates related fields (e.g., Silicon Source), these 575

were omitted to avoid redundancy. Although some 576

factors may be overlooked, this selection ensures 577

a concise analytical framework capturing core ele- 578

ments of zeolite synthesis while preserving parsi- 579

mony and generalizability. 580

The experimental results, as presented in Ta- 581

bles 2 and 3, demonstrate that the AutoIE-LLM 582

framework generally excels across various informa- 583

tion extraction fields, particularly in areas requiring 584

deep semantic understanding. 585

Comparing AutoIE-LLM with baseline and pure 586

LLM models (Table 2), we observe that AutoIE- 587

LLM outperforms both in most fields. Notable 588
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Field FINE
TUNE

AutoIE-
LLM(F)

AutoIE-
LLMs

Title 0.85 0.88 0.91
Journal 0.78 0.80 0.88
DOI 0.94 0.97 0.97
Gel Composition 0.90 0.84 0.92
Crystallization

Conditions-Time
0.63 0.81 0.91

Template 0.30 0.22 0.69
Alkali Source 0.53 0.63 0.64
Aluminum Source 0.41 0.49 0.62
Cation 0.34 0.35 0.61
Accuracy 0.63 0.67 0.79

Table 3: Ablation study: Accuracy comparison of
AutoIE-LLM variants across various information ex-
traction fields.

improvements are seen in DOI extraction (accuracy589

0.97), gel composition recognition (0.92), and crys-590

tallization condition-time extraction (0.91). These591

findings highlight the framework’s robust capabili-592

ties in processing complex scientific information.593

The success of AutoIE-LLM can be attributed to594

several key factors:595

• Effective integration of AutoIE’s structured596

information processing with LLMs’ semantic597

understanding capabilities.598

• A critical layout analysis module for accu-599

rately identifying document structures.600

• Strong competence in handling complex sci-601

entific terminology.602

• Continuous optimization through the learning603

module, enhancing performance in specific604

fields.605

Pure LLM models exhibit strong but inconsistent606

performance across different fields. This indicates607

powerful semantic understanding capabilities but608

potentially insufficient comprehension of domain-609

specific structural nuances. Table 3 presents an610

ablation study comparing the performance of dif-611

ferent AutoIE-LLM variants across information612

extraction fields.613

The ablation study (Table 3) provides in-614

sights into the performance of fine-tuned mod-615

els. FINE_TUNE models show improvements616

in some areas but do not consistently outperform617

AutoIE-LLM. This suggests that domain-specific618

fine-tuning can enhance performance but may not619

fully compensate for the lack of structured infor- 620

mation processing capabilities. 621

AutoIE-LLM(F), a fine-tuned variant of AutoIE- 622

LLM, shows mixed results. It performs well in 623

some complex domains but exhibits instability in 624

others. For instance, it achieves the highest accu- 625

racy for DOI extraction (0.97, tied with AutoIE- 626

LLM) but underperforms in fields like Template 627

and Cation extraction. This instability may be at- 628

tributed to overfitting, highlighting the challenge 629

of balancing generalization and task-specific per- 630

formance in fine-tuned models. 631

In conclusion, these results emphasize the po- 632

tential of integrated approaches like AutoIE-LLM 633

in scientific information extraction tasks. AutoIE- 634

LLM achieves significant performance improve- 635

ments across multiple complex domains by com- 636

bining structured information processing with deep 637

semantic understanding. However, the results also 638

point to some limitations and areas for improve- 639

ment, particularly in handling highly structured 640

information and ensuring consistent performance 641

across different domains. 642

6 Conclusion 643

This paper introduces AutoIE-LLM, an automated 644

information extraction framework grounded in 645

large language models for extracting key informa- 646

tion from scientific texts. By integrating layout 647

analysis, key information extraction, and a human 648

feedback loop for continuous learning, AutoIE- 649

LLM effectively addresses challenges in process- 650

ing complex scientific literature. Experiments on a 651

zeolite-related chemical literature dataset demon- 652

strate its robust performance, with the ERNIE BOT 653

model—incorporating AutoIE-LLM—achieving 654

notable metric improvements and confirming the 655

framework’s effectiveness and stability. Moreover, 656

AutoIE-LLM exhibits strong adaptability and a 657

modular design that facilitates processing domain- 658

specific data. Future directions include expanding 659

to broader scientific domains and more complex 660

text types, integrating diverse datasets, and explor- 661

ing advanced algorithms to further enhance the 662

framework’s capabilities. We believe AutoIE-LLM 663

will play a significant role in scientific literature 664

analysis, driving the development and application 665

of automated information extraction technology. 666
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7 Limitations667

The AutoIE-LLM framework demonstrates signifi-668

cant strengths in integrating structured information669

processing with deep semantic understanding. The670

framework’s exceptional performance in multiple671

domains, particularly in fields requiring deep se-672

mantic comprehension, can be attributed to several673

factors. The effective integration of AutoIE’s struc-674

tured information processing capabilities with the675

semantic understanding of Large Language Models676

(LLMs) plays a crucial role. The layout analysis677

unit’s accuracy in identifying document structures678

and the robust handling of complex scientific ter-679

minology by the integrated LLM contribute signif-680

icantly to the framework’s success. Notably, the681

framework achieved remarkable accuracy in DOI682

extraction (0.97), gel composition identification683

(0.92), and crystallization conditions-time extrac-684

tion (0.91). These results underscore the frame-685

work’s ability to effectively process and interpret686

complex scientific information.687

However, the framework exhibits limitations in688

accurately extracting information from certain com-689

plex fields such as Unit and Molecular Sieve. These690

challenges are likely due to the highly domain-691

specific semantics and inconsistent structural rep-692

resentations in the source texts. Future work could693

address this by incorporating domain-adaptive pre-694

training or structure-aware decoding mechanisms695

to enhance generalization across complex scientific696

fields.697
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8 Appendix813

8.1 Labelled data content814

{
"content": "\nMicroporous and Mesoporous

Materials 78 (2005) 181–188\nwww.el ⌋
sevier.com/locate/micromeso\n
Meso/macroporous AlPO-5 spherical
macrostructures tailoredby resin
templating Valeri Naydenov a,*,
Lubomira Tosheva a,1, Oleg N.
Antzutkin b,*, Johan Sterte a,2\na
Division of Chemical Technology,
Lulea University of Technology,
S-971 87 Lulea , Swedenb Division of
Chemistry, Lulea University of
Technology, S-971 87 Lulea ,
Sweden\nReceived 22 June 2004;
received in revised form 4 October
2004; accepted 5 October
2004Available online 30 November
2004\n Abstract\n A multi-step
procedure for the preparation of
meso/macroporous AlPO-5 spherical
macrostructures using cation
exchange resinbeads as
macrotemplates is presented. Firstly,
aluminum species were introduced
into the resin beads by ion exchange
resulting in aresin-aluminum
composite. Thereafter, the
resin-aluminum composite was mixed
with TEAOH, H3PO4 and distilled water
andhydrothermally treated at 150 C
to yield resin-AlPO-5 composite.
Finally, the resin was removed by
calcination leaving
behindself-bonded AlPO-5 spheres. The
product AlPO-5 macrostructures were
thoroughly characterized by SEM, XRD,
nitrogen adsorp-tion measurements,
31P and 27Al solid state NMR
spectroscopy. The influence of
various components of the synthesis
mixture on thecrystallinity, phase
purity and stability of the AlPO-5
spheres was systematically studied.
Samples prepared for different
treatmenttimes using the initial
synthesis composition that gives
spheres of the highest quality were
used to study the crystallization
processwithin the resin.Ó 2004
Elsevier Inc. All rights reserved.\n
Keywords: AlPO-5; Hierarchical
porosity; Spheres; Macrotemplate;
Ion-exchange resin\n1.
Introduction\n Molecular sieve
materials have found wide use in
alarge number of industrially
important areas such
aschemicalseparation, adsorption and
heterogeneouscatalysis. For certain
applications however, the smallpore
size of zeolites (micropores) may
cause diffusionlimitations. Also,
zeolites are usually synthesized
aspowders, which are difficult to
handle and post-synthetic\n*
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Corresponding authors. Tel.: +46 920
492524; fax: +46 920491199.E-mail
address: oleg.antzutkin@ltu.se (O.N.
Antzutkin).1 Present address: LMM,
UMR-7016 CNRS, ENSCMu, Universite´de
Haute Alsace, rue Alfred Werner,
F-68093 Mulhouse Cedex,France.2
Present address: Va¨ xjo¨ University,
Universitetplatsen 1, S-351 95Va¨
xjo¨ , Sweden.\n 1387-1811/$ - see
front matter Ó 2004 Elsevier Inc. All
rights reserved.doi:10.1016/j.micro ⌋
meso.2004.10.008\n modifications to
obtain the zeolites in
macroscopicforms are needed. During
the last years, a lot of researchhas
been directed towards the
development of syntheticprocedures
that tailor the pore structure and
the macro-scopic shape of zeolites. A
number of molecular sievebodies with
hierarchical porosity providing fast
trans-port to and from the zeolite
pores as well as withmacro-shapes
that meet the operating conditions
fora particular application have
been synthesized usingmacrotemplates.
The macrotemplate acts as a
molddetermining the macroscopic
shape of the product mate-rial,
whereas the removal of the
macrotemplate aftersynthesis creates
a secondary porosity in the meso
and/or macropore range. Thus,
zeolites in forms of mono-liths
[1–4], fibers [5], hollow capsules
[6], sponge-likearchitectures [7]
and self-standing tissues [8] have
beensynthesized using starch [1],
latex beads [2], mesoporoussilica
spheres [3,6], polyurethane foams
[4], bacterial\n182\n V. Naydenov et
al. / Microporous and Mesoporous
Materials 78 (2005) 181–188\nthreads
[5], cellulose acetate membranes [7]
and woodcellular structures [8] as
templates.Microporous
aluminophosphate solids are
anotherimportant class of molecular
sieve materials that havea
three-dimensional framework built up
of alternating(AlO4) and (PO4) units.
AlPO-5 (AFI type structure) isthe
most studied member of this family.
The influenceof synthesis
composition, chemicals used and the
hea-ting procedure on the AlPO-5
crystallization have beendiscussed
in a number of papers [9–18]. However
tothe best of our knowledge, the
accessibility of alumino-phosphate
molecular sieves for preparation of
self-bonded macro-shaped bodies have
not yet beenexplored.Here, we report
on a procedure for tailoring
sphericalmeso/macroporous AlPO-5
macrostructures using cat-ion
exchange resins as macrotemplates.
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The procedureis a further development of
the resin-templating methodused for
the preparation of silicalite-1 [19]
and zeolite[20,21] molecular sieve
macrostructures using anionexchange
resins. However, this type of resin
is not appli-cable for AlPO-5
macrostructure synthesis since
posi-tively charged aluminophosphate
species are present inAlPO-5
synthesis solutions [22]. In
addition, the crystal-lization
mechanism of AlPO-5 within the resin
was stud-ied in detail by 31P and
27Al solid state NMR.\n 2.
Experimental section\n Fig. 1 shows
a schematic representation of the
wholeprocedure used in this work for
the preparation of
themeso/macroporous AlPO-5 spherical
macrostructuresthrough resin
templating.\n 2.1. Preparation of
the resin-Al composites\n A
macroreticular Amberlite IRA-200
cation ex-change resin (mesh size
16–50, Sigma) was used in
allexperiments. The ionic form of the
resin was reversedfrom Na+ to H+ by
passing a 10 wt.% HCl solutionthrough
an ion exchange column loaded with
the resin.A large batch of resin-Al
composites was prepared bymixing the
resin (H+ form) with a 0.1 M
tetraethyl-ammonium chloride hydrate
(TEACl, Aldrich), dis-solved in an
aluminum chlorohydrate solution
diluted\n 10 times (Locron L, 23.4
wt.% Al2O3, OH/Al = 2.5,Hoechst) in a
weight ratio resin to solution of
1:10,followed by a treatment in an
oil bath at 100 C underreflux for 24
h. The resin-Al composite was
separatedafter the synthesis by
decanting, rinsed repeatedly
withdistilled water and dried at room
temperature. Theamount of aluminum
(22.9 wt.%) exchanged into theresin
(calculated as Al2O3) was determined
gravimetri-cally by the weight
difference between resin-Al
compos-ites dried at 105 C and the
beads calcined at 600 C.\n 2.2.
Preparation of AlPO-5
macrostructures\n Synthesis mixtures
containing ortho-phosphoric acid(85%,
Merck), distilled
water,tetraethylammoniumhydroxide
(TEAOH, 20 or 35 wt.% aqueous
solutions,Sigma) and resin-Al
composites in quantities to
yieldmolarcompositionsxTEAOH:Al2O3: ⌋
yP2O5:zH2O,where x = 1.5\u00003.5, y
= 0.9\u00001.3 and z = 50\u0000500,
wereprepared. The water gained
during storage or the
tetra-ethylammonium ion present in
the resin-Al compositefrom the
initial treatment of the resin with
alumina, werenot taken into account
in the calculations.
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The mixtureswere hydrothermally treated
in autoclaves at 150 C fortreatment
times between 2 and 24 h. After
hydrothermaltreatment, the
resin-AlPO-5 composite was
separatedfrom the mother liquor by
decanting, rinsed repeatedlywith
distilled water and dried at room
temperature.The dried composite was
finally calcined at 600 C for20 h
after heating to this temperature at
a rate of1 C min\u00001.\n 2.3.
Characterization\n A Philips XL 30
scanning electron microscopy
(SEM)was used to study the morphology
of the samples. Nitro-a Micromeritics
ASAP 2010 instrument at \u0000196 C
aftergen adsorption/desorption
isotherms were obtained withdegassing
the samples at 300 C overnight prior
to anal-ysis. Specific surface area
was calculated with the BETequation.
Pore size distributions were
determined fromthe desorption branch
of the isotherms using the BJHmethod.
Micropore surface areas and
micropore vol-umes were determined
by the t-plot method and totalpore
volumes were obtained from the volume
adsorbedat a relative pressure of
0.995. Crystalline phases were\nFig.
1. Schematic representation of
procedure for the preparation of
self-bonded AlPO-5 spheres using
macroporous cation exchange resin
asmacrotemplate.\n V. Naydenov et al.
/ Microporous and Mesoporous
Materials 78 (2005) 181–188\n183\n
identified with a Siemens D 5000
X-ray powder diffracto-meter (XRD)
using CuKa radiation. The pH of
themother liquors was measured with
a pH meter 691(Metrohm).Solid-state
31P magic-angle-spinning (MAS)
NMRspectra were recorded on a
Varian/Chemagnetics Infi-nity
CMX-360 (B0 = 8.46 T) spectrometer
using the sin-gle-pulse experiment
with proton decoupling. The
31Poperating frequency was 145.73
MHz. In the single pulseexperiment,
the 31P 90 pulse duration was 5.0 ls
and thenutation frequency of protons
during decoupling wasxnut/2p = 100
kHz. 16 signal transients spaced by
arelaxation delay of 60 s were
accumulated.Calcined powder samples
(ca. 30–35 mg, additionallydried at
350 C for 3 days in order to allow
quantitativemeasurements of
phosphorus) were packed in
zirconiumdioxide double bearing 4 mm
rotors. All 31P solid stateMAS NMR
spectra were recorded at room
temperature.
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27Al MAS NMR experiments were performed
atroom temperature on a
Varian/Chemagnetics Infinity-600
(University of Warwick, UK)
spectrometer at 27Alcarrier
frequency of 156.37 MHz in 3.2 mm
zirconiumdioxide rotors at a
spinning frequency of 18,000 ±10 Hz.
The duration of the 30 -excitation
pulse was0.5 ls. 128 signal
transitients were accumulated with
arepetition time of 1 s. Samples were
externally referencedon a powder YAG
sample [24], which was also usedfor
the tuning of the magic angle.\n 3.
Results and discussion\n Fig. 2
shows a SEM image of the initial
resin beadsused as macrotemplates
(Fig. 2a) and images of theproduct
particles (Fig. 2b–f) obtained at
the differentsteps of the procedure
depicted in Fig. 1. According toSEM,
the first step of the procedure,
namely the intro-duction of aluminum
within the resin does not
causechanges into e.g. the size
and/or shape of macrotem-plates (Fig.
2b). The resin-AlPO-5
composite particlesobtained in the
next step of the procedure were also
simi-lar in size and shape to the
original resin beads but withsomewhat
rougher surfaces due to AlPO-5
agglomeratesexposed on the surface
(Fig. 2c). The calcined AlPO-5spheres
were similar in shape with a slightly
reduced sizecompared to the original
resin beads (Fig. 2d). Some ofthe
particles were cracked and even
broken. The spheresurfaces were
rough with micrometer-sized voids
andcavities (Fig. 2e). No such voids
were observed in thesphere interiors.
The AlPO-5 spheres were built up
offine nano-particles as shown in
Fig. 2f. This observation\nis not
surprising considering the fact that
AlPO-5 crys-tallizes within the resin
pores, which have an averagesize of
ca. 100 nm [25]. This may explain the
absenceof micrometer-sized crystals
with well defined AlPO-5hexagonal
morphology.The described procedure
for the preparation ofAlPO-5
spherical macrostructures differs
significantlyfrom the conventional
AlPO-5 syntheses [9] reportedin
literature, as well as from the
procedures used forthe synthesis of
silicalite-1 [19] or zeolite [20,21]
macro-structures by resin templating.
The experiments to pre-pare AlPO-5
macrostructures by direct treatment
ofcation exchange resins with AlPO-5
synthesis solutionsdid not give
satisfactory results.
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Particles of limited crys-tallinity
often accompanied by a loss of
macroshapewere obtained. The problem
of disintegration of themacroshape
was solved by insertion of aluminum
pre-cursor within the resin prior to
AlPO-5 synthesis. Thispreliminary
step ensures that the AlPO-5
crystallizationis realized only
within the resin pore structure and
there-fore an easy recovery of the
product spheres due to theabsence of
bulk crystallization. Further, the
presence ofTEA+ in the solution used
for Al ion exchange wasessential for
the AlPO-5 synthesis. The exact
role ofthe TEA+ is not clear at this
point of the study. However, when a
resin-Al composite was prepared in
the ab-sence of TEACl and used for
AlPO-5 synthesis theproducts
obtained upon calcinations were
powdersrather than beads. This
indicates that the TEA+ might‘‘fix’’
the aluminum species within the
resin to ensurehomogeneous
AlPO-5crystallization
withinthemacrotemplate.\n Further,
structural and macroscopic
characteristicsof the product
samples prepared with different
initialcompositions were studied
and results are given in Table1. The
duration of the hydrothermal
treatment for allsamples was 10 h at
150 C. The objective of the
presentwork was to synthesize stable
AlPO-5 spheres of highcrystallinity.
Therefore, the quality of the
samples wasevaluated by the degree
of crystallinity, purity ofAlPO-5
and by the mechanical stability of
the productAlPO-5 spheres. Although
the mechanical stability ofthe
macrostructures was not tested,
obtained particleswere stable and
could withstand various
laboratorymanipulations. However it
should be mentioned, thatAlPO-5
spheres were easier to grind (e.g.
prior XRDor NMR studies) compared
to Silicalite-1 and zeoliteBeta
macrostructures prepared by resin
templating[19,20]. A possible
explanation might be the
differencein the amount of solid
material within
resin-molecularsieve composites
obtained after synthesis, which
de-creases from zeolite Beta (56
wt.%) through Silicalite-1(44 wt.%)
to AlPO-5 (26 wt.%). As evident from
the datapresented (Table 1) the best
results in terms of crystalli-nity,
purity and mechanical stability
were obtained forsample 4 and this
synthesis mixture was used to
prepare\n184\n V. Naydenov et al. /
Microporous and Mesoporous
Materials 78 (2005) 181–188\n
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Fig. 2. SEM images of the cation exchange
resin beads (a) and the product
particles (b–f) synthesized from
system with molar composition2TEAOH ⌋
:Al2O3:1.2P2O5:100H2O after
hydrothermal treatment at 150 C for
10 h.\n Table 1Synthesis of AlPO-5
macrostructures from different
system compositions\nSample\n Molar
composition\n TEAOH\n Al2O3\n P2O5\n
H2O\n 12345678910f11121314\n
2.02.02.02.02.01.52.53.03.52.02.02. ⌋
02.02.0\n1.001.001.001.001.001.001. ⌋
001.001.001.001.001.001.001.00\n0.9 ⌋
01.001.101.201.301.201.201.201.201. ⌋
201.201.201.201.20\n100100100100100 ⌋
10010010010050150200300500\n a
According to XRD; Am—amorphous;
T—tridymite; Im—impurities.b
Visually.c Yellowish.d Slightly
gray.e Deteriorated.f Sample prepared
with 35 wt.% TEAOH.\n Product
characteristics\n Structurea\n
AmAmAm + AlPO-5AlPO-5TIm + AmAm +
traces of AlPO-5AmAmAlPO-5 + TAlPO-5
+ ImAlPO-5 + ImAlPO-5 + Im + AmIm +
Am\nMacro-shapeb\n
SpherescSpherescSpherescSpheresSphe ⌋
resSpheresdSpheresePowder +
spheresdPowder + spheresdPowder +
spheresSpheresSpheresSpheresSpheres ⌋
\nsamples for different treatment
times to study the AlPO-5
crystallization mechanism within the
resin.\n Fig. 3 shows XRD patterns of
series of calcined sam-ples
synthesized using the same synthesis
mixture as\n V. Naydenov et al. /
Microporous and Mesoporous Materials
78 (2005) 181–188\n185\n .\n u\n .\n
a\n /\n y\n t\n i\n s\n ne\n t\n
n\nI\n (24 h)\n (12 h)\n (10 h)\n (8
h)\n (6 h)(5 h)\n (4 h)(2 h)\n 5\n10
15 20 25 30 35 40 45 50\n 2\theta/o\n
Fig. 3. XRD patterns of the calcined
samples obtained from thesystem with
molar composition
2TEAOH:Al2O3:1.2P2O5:100H2O at150 C
for various treatment times.\n
sample 4 (Table 1) and prepared with
duration of thehydrothermal
treatment between 2 and 24 h. The
initialresin-Al composite beads used
in these experiments werefrom the
same batch. The sample prepared
using 2 h oftreatment was completely
amorphous. AlPO-5 peaksof very low
intensity were detected in the sample
ob-tained after 4 h oftreatment. The
intensity oftheAlPO-5 peaks further
increased with an increase in thetime
of hydrothermal treatment and the
sample pre-pared for 10 h was highly
crystalline pure AlPO-5. Inaddition
to the AlPO-5 phase,impurities of
anotherunidentified crystalline
phase
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(designated with arrowson the Figure)
were also present in the samples
treatedfor 5, 6 and 8 h.
Surprisingly, prolonging the
hydrother-mal treatment to 12 and 24
h lead to AlPO-5 spherescontaining
impurities of crystalline phases
most likelythe same as detected for
shorter treatment times.Sincethe
trend shown in Fig. 3 is rather
unexpected the repro-ducibility of
the results was confirmed by the
repetitionof the synthesis.The
changes in the pore structure of
product macro-structures with the
time of treatment were studied
bynitrogen adsorption, BET surface
areas, micropore sur-face areas and
volumes and total pore volumes are
listedin Table 2. The values for the
calcined initial resin-alu-mina
composites are also included in the
Table for acomparison. The size of
those spheres was
substantiallyreduced upon
calcination and this might explain
thelower total pore volume of this
sample. Though the val-ues vary, the
general trend is an increase in the
BET sur-\nTable 2Porosity of the
calcined samples synthesized from
system with molarcomposition
2TEAOH:Al2O3:1.2 P2O5:100H2O at 150
C altering theduration of the
hydrothermal treatment\n Sample\n
BET surfacearea, SBET\u00001)(m2 g\n
Microporesurface area,\u00001)Sl (m2
g\n Microporevolume,\u00001)Vl (cm3
g\n Al spheres2 h4 h5 h6 h8 h10 h12
h24 h\n 5711085102304172289296265\n
881028183\n98214227184\n
0.0030.0020.0040.0130.0870.0460.102 ⌋
0.1080.087\nTotal
porevolume,Vp\u00001)(cm3 g\n
0.2380.8160.8010.8640.4370.6970.426 ⌋
0.4010.409\n face area, micropore
surface area and volume and
adecrease in the total pore volume
with increased timeof treatment. The
samples prepared using 6 and 8 h
oftreatment show values that do not
fit into this trend.The reason might
be that according to XRD,
AlPO-5becomes the predominant phase
in the 6 h sample andthus the changes
in the structure of the inorganic
mate-rial within the resin are most
intense at this time intervalof
treatment (6–8 h). Dif-ferent complex
species containing Al or binuclear
Alcenters with H3PO4 or H2PO4 and H2O
molecules as li-gands showing P
chemical shifts in this range have
beenreported in literature [27–29].
However, the specificationof the
short range solid structure judging
only from the31P solid state NMR
would be highly speculative. After5 h
of hydrothermal treatment a new peak
(with a linewidth of \u00185.6 ppm)
at ca. \u000029 to \u000030 ppm
appearedon the top of the broad peak
(at \u000027 ppm).

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→14



This indicates\n\u0000\n that a new
material with more ordered structure
(P siteswith more uniform local
chemical environment) is form-ing in
this sample. Chemical shift \u000029
to \u000030 ppm is inthe range
characteristic for tetrahedral P
sites in theframework of microporous
materials [30,31]. In supportto this,
AlPO-5 peaks were also observed in
the XRDpattern of sample 5 h (Fig.
3(5 h)). In the spectra of thesamples
treated for 6 (not shown) and 8 h the
peak at\u000029 to \u000030 ppm
dominates over the broad
componentthat corresponds to the
initial amorphous solid. Accord-ing
to the 31P NMR, after 10 h of
hydrothermaltreatment, the
conversion from amorphous to a
poly-crystalline material is
completed. Only slight changes inthe
line shapes can be noticed in the
spectra of the sam-ples prepared for
12 and 24 h (not shown) of
hydrother-mal treatment. The spectra
of samples (10 h), (12 h) and(24 h)
are characterized by a resonance
line, which mightactually be
composed of two overlapping peaks,
ca. \u000030and \u000031 ppm with
total line-width of ca. \u00185.6
ppm. Thisresonance line width is
somewhat broader than what isusually
observed for highly polycrystalline
phosphoruscontaining materials. A
large part of the line broadeningis
probably due to interaction of
P-spins with 27Al nuclei(spin 5/2,
100% natural abundance).
However,theassignment of the 31P
peak(s) at \u000030/\u000031 ppm
(togetherwith the line-widths) to
microporous AlPO-5 is in agree-ment
with the results previously reported
in the literaturefor the dehydrated
AlPO-5 phase [30–32].Integral
intensities of the 31P resonance
lines in Fig. 5can be used for
quantitative estimation of the
phospho-rus content (in wt %) for
these samples. In the calcu-lations,
all 31P integral peak areas (centre
band wastween 20 and \u000070 ppm,
see Fig. 5) were normalized
tointegrated together with its
spinning side bands, i.e. be-the
area of the peak of commercial AlPO4
(Fig. 5 bot-tom) with known
phosphorus content (25.4 wt%).
Thetotal amount of P introduced as
H3PO4 in the systemduring the sample
preparation was 26.9 wt%. The P
con-tent as well as the pH of the
mother liquor as a functionof the
duration of hydrothermal treatment
are plotted inFig. 6.
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From the Figure it is seen that most of
the phos-phorus (ca. 25.0 wt.%) is
present within the resin afterthe
first 2 h of treatment. With an
increase in the dura-tion of the
hydrothermal treatment, the P
content inthe spheres slowly
increases and reaches a plateau atca.
29.1 wt.% after the tenth hour of
treatment. The re-sults for P
content are slightly higher than the
calculatedvalue on H3PO4 basis but
nevertheless give values
ofsatisfactory accuracy. These
errors in P content mea-surements
might be caused by variation of the
sampleweight due to water adsorbed
from air by the samplesduring the
rotor packing. It is known that
anhydrousAlPO4, which was used as a
reference sample in thecalculations,
is a highly hydroscopic material.The
pH is an important parameter in
aluminophos-phate syntheses, which
may alter crystal size and product\n
V. Naydenov et al. / Microporous and
Mesoporous Materials 78 (2005)
181–188\n187\n 1098765432\nr\n i\n
ou\nq\n i\nl\n r\n e\nh\n t\n o\nm\n
e\nh\n t\n n\ni\n H\n p\n P content
pH\n 048121620\n24Duration of
hydrothermal treatment/h\n 40\n 35\n
30\n 25\n 20\n 15\n 10\n%\n t\n w\n
/\nt\n ne\n t\n noc\n P\n Fig. 6. P
content in the product spheres
(estimated from 31P MASNMR) and pH of
the mother liquors collected after
synthesis ofsamples obtained from
system with molar composition
2TEAOH:Al2O3:1.2P2O5:100H2O at 150
C as a function of the duration of
thehydrothermal treatment.\n yield
[10,13,16–18]. In this study, the pH
values plotted inFig. 6 are values
measured outside the resin in the
motherliquor, therefore they should
be used with some precau-tion since
the pH of the mother liquor might
significantlydiffer compared to that
within resin interior, whereAlPO-5
actually crystallizes. The pH
monitoring mightgive information
about the transportation of e.g. P
andTEA+ in the resin. The initial pH
of the H3PO4, TEAOHand distilled
water mixture was 3.1. During the
first 2 h oftreatment, the pH of the
mother liquor sharply increasedto
5.4, slightly decreased after 5 h of
treatment andreached ca. 4.5 upon
further prolongation of the
treat-ment. It should be emphasized
that although this is thepH of the
mother liquor, the pH remains acidic
duringthe whole time interval
explored, whereas for conven-tional
syntheses the final pH is about
neutral [10].
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Inthe literature the initial increase in
the pH during the syn-thesis is
considered as an indication that the
amount ofthe free phosphoric acid is
decreasing [13,16]. This ismost
likely the case in our approach as
well, since the ini-tial increase of
the pH (2 h of treatment) correlates
wellwith the large amount of P for
this sample measuredby quantitative
31P NMR. In addition, the fact that
thepH remains in the acidic range,
suggests that the TEA+is also
transported into the resin already
at the beginningof the synthesis.Fig.
7 shows single-pulse 27Al MAS NMR
spectraof the calcined resin-Al
composites (denoted as Alspheres),
commercial AlPO4 and selected
spectra fromseries of samples
obtained varying the duration
ofhydrothermal treatment discussed
in Fig. 5 and Fig. 6.These spectra
were recorded for as received
samplesi.e. without additional
drying prior to measurementsto
remove adsorbed water. Aluminum
sites in the cal-cined resin-Al
composite have three predominant
typesof chemical environment,
characterized by broad peaksat ca.
60, 40 ppm (tetrahedral coordination)
and ca.\n (24 h)\n (10 h)\n (6 h)\n(2
h)\ncommercial AlPO4\n Al
spheres\n100\n75\n 50\n25\n 0\n-25\n
-50\n Chemical shift / ppm\n Fig. 7.
Single pulse 27Al MAS NMR spectra of
the samples obtainedfrom thesystem
with molarcomposition2TEAOH:Al2O3:1 ⌋
.2P2O5:100H2O at 150 C for various
treatment times.\n 5 ppm (octahedral
coordination) (Al spheres). All
thesepeaks completely disappeared
after 2 h of hydrothermal(Al (V)) and
about \u000013 ppm (Al (VI)) (Fig.
7(2 h)) ap-treatment, and new peaks
at 45 ppm (Al (IV)), 10 ppmpeared.
These new peaks are almost identical
to thosein the spectrum of
commercial AlPO4 (Fig. 7). The
weakbut discernible signal at about
10 ppm can be assigned tothe
five-coordinated aluminum according
to previous re-ports [33]. With an
increase in the duration of the
hydro-thermal treatment all three
resonance peaks becomenarrower with
the peaks being sharpest for the
samplesobtained after 10 h and 24 h
of treatment. Also, a consi-derable
shift of the 27Al-resonance peak at
45 ppm to atabout 37 ppm is noticed
for the tetrahedral aluminumsites in
the sample (Fig. 7(10 h)),
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which was previouslyassigned to the
AlPO-5 based on XRD (Fig. 4 (10
h))and 31P (Fig. 5(10 h)) results.
The small fraction of octa-hedral
aluminum sites in AlPO-5 (at ca.
\u000012 ppm) canalso be observed,
since a certain amount of water is
ad-sorbed by the sample. In previous
reports it has beenshown by a number
of 2D 27Al-31P NMR
correlationexperiments performed on
water-AlPO-5 system thatthese Al
(VI)-sites, which additionally
coordinate twowater molecules can be
correlated with 31P-signals forthe
latter system, i.e. these Al (VI)
sites are actually inthe AlPO-5
framework positions [34]. Therefore,
both31P and 27Al NMR as well as XRD
studies prove thatthe sample
prepared for 10 h of hydrothermal
treatmentcontains a high quality
AlPO-5 phase.\n 4. Conclusions\n
Highly crystalline and mechanically
stable AlPO-5spheres were prepared
using a cation exchange resin
as\n188\n V. Naydenov et al. /
Microporous and Mesoporous Materials
78 (2005) 181–188\na macrotemplate.
The AlPO-5 phase crystallized in
thepore structure of a cation
exchange resin loaded withAl
precursor species under a
hydrothermal treatmentwith a mixture
of H3PO4, TEAOH and distilled
water.The overall molar composition
of the synthesis mixtureinfluences
both phase purity and sphere
appearance.Best results, highly
crystalline AlPO-5 spheres, were
ob-tained using the mixture with the
molar composition2TEAOH:Al2O3:1.2P2 ⌋
O5:100H2O and 10 h of hydro-thermal
treatment at 150 C. The spheres
synthesizedfor treatment times other
than 10 h were contaminatedwith
amorphous and/or other crystalline
phases.The pore structure of the
AlPO-5 spheres preparedfor 10 h of
treatment was complex containing
micro-meso- and macropores. The
micropores are due to thepresence of
AlPO-5, whereas the meso and
macroporesemanate from the resin
removal.The crystallization
mechanism of AlPO-5 within theresin
was extensively studied by solid
state NMR.The quantitative
determination of the P content
withinthe solid spheres by 31P NMR
indicated that P is takenup by the
resin from the external solution at
the begin-ning of the hydrothermal
treatment (2 h). Further
pro-longation ofthetreatmentleadsto
structuralrearrangements of the
system resulting in the
crystalliza-tion of AlPO-5.
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The quality of the AlPO-5 phase
wasevaluated by XRD, nitrogen
adsorption, 31P, and 27AlMAS NMR
measurements.The procedure
presented contributes to the
currenttrends directed towards the
preparation of self-bondedmaterials
with hierarchical pore structures.
The macro-scopic spherical shape
and the complex pore structureof
the AlPO-5 spheres prepared makes
them interestingfor direct
applications in e.g. fixed bed
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"connections": [
{

"toId": 114,
"id": 1,
"text": "belong to",
"fromId": 116

},
{

"toId": 114,
"id": 2,
"text": "belong to",
"fromId": 134

},
{

"toId": 114,
"id": 4,
"text": "belong to",
"fromId": 136
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},
{

"toId": 114,
"id": 6,
"text": "belong to",
"fromId": 123

},
{

"toId": 114,
"id": 8,
"text": "belong to",
"fromId": 124

},
{

"toId": 114,
"id": 9,
"text": "belong to",
"fromId": 126

},
{

"toId": 114,
"id": 10,
"text": "belong to",
"fromId": 139

},
{

"toId": 114,
"id": 11,
"text": "belong to",
"fromId": 142

},
{

"toId": 137,
"id": 7,
"text": "belong to",
"fromId": 114

}
],
"others": [],
"labels": [
{

"startIndex": 167,
"endIndex": 182,
"id": 87,
"text": "author"

},
{

"startIndex": 1,
"endIndex": 37,
"id": 97,
"text": "Jornal"

},
{

"startIndex": 91,
"endIndex": 168,
"id": 100,
"text": "Title"

},
{

"startIndex": 191,
"endIndex": 207,
"id": 102,
"text": "author"

},
{

"startIndex": 213,
"endIndex": 230,
"id": 103,
"text": "author"

},

{
"startIndex": 236,
"endIndex": 248,
"id": 104,
"text": "author"

},
{

"startIndex": 532,
"endIndex": 548,
"id": 109,
"text": "Publish Date"

},
{

"startIndex": 347,
"endIndex": 401,
"id": 138,
"text": "Unit"

},
{

"startIndex": 255,
"endIndex": 319,
"id": 140,
"text": "Unit"

},
{

"startIndex": 2512,
"endIndex": 2543,
"id": 141,
"text": "doi"

},
{

"startIndex": 6402,
"endIndex": 6425,
"id": 114,
"text": "Gel composition"

},
{

"startIndex": 6742,
"endIndex": 6748,
"id": 124,
"text": "Crystallization

conditions - Temperature #1"↪→
},
{

"startIndex": 6768,
"endIndex": 6786,
"id": 126,
"text": "Crystallization

conditions - Time #1"↪→
},
{

"startIndex": 6159,
"endIndex": 6165,
"id": 137,
"text": "Zeolite"

},
{

"startIndex": 6565,
"endIndex": 6583,
"id": 123,
"text": "Al#1"

},
{

"startIndex": 6459,
"endIndex": 6468,
"id": 134,
"text": "H2O Number"

},
{

"startIndex": 6432,
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"endIndex": 6442,
"id": 116,
"text": "Template Number"

},
{

"startIndex": 6213,
"endIndex": 6238,
"id": 136,
"text": "P"

},
{

"startIndex": 6445,
"endIndex": 6452,
"id": 139,
"text": "P Number"

},
{

"startIndex": 6293,
"endIndex": 6298,
"id": 142,
"text": "Template#1"

}
]
}

8.2 Images in data management 815

Figure E4: Source of data PDF sample.
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Public Date Molecular sieve 
products
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Figure E5: The annotation tools.

Figure E6: An example of dictionary and rule base.
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8.3 System Interface816

Figure E7: Recognition Result Interface.

Figure E8: Label Management Page.

Figure E9: Domain Management Interface.

8.4 Data cross-check code 817

import os
import json

def read_labels(label_path):
with open(os.path.join(label_path, 'label.txt'),

'r', encoding='utf8') as f_txt:↪→
return [label.strip() for label in

f_txt.readlines()]↪→

def process_json_file(json_path, json_name,
labels):↪→

with open(os.path.join(json_path, json_name),
'r', encoding='utf8') as fp:↪→

json_data = json.load(fp)

extracted_data = {label: [] for label in labels}

for json_item in json_data['labels']:
for label in labels:
if label in json_item['text']:
start = json_item['startIndex']
end = json_item['endIndex']
content = json_data['content'][start:end]
extracted_data[label].append(content)

return extracted_data

def write_output(new_json_path, extracted_data):
for label, data in extracted_data.items():
with open(os.path.join(new_json_path,

f"{label}.txt"), 'w', encoding='utf8') as
json_file:

↪→
↪→
json_file.write(str(data))

def main():
label_path = ''
json_path = ''
new_json_path = ''

labels = read_labels(label_path)

all_extracted_data = {label: [] for label in
labels}↪→

for json_name in os.listdir(json_path):
extracted_data = process_json_file(json_path,

json_name, labels)↪→
for label, data in extracted_data.items():
all_extracted_data[label].extend(data)

write_output(new_json_path, all_extracted_data)

if __name__ == "__main__":
main()
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8.5 Label information statistics818

Figure E10: Label the DOI information statistics in the
data.

Figure E11: Label the Si information statistics in the
data.

Figure E12: Label the Gel composition information
statistics in the data.
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