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ABSTRACT

Temporal action detection (TAD) often suffers from the pain of huge demand for
computing resources due to long video duration. As a consequence, given limited
resources, most action detectors can only operate on pre-extracted features rather
than original video frames, resulting in sub-optimal solutions. In this work, we
propose an efficient temporal action detector (ETAD) that can train directly from
video frames, by introducing a novel sampling mechanism. First, for where to
sample in TAD, we propose snippet-level sampling and proposal-level sampling,
based on the observation that performance saturates at a small number of snip-
pets/proposals. Such samplings essentially leverage the redundancy in the current
detection framework, thus can substantially reduce the computation cost and en-
able end-to-end training for long untrimmed videos without harming the perfor-
mance. Second, for how to sample in TAD, we comprehensively study various
sampling approaches, and point out that the random sampling and DPP sampling
work the best empirically. Our sampling-based ETAD achieves state-of-the-art
performance on TAD benchmarks with remarkable efficiency. With end-to-end
training, ETAD can reach 38.25% average mAP on ActivityNet-1.3. With pre-
extracted features, ETAD only needs 6 mins of training time and 1.23 GB mem-
ory, still reaching average mAP 37.78%. Code will be available.

1 INTRODUCTION

Due to the popularization of mobile devices and social media, video content has been rapidly grow-
ing in recent years. Thus, the automatic video understanding is in high demand in both academia
and industry (Feichtenhofer et al., 2016; Carreira & Zisserman, 2017). Temporal action detection,
referred to as TAD, is a fundamental but challenging task in this area, which requires an intelligent
system to predict the start and end time of all activity instances in a video, and to identify their
categories as well. (Heilbron et al., 2015; Escorcia et al., 2016; Zhao et al., 2019; Xu et al., 2020)

Most of the current TAD solutions follow the two-step framework: feature extraction + action de-
tection. Concretely, a video understanding model first encodes the video as a sequence of feature
vectors, then an action detector operates on the features to produce predictions. The well-developed
resource-demanding video understanding model and action detection model lead to two efficiency
issues: (1) Infeasible to end-to-end training. Ideally, optimizing the feature encoder and action de-
tector jointly is welcomed to avoid the sub-optimal issue. However, such an approach is extremely
challenging in TAD due to the large data volume of untrimmed videos under limited GPU storage.
As a result, most existing works in TAD either only focus on learning a good action detector with the
pre-encoded video features (Bai et al., 2020; Xu et al., 2020; Zhao et al., 2021), or explore end-to-
end training by compromising the data resolution or batch size to satisfy the memory requirements,
which may influence the network performance (Xu et al., 2017; Lin et al., 2021). (2) Even with
pre-encoded features, a standalone action detector itself is usually not resource-friendly, especially
when designed with expensive modules in order to pursue good detection performance. For exam-
ple, many recent solutions incorporate the graph convolutions (Xu et al., 2020; Zhao et al., 2021),
attentions (Sridhar et al., 2021), or transformers (Zhang et al., 2022), which all incur high compu-
tation and memory costs by correlating different snippets or proposals exhaustively. Therefore, an
efficient action detection model becomes increasingly important for TAD.
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Figure 1: Overview of ETAD. (a) By applying Encoder Gradient Sampling (green arrows) and
Detector Proposal Sampling (purple arrows), ETAD is able to optimize the feature encoder and
action detector jointly with low GPU memory footprint. We find that only 30% snippets and 6%
proposals are sufficient for TAD. (b) With pre-extracted features, ETAD can outperform other state-
of-the-art methods with much less training time and GPU memory (tested on a single RTX3090).

In this paper, to alleviate the aforementioned heavy computation issue in TAD, we propose a novel
sampling-based end-to-end Efficient Temporal Action Detector (ETAD), as shown in Figure 1(a).
The success of ETAD on efficacy and efficiency is achieved by answering two key questions, i.e.
where to sample and how to sample in TAD. Firstly, for where to sample in the network, we design
two sampling processes: snippet-level sampling and proposal-level sampling. The gradient-based
snippet-level sampling, named Encoder Gradient Sampling (EGS), reduces the number of redun-
dant snippets for gradient computation during network back-propagation, which not only signifi-
cantly alleviates the GPU memory and computation cost incurred by the video encoder, but also
enables the detector working with deep architecture, high frame resolution, or large batch size dur-
ing end-to-end training. The proposal-level sampling, named Detector Proposal Sampling (DPS),
generates a much smaller but sufficient set of proposals for the detector to further process, based on
the empirical observation that most of the candidate proposals overlap with each other and only 6%
proposals can guarantee a decent action detection performance. Second, for how to sample, we ex-
plored various sampling strategies at both snippet and proposal levels, including heuristic sampling
strategies (e.g. random sampling), label-guided sampling strategies (e.g. IoU-balanced sampling),
and feature-guided sampling strategies (e.g. farthest point sampling, determinantal point process
(DPP)). The experimental results suggest that random sampling and DPP sampling advance in sim-
plicity and performance at these two levels, respectively.

ETAD achieves state-of-the-art performance on ActivityNet-1.3 and THUMOS benchmarks with
superior performance and efficiency. Interestingly, we find that with our effective sampling strate-
gies, it is sufficient to have a promising action detector while only leveraging 30% of snippets for
back-propagation and 6% of proposals for detection. Compared with the state-of-the-art method
VSGN (Zhao et al., 2021), Figure 1(b) shows that ETAD only requires 5% of VSGN’s memory us-
age (1.23GB vs 25.64GB) and 13% of training time (6mins vs 45mins), and it improves the average
mAP from 35.94% to 37.78% on ActivityNet-1.3.

Contributions. (1) We novelly propose to alleviate the efficiency issue in TAD by the sampling
mechanism. Concretely, we are the first to explicitly point out that snippet-level sampling and
proposal-level sampling can significantly reduce the learning redundancy in TAD. Particularly, the
proposed gradient sampling can serve as a powerful approach for efficient end-to-end training for
long untrimmed videos. (2) We compare various sampling strategies both at the snippet level and
proposal level. Empirically, the random sampling and DPP-based sampling exceed others in perfor-
mance. (3) Extensive experiments and ablations show that our proposed ETAD reaches state-of-the-
art performance on two commonly used TAD benchmarks, ActivityNet-1.3 and THUMOS-14.
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2 RELATED WORK

Temporal Action Detection. An action detector can localize action instances directly from features
of video snippets (direct), or merely refine the action boundaries of proposals from a proposal-
generation network (refinement). The direct solution usually consists of feature enhancement and
anchor/proposal evaluation, and focuses on improving one or both components (Heilbron et al.,
2017; Xu et al., 2017; Chao et al., 2018; Lin et al., 2019b; Long et al., 2019). For example, Xu et al.
(2020) models the correlations between video snippets for feature enhancement, and Bai et al. (2020)
models the correlations between proposals for proposal evaluation. The refinement solution tends to
prune off-the-shelf action proposals and provide more accurate boundary predictions (Shou et al.,
2016; Lin et al., 2018; Qing et al., 2021; Zhao et al., 2021), where the proposal can be from either
a heuristic design (e.g. sliding window), or a well-developed proposal generation method (Escorcia
et al., 2016; Buch et al., 2017; Gao et al., 2018; Liu et al., 2019). P-GCN (Zeng et al., 2019) is
a typical refinement solution that exploits proposal-proposal relations from the predictions of BSN
(Lin et al., 2018) and uses graph convolutional networks to refine proposals. Qing et al. (2021) uses
the high-quality proposals generated from BMN (Lin et al., 2019b) and proposes a cascade structure
to progressively refine the actions. Our proposed ETAD belongs to the family of direct solutions,
since it does not rely on any external proposal methods, but surpasses the best refinement solution.

End-to-end Solutions in TAD. Few methods study the problem of action detection directly from the
original video frame end to the predicted proposal end without stopping the gradients in the middle
of the pipeline, which is referred to as end-to-end training. Xu et al. (2017) encodes the frames
with 3D filters, proposes action segments, then classifies/refines them. However, its performance is
limited due to underlying computational restrictions (e.g. low-resolution frames and low-capacity
video networks). PBRNet (Liu & Wang, 2020) progressively refines action boundaries with three
cascaded detection modules, but it is also plagued by hardware constraints that necessitate low-
resolution frame input. ASFD (Lin et al., 2021) proposes the first anchor-free temporal localization
method, but it suffers from a low convergence rate and small batch size. To approximately overcome
this issue, some works propose ways of pre-training the feature encoder. Those methods develop
new training tasks to close the gap between action recognition and action detection. For example, Xu
et al. (2021b) reduces the mini-batch composition in terms of temporal, spatial or spatio-temporal
resolution. Xu et al. (2021a) and Alwassel et al. (2021) train the feature encoder on novel tasks
to make video features sensitive to the temporal localization of the action. Unfortunately, they
both require an extra pretraining stage for training the localization network. Differently, our ETAD
solution is able to train the network with full fidelity: high frame resolution, large batch size, fast
convergence, and single-stage training.

Sampling in Video Understanding. Although densely sampling snippets over the entire sequence
is effective in understanding short videos, it is expensive for long, untrimmed videos. An alternative
approach is to summarize the video (Huang & Wang, 2019) by selecting only the relevant frames or
snippets. In action recognition, for example, SCSampler (Korbar et al., 2019) selects salient clips
from video for efficient action recognition, but it has to train another model as clip sampler. In action
detection, sampling is less explored. Cheng & Bertasius (2022) stochastically updates snippet fea-
tures stored in a pre-computed feature bank, but the unselected intermediate features are not always
up-to-date. Besides, proposal sampling in TAD is an under-explored topic because most methods
(Lin et al., 2020; 2019b; Xu et al., 2020) exhaustively enumerate the possible locations of activ-
ity, leading to redundant computation, especially for highly overlapped proposals. We extensively
studied snippet sampling and proposal sampling in TAD, and our ETAD does not need any extra
model/storage to select/cache samples.

3 METHOD

Our method is designed to answer two questions in TAD: where to sample and how to sample. We
will firstly introduce the basic architecture of our ETAD, then explain our two sampling processes at
the snippet level and proposal level, and finally discuss the possible sampling approaches, including
heuristic sampling, feature-guided sampling, and label-guided sampling.

3.1 PROBLEM DEFINITION AND MODEL ARCHITECTURE

Given an untrimmed video, temporal action detection aims to predict actions with temporal bound-
aries denoted as Ψ = {φi=(ts, te, c)}Ni=1, where (ts, te, c) are the start time, end time, and category
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Figure 2: Architecture of ETAD. Bottom: EGS connects the two components of ETAD — fea-
ture encoder and action detector. It enables partial gradients back-propagation at the snippet level,
tremendously reducing memory and computational cost. Top: DPS, in the action detector of ETAD,
samples a small portion at the proposal level for further proposal evaluation.

of the action instance φi, respectively. N is the total number of actions. The overall architecture of
our ETAD is shown in Figure 2(bottom), which follows the pipeline of feature extraction and action
detection. For feature extraction, an off-the-shelf action recognition model, such as TSM (Lin et al.,
2019a), R(2+1)D (Tran et al., 2018), is adapted to encode the video frames to a list of feature vec-
tors. Specifically, each feature vector is from the feature map before the classification head of the
recognition model, and with global average pooling applied on the temporal and spatial dimensions.

The architecture of our action detector is shown in Figure 2(top). In the feature enhancement mod-
ule, we integrate two LSTM layers to capture long-range temporal relations, enhancing snippet-
level representations. In the boundary evaluation, we apply two convolution layers to classify the
startness and endness of each snippet. Last, the proposal evaluation module refines the candidate
anchors/proposals and outputs their confidence. In this module, we apply temporal RoI alignment
from G-TAD (Xu et al., 2020) for proposal feature extraction. To improve the regression precision,
we stack more proposal evaluation modules with progressively improved IoU thresholds. More
details about each module can be found in Appendix A.

The architecture with the aforementioned modules without the sampling mechanism is called our
vanilla model, which can produce decent-quality action predictions. Although more sophisticated
modules, such as self-attention or graph convolution networks, can be integrated into our action
detector to achieve higher performance, we show that a simple detector can be more computationally
efficient, even with end-to-end training, without losing much performance. To be more specific, we
propose to alleviate the computation burden by adopting the sampling mechanism. We detailed
investigate this mechanism in two questions: where to sample and how to sample.

3.2 WHERE TO SAMPLE IN TAD

The heavy computation burden in many SOTA TAD methods, including our vanilla model, generally
comes from two places: snippet-level redundancy, and proposal-level redundancy.

3.2.1 SNIPPET-LEVEL SAMPLING

Ideally, for end-to-end training in TAD, the input of feature encoder is all snippets in a sequence
(a sequence is part of a video where a TAD model processes at one time) and the feature encoder’s
parameters are optimized based on all the input snippets’ gradients in each iteration. However, such
full end-to-end optimization is usually not feasible in practice due to the conflict between the large
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Table 1: Comparison of ETAD with other (approximate) end-to-end training strategies in TAD.
For a fair comparison, we set the sampling rate to 30% in all experiments, and use the vanilla
ETAD detector with different end-to-end strategies. Computation in forward/backward stands for
the theoretical computation cost of the feature encoder in forward/backward propagation. GPU
memory per video is reported with TSM-ResNet50 backbone.

Methods Computation
in Forward

Computation
in Backward

Feature
Bank

GPU
Memory

avg.
mAP

Pre-extracted Feature 0% 0% ✓ 1.2GB 36.13

Multi-stage Training (Xu et al., 2020) 30% + 30% 30% + 30% ✗ 11GB 36.36
Feature Bank (Cheng & Bertasius, 2022) 30% 30% ✓ 11GB 36.54
Gradient Sampling (ETAD, ours) 100% 30% ✗ 11GB 36.79

Completely End-to-End Training 100% 100% ✗ 34GB 36.85

data volume and the GPU memory constraint. For example, when using a large number of snippets
(e.g. 128 snippets), a high spatial resolution (e.g. 224×224), a large batch size (e.g. 16 videos), and
a mediate-capacity encoder (e.g. TSM), more than 500 GB memory is needed to perform end-to-end
training, making it unrealistic on most platforms. Some works try to sacrifice the input resolution
or network scale to reduce the end-to-end computation, but these techniques may degrade the TAD
performance (Liu & Wang, 2020; Liu et al., 2022; Yang et al., 2022). On the contrary, we target
approaches that avoid sacrificing the data or network scale.

In this paper, we propose to reduce the gradient computation by a snippet-level sampling strategy,
called Encoder Gradient Sampling (EGS), as illustrated in Figure 2 (bottom). Given a sampling
ratio, we sample snippets using a sampling strategy (Section 3.3), and only compute the encoder’s
gradients on the sampled snippets in backward propagation of the encoder. The rest of snippets
only contribute to the forward computation. This gradient-based sampling saves a large portion of
the GPU memory, since for unsampled snippets intermediate activations do not need to be saved to
compute gradients. Thus it also allows the network to accommodate frames of higher resolutions,
or an encoder of larger capacity.

EGS makes end-to-end TAD more efficient, and why can it keep its effectiveness? (1) Since the
consecutive video frames in the untrimmed video are usually similar in semantics, the feature vectors
of corresponding snippets may share similar representations. When end-to-end training is adopted,
the encoder gradients of such snippets behave quite similarly, suggesting the learning redundancy.
(2) As pointed out by Cheng & Bertasius (2022), the off-the-shelf feature encoder is already pre-
trained on a large-scale action recognition dataset, thus the encoder evolves more slowly than the
other modules in the network with a much smaller learning rate. Therefore, the difference in the
feature encoder’s gradient between snippets is even more smaller. Based on such insight, our EGS
which only back-propagates a small ratio of snippets would still guarantee high TAD performance.

We also compare our method with other (approximate) end-to-end training approaches in TAD, as
shown in Table 1. To meet the requirements of memory, LoFi (Xu et al., 2020) introduces three
stages for encoder pretraining, which downsamples the temporal/spatial resolution, then extracts
features and detects actions in full fidelity. TALLFormer (Cheng & Bertasius, 2022) designs a
feature bank to store snippet features as cache, and stochastically updates only a small proportion
of these to approximate end-to-end training, but the features in the bank are not always up to date.
As a comparison, our EGS shares a similar GPU memory with these two methods because of the
computation reduction in backward propagation, but it achieves the best detection performance (see
Table 1). Noted that our EGS is agnostic of the encoder architecture and thus can incorporate any
of the common encoders in its framework. The detailed implementation of EGS can be found in the
Appendix G.

3.2.2 PROPOSAL-LEVEL SAMPLING

Beyond the snippet-level sampling that is only designed for end-to-end training, in this paper, we
also propose the proposal-level sampling, which aims to reduce the redundancy in the dense proposal
evaluation in action detector. In current two-stage TAD methods (i.e. methods use RoI alignment
or similar to extract proposal features explicitly), a dense candidate proposal set is needed in the
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sides, FPS chooses the new snippet/proposal which has the farthest distance to the selected samples.
DPP selects the data from the feature embedding space to enforce the sample diversity.

second stage for proposal refinement and further processing, such as in BMN (Lin et al., 2019b) and
G-TAD (Xu et al., 2020). To deal with the large action length variation, they propose to enumerate
all possible combinations of start and end locations to form candidate proposals. Specifically, given
the number of snippets T , there will be C2

T = T · (T − 1)/2 proposals, which has the quadratic
complexity with respective to T .

However, due to the dense enumeration, most of these proposals overlap with each other, and as
a result, a large portion of the extracted proposal features are duplicated. Moreover, the proposal
evaluation module also refines each proposal’s start and end boundary, making it unnecessary to
consider proposals that are temporally close. Therefore, huge redundant computation exists in the
current proposal extraction and evaluation modules. In order to reduce such redundancy while pre-
serving performance, we propose to replace the densely sampled proposal set with a subset produced
by an efficient sampling, called Detector Proposal Sampling (DPS), as illustrated in Figure 2. Our
experiment results suggest that with a decent sampling strategy, only 6% proposals can provide a
similar detection performance to all proposals, but saves more than 90% computation.

Note that though DPS can be applied on both the pre-extracted feature setting and the end-to-end
training setting, the relative efficiency gains brought by this technique are more obvious with pre-
extracted features. This is because in end-to-end training, the action detector where DPS is applied
uses much lower computation and memory than the feature encoder, and the savings by DPS is not
that significant in the whole pipeline. However, considering that most of the current TAD methods
are feature based, this sampling strategy is important to make this type of TAD methods even more
efficient. For example, DPS can speed up the training time of ETAD from 45 mins to 6 mins in
feature-based setting, requiring only 1.2GB GPU memory.

3.3 HOW TO SAMPLE IN TAD

In previous sections, both EGS and DPS require to determine a subset of candidate snippets / pro-
posals, thus they can share similar sampling strategies — criteria to choose the samples. In our
study, we explore three types of sampling strategies: heuristic sampling, feature-guided sampling,
and label-guided sampling.

Heuristic Sampling includes three simple strategies: random, grid, and block, which are similar to
the samplings in MAE (He et al., 2022). Given a sampling ratio, the random strategy simply samples
snippets or proposals randomly following a uniform sampling distribution. The grid strategy sam-
ples the snippets with a pre-defined temporal stride or grid on a proposal map, as shown in Figure 3.
The block sampling strategy makes sure consecutive snippets are sampled, or the proposals within
a block in the proposal map are sampled. The block sampling essentially evaluates the model in a
trimmed clip of the video. The sampling process of such trio does not rely on other conditions, such
as proposal/snippet feature, thus we call them heuristic sampling.
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Feature-guided Sampling, which are more sophisticated sampling strategies, are based on the dis-
tribution in the feature space. The farthest point sampling (FPS, Eldar et al. (1997)) selects the new
snippet/proposal which has the farthest distance to the selected samples. Here, the distance between
two snippets or proposals is defined as the euclidean distance between two snippet features or pro-
posal features. Such a method can provide the most distinguished samples of the candidates, since
the selected samples are more variant in the embedding space. We also implement the sampling
as the determinantal point process (DPP) to enforce diversity during training. We take the cosine
similarity as the kernel function, and update the determinant every training epoch. When a sampling
ratio is given, the sample target has a fixed size, so we can directly apply kDPP (Kulesza & Taskar,
2011) in the scenario. Please refer to the Appendix H for more details.

Label-guided Sampling is a category that uses groundtruth supervision. For proposal-level sam-
pling, we explore the following strategies. The IoU-balanced sampling guarantees the selected pro-
posals has nearly the same number in different IoU threshold. For instance, we make sure the
proposal number is the same based on their IoU around 0∼0.3, 0.3∼0.7, and 0.7∼1. Similarly,
the scale-balanced sampling tries to maintain the equivalence of proposal numbers around differ-
ent action scales, meaning the number of small scale proposals (scale<0.3), middle scale proposals
(0.3<scale<0.7), and large scale proposals (scale>0.7) are the same in the selected sample set.

In our experiment, we find that random sampling, grid sampling, and DPP-based sampling all work
well in terms of performance. Using a rather small sampling rate, e.g. 30% at the snippet level
and 6% at the proposal level, can produce a decent TAD performance. Such small sampling ratios
can save a lot of computation both in feature encoder and action detector while maintaining the
performance.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets and evaluation metrics. ActivityNet-1.3 (Heilbron et al., 2015) is a large-scale video
understanding dataset, consisting of 19,994 videos annotated for the temporal action detection task.
The dataset is divided into train, validation and test sets with a ratio of 2:1:1. THUMOS-14 (Jiang
et al., 2014) contains 200 annotated untrimmed videos in the validation set and 213 videos in the test
set. Following previous works, mean Average Precision (mAP) at certain IoU thresholds and average
mAP are reported as the main evaluation metrics. On ActivityNet-1.3, the IoU thresholds are chosen
from 0.5 to 0.95 with 10 steps. On THUMOS-14, the threshold is chosen from {0.3,0.4,0.5,0.6,0.7}.

Feature preparation. In this paper, we study two settings: pre-extracted feature setting, and end-to-
end training setting. TSN (Wang et al., 2016), TSM (Lin et al., 2019a), I3D (Carreira & Zisserman,
2017), and TSP (Alwassel et al., 2021) are adopted as the feature encoder in different settings.
We implement our framework with PyTorch1.12, CUDA11.1, and mmaction2 (Contributors, 2020).
The feature-based experiments are conducted on one RTX3090, and the end-to-end experiments
are conducted on 8 A100 GPUs. Please refer to Appendix B for more implementation details and
Appendix C for more ablations. For completeness, we also evaluate our methods on the HACS
dataset (Zhao et al., 2019) and achieve state-of-the-art performance (see Appendix D).

4.2 COMPARISON WITH STATE-OF-THE-ART TAD METHODS

Pre-extracted feature setting. We first use the pre-extracted features to compare our action detector
with other state-of-the-art methods on ActivityNet-1.3. This provides an apple-to-apple comparison
with other TAD methods which are not able to optimize the video encoder jointly. All results are the
average after training 5 times. As shown in Table 2, our method achieves the highest average mAP on
this large-scale dataset. Notably, without expensive optical flow, our localization network can reach
an average mAP of 37.78%, significantly outperforming other methods. We also show the advantage
of our method on THUMOS-14 in Table 3, which surpasses both TSN-based VSGN (Zhao et al.,
2021) and I3D-based AFSD (Lin et al., 2021) and MUSES (Liu et al., 2021). Interestingly, ETAD
achieves outstanding results especially on high IoU threshold on the two datasets, indicating the
precision of the generated action boundary.

End-to-end training setting. Table 4 compares ETAD with other detection methods that adopt
end-to-end training. Compared with LoFi (Xu et al., 2021b) which also uses TSM-ResNet50 as the
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Table 2: Comparison in terms of mAP on ActivityNet-
1.3 validation set with pre-extracted features. The
O.F. stands for optical flow.

Method Feat. O.F. 0.5 0.75 0.95 Avg.

BMN TSN ✓ 50.07 34.78 8.29 33.85
VSGN TSN ✓ 52.38 36.01 8.37 35.07

TCANet TSN ✓ 52.27 36.73 6.86 35.52
RCL TSN ✓ 54.19 36.19 9.17 35.98

ETAD TSN ✓ 52.49 37.07 9.47 36.06

G-TAD TSP ✗ 51.26 37.12 9.29 35.81
CSA TSP ✗ 52.64 37.75 7.94 36.25
RCL TSP ✗ 55.15 39.02 8.27 37.65

ETAD TSP ✗ 54.70 39.10 9.87 37.78

Table 3: Comparison in terms of mAP on THUMOS-
14 test set with pre-extracted features. Optical flow
is used in all the methods.

Method Feat. 0.3 0.4 0.5 0.6 0.7

BMN TSN 56.0 47.4 38.8 29.7 20.5
G-TAD TSN 57.3 51.3 43.0 32.6 22.8
TCANet TSN 60.6 53.2 44.6 36.8 26.7
VSGN TSN 66.7 60.4 52.4 41.0 30.4
ETAD TSN 68.26 63.63 55.65 45.83 35.13

AFSD I3D 67.3 62.4 55.5 43.7 31.1
MUSES I3D 68.9 64.0 56.9 46.3 31.0
TAGS I3D 68.6 63.8 57.0 46.3 31.8
ETAD I3D 70.29 65.26 57.81 47.88 36.25

Table 4: Comparison in terms of mAP on ActivityNet-1.3 with end-to-end training. We report per video GPU
memory usage. γ is encoder gradient sampling ratio. † means additional optical flow is used for late fusion.

Method Encoder Backbone 0.5 0.75 0.95 Avg. mAP Memory (GB)

AFSD † I3D 52.40 35.30 6.50 34.40 12
LoFi TSM-ResNet50 50.91 35.86 8.79 34.96 29
TALLFormer Swin-B 54.10 36.20 7.90 35.60 29

ETAD (γ=30%) TSM-ResNet50 53.79 37.59 10.56 36.79 11
ETAD (γ=30%) R(2+1)D-34 (TSP) 55.49 39.32 10.57 38.25 5.5

encoder, ETAD can achieve 1.83 average mAP gains with only 38% GPU budget. Particularly, using
our EGS method with the R(2+1)D encoder, we can achieve an even higher performance of 38.25%
average mAP with only 5.5 GB memory (per video), thus outperforming previous state-of-the-art
methods both on efficiency and efficacy by a large margin. Finally, compared with pre-extracted
feature experiments above, joint optimization of feature encoder and action detector can boost the
performance from 37.78 (in Table 2) to 38.25, suggesting the significance of end-to-end training.

Qualitative Visualization. The visualization in Appendix I shows that ETAD can generate more
precise proposal boundary and more reliable proposal confidence compared with other methods.

4.3 ABLATION STUDY

Effect of Sampling Ratio. We first study the impact of different sampling ratios on the action de-
tection performance. (1) For snippet-level sampling, as shown in Figure 4(a), if sampling ratio is
100%, i.e. the network is trained in completely end-to-end way, it takes tremendous 550 GB mem-
ory to optimize (batch size 16), bringing a 0.72 mAP gain compared with sampling ratio 0% (i.e.
feature-based experiment). However, completely end-to-end training is not necessary. For example,
only 10% of the samples contribute to 80% of the improvement, indicating that certain redundancy
exists in snippet-level end-to-end learning. Such scenario also happens in THUMOS dataset (see
Appendix E). Thus as a good trade-off between performance and efficiency, we take 30% EGS ratio
as the main setting, which provides 92% (0.66) mAP gains but reduces GPU memory usage by 66%.
This reduction makes end-to-end training of long-form video understanding practical on most plat-
forms, e.g. four V100 GPUs for training, single RTX3090 GPU for inference. (2) For proposal-level
sampling, as shown in Figure 4(b), the detection performance also saturates from a small sampling
ratio. Using 6% sampling, ETAD successfully maintains the same detection performance as us-
ing complete dense proposal set, speeds up the training 7.5x faster (from 45 mins to 6 mins), and
cuts down the 92% memory usage (from 16 G to 1.2 G) of the action detector. Therefore, we can
conclude that the training redundancy exists at proposal level and snippet level, and we can apply
sampling in both processes to improve efficiency.

Effect of Sampling Strategy. We further study different sampling strategies on ActivityNet-1.3, as
shown in Table 5. (1) For proposal-level sampling (i.e. DPS), we find that random sampling, grid
sampling, and DPP works all well. While block sampling and label-guided sampling both show
certain downgrades in performance, because they change the proposal distribution and thus can not
guarantee the variety of proposals. We also notice that FPS would prefer to focus on small-scale
proposals, since these proposal features are more distinguished from each other in the feature space.
Due to a lack of enough learning of middle-and-large-scale proposals, FPS behaves badly in this
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Figure 4: Effect of sampling ratio. (a) For end-to-end training, we apply TSM-R50 with different
EGS ratios and report the mAP and GPU memory on ActivityNet-1.3. (b) For feature-based training,
we use TSM features with different DPS ratios and report the mAP, GPU memory, and training time.
Random sampling is adopted in both settings. Note that the x-axis is not uniformly distributed.

Table 5: Effect of sampling strategies. We apply the TSM-R50 as the feature encoder and report
the mAP on ActivityNet. Since EGS adopts end-to-end training, thus the performance of EGS is
expected to be higher than DPS which uses pre-extracted features.

Sampling Type Sampling Strategy DPS
(feauture, 6%)

EGS
(end-to-end, 30%)

heuristic
random 36.13 36.65

grid 36.04 36.77
block 32.97 36.74

feature-guided farthest point sampling (FPS) 33.59 36.61
determinantal point process (DPP) 36.16 36.79

label-guided IoU-balanced 34.84 N.A.
Scale-balanced 35.10 N.A.

experiment. In short, for proposal-level sampling, we find it vital to preserve the original dis-
tribution of all proposals. (2) For snippet-level sampling (i.e. EGS), all experiments outperform
the pre-extracted feature baseline (36.13%), which also validates the effectiveness of end-to-end
training. We find grid sampling and DPP sampling strategy work slightly better than other
strategies in EGS. Besides, we notice that DPP shows the best performance both on DPS and EGS,
since it enforces the diversity of proposals/snippets during training in the feature embedding space.
However, considering the detection performance and computation complexity of different sampling
strategies, we recommend adopting the random sampling strategy at the proposal level, and adopting
grid or DPP sampling strategies at the snippet level.

Comparison with other end-to-end strategies in the literature. As discussed in Section 3.2.1,
we also adopt ETAD detector with different (approximate) end-to-end strategies for comparison. As
shown in Table 1, our simple but effective EGS evidently improves the detection performance under
the same memory budget. The mAP is nearly the same as in completely end-to-end training, but
saves more than 65% memory, suggesting the effectiveness of our method. Besides, additional stud-
ies of end-to-end training regarding frame resolution, pretraining, etc, are detailed in Appendix F.

5 CONCLUSION

In this paper, we systematically study the efficiency issue in temporal action detection. We identify
that computation redundancy is a major bottleneck in TAD, and thus suggest alleviating such prob-
lem by adopting the sampling mechanism. We explicitly propose to adopt samplings at snippet-level
and proposal-level, and we further explore various sampling strategies on both levels. Our proposed
ETAD not only exceeds other methods on pre-extracted feature settings, but also enables joint opti-
mization of the feature encoder and action detector on an affordable GPU budget. ETAD achieves
state-of-the-art action detection performance on multiple benchmarks, and the proposed sampling
methods and strategies make end-to-end training tractable in real-world applications. This work will
encourage the community to carry out more research on end-to-end training for various untrimmed
video understanding tasks besides TAD, such as video language grounding and video captioning.
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A ARCHITECTURE OF ETAD

As the extension of Section 3.1, here we describe the detailed designs of two modules in ETAD:
feature enhancement module and proposal evaluation module. Then, we further introduce the loss
function of ETAD.

A.1 FEATURE ENHANCEMENT MODULE

Long-range relation modeling is vital for temporal action detection (Buch et al., 2017; Khojasteh
et al., 2022; Qing et al., 2021), considering that local aggregation alone such as convolution is not
sufficient when an action is longer than the receptive field, or correlations between different action
instances are critical for prediction (Xu et al., 2020). Although transformers or graph convolutions
can also capture temporal context, they usually need more data to converge and strong regularization
to optimize. In our work, to enrich the feature representation with global and local information, we
adopt LSTM (Hochreiter & Schmidhuber, 1997) to achieve temporal context aggregation.

Figure 5 illustrates the detailed structure of our feature enhancement module. First, a convolution
layer with kernel size 3 and output channel 256 is adopted on the video feature sequence. Then a
branch consisting of an LSTM layer with hidden channel 256 followed by a convolution layer with
kernel size 3 and output channel 128 is used for capturing long-range temporal forward information.
Similarly, to obtain the backward information, we flip the input of this branch and feed it into the
LSTM layer, then flip the output of this branch again. Next, we concatenate the outputs of these
two branches addition with a residual connection which passes a convolution layer with kernel size
256, and get the feature sequence with the channel number of 512. The residual connection can
mitigate the effect of forgetting issue brought by the LSTM. Finally, we use a convolution layer with
kernel size 1 to downsample the dimension of feature sequence from 512 to 256. Group normaliza-
tion layer with group number 16 and ReLU are used after each convolution layer. Compared with
only local aggregation, our LSTM-based temporal aggregation effectively enhances snippet feature
representations in reference to their order, which provides smoother but more distinctive features.

conv(3,256)

LSTM conv(3,128)

conv(3,256)

LSTM conv(3,128)~ ~

c conv(1,256)

Feature Enhancement

~reverse order

cconcatenation

Figure 5: Architecture of feature enhancement module.

Discussions: Here we briefly discuss the motivation to use forward and backward aggregation. The
disadvantage of capturing long-range information only in one direction, such as forward, is that the
snippet feature of the early temporal point can never aggregate the context of the later temporal
point, since LSTM processes the snippet features step-by-step in the temporal order. Besides, early
temporal context would gradually be forgotten if the neurons move to later temporal point. To
overcome this disadvantage, in our work, we use two branches with different aggregation directions
which are complementary to each other.

A.2 PROPOSAL EVALUATION MODULE

The aim of the proposal evaluation module is to refine candidate proposals, which proves to be
essential to achieving higher performance as mentioned in Section 2. First, given proposals sampled
by detector proposal sampling (DPS), the corresponding proposal features can be extracted on top
of the feature sequence. To be more specific, for a proposal (ts, te), we use the interpolation and
rescaling algorithm in G-TAD (Xu et al., 2020) as RoI alignment to obtain the proposal start feature,
end feature, and extended feature, with the corresponding temporal region of (ts−2/d, ts), (te, te+
2/d), and (ts − 2/d, te + 2/d), respectively, where d = te − ts.
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With these proposal features, we further refine the proposals from five aspects: start offset regression,
end offset regression, center/width regression, start/end classification, and IoU regression, which is
detailed shown in Table 6. For the proposal start feature, several sequential FC layers are adopted
to regress the start boundary offset with the nearest ground truth. This is the same for the proposal
end feature. For the proposal extended feature, since it covers the context outside the proposal, it
is more suitable to regress the IoU between the proposal with the nearest ground truth, which is
called proposal IoU regression in Table 6. This IoU score is also used as proposal confidence for
ranking. We also regress the offset of the center and width between the proposal and nearest ground
truth by several FC layers. What’s more, we find that an additional branch to classify the proposal
startness and endness by proposal extended feature is helpful for IoU regression. After the proposal
evaluation module, the candidate proposals will be refined by the average of start/end offset and
center/width offset, which is similar to (Qing et al., 2021).

To further improve the boundary precision of predict actions, we propose the cascade strategy that
stacks multiple proposal evaluation module to progressively refine proposal boundaries. To be spe-
cific, we sequentially run three stages, where the proposals generated by the first stage are further
refined in the second stage and so forth. We use the increased IoU thresholds for the three stages,
namely 0.7, 0.8, and 0.9. As such, the proposal boundaries are expected to become more accurate
after each stage. Three cascade proposal evaluation modules can not only refine the action pro-
posal boundaries for proposal localization, but they also provide a more reliable IoU score for better
proposal ranking. It is worth mentioning that our cascade proposal refinement does not rely on an
additional proposal generation network, which is different from Qing et al. (2021).

Table 6: The detailed architecture of proposal evaluation module. N is the number of candidate
action proposals.

Proposal Start Offset Regression
layer dim act output size

proposal start feature 128 × 8 × N
FC 512 relu 512 × N
FC 128 relu 128 × N
FC 128 relu 128 × N
FC 128 relu 128 × N
FC 1 × 1 × N

Proposal End Offset Regression
layer dim act output size

proposal end feature 128 × 8 × N
FC 512 relu 512 × N
FC 128 relu 128 × N
FC 128 relu 128 × N
FC 128 relu 128 × N
FC 1 × 1 × N

Proposal Center/Width Regression
layer dim act output size

proposal extended feature 128 × 32 × N
FC 512 relu 512 × N
FC 128 relu 128 × N
FC 128 relu 128 × N
FC 128 relu 128 × N
FC 2 × 2 × N

Proposal Start/End Classification
layer dim act output size

proposal extended feature 128 × 32 × N
FC 512 relu 512 × N
FC 128 relu 128 × N
FC 128 relu 128 × N
FC 128 relu 128 × N
FC 2 sigmoid 2 × N

Proposal IoU Regression
layer dim act output size

proposal extended feature 128 × 32 × N
FC 512 relu 512 × N
FC 128 relu 128 × N
FC 128 relu 128 × N
FC 128 relu 128 × N
FC 2 sigmoid 2 × N

A.3 LOSS FUNCTION.

For our end-to-end training, we directly compute our loss function based on the original video frames
V (in contrast to snippet features) as well as ground-truth labels Ψ, formulated as L(V,Ψ). The loss
function is composed of losses from multiple tasks, including the boundary evaluation loss as well
as the cascade proposal refinement loss. L is computed as follows:

L = λaLce:bds
+

∑
i=1,2,3

(
λbLi

ce:bdp
+ λcLi

iou + λdLi
rg:secw

)
, (1)

where i is the stage index of the cascade proposal evaluation module, and λa, λb, λc, λd are the
weights for the corresponding losses.
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Lce:bds
in the boundary evaluation module uses batch-level positive-negative-balanced cross entropy

to supervise the startness or endness of each snippet. In Eq. 2, pbd,i is the prediction of the startness
and endness of each time point i, and bi is the positive mask indicating whether the current time
point is boundary start or end. N+ is the number of positive sample in current mini-batch and N−
is the number of negative sample, and N = N+ +N−.

Lce:bds
=

N

2N+

∑
i

bi log pbd,i +
N

2N−

∑
i

(1− bi) log (1− pbd,i). (2)

Similar to above, Lce:bdp
in proposal evaluation module computes the cross entropy for the startness

and endness of each proposal’s boundaries. We use the same loss function in Eq. 2, but change the
pbd,i from the prediction of startness of the time i, to the prediction of startness of proposal i. This
branch is helpful for stabilizing the learning of IoU confidence.

Liou contains a classification loss and a regression loss for the IoU between prediction and ground-
truth. The classification loss is the simple cross entropy loss, whose positive samples are defined
with the IoU threshold larger than 0.9. Since the proposal set always have more negative samples,
we randomly select the same number of negative samples with the positive samples for balance.
As for regression loss, we follow the BMN and use L2 loss to supervise. In Eq. 3, piou,i is the
prediction of IoU confidence for proposal i, and gtiou,i is the maximum IoU between the ground
truth actions with i-th proposal.

Liou =
∑
i

LCE(piou,i, gtiou,i) +
∑
i

L2(piou,i, gtiou,i) (3)

For Lrg:secw, we use smooth-L1 loss for regressing start/end offset and center/width offset. We only
do regression on positive samples, and the threshold of positive samples is gradually improved in
the cascaded proposal evaluation module, such as 0.7, 0.8, 0.9. In Eq. 4, pc,i is the prediction of
the center offset, and gtc,i is the corresponding center offset of the ground truth action closest to i-th
proposal. Other regressions follows the same definition.

Lrg:secw =
∑
i∈N+

LsmoothL1(ps,i, gts,i) + LsmoothL1(pe,i, gte,i)

+LsmoothL1(pc,i, gtc,i) + LsmoothL1(pw,i, gtw,i)

(4)

B IMPLEMENTATION DETAILS

B.1 DATA PREPARATION

Pre-extracted feature setting. Here, only pre-extracted snippet features are used, i.e. no end-to-
end-training is performed. For ActivityNet-1.3, we adopted three types of pre-extracted features:
TSN (Wang et al., 2016), TSM (Lin et al., 2019a), and R(2+1)D (Alwassel et al., 2021). Optical
flow feature is also concatenated in TSN features. For THUMOS-14, we adopted the TSN features
provided by Xu et al. (2020) and I3D features provided by Zhao et al. (2020), which both also use
optical flow to extract video features. In ActivityNet-1.3, we resize the feature sequences to a fixed
length of 128 snippets. For THUMOS-14, we sample the features per 4 frames with fps 30, and
utilize the sliding window approach with window length 128 and stride 64 for videos to generate
training samples .

End-to-end training. We choose TSM (Lin et al., 2019a) and R(2+1)D (Tran et al., 2018) as
our feature encoder for the end-to-end training. We fix the weights of the first two stages of the
backbone network and freeze all batch normalization layers of the feature encoder. For TSM, the
image resolution is set to 224 and clip length is set to 8, which is the same as in Xu et al. (2021b).
For R(2+1)D, the image resolution is set to 112, and clip length is set to 16, which is the same as in
Alwassel et al. (2021). We only adopt random cropping as data augmentation. Note that the TSM
model is only pretrained on Kinetics-400 (Kay et al., 2017) and not finetuned on the target datasets,
i.e. ActivityNet-1.3, HACS, or THUMOS-14. The R(2+1)D model is pretrained on the ActivityNet
dataset by (Alwassel et al., 2021).
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B.2 TRAINING AND INFERENCE

Training. On ActivityNet-1.3 and THUMOS14, we both use a batch size of 16 and the AdamW
optimizer (Loshchilov & Hutter, 2019) with weight decay of 10−4. The learning rate for the action
detector is set to 10−3. In end-to-end training, the learning rate for the feature encoder is set to 10−6

in TSM and 10−7 in R(2+1)D. The total training epoch is set to 6 and the learning rate decays by
0.1 after 5 epochs. λa, λb, λc in the loss function are set to 1, while λd is set to 10.

Inference. To post-process network outputs, we use the boundary selecting method in Lin et al.
(2019b) to select proposals with high startness and endness, and use the averaged proposal bound-
ary generated from three proposal evaluation modules. We adopt NMS for all predictions by their
confidence scores computed as p = ps · pe · piou, where ps and pe are from Lce:bds

standing for
the start and end probabilities of a proposal respectively, and piou is the score of the proposal from
Liou. Following Lin et al. (2019b); Qing et al. (2021), we apply the video-level classification scores
from Zhao et al. (2017) on ActivityNet-1.3 and Wang et al. (2017) on THUMOS-14. Note that the
proposal sampling ratio is set as 100% in testing. Please refer to Appendix C.3 for the ablation of
DPS ratio during inference.

C ADDITIONAL ABLATIONS ON ACTION DETECTOR

In this section, we further conduct more ablation studies on ETAD. The experiments in this section
are all under per-extracted feature setting.

C.1 LSTM-BOOSTED TEMPORAL AGGREGATION

We first study the effectiveness of our feature enhancement module with LSTM-boosted temporal
aggregation by comparing it to a convolutional network (Conv) and a vanilla transformer. In Table
7 , Conv shows the lowest run-time and memory usage1, but also the lowest performance due to its
inability to capture long-range context. Vanilla transformer takes the most resources without bring-
ing mAP gains. Comparatively, our LSTM-based module requires a moderate amount of memory,
while achieving high performance without the requirements of more data to converge and strong
regularization to optimize as with transformers.

Table 7: Study of different feature enhancement modules of proposed action detector on
ActivityNet-1.3 with TSN features. Only one proposal evaluation stage is used in this ablation.

Feature Module Training Time Memory (GB) Avg. mAP

Conv 2min 35s 0.47 34.80
Transformer 3min 05s 0.68 34.82

LSTM 3min 23s 0.53 35.25

C.2 CASCADE PROPOSAL REFINEMENT

We also study the impact of the number of stages used for the cascade proposal refinement, as shown
in Figure 8. With a single proposal evaluation stage, the average mAP is 35.25%, and performance
consistently improves as we use more proposal evaluation modules. Considering efficiency as well,
we choose to use three stages in total and achieve an average mAP of 36.06%.

C.3 DPS DURING INFERENCE

As described in the paper, proposal-level sampling is adopted in ETAD to reduce the training com-
putation cost, i.e. DPS. As the default, we only perform DPS during training. In inference, we

1Following mmaction2 (Contributors, 2020), we use torch.cuda.max memory allocated() to
compute the GPU memory.
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Table 8: Study of different cascade stages of proposed action detector on ActivityNet-1.3 with TSN
features.

Cascade Stages Training Time Memory (GB) Avg. mAP

1 3min 23s 0.53 35.25
2 4min 33s 0.88 35.81
3 5min 58s 1.23 36.06

use all the predicted proposals for higher detection performance. However, as the tool for gener-
ating proposals, DPS can also be applied during inference. Based on such motivation, we adopt
grid sampling strategy with DPS during inference, and the results (Table 9) show that DPS is also
effective for reducing inference complexity while preserving accuracy. Only the sampling ratio is
smaller than 15%, the detection starts to decrease visibly. We did not conduct DPS in inference as
the default, considering that the inference time is rather small compared to training time.

Table 9: Ablations of DPS during inference on ActivityNet-1.3 with TSN features. Post-processing
time is included in the inference time.

DPS Ratio 100% 20% 15% 10% 6%

mAP 36.06 35.97 35.94 35.86 35.66
GFLOPs (per video) 180.08 36.60 27.63 18.66 11.49
Inference Time (per video) 21.3ms 10.7ms 10.3ms 10.1ms 9.9ms

D RESULTS ON HACS DATASET

We also report our results on HACS (Zhao et al., 2019) dataset based on the pre-extracted features.
HACS is a recent large-scale temporal action localization dataset, containing 140K action instances
from 50K videos including 200 action categories. In this dataset, we adopt SlowFast (Feichtenhofer
et al., 2019) features provided by Qing et al. (2021) and rescale the feature sequences to 224 snippets.
The only training difference from ActivityNet is that we use the learning rate of 4×10−4 on HACS.

As shown in Table 10, ETAD can outperform the baseline method BMN by a large margin. Com-
pared with state-of-the-art method TCANet (Qing et al., 2021), ETAD can also achieve comparable
performance. However, the training time is visibly reduced from 104 mins to 50 mins, and the GPU
memory decreases from 12.34 GB to 3.28 GB. ETAD also exceed TCANet on the high IoU threshold
scenario by 2.5%, which is similar as in ActivityNet-1.3 and THUMOS14. What’s more, TCANet
relays on the proposal generation result from BMN, while our single model does not need any extra
proposal generation network, suggesting the simplicity of ETAD. Besides, we also test different de-
tector proposal sampling strategies on HACS and find the results are similar to those in ActivityNet.
Both random sampling and grid sampling achieve decent performance. Since the block sampling
breaks the distribution of different proposals, thus the detection performance is much worse than
others. The above results prove the effectiveness of our ETAD on this larger dataset.

Table 10: Comparison of ETAD with other methods on HACS with SlowFast features.

Methods 0.5 0.75 0.95 Avg. mAP Memory (GB) Training Time

BMN 52.49 36.38 10.37 35.76 12.10 58 min
BMN+TCANet 55.60 40.01 11.47 38.71 12.34 104 min

ETAD (random) 55.71 39.06 13.78 38.77 3.28 50 min
ETAD (grid) 55.49 39.09 14.08 38.76 3.28 50 min
ETAD (block) 51.46 34.26 11.43 34.49 3.28 50 min
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E END-TO-END TRAINING ON THUMOS DATASET

To further verify the effectiveness of proposed encoder gradient sampling, we also conduct end-to-
end training on THUMOS dataset, as shown in Table 11. In this experiment, we choose SlowOnly-
ResNet50 or TSM-ResNet50 as the feature encoder, and only use RGB modality without optical
flow. The clip length of snippets is set as 8, and frame resolution is 180×180. Only random cropping
is adopted, and we train our model with 6 epochs. Since we are using shorter clip, lower resolution
and only single modality, the performance is expected to be lower than state-of-the-art method.

From the results, we can find that if the encoder gradient sampling ratio (γ) is 0, i.e. pre-extraced
feature setting, the performance on THUMOS is not that promising. However, once we unfreeze the
backbone, the performances are instantly boosted with more than 7% gains of average mAP using
SlowOnly features, and more than 5% gains of average mAP using TSM features. This verifies the
importance of end-to-end training again. Besides, with different sampling ratios, we interestingly
find the performances remain at the same level, suggesting that a small portion of snippets is enough
for end-to-end training in TAD. Moreover, with our EGS, we successfully reduce the computation
cost from 34.6GB to 4.1GB per video (cutting down 89%), but maintain the same detection perfor-
mance. This further proves the existence of snippet-level redundancy in end-to-end learning, and
also shows the effectiveness of EGS method.

Table 11: Performance of end-to-end training on THUMOS test dataset. γ is the encoder gradient
sampling ratio. Only RGB modality is adopted.

Feature Encoder 0.3 0.4 0.5 0.6 0.7 Avg. mAP Memory (GB)

SlowOnly (γ=0%) 52.45 44.11 34.32 24.84 15.89 34.32 -
SlowOnly (γ=10%) 59.72 52.74 42.73 32.98 23.02 42.23 3.7
SlowOnly (γ=30%) 60.66 52.87 42.95 33.31 23.38 42.63 6.9
SlowOnly (γ=100%) 60.18 52.93 44.40 33.88 23.76 43.03 19.6

TSM (γ=0%) 52.18 42.80 33.10 24.20 14.05 33.26 -
TSM (γ=10%) 57.63 48.76 38.12 28.55 18.39 38.28 4.1
TSM (γ=30%) 56.50 49.16 39.17 29.47 19.07 38.67 8.4
TSM (γ=100%) 57.44 48.99 39.55 29.37 18.60 38.79 34.6

F ADDITIONAL STUDY OF END-TO-END TRAINING

In this section, we discuss several factors that are important for the video encoder in end-to-end
training, such as data augmentation, frozen backbones, frame resolution, and pretraining. Note
that encoder gradient sampling ratio is set to 100% in the following experiment, which means the
completely end-to-end training is applied for following ablation studies.

Data augmentation is vital for end-to-end training. One of the main advantages of end-to-end
training is that we can use data augmentation on original frames, which is not possible in tradi-
tional feature-based methods. As shown in Table 12, we implement random cropping and temporal
jittering at snippet-level as data augmentation. Here, temporal jittering means we shift a random
stride of each frame in a snippet. Compared with not using data augmentation, random cropping is
very helpful for TAD, demonstrating the superiority of end-to-end training. However, it seems that
temporal jittering slightly harms the performance. Therefore, we only use random cropping in our
experiment as default.

Table 12: Study of different data augmentation in end-to-end training on ActivityNet-1.3.

Backbone Frame
Resolution

Data
Augmentation

Frozen
Stage

Average
mAP

TSM 112x112 × 2 35.12
TSM 112x112 jitter 2 35.17
TSM 112x112 crop 2 35.53
TSM 112x112 crop+jitter 2 35.38
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Partially freeing backbone can have a good trade-off between computation and performance.
It is a common trick to save the GPU memory by freezing some shallow layers of encoder backbone.
In this study, we want to know how the frozen layers affect the detection performance. For a ResNet-
based encoder (e.g. TSM) with four stages, we can gradually freeze the layers from shallow to deep.
In Table 13, the frozen stage of 4 means we freeze all the backbone layers, indicating the encoder
will not be updated and it will degenerate into none-end-to-end training. And frozen stage 0 means
we do not freeze any layers and the encoder will be optimized in completely end-to-end training,
however the memory consumption is also the largest as expected. Table 13 clearly shows that: 1)
End-to-end training is important for temporal action detection, since the frozen stage of 4 has the
lowest detection performance compared with others. 2) As we freeze fewer encoder layers, detection
performance will be improved, but the gain becomes smaller. 3) To have a good trade-off between
memory and performance, frozen stage 2 is recommended in our experiments.

Table 13: Study of different frozen stage, frame resolution and pretraining of backbone in end-to-end
training on ActivityNet-1.3. We report the GPU memory usage per video. † means out of memory
on 8 A100 GPUs. ‡ means the encoder is finetuned on ActivityNet by the classification task.

Backbone Frame
Resolution

Data
Augmentation

Frozen
Stage

Average
mAP

Memory
(GB)

TSM 112x112 crop 4 34.26 4.5
TSM 112x112 crop 3 35.01 4.6
TSM 112x112 crop 2 35.53 9.1
TSM 112x112 crop 1 35.52 17.0
TSM 112x112 crop 0 35.46 25.8

TSM 224x224 crop 4 36.24 17.5
TSM 224x224 crop 3 36.47 17.6
TSM 224x224 crop 2 36.79 34.3
TSM 224x224 crop 1 - OOM†

TSM-FT‡ 224x224 crop 2 36.92 34.3

Higher frame resolution can boost the performance by a large margin. In the traditional feature
extraction process in TAD, to pursue a high-quality action detection performance, we tends to use
higher image resolution, and denser temporal sampling rates. Similarly, we also study the impact of
the frame resolution on the detection performance in end-to-end training, as shown in Table 13. If we
freeze all the backbone layers, a higher resolution can bring the mAP from 34.26 to 36.24 (+1.98),
which is a significant improvement. If we freeze fewer encoder layers, the gap of mAP between low
frame resolution and high frame resolution would be smaller. However, since both freezing fewer
layers and using higher frame resolution will cost much more GPU memory, we recommend giving
priority to higher frame resolution, since it can bring more performance gains.

Classification pretraining is not necessary if adopt end-to-end training. Some other TAD meth-
ods proposed to finetune the video encoder on the target dataset by the classification task, which
means the encoder will be trained to classify the video clips in the annotated action instances. In
our end-to-end training experiment, if we just use the model pretrained on Kinetics-400, we can
have a 36.79 mAP. If we finetune the model on the ActivityNet dataset by a classification task, the
detection performance would be slightly improved to 36.92 (see Table 13). Such small gain (+0.13)
is reasonable, since end-to-end training can improve the feature representation ability from target
dataset as much as possible. However, since the classification pretraining stage also takes long time
to converge, thus it is not necessary to conduct this pretraining when end-to-end training is adopted.

To summarize, we recommend giving priority to higher frame resolution with stronger data augmen-
tation when with a limited resource budget to adopt end-to-end training. If necessary, we can further
freeze certain layers in the backbone. We believe such a study for end-to-end training will enlighten
the TAD community in the sense of efficiency and efficacy trade-off.
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G IMPLEMENTATION OF ENCODER GRADIENT SAMPLING

In this section, we briefly describe the implementation of Encoder Gradient Sampling (EGS). The
detailed procedure can be described in algorithm 1. To implement EGS, we first split (e.g. through
random sampling) the video snippets into two sets: with gradient snippets Xa and without gradient
snippets Xb. Then, we feed Xb to the feature encoder without saving gradients to produce the
corresponding features Fb. For Xa, we feed them into the encoder to produce features Fa, while
preserving the encoder’s gradients when backpropagating. We then concatenate Fa and Fb together
and arrange them by their original order as feature sequence F , which is sent to the efficient action
detector. During backpropagation, the encoder parameters are only updated by the gradient given
by Xa. Also, we did not observe that such sampling harms the stability of the network training.

Algorithm 1 Encoder Gradient Sampling

Input: sampling ratio γ; video snippets X ∈RM×3×T×H×W , where M is the snippet number, T
is the frame number of each snippet;

1: Select Ma snippets from X on dimension M based on the sampling ratio γ, denoted as Xa.
The unselected snippets is denoted as Xb. Keep the selection index idx for restoring the snippet
order later. (Xa∈RMa×3×T×H×W , Xb∈RMb×3×T×H×W , M = Ma +Mb, Ma = γ ×M )

2: Turn off the gradient computing of the video encoder. Feed Xb to the video encoder and obtain
the feature vector Fb. Clear the CUDA cache. (Fb∈RMb×C , C is the channel number.)

3: Turn on the gradient computing of video encoder. Feed the Xa to the video encoder and obtain
the feature vector Fa. (Fa∈RMa×C)

4: Concatenate Fa and Fb together, and use selection index idx to restore the orignial snippet
order, denoted as F ∈RM×C .

5: Feed F to the following action detector.
6: Compute the gradients of the video encoder and action detector by loss function.
7: Update the parameters of video encoder and action detector by optimizer. The parameters of

video encoder is only updated on the selected data, which is Xa.
Output: Updated video encoder and action detector.

In addition, in our implementation with PyTorch1.12 and CUDA11.1, we find that the tensor size
is limited to 231 by the platform. Therefore, given a small sampling ratio such as 10%, the size of
unsampled data Xb may be larger than the above limitation. So we divide the Xb into smaller chunks
on snippet dimension and feed them to the video encoder step-by-step. After feature extraction, we
concatenate the corresponding features together. As for Xa, thanks to our EGS, the tensor size is
usually smaller than the limitation, which does not need extra processing.

H DETAILS OF FEATURE-GUIDED SAMPLING STRATEGY

Beyond the naive heuristic samplings (random, grid, block) that the sampling process is irrelevant to
the data itself, we also explore feature-guided sampling, e.g. farthest point sampling, determinantal
point process. The motivation of feature-guided sampling is that each data has different features than
others, which means their inherent importance are also different with others. Therefore, one can try
to leverage the information inside the data and ensure the most informative or important samples
are selected. This is different from heuristic sampling since the sampling process of feature-guided
sampling performs on the embedding space of samples (e.g. snippet features, proposal features).
The pseudocode of FPS/DPP can be found in algorithm 2.

The farthest point sampling (FPS) is a common feature-guided sampling approach, which has been
adopted in many fields such as point cloud understanding. Given the data points X∈RN×C , where
N is the number of total samples, and C is the dimension number of each sample features, FPS
selects the new point from the unselected points, and ensures new new point has the farthest distance
to the current selected data points in the embedding space. The distance between two different points
can be measured by a distance function, which we use euclidean distance in our case. Such sampling
actually sample the next point in the middle of the least-known area of the sampling domain, and
thus can guarantee the sampled points are most distinguished from each other. However, since this
sampling process is conducted iteratively, thus the corresponding time complexity is O(N2).
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Algorithm 2 Pseudocode of FPS/DPP sampling strategy.

# data: N x C, sampling_ratio: (float) 0˜1.
# sampling_strategy: (string) fps or dpp.
import torch_cluster
from dppy.finite_dpps import FiniteDPP

# farthest point sampling
if sampling_strategy == "fps":

index = torch_cluster.fps(data, ratio=sampling_ratio)

# determinantal point process
if sampling_strategy == "dpp":

data = np.float64(data)
sample_num = int(sampling_ratio * data.shape[0])
# likelihood kernel, use eye matrix to increase the rank
kernel = data.dot(data.T) + 1e-2 * np.eye(data.shape[0])
DPP = FiniteDPP("likelihood", **{"L": kernel})
index = DPP.sample_exact_k_dpp(size=sample_num))

# return the index of selected samples (list, 0˜N)

We also implement another feature-guided sampling as the determinantal point process (DPP). DPP
measures the sample probability as a determinant of some functions or kernels. In our case, we use
cosine similarity as the kernel function, and update the likelihood matrix every iteration. Since our
sampling ratio is fixed, we can use kDPP (Kulesza & Taskar, 2011) to approximate DPP for fast
sampling. To meet the requirements of kDPP, we add an eye matrix filled with small values (e.g.
1e-2) to ensure the rank of likelihood matrix is larger than the sample size. In general, DPP sampling
improves the diversity of sampled data in the embedding space.

In our experiments, we find that DPP works always better than FPS. To further analyze these two
strategies, we provide the t-SNE visualization (Van der Maaten & Hinton, 2008) of FPS and DPP at
the snippet level, as shown in Figure 6. In this figure, the yellow points are the action foreground
snippets, and the blue points are the background snippets. We leverage the snippet feature before
classification head in the feature encoder to adopt t-SNE. Initially, we can find that these snippets
can be well grouped in different clusters based on their features, which verifies the necessity of
conducting sampling on feature embedding space. We observe that (1) For points in the dash green
circle, FPS tends to select extreme points, while DPP can select samples with larger variety. (2)
For the point in the purple dash circle, FPS misses such hard-negative sample because its distance
with other points is not that big in the embedding space. However, such points may be informative
samples, and DPP successfully select this representative sample. Those two findings can explain the
success of DPP sampling.

(a) FPS (b) DPP

Figure 6: t-SNE visualization of FPS sampling and DPP sampling.
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I QUALITATIVE VISUALIZATION

In order to provide a more vivid understanding of our method, we visualize the qualitative pre-
dictions of our method and BMN (Lin et al., 2019b) on ActivityNet for comparison. In Figure 7,
we plot the ground truth actions of each video (drawn in black and above the black line), and also
top-20 predicted proposals by algorithms (drawn in colors and under the black line). The color of
the proposal represents the maximum IoU of this proposal to the ground truth actions. Therefore,
a proposal with lighter color means it has more overlap with the ground truth, indicating this is a
high-quality proposal.

Ground Truth

ETAD(ours)BMN

Prediction

Figure 7: Qualitative results of ETAD and BMN on ActivityNet-1.3. The color of the proposal
represents the maximum IoU of this proposal to ground truth actions. We plot the ground truth
actions of each video (drawn in black and above the black line), and top-20 predicted proposals by
algorithms (drawn in colors and under the black line).

As demonstrated in the figure, ETAD can generate (1) more precise proposal boundary. For
instance, in the first and third row in Figure 7, the boundary of proposals from ETAD is closer to the
real action boundary than BMN. (2) more reliable proposal confidence. As shown in the first and
second row in Figure 7, ETAD has fewer false positive proposals and proves that regressed proposal
confidence is much more reliable than BMN, indicating the advantage of our method on proposal
ranking.
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