
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BOFORMER: LEARNING TO SOLVE MULTI-OBJECTIVE
BAYESIAN OPTIMIZATION VIA NON-MARKOVIAN RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian optimization (BO) offers an efficient pipeline for optimizing black-box
functions with the help of a Gaussian process prior and an acquisition function
(AF). Recently, in the context of single-objective BO, learning-based AFs witnessed
promising empirical results given its favorable non-myopic nature. Despite this,
the direct extension of these approaches to multi-objective Bayesian optimization
(MOBO) suffer from the hypervolume identifiability issue, which results from the
non-Markovian nature of MOBO problems. To tackle this, inspired by the non-
Markovian RL literature and the success of Transformers in language modeling, we
present a generalized deep Q-learning framework and propose BOFormer, which
substantiates this framework for MOBO via sequence modeling. Through extensive
evaluation, we demonstrate that BOFormer constantly achieves better performance
than the benchmark rule-based and learning-based algorithms in various synthetic
MOBO and real-world multi-objective hyperparameter optimization problems.

1 INTRODUCTION

Bayesian optimization (BO) offers a sample-efficient pipeline for optimizing black-box functions in
various practical applications, such as hyperparameter optimization (Lindauer et al., 2022; Snoek
et al., 2012; Klein et al., 2017), analog circuit design (Lyu et al., 2018; Zhou et al., 2020), and
automated scientific discovery (Ueno et al., 2016; Gómez-Bombarelli et al., 2018). Notably, these
real-world engineering tasks usually involve multiple objective functions, which are potentially
conflicting. To search for the set of candidate solutions under a sampling budget, multi-objective
BO (MOBO) integrates the following two components: (i) MOBO utilizes Gaussian processes (GP)
as a surrogate function prior for capturing the underlying structure of each objective function and
thereby offering posterior predictive distributions in a compact manner; (ii) MOBO then iteratively
determines the samples through an acquisition function (AF), which induces an index-type strategy
based on the posterior distributions. The existing AFs are built on various design principles, such as
maximizing one-step expected improvement (Emmerich & Klinkenberg, 2008; Yang et al., 2019) and
maximizing one-step information gain (Hernández-Lobato et al., 2016; Belakaria et al., 2019; Tu
et al., 2022). However, the existing AFs for MOBO are mostly handcrafted and myopic, i.e., greedily
optimize a one-step surrogate and lack long-term planning capability. With that said, one important
and yet under-explored challenge of MOBO lies in the design of non-myopic AFs.

In single-objective BO (SOBO), one promising non-myopic approach is to recast BO as a rein-
forcement learning (RL) problem, and several RL-based algorithms (Volpp et al., 2020; Hsieh et al.,
2021; Shmakov et al., 2023) have recently witnessed competitive empirical results. Specifically, AFs
could be parameterized by neural networks and learned by either actor-critic (Volpp et al., 2020) or
valued-based RL (Hsieh et al., 2021), where the state-action representation consists of the posterior
mean and variance of a candidate point as well as the best function value observed so far, and the
reward is defined as a function of negative simple regret, as shown in Figure 1. However, a direct
extension of these single-objective RL-based AFs to MOBO could suffer from the fundamental
hypervolume identifiability issue. To better illustrate this, we provide a motivating example in Figure
1, which shows that one can construct a pair of scenarios that cannot be distinguished based solely on
the current posterior distributions and the current best values. This example also highlights that the
identifiability issue actually results from the inherent non-Markovianty in MOBO as the improvement
in hypervolume is history-dependent. Note that this identifiability issue is much milder in the SOBO

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Left: In SOBO, an RL-based AF (e.g., FSAF (Hsieh et al., 2021)) takes the posterior mean
and standard deviation (µt(x), σt(x)) and the best function value observed so far y∗t as input and then
outputs the AF value Υt(x). An direct extension to MOBO simply takes into account the same set of
information about all the K objective functions. Right: The hypervolume identifiability issue can be
illustrated by comparing the hypervolume improvement incurred by the sample x3 in the two different
scenarios above. Clearly, despite that the AF inputs at x3 are the same in both scenarios, the increases
in hypervolume upon sampling x3 are rather different. Hence, the increase in hypervolume is not
identifiable solely based on the AF input (µ(i)

t (x), σ
(i)
t (x)), y

(i)∗
t)i∈[K] of the existing RL-based AFs.

setting since a good candidate point (i.e., with a high function value) remains good regardless of the
history. As a result, there remains one important open challenge in MOBO:

How to learn a non-myopic AF for MOBO without suffering from the above identifiability issue?

To tackle the above challenge, we propose to rethink MOBO from the perspective of non-Markovian
RL via sequence modeling. Specifically, motivated by the optimality equations in the general non-
Markovian RL (Dong et al., 2022), we tackle the hypervolume identifiability issue by presenting the
non-Markovian version of deep Q-network termed Generalized DQN, which extends the standard
Markovian DQN (Mnih et al., 2013) by learning the generalized optimal Q-function defined on the
history of observations and actions. To implement Generalized DQN, inspired by the significant suc-
cess of the Transformers in language modeling, we propose BOFormer, which leverages the sequence
modeling capability of the Transformer architecture and thereby minimizes the generalized temporal
difference loss. As a general-purpose multi-objective optimization solver, the proposed BOFormer is
trained solely on synthetic GP functions and can be deployed to optimize unseen testing functions.
Moreover, to facilitate the training process, we present several useful and practical enhancements for
BOFormer: (i) Q-augmented observation representation: Regarding the representation of per-step
observation, we propose to use the posterior of the candidate point augmented with its Q-value, which
serves as an informative indicator of the prospective improvement in hypervolume. Under this design,
the representation is completely domain-agnostic and memory-efficient in the sense that it does not
increase with the domain size. (ii) Prioritized trajectory replay buffer and off-policy learning: To
improve convergence and data efficiency during training, we utilize a prioritized trajectory replay
buffer, which can be viewed as a generalization of the typical replay buffer of vanilla DQN. Through
this buffer, BOFormer naturally supports off-policy learning and more flexible reuse of training data.
(iii) Demo-policy-guided exploration: While randomized exploration (e.g., epsilon-greedy) remains
popular in many RL algorithms, this exploration scheme can be very inefficient as the sampling
budget in BO is usually much smaller than the domain size (i.e., the number of actions). To achieve
efficient exploration, we propose to collect part of the training trajectories through a helper demo
policy. In practice, one can resort to a policy induced by any off-the-shelf rule-based AFs, such as
Expected Hypervolume Improvement (Emmerich & Klinkenberg, 2008).

Notably, as a general-purpose multi-objective optimization solver, BOFormer enjoys the following
salient features: (i) No hypervolume identifiability issue: Built on the proposed Generalized DQN
framework, BOFormer systematically addresses the identifiability issue such that it can approximately

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

recover the Pareto front under a small sampling budget. (ii) Zero-shot transfer: BOFormer is trained
solely on synthetic GP functions and can achieve zero-shot transfer to other unseen testing functions.
With that said, it does not require any fine-tuning or any metadata during inference at deployment. (iii)
Cross-domain transfer capability: BOFormer nicely supports cross-domain transfer in the sense that
the domain size and dimensionality of the black-box functions for training can be different from those
of the testing functions. (iv) No Monte-Carlo estimation needed during inference: As a learning-based
AF, BOFormer completely obviates the need for the computationally heavy Monte-Carlo estimation
required by many rule-based AFs and thereby enjoys efficient inference during deployment. The
main contributions could be summarized as follows:

• We identify the critical hypervolume identifiability issue due to the inherent non-Markovianity in
learning the AFs for MOBO. To resolve this, inspired by the literature of general RL, we present
the Generalized DQN framework for non-Markovian environments.

• To substantiate the Generalized DQN framework, we propose BOFormer, which leverages the
Transformer architecture and reinterprets MOBO as a sequence modeling problem. To the best of
our knowledge, BOFormer serves as the first RL-based AF for MOBO. Moreover, several practical
enhancements are proposed to facilitate the training of BOFormer.

• We construct a hypervolume optimization dataset called HPO-3DGS, consisting of 68000 different
parameters on 3D Gaussian Splatting Kerbl et al. (2023) for 3D object reconstruction problems
with 5 different scenes. We evaluate the proposed BOFormer on a variety of black-box functions,
including both synthetic optimization functions and real-world hyperparameter optimization on
HPO-3DGS. We demonstrate that the proposed AF significantly outperforms both existing rule-
based AFs and other Transformer-based RL benchmark methods.

2 RELATED WORK

2.1 MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

Random Scalarization: To leverage the plethora of AFs for SOBO in the MOBO setting, random
scalarization addresses MOBO via iteratively solving single-objective BO subproblems under a
scalarization function, such as a direct weighted sum or the Tchebycheff scalarization function
(Miettinen, 1999). Notably, random scalarization was originally developed for recovering the Pareto
front under evolutionary methods, such as the celebrated ParEGO (Knowles, 2006), MOEA/D (Zhang
& Li, 2007), and RVEA (Cheng et al., 2016), and has been subsequently adapted to solving MOBO
(Zhang et al., 2009; Paria et al., 2020). Despite its simplicity, as random scalarization enforces
exploration mainly by the random sampling of the scalarization parameters, this approach is known to
be sensitive to the scale of the different objective functions and could suffer under high-dimensional
search spaces (Daulton et al., 2022).

Improvement Maximization: Another popular class of AFs is built on the maximization of
improvement-based metrics, such as the expected one-step improvement in hypervolume (EHVI) in
(Emmerich & Klinkenberg, 2008; Emmerich et al., 2011; Hupkens et al., 2015; Yang et al., 2019)
(also known as the S-metric in (Beume et al., 2007; Ponweiser et al., 2008)), sequential uncertainty
reduction (Picheny, 2015), and the hypervolume knowledge gradient (Daulton et al., 2023). However,
evaluating the one-step expected improvement typically involves a multi-dimensional integral, which
is difficult to derive directly and hence needs to be approximated by the costly Monte Carlo estimation.
Accordingly, to tackle the above computational complexity issue, differentiable methods have recently
been developed to enable fast parallel evaluations of these AFs, such as qEHVI (Wada & Hino, 2019;
Daulton et al., 2020) and qNEHVI (Daulton et al., 2021) in the BoTorch framework (Balandat et al.,
2020).

Information-Theoretic Search Methods: Various information-theoretic criteria have been utilized
in the context of MOBO. For example, Hernández-Lobato et al. (2016) proposes Predictive Entropy
Search for MOBO (PESMO), which selects the candidate point with maximal reduction in the entropy
of the posterior distribution over the Pareto-optimal input set, and is subsequently extended to the
constrained setting (Garrido-Merchán & Hernández-Lobato, 2019). Subsequently, Belakaria et al.
(2019) propose MESMO, which extends the Max-value Entropy Search approach (Wang & Jegelka,
2017) to the principle of output space entropy search for MOBO, i.e., utilizes the information gain
about the Pareto-optimal output set as a more computationally tractable sampling criterion (Belakaria
et al., 2021). Suzuki et al. (2020) propose Pareto-Frontier Entropy Search, which utilizes information

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

gain of the Pareto front in the AF design. Moreover, Joint Entropy Search (JES) further takes into
account the joint information gain of the Pareto-optimal set of inputs and outputs (Tu et al., 2022;
Hvarfner et al., 2022). On the other hand, USeMO (Belakaria et al., 2020) uses the volume of the
uncertainty hyper-rectangle as an alternative uncertainty measure for sampling.

Despite the plethora of AFs developed for MOBO, most of them are built on optimizing one-step
information-theoretic metrics and do not explore the possibility of multi-step look-ahead policies.
By contrast, the proposed BOFormer takes the overall long-term effect of each sample into account
through non-Markovian RL and sequence modeling.

2.2 SINGLE-OBJECTIVE BLACK-BOX OPTIMIZATION VIA LEARNING

Several recent attempts have tackled SOBO problems from the perspective of RL-based AFs. Volpp
et al. (2020) propose MetaBO, which leverages actor-critic RL to learn AFs from GP functions
for transfer learning. Subsequently, Hsieh et al. (2021) proposes a meta-RL framework termed
Few-Shot Acquisition Function (FSAF), which learns a Bayesian deep Q-network as a differentiable
AF and adapts the Bayesian model-agnostic meta-learning (Yoon et al., 2018) in order to enable
few-shot fast adaptation to various black-box functions based on metadata. (Shmakov et al., 2023)
proposes to solve SOBO through a combination of transformer-based deep kernels and RL-based
acquisition functions. Despite the above, the existing solutions all focus on SOBO under the standard
RL formulation and therefore cannot be directly applied to the non-Markovian problem of MOBO.
Moreover, as optimization of single-objective black-box functions is essentially a sequential decision
making problem, several recent attempts manage to learn sequence models in an end-to-end manner.
For example, Chen et al. (2022) propose OptFormer, which focuses on hyperparameter optimization
(HPO) and leverages Transformers through fine-tuning on an offline dataset to enable adaptation
to the HPO tasks. More recently, Maraval et al. (2023) propose Neural Acquisition Process (NAP),
which is a multi-task variant of Neural Process (NP) simultaneously learning an acquisition function
and the predictive distributions, without using the surrogate GP model. To the best of our knowledge,
our paper offers the first learning-based solution to MOBO.

Remarks on Application Scope and Objectives: Notably, there are two salient differences between
BOFormer and the above two works: (i) Application scope: BOFormer is positioned as a general-
purpose multi-objective black-box optimization solver with superior cross-domain capability (i.e., the
size and the dimensionality of the input domains can be different between the training and deployment
phases). In contrast, OptFormer is designed specifically for HPO, and NAP is built on the idea of
transfer learning in BO and has limited cross-domain transferability. (ii) Multiple objectives: Both
OptFormer and NAP focus on single-objective problems and are not readily applicable to recovering
the Pareto front in the multi-objective setting. By contrast, BOFormer directly tackles multi-objective
optimization and addresses the inherent identifiability issue. Therefore, we consider the above
OptFormer and NAP as orthogonal directions to ours. Moreover, the proposed BOFormer can also
benefit from the learned neural process in NAP and other variants of NPs (Garnelo et al., 2018; Kim
et al., 2018) as surrogate models beyond GPs.

Due to the page limit, we defer the related works on sequence modeling for RL to Appendix B.1.

3 PRELIMINARIES

In this section, we present the formulation of MOBO and the background of general RL. Throughout
this paper, we let ∆(Z) denote the set of all probability distributions over a set Z and use [K] as a
shorthand for {1, · · · ,K}.

3.1 MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

The goal of MOBO is to design an algorithm that sequentially takes samples from the input domain
X ⊂ Rd to jointly optimize a black-box vector-valued function f : X → RK , under a sampling budget
T ∈ N. For ease of exposition, we also write f(x) := (f1(x), · · · , fK(x)) as the tuple of the K
scalar objective functions, for each x ∈ X. At each step t, the algorithm selects a sample point xt ∈ X
and observes the corresponding function values yt := (y

(1)
t , · · · , y(K)

t), where y(i)t = fi(xt)+ εt,i is
the noisy observation of the i-th entry of the function output and εt,i’s are i.i.d. zero-mean Gaussian
noises. For notational convenience, we use F t := {(xi,yi)}i∈[t] to denote the observations up to t.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Pareto Front and Hypervolume: To construct a (partial) ordering over the points of the input
domain, we say that f(x) dominates f(x′) if fi(x) ≥ fi(x

′) for all i ∈ [K] and fj(x) > fj(x
′) for

at least one element j. For simplicity, we write x ≻ x′ if f(x) dominates f(x′). Based on this, the
Pareto front (denoted by X ∗) is defined as the subset of X that cannot be dominated by any other
point in X, i.e., X ∗ := {x ∈ X|x′ ⊁ x, ∀x′ ∈ X}. An alternative description of the goal of MOBO
is to discover the Pareto front. Accordingly, MOBO algorithms are typically evaluated from the
perspective of hypervolume, which offers a natural performance metric for capturing the inherent
trade-off among different objective functions. Specifically, given a reference point u ∈ RK and any
subset X ⊆ X, the hypervolume of X is defined as (Zitzler & Thiele, 1999):

HV(X ;u) := λ

(⋃
x∈X

{
y
∣∣f(x) ≻ y ≻ u

})
,

where λ(·) is the K-dimensional Lebesgue measure and ys are those elements that satisfy
f(x) ≻ y ≻ u, x ∈ X . In practice, the reference point can be configured as u =
(minx∈X f1(x), · · · ,minx∈X fk(x)). To evaluate a policy, we consider the simple regret defined
as R(t) := HV(X)− HV(X t), which measures the overall performance of the samples up to time
step t. For brevity, we simply use HV(X) as a shorthand for HV(X ;u) in the sequel.

Gaussian Process as a Surrogate Model: To maximize hypervolume in a sample-efficient manner,
MOBO imposes a function prior through GP, which serves as a surrogate probabilistic model for
capturing the underlying structure of the objective functions. Specifically, as a Bayesian approach,
the GP assumes that for each objective function fi(·), the function values at any set of input points
form a multivariate Gaussian distribution, which can be fully characterized by a mean function
and a covariance kernel. Therefore, under a GP prior, given the observations F t up to time t, the
posterior predictive distribution of each fi(x) (x ∈ X) remains Gaussian and can be written as
N (µ

(i)
t (x), σ

(i)
t (x)2), where µ

(i)
t (x) := E[fi(x)| F t] and σ

(i)
t (x) :=

√
V[fi(x)| F t] can be derived

in closed form through matrix operations (Williams & Rasmussen, 2006). For notational convenience,
we let µt(x) := (µ

(1)
t (x), · · · , µ(K)

t (x)) and σt(x) := (σ
(1)
t (x), · · · , σ(K)

t (x)).

Acquisition Functions: With the help of GPs, one natural way to address BO is through planning as
in optimal control (e.g., via dynamic programming). However, finding the exact optimal policy for BO
(either single- or multi-objective) is known to be computationally intractable in general due to the curse
of dimensionality. To tackle this issue, BO resorts to index-type strategies induced by an acquisition
function Υ(µt(x),σt(x)), which takes the posterior mean and variance as input and outputs an
indicator for quantifying the usefulness of each potential candidate sample point x ∈ X, typically
based on some handcrafted design criteria. For example, the celebrated Expected Hypervolume
Improvement (EHVI) method constructs an AF as ΥEHVI(µt(x),σt(x)) := E[HV(X t ∪{x}) −
HV(X t)| F t], which involves a multi-dimensional integral with respect to the posterior distribution
characterized by µt(x) and σt(x).

3.2 GENERAL RL IN NON-MARKOVIAN ENVIRONMENTS

To achieve RL without Markovianity, several generalizations of the standard Markov decision process
(MDP) have been proposed, such as the classic partially-observable MDPs (Monahan, 1982; Jaakkola
et al., 1994), the early works on general RL (Lattimore et al., 2013; Leike, 2016; Majeed, 2021),
and the more recent attempts on RL for arbitrary environments (Dong et al., 2022; Lu et al., 2023;
Bowling et al., 2023). In this paper, we consider the general RL formulation in (Dong et al., 2022; Lu
et al., 2023) to address policy learning beyond Markovianity.
Environment: The general interaction protocol of the agent and the environment can be described as
follows. Let A and O denote the set of actions and observations, respectively. At each time t ∈ N,
the agent first receives a new observation Ot ∈ O from the environment and takes an action At ∈ A
based on the history Ht := (A0, O1, A1, · · · , At−1, Ot) observed so far. For simplicity, we let the
initial history H0 be empty. We also define the set of all n-step histories as H(n) := (A×O)n

and accordingly define the set of all finite histories as H :=
⋃

n≥0 H
(n). The transition dynamics

of the environment is captured by the transition function p : H×A → ∆(O), which determines
the transition probability p(o|h, a) ≡ P(Ot+1 = o|Ht = h,At = a) of observing o upon applying
action a under history h. Moreover, let r : H×A×O → [−rmax, rmax] denote the reward function.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Notably, the reward function r in non-Markovian environments is allowed to be history-dependent
and hence better suits the MOBO problems. Let γ ∈ [0, 1) denote the discount factor for the rewards.
Policies and Value Functions: The agent specifies its strategy through a policy π : H → ∆(A),
which maps each history to a probability distribution over the action set. Let Π denote the set of all
policies. Similar to the MDP setting, we define value functions that reflect the long-term benefit of
following a policy π. Given a τ -step history h ∈ H,

V π(h) := Eπ

[∞∑
t=τ

γt−τr(Ht, At, Ot+1)
∣∣∣Hτ = h

]
,

Qπ(h, a) := Eπ

[∞∑
t=τ

γt−τr(Ht, At, Ot+1)
∣∣∣Hτ = h,Aτ = a

]
.

Moreover, we extend the definitions of the optimal value functions in MDPs to the non-Markovian
setting as

V ∗(h) := sup
π∈Π

V π(h), Q∗(h, a) := sup
π∈Π

Qπ(h, a). (1)

The proposition below offers a generalized version of the Bellman optimality equations and charac-
terizes V ∗ and Q∗.
Proposition 3.1 (Dong et al. (2022)). The pair of (V ∗, Q∗) is the unique solution to the following
system of equations:

V (h) = max
a′∈A

Q(h, a′) (2)

Q(h, a) = Eo∼p(·|h,a),h′≡(h,a,o)

[
r(h, a, o) + γV (h′)

]
, (3)

where V : H → R and Q : H×A → R are bounded real-valued functions.

4 METHODOLOGY

4.1 GENERALIZED DQN FOR NON-MARKOVIAN PROBLEMS

Motivated by the optimality equations in (2)-(3), we convert these fundamental properties into a
learning algorithm.

Loss Function: To learn Q∗, we adapt the loss function of the standard DQN to the generalized
non-Markovian version by minimizing the residual of the optimality equation. Let Qθ(h, a) denote
the parameterized Q-function. Then, the loss function of the generalized DQN is designed as

E(h,a,o)∼D

[(
r(h, a, o) + γmax

a′∈A
Qθ̄(h

′, a′)−Qθ(h, a)
)2

]
, (4)

where D is the underlying distribution of the observed histories during training, h′ = (h, a, o) is the
history for the next Q-value, and Qθ̄ is a copy of Qθ with parameters frozen.
Remark 4.1. The above loss function bears some resemblance to that of the POMDP variant of
DQN, such as Deep Recurrent Q-Networks (DRQN) in (Hausknecht & Stone, 2015). Despite this,
one fundamental difference is: The POMDP formulation presumes that there exists a hidden true
state, which determines the transitions and the reward function, and the hidden state is to be learned
and deciphered by recurrent neural networks in DRQN. By contrast, Generalized DQN does not
make this presumption and involves only the history of observations and actions.

Direct Implementation of Generalized DQN: To implement (4), one natural design is to leverage
sequence modeling (e.g., Transformers) and directly use the full observations as the input of the
sequence models. This design principle is widely adopted in Transformer-based RL (Chen et al., 2021;
Janner et al., 2021; Chebotar et al., 2023) for various popular RL benchmark tasks (e.g., locomotion
and robot arm manipulation in MuJoCo Todorov et al. (2012)). In the context of learning AFs for
MOBO, one can apply this design principle and extend the representation design of AF for SOBO (cf.
Figure 1) to the MOBO setting, and this amounts to taking the posterior distributions of all K objective
functions at all the domain points along with {y(i)∗t := argmaxj≤t−1 y

(i)
j }Ki=i the best function values

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

observed so far as the per-step observation, i.e., o ≡ {µ(i)(x), σ(i)(x), y(i)∗}x∈X ,i∈[K]. While being
a natural variant of Transformer-based RL, this implementation of the Generalized DQN framework
can be problematic in MOBO for two reasons: (i) Limited cross-domain transferability: As the
observation representation is domain-dependent under this design, the learned model is tied closely
to the training domain and has very limited transferability. As a result, retraining or customization is
needed for every task at deployment. (ii) Scalability issue in sequence length and memory requirement:
Under this design, the sequence length would grow linearly with the number of domain points and
pose a stringent requirement on the hardware memory for training. Indeed, the domain size is at
least on the order of thousands in practical BO problems (e.g., circuit design (Lyu et al., 2018) and
hyperparameter optimization (Lindauer et al., 2022)).

To tackle the above issues, we propose an alternative design that better substantiates the Generalized
DQN framework for MOBO with domain-agnostic representations and several practical enhance-
ments, as detailed in Section 4.2.

4.2 BOFORMER: AN ENHANCED IMPLEMENTATION OF GENERALIZED DQN

BOFormer (Target)

BOFormer (Policy)

Figure 2: BOFormer comprises two distinct networks as
shown above: The upper network functions as the policy
network, utilizing the historical data and the Q-value
predicted by the target network to estimate the Q-values
for action selection. The lower network serves as the
target network, responsible for constructing Q-values for
past observation-action pairs.

To avoid the issues of the direct imple-
mentation, we propose BOFormer, which
is built on the following enhancements.
The pseudo code is in Algorithm 1 in Ap-
pendix C.

Q-Augmented Representation: Define

y
(i)∗
t := max

1≤j≤t
y
(i)
i ,∀i ∈ [1, · · · ,K]

as the best observed function value of i-th
objective at time t. Moreover, for each
domain point x ∈ X, let ot(x) denote the
observation for x as

ot(x) ≡
{
µ
(i)
t (x), σ

(i)
t (x), y

(i)∗
t ,

t

T

}
i∈[K]

.

Moreover, in BOFormer, we use the nor-
malized hypervolume improvement as the
reward, i.e.,

rt :=
HV(Xt)− HV(Xt−1)

HV(X ∗)− HV(Xt)
.

Then, ht, the history up to time t, is the concatenation of past observation-action pair representation
defined as follows:

ht =
{
µ
(i)
j (xj), σ

(i)
j (xj), y

(i)∗
j−1, j/t, ri, Qθ̄

}
i∈[k],j∈[t−1]

. (5)

Notably, under this design, the representation is domain-agnostic and memory-efficient in the sense
that its dimension does not increase with the domain size.
BOFormer as an Acquisition Function for MOBO: The model structure of BOFormer is provided
in Figure 2. Denote Qθ(·) : H(t−1) ×O → R to be the function of BOFormer parameterized
by θ and let θ̂ represent the parameters of BOFormer. The selected point xt satisfies that xt :=
argmaxx∈X Qθ̂ (ht, ot(x)).

Then, Qθ̄ considered in ht can be implemented by a target network, as is commonly done in Deep
Q-learning. In non-Markovian version, Qθ̄ can be defined recursively, where

Qθ̄(ht, ot(xt)) := Qθ̄

(
{oj(xj), rj , Qθ̄(hj−1, oj−1(xj−1))}t−1

j=1 , ot(xt)
)
.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Remark 4.2. To handle continuous domains, BOFormer can approximate the maximum Q-value
using Sobol grids, as adopted by (Volpp et al., 2020; Hsieh et al., 2021). However, this could be a lim-
itation in high-dimensional tasks. To address this, an empirical study on high-dimensional problems
and the detailed procedure of employing Sobol grids are in Appendix D.3 and C.2, respectively.
Off-Policy Learning and Prioritized Trajectory Replay Buffer: We extend the concept of Priori-
tized Experience Replay (PER) Schaul et al. (2015) and introduce the Prioritized Trajectory Replay
Buffer (PTRB). The detailed modifications are as follows: (i) Elements pushed into this buffer are
entire trajectories τ = {oi(xi), ri}Ti=1. (ii) The TD-error considered in PER is replaced by δ(Qθt , τ),
which is the summation of the TD-error of the policy network for all transitions in this trajectory, i.e.,

δ(Q, τ) :=

T−1∑
i=1

(
Q (hi, oi(xi))−

(
ri + γmax

x∈X
Qθ̄(hi+1, oi+1(x))

))2
. (6)

Let B denote the batch sampled from PTRB. The loss function of BOFormer is defined as L(θ) :=∑
τ∈B δ(Qθ, τ).

5 EXPERIMENTS

In this section, we evaluate the proposed BOFormer against popular MOBO methods on both synthetic
and hyperparameter optimization on 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023). Unless
stated otherwise, we report the average attained hypervolume at the final step over 100 evaluation
episodes in the main text. Due to the space limit, all the statistics, including the hypervolume at each
step and performance profiles (Agarwal et al., 2021) are provided in the Appendix.

Benchmark Methods. We compare BOFormer with various classic and state-of-the-art benchmark
methods, including: (i) Rule-based methods: NEHVI (Daulton et al., 2021), ParEGO (Knowles,
2006), NSGA-II (Deb et al., 2002), HVKG (Daulton et al., 2023), and JES (Tu et al., 2022; Hvarfner
et al., 2022). Regarding NEHVI, ParEGO, and HVKG, we use the differentiable Monte-Carlo version,
namely qNEHVI, qParEGO, and qHVKG, provided by BoTorch (Balandat et al., 2020). (ii) Learning-
based methods: Given that BOFormer is the first learning-based MOBO method, we consider the
direct multi-objective extension of FSAF (Hsieh et al., 2021), which achieves state-of-the-art results
in SOBO. To showcase the design of BOFormer, we also adapt a popular RL Transformers, namely
Decision Transformer (DT) (Chen et al., 2021), to the MOBO setting. Moreover, we also include
Q-Transformer (QT) (Chebotar et al., 2023), a more recent Transformer design RL that uses a similar
DQN loss (termed Autoregressive Discrete Q-Learning in their paper) and can be viewed as a variant
of BOFormer without Q-augmented representation. To further demonstrate the competitiveness of
BOFormer, we also compare it with OptFormer (Chen et al., 2022), a recent Transformer-based
method designed specifically for hyperparameter optimization. All the learning-based methods are
trained on GP functions under with the lengthscales drawn randomly from [0.1, 0.4] for fairness. The
detailed configuration is provided in Appendix A.

Q: Does BOFormer achieve sample-efficient MOBO on a variety of optimization problems?

Synthetic Functions: We answer this question by first evaluating BOFormer extensively on a diverse
collection of synthetic black-box functions: (i) Combinations of functions with many local optima,
including Ackley-Rastrigin (ARa); (ii) Combination of smooth functions, including Branin-Currin
(BC) and Branin-Currin-Dixon; (iii) Combination of non-smooth and smooth functions, including
Ackley-Rosenbrock (AR) and Dixon-Rastrigin (DRa) Table 1 and Figure 5 shows the averaged
hypervolume on synthetic problems. Based on Figure 5, we can observe that BOFormer constantly
achieves the largest or among the largest hypervolume among all methods. In the cases of Branin
and Currin, the performance of BOFormer is not as expected, which we attribute to the larger length
scales of these functions compared to others. Then, QT, a variant of the generalized DQN but
without Q-augmented representation, does not perform well. This indicates that sequence modeling
itself does not necessarily guarantee an efficient search for the Pareto front, and Q-augmented
representation are needed for solving MOBO, as showcased by the proposed BOFormer. Figure 3
shows the performance profiles, which are meant to more reliably present the performance variability
of BOFormer and other baselines across testing episodes than the interval estimates of aggregate
metrics. We observe that in most tasks, the profiles of BOFormer sit on the top right of the other
baselines and hence enjoy a statistically better performance in hypervolume. Please see Appendix D
for more performance profiles of the final attained hypervolume.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Multi-Objective Hyperparameter Optimization on 3D Gaussian Splatting: We also evaluate
our method on 3D object reconstruction problems. This task takes multiple images, which captures
an object, as input, and the goal is to reconstruct a 3D representation for novel-view rendering. 3D
Gaussian Splatting (3DGS) by Kerbl et al. (2023) is the recent state-of-the-art on this task. One
practical issue of 3DGS is their sensitivity to the hyperparameters. To achieve the best quality,
we typically require manual tuning for each capture, which is time consuming and requires expert
knowledge. An automatically hyperparameters tuning pipeline thus become very useful. To evaluate
on this task, we construct a dataset by consulting domain expert and dense-grid searching 1440
hyperparameters of 3DGS. We perform 30 samples for this task where we defer the details in the
supplementary. The objectives are negative model size and novel-view rendering quality measured by
PSNR. We use 4 different objects from Mildenhall et al. (2020) and 64 different chairs from Yu et al.
(2023) to compare the performance of different hyperparameter tuning methods. Again, from Table 2
Figure 6, we can observe that BOFormer remains the best or among the best in all the tasks. This
result demonstrates the wide applicability of the proposed BOFormer. The detailed hypervolume per
step and performance profile of the final hypervolume for 3DGS dataset is provided in Appendix D.

Table 1: The average attained hypervolume at the 100-th sampling step under synthetic functions.
Boldface and underlining denote performance within 1% of the best-performing method.

AR ARa BC DRa RBF Matern BCD
Rule-based Methods
qHVKG (Daulton et al. (2023)) 0.5787 0.7008 0.4751 0.9499 0.8646 0.8506 0.3547
NSGA-II (Deb et al. (2002)) 0.5557 0.7122 0.4271 0.9573 0.8603 0.8569 0.3400
qNEHVI (Daulton et al. (2021)) 0.5428 0.6290 0.4773 0.9333 0.8731 0.8696 0.3697
JES (Tu et al. (2022)) 0.4930 0.6207 0.4487 0.9392 0.8661 0.8594 0.3345
qParEGO (Knowles (2006)) 0.5410 0.6111 0.4597 0.9347 0.8730 0.8684 0.3564
Learning-based Methods
BOFormer (Ours) 0.5900 0.7377 0.4476 0.9461 0.8751 0.8642 0.3617
FSAF (Hsieh et al. (2021)) 0.4424 0.4800 0.4175 0.9193 0.8381 0.8566 0.3578
OptFormer (Chen et al. (2022)) 0.4448 0.4835 0.4143 0.8927 0.8558 0.8488 0.3437
DT (Chen et al. (2021)) 0.4397 0.4855 0.4159 0.9141 0.8409 0.8359 0.2980
QT (Chebotar et al. (2023) 0.4630 0.4953 0.4086 0.8584 0.8685 0.8550 0.3320

Table 2: The average hypervolume at the 30-th step under 3DGS hyper-parameter optimization
scenarios. Boldface and underlining denote performance within 1% of the best-performing method.

Chairs Lego Materials Mic Ship
Rule-based Methods
qHVKG (Daulton et al. (2023)) 0.8508 0.9365 0.9088 0.8234 0.9630
NSGA-II (Deb et al. (2002)) 0.8500 0.9192 0.8831 0.8051 0.9615
qNEHVI (Daulton et al. (2021)) 0.9159 0.9344 0.9041 0.8353 0.9661
JES (Tu et al. (2022)) 0.9003 0.9409 0.9217 0.8251 0.9656
qParEGO (Knowles (2006)) 0.9103 0.9335 0.9098 0.8263 0.9635
Learning-based Methods
BOFormer (Ours) 0.9162 0.9508 0.9224 0.8816 0.9745
FSAF (Hsieh et al. (2021)) 0.9120 0.9504 0.9213 0.8871 0.9737
OptFormer (Chen et al. (2022)) 0.8200 0.7875 0.7838 0.7865 0.9575
DT (Chen et al. (2021)) 0.8602 0.9315 0.9005 0.8786 0.9409
QT (Chebotar et al. (2023)) 0.9119 0.9368 0.9142 0.8731 0.9551

Q: The comparison between BOFormer and OptFormer. From Tables 1-2 and Figures 3-7, we
observe that the performance of BOFormer surpasses that of OptFormer. We conjecture that the
reasons are two-fold: (i) OptFormer takes a supervised learning perspective to learn the context that
describes the HPO information while BOFormer leverages non-Markovian RL for better long-term
planning. (ii) OptFormer reinterprets HPO as a language modeling problem in a text-to-text manner.
This approach necessitates that the training dataset closely resembles the testing domain, and this
requirement does not hold here (e.g., dimensionality of the training domain differs from that of the
testing domain).

Q: A study on the effect of sequence length of BOFormer. We also conducted an ablation study on
evaluating how the sequence length (denoted by w) would affect the hypervolume performance of
BOFormer. Figure 4 shows that the hypervolume of non-Markovian BOFormer (w > 1) is superior

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

to that of Markovian BOFormer (w = 1). The results also demonstrate that sequential modeling can
successfully solve the hypervolume identifiability issue.

Q: A study on computational efficiency. We provide computation times per step in Table 3. BOFormer
and qNEHVI are competitive in terms of final hypervolume (Tables 1-2), with the computation times
of BOFormer being less sensitive to the number of objective functions and shorter than those of
qNEHVI under the 3-objective function setting.

Q: How is the transfer ability of BOFormer under different numbers of objective functions?
Although learning-based methods generally require training multiple models for different numbers of
objective functions due to mismatched model structures, we conducted an experiment on BOFormer
to determine whether it is possible to train only the state-action embedding layer while utilizing a
pre-trained transformer model from a different number of objective functions. The results, shown in
Figure 7, demonstrate that BOFormer exhibits excellent transfer ability across different numbers of
objective functions. The detailed implementation of transferring on BOFormer is in Appendix C.2.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(a) AR (b) ARa (c) BC

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

(d) Chairs (e) Materials (f) Lego

Figure 3: Performance profiles of hypervolume at the final step

0 50 100

Number of Samples

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

H
y
p
e
rv

o
lu

m
e

90 100

0.91

0.92

0.93

0.94

0 50 100

Number of Samples

0.3

0.4

0.5

0.6

0.7

0.8

H
y
p
e
rv

o
lu

m
e

90 100

0.83

0.84

0.85

0.86

0.87

0 50 100

Number of Samples

0.3

0.4

0.5

0.6

0.7

0.8

H
y
p
e
rv

o
lu

m
e

90 100

0.85

0.855

0.86

(a) DRa (b) RBF (c) Matern52

Figure 4: Attained hypervolumes of BOFormer under various sequence lengths.

6 CONCLUSION

In this paper, we address MOBO problems from the perspective of RL-based AF by identifying and
tackling the inherent hypervolume identifiability issue. We achieve this goal by first presenting a
generalized DQN framework and implementing it through BOFormer, which leverages the sequence
modeling capability of Transformers and incorporates multiple enhancements for MOBO. Our
experimental results show that BOFormer is indeed a promising approach for general-purpose
multi-objective black-box optimization.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

BIBLIOGRAPHY

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021.

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wilson,
and Eytan Bakshy. BoTorch: A framework for efficient Monte-Carlo Bayesian optimization.
Advances in Neural Information Processing Systems, 33:21524–21538, 2020.

Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Max-value entropy search for multi-
objective Bayesian optimization. Advances in Neural Information Processing Systems, 32, 2019.

Syrine Belakaria, Aryan Deshwal, Nitthilan Kannappan Jayakodi, and Janardhan Rao Doppa.
Uncertainty-aware search framework for multi-objective Bayesian optimization. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 10044–10052, 2020.

Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Output space entropy search framework
for multi-objective Bayesian optimization. Journal of Artificial Intelligence Research, 72:667–715,
2021.

Nicola Beume, Boris Naujoks, and Michael Emmerich. SMS-EMOA: Multiobjective selection based
on dominated hypervolume. European Journal of Operational Research, 181(3):1653–1669, 2007.

Michael Bowling, John D Martin, David Abel, and Will Dabney. Settling the reward hypothesis. In
International Conference on Machine Learning, pp. 3003–3020, 2023.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. In Conference on Robot Learning, pp. 3909–3928. PMLR, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in Neural Information Processing Systems, 34:15084–15097, 2021.

Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Richard Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, et al. Towards learning
universal hyperparameter optimizers with transformers. Advances in Neural Information Process-
ing Systems, 35:32053–32068, 2022.

Ran Cheng, Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. A reference vector guided
evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary
Computation, 20(5):773–791, 2016.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying pac and regret: Uniform pac bounds
for episodic reinforcement learning. Advances in Neural Information Processing Systems, 30,
2017.

Sam Daulton, Maximilian Balandat, and Eytan Bakshy. Hypervolume knowledge gradient: A looka-
head approach for multi-objective Bayesian optimization with partial information. In International
Conference on Machine Learning, pp. 7167–7204, 2023.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hypervolume
improvement for parallel multi-objective Bayesian optimization. Advances in Neural Information
Processing Systems, 33:9851–9864, 2020.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Parallel Bayesian optimization of multiple
noisy objectives with expected hypervolume improvement. Advances in Neural Information
Processing Systems, 34:2187–2200, 2021.

Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Multi-objective Bayesian
optimization over high-dimensional search spaces. In Uncertainty in Artificial Intelligence, pp.
507–517, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):
182–197, 2002.

Shi Dong, Benjamin Van Roy, and Zhengyuan Zhou. Simple agent, complex environment: Efficient
reinforcement learning with agent states. Journal of Machine Learning Research, 23(1):11627–
11680, 2022.

Michael Emmerich and Jan-willem Klinkenberg. The computation of the expected improvement in
dominated hypervolume of Pareto front approximations. Rapport technique, Leiden University,
2008.

Michael TM Emmerich, André H Deutz, and Jan Willem Klinkenberg. Hypervolume-based expected
improvement: Monotonicity properties and exact computation. In IEEE Congress of Evolutionary
Computation (CEC), pp. 2147–2154, 2011.

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline
hindsight information matching. In International Conference on Learning Representations, 2021.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International Conference on Machine Learning, pp. 1704–1713, 2018.

Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. Predictive entropy search for multi-
objective Bayesian optimization with constraints. Neurocomputing, 361:50–68, 2019.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic Chemical Design Using a Data-Driven
Continuous Representation of Molecules. ACS central science, 4(2):268–276, 2018.

Matthew Hausknecht and Peter Stone. Deep recurrent Q-learning for partially observable MDPs. In
AAAI Fall Symposium Series, 2015.

Daniel Hernández-Lobato, Jose Hernandez-Lobato, Amar Shah, and Ryan Adams. Predictive
entropy search for multi-objective Bayesian optimization. In International Conference on Machine
Learning, pp. 1492–1501, 2016.

Bing-Jing Hsieh, Ping-Chun Hsieh, and Xi Liu. Reinforced few-shot acquisition function learning for
Bayesian optimization. Advances in Neural Information Processing Systems, 34:7718–7731, 2021.

Iris Hupkens, André Deutz, Kaifeng Yang, and Michael Emmerich. Faster exact algorithms for
computing expected hypervolume improvement. In International Conference on Evolutionary
Multi-Criterion Optimization, pp. 65–79. Springer, 2015.

Carl Hvarfner, Frank Hutter, and Luigi Nardi. Joint entropy search for maximally-informed Bayesian
optimization. Advances in Neural Information Processing Systems, 35:11494–11506, 2022.

Tommi Jaakkola, Satinder Singh, and Michael Jordan. Reinforcement learning algorithm for partially
observable Markov decision problems. Advances in Neural Information Processing systems, 7,
1994.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in Neural Information Processing Systems, 34:1273–1286, 2021.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Trans. Graph., 42(4):139:1–139:14, 2023.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. In International Conference on Learning
Representations, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast Bayesian
optimization of machine learning hyperparameters on large datasets. In International Conference
on Artificial Intelligence and Statistics, pp. 528–536, 2017.

Joshua Knowles. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive
multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, 10(1):
50–66, 2006.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Tor Lattimore, Marcus Hutter, and Peter Sunehag. The sample-complexity of general reinforcement
learning. In International Conference on Machine Learning, pp. 28–36, 2013.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-
rama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision
transformers. Advances in Neural Information Processing Systems, 35:27921–27936, 2022.

Jan Leike. Nonparametric general reinforcement learning. PhD thesis, The Australian National
University (Australia), 2016.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin
Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. SMAC3: A versatile Bayesian optimization
package for hyperparameter optimization. Journal of Machine Learning Research, 23(1):2475–
2483, 2022.

Xiuyuan Lu, Benjamin Van Roy, Vikranth Dwaracherla, Morteza Ibrahimi, Ian Osband, Zheng Wen,
et al. Reinforcement learning, bit by bit. Foundations and Trends® in Machine Learning, 16(6):
733–865, 2023.

Wenlong Lyu, Fan Yang, Changhao Yan, Dian Zhou, and Xuan Zeng. Batch Bayesian Optimization
via Multi-Objective Acquisition Ensemble for Automated Analog Circuit Design. In International
Conference on Machine Learning, pp. 3306–3314, 2018.

Sultan J Majeed. Abstractions of General Reinforcement Learning: An Inquiry into the Scalability of
Generally Intelligent Agents. PhD thesis, The Australian National University (Australia), 2021.

Alexandre Maraval, Matthieu Zimmer, Antoine Grosnit, and Haitham Bou Ammar. End-to-end
meta-Bayesian pptimisation with Transformer Neural Processes. Advances in Neural Information
Processing Systems, 2023.

Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science & Business
Media, 1999.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In Computer
Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings,
Part I, volume 12346, pp. 405–421, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

George E Monahan. A survey of partially observable Markov decision processes: Theory, models,
and algorithms. Management Science, 28(1):1–16, 1982.

Gergely Neu and Ciara Pike-Burke. A unifying view of optimism in episodic reinforcement learning.
Advances in Neural Information Processing Systems, 33:1392–1403, 2020.

Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for multi-
objective Bayesian optimization using random scalarizations. In Uncertainty in Artificial Intelli-
gence, pp. 766–776, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Victor Picheny. Multiobjective optimization using Gaussian process emulators via stepwise uncer-
tainty reduction. Statistics and Computing, 25(6):1265–1280, 2015.

Wolfgang Ponweiser, Tobias Wagner, Dirk Biermann, and Markus Vincze. Multiobjective optimiza-
tion on a limited budget of evaluations using model-assisted-metric selection. In International
Conference on Parallel Problem Solving From Nature, pp. 784–794. Springer, 2008.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Juergen Schmidhuber. Reinforcement Learning Upside Down: Don’t Predict Rewards–Just Map
Them to Actions. arXiv preprint arXiv:1912.02875, 2019.

Alexander Shmakov, Avisek Naug, Vineet Gundecha, Sahand Ghorbanpour, Ricardo Luna Gutierrez,
Ashwin Ramesh Babu, Antonio Guillen, and Soumyendu Sarkar. RTDK-BO: High dimensional
Bayesian optimization with reinforced transformer deep kernels. In IEEE International Conference
on Automation Science and Engineering (CASE), pp. 1–8, 2023.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine
learning algorithms. Advances in Neural Information Processing Systems, 25, 2012.

Shinya Suzuki, Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, and Masayuki Karasuyama. Multi-
objective Bayesian optimization using Pareto-frontier entropy. In International Conference on
Machine Learning, pp. 9279–9288, 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Ben Tu, Axel Gandy, Nikolas Kantas, and Behrang Shafei. Joint entropy search for multi-objective
Bayesian optimization. Advances in Neural Information Processing Systems, 35:9922–9938, 2022.

Tsuyoshi Ueno, Trevor David Rhone, Zhufeng Hou, Teruyasu Mizoguchi, and Koji Tsuda. COMBO:
An Efficient Bayesian Optimization Library for Materials Science. Materials Discovery, 4:18–21,
2016.

Michael Volpp, Lukas P Fröhlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter, and
Christian Daniel. Meta-learning acquisition functions for transfer learning in Bayesian optimization.
In International Conference on Learning Representations, 2020.

Takashi Wada and Hideitsu Hino. Bayesian optimization for multi-objective optimization and
multi-point search. arXiv preprint arXiv:1905.02370, 2019.

Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization. In
International Conference on Machine Learning, pp. 3627–3635, 2017.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT Press, 2006.

Kaifeng Yang, Michael Emmerich, André Deutz, and Thomas Bäck. Multi-objective Bayesian
global optimization using expected hypervolume improvement gradient. Swarm and Evolutionary
Computation, 44:945–956, 2019.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. Advances in Neural Information Processing Systems, 31,
2018.

Xianggang Yu, Mutian Xu, Yidan Zhang, Haolin Liu, Chongjie Ye, Yushuang Wu, Zizheng Yan,
Chenming Zhu, Zhangyang Xiong, Tianyou Liang, Guanying Chen, Shuguang Cui, and Xiaoguang
Han. Mvimgnet: A large-scale dataset of multi-view images. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023,
pp. 9150–9161, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary algorithm based on decomposi-
tion. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.

Qingfu Zhang, Wudong Liu, Edward Tsang, and Botond Virginas. Expensive multiobjective optimiza-
tion by MOEA/D with Gaussian process model. IEEE Transactions on Evolutionary Computation,
14(3):456–474, 2009.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In International
Conference on Machine Learning, pp. 27042–27059. PMLR, 2022.

Jinzhu Zhou, Zhanbiao Yang, Yu Si, Le Kang, Haitao Li, Mei Wang, and Zhiya Zhang. A trust-region
parallel Bayesian optimization method for simulation-driven antenna design. IEEE Transactions
on Antennas and Propagation, 69(7):3966–3981, 2020.

Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: A comparative case study
and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257–271,
1999.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDICES

Table of Contents
A Detailed Experimental Configuration 16

A.1 Environment . 16
A.2 Hyperparameters of Learning-Based Approaches 17
A.3 Hyperparameters of Rule-Based Approaches 17

B Additional Related Work 17
B.1 Transformers and Sequence Modeling for RL 17
B.2 A More Detailed Comparison to Q-Transformer 17

C Pseudo Code and Additional Implementation Details 18
C.1 Pseudo Code of BOFormer . 18
C.2 Additional Implementation Details of BOFormer 18
C.3 About Temporal Information in the History Representation of BOFormer 20
C.4 Issues With the Direct Implementation in Section 4.1 20
C.5 Implementation Details of OptFormer . 21

D Detailed Experimental Results 21
D.1 Detailed Hypervolume Statistics and Inference time 21
D.2 Ablation Study on the Demo Policy in BOFormer 22
D.3 Scalability of BOFormer to High-Dimensional Problems 24
D.4 Performance of BOFormer on More Challenging Problems 24

E About the Non-Markovian Nature of MOBO 25

A DETAILED EXPERIMENTAL CONFIGURATION

A.1 ENVIRONMENT

In each testing episode, the agent interacts with the environment for a total of T = 100 for synthetic
functions and T = 30 time steps for HPO-3DGS. The observed function values are subject to noise
ϵ ∼ N(0, 0.1) for synthetic functions, while the function values for HPO-3DGS are observed without
noise. During testing and training, the objective functions of each episode are scaled by perturbation
noise κ, which is sampled from Uniform(0, 0.1) for synthetic functions and Uniform(0, 0.01) for
other functions.

For HPO-3DGS, there are about 68,000 data points related to 4 different objects: Lego, Materials,
Mic, Ship, and Chairs. Additionally, there are 64 different scenes involving chairs. While testing on
chairs, each episode is conducted with an individual scene.

Configuration of the surrogate model:

• Training: For all the learning-based algorithms, we used the same GP surrogate model
with an RBF kernel for obtaining the posterior distributions. Regarding the generation of
GP synthetic functions as objective functions during training, each function is generated
randomly under either an RBF or Matern-5/2 kernel with lengthscale sampled from [0.1, 0.4].

• Testing: During testing, all algorithms utilized a surrogate model based on the Matern52
kernel. The length scale was estimated online by maximizing the marginal likelihood by
following the same approach as BoTorch.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.2 HYPERPARAMETERS OF LEARNING-BASED APPROACHES

• BOFormer: hidden size: 128 for all linear layers used to embed positional encodings, state-
action pairs, rewards, and Q-values, learning rate: 10−5, weight decay: 10−5, rdemo: 0.01,
batch size: 8, # of attention layer: 8, # of head of attention layer: 4, window size w = 31,
dropout: 0.1, buffer size: 64, training episode: 3000.

• DT*: hidden size: 128, learning rate: 10−4, weight decay: 10−4, batch size: 16, # of
attention layer: 3, # of head of attention layer: 2, embed dim: 500, dropout: 0.1, warmup
steps: 10, max length: 100.

• QT: hidden size: 128, learning rate: 10−5, weight decay: 10−5, rdemo: 0.01, batch size: 8,
of attention layer: 8, # of head of attention layer: 4, window size w = 21, dropout: 0.1,
buffer size: 64, training episode: 2000.

• FSAF: alpha: 0.8, hidden size: 100, learning rate: 0.01, batch size: 128, few shot step: 5, #
of particles: 5, total task: 3, size of meta data: 100, use demo: True, early terminate: False,
select type: average, training episode: 300 for K = 2 and 500 for K = 3.

• OptFormer: string length: 128, learning rate: 10−2, weight decay: 10−2, batch size: 1,
window size w = 10, training episode: 1000.

• Common Hyperparameter: optimizer: Adam (Kingma & Ba, 2014), ϵ-greedy rate: 0.1

• Transformer Architecture: GPT-2-based Transformer architecture.

A.3 HYPERPARAMETERS OF RULE-BASED APPROACHES

• qNEHVI: q(batch selection): 1

• qHVKG: q(batch selection): 1

• qParEgo: q(batch selection): 1, acquisition function: Expected Improvement

• JES: # of samples: 64, estimation type: LB

• NSGA2: population size: 10, # of generations: 10, sampling: random

B ADDITIONAL RELATED WORK

B.1 TRANSFORMERS AND SEQUENCE MODELING FOR RL

Given the success of sequence-to-sequence models in language processing, RL has recently been
addressed through the lens of sequence modeling, especially transformers. For example, Chen et al.
(2021) propose Decision Transformer (DT), which addresses offline RL by mapping return-to-go to
actions via transformers and thereby substantiating the concept of Upside Down RL (Schmidhuber,
2019). The design of DT has been subsequently extended to various settings, including online RL
(Zheng et al., 2022), multi-game setting (Lee et al., 2022), and general information matching (Furuta
et al., 2021). Concurrently, to tackle offline RL, Janner et al. (2021) propose Trajectory Transformer
(TT), which serves as a predictive dynamics model and uses beam search as a trajectory optimizer.
More recently, Chebotar et al. (2023) introduced Q-Transformer (QT), which is trained by offline
temporal difference updates and achieves scalable representation for Q-functions by discretizing
action dimensions as tokens on a Transformer, with a focus on robotic tasks. By contrast, the proposed
BOFormer is built on the (online) generalized DQN framework and designed for addressing MOBO
based on multiple enhancements.

B.2 A MORE DETAILED COMPARISON TO Q-TRANSFORMER

Q-Transformer (QT) (Chebotar et al., 2023) similarly incorporates the idea of utilizing a Transformer
in learning the Q-function. Despite this high-level design resemblance, the proposed BOFormer is
different from QT in multiple aspects:

• Problem Setting: QT is designed mainly to address offline RL, where the performance is highly
correlated to the quality of prior data, as a robotic learning approach and required to address

*We reuse the open source implementation from https://github.com/jannerm/trajectory-transformer.

17

https://github.com/jannerm/trajectory-transformer

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

high-dimensional action spaces. By contrast, our work introduces BOFormer, which is trained to
solve MOBO by learning a generalized Q function based on the online interactions with synthetic
GP functions, and hence this can be viewed as an instance of online RL.

• Network Architecture: QT uses state-action sequences as the input of the Transformer. By
contrast, to resolve the hypervolume identifiability issue and achieve cross-domain transferability
simultaneously, the proposed transformer of BOFormer implements a generalized DQN and uses
the Q-augmented observation representation as the input of the transformer. This approach can
better address the non-Markovian property in MOBO.

• Training Algorithm: Compared to QT, the proposed BOFormer incorporates multiple practical
enhancements, including Q-augmented representation, reward normalization, and demo policy and
prioritized trajectory replay buffer for off-policy learning.

C PSEUDO CODE AND ADDITIONAL IMPLEMENTATION DETAILS

C.1 PSEUDO CODE OF BOFORMER

The detailed pseudo code of the training processes for BOFormer under off-policy learning and
on-policy learning setting are provided in Algorithms 1 and 2, respectively.

C.2 ADDITIONAL IMPLEMENTATION DETAILS OF BOFORMER

Reward Signal With Normalization. In the MOBO setting, one natural reward design is the
one-step improvement in hypervolume, i.e., r̂t := HV(Xt)− HV(Xt−1). However, as the achieved
hypervolume increases, the reward signal r̂t can get weaker in the later stage of an episode, making it
difficult to recover the whole Pareto front. To address this, we construct rt, which is r̂t but scaled by
the difference between the current hypervolume and optimal hypervolume, as the reward signal for
RL in MOBO, i.e.,

rt :=
HV(Xt)− HV(Xt−1)

HV(X ∗)− HV(Xt)
. (7)

Remark C.1. The information about HV(X ∗) in (7) is used only during training and can be easily
pre-computed or approximated given the knowledge about the domain and the black-box functions.
Demo-Policy-Guided Exploration. To facilitate the off-policy learning of BOFormer, one natural
approach is to adopt a behavior policy with randomized exploration (e.g., epsilon-greedy) for
collecting trajectories from the environment. However, such a randomized exploration scheme can be
very inefficient as the sampling budget in MOBO is usually much smaller than the domain size (i.e.,
the number of actions). To better guide the exploration, we propose to use a demo policy, which is
possibly sub-optimal but of sufficient strength in exploring regions near the Pareto front. In practice,
we set rdemo to be the probability of using a demo policy induced by an off-the-shelf AF for MOBO
(e.g., EHVI) in this training episode. The training processes of BOFormer for off-policy learning and
on-policy learning are provided in Algorithms 1 and 2, respectively.

Transfer Learning Across Different Numbers of Objective Functions. As discussed in the main
text, the input dimension of BOFormer varies depending on the number of objective functions. For
instance, a BOFormer model trained on 2 objective functions cannot be directly applied to 3 objective
functions due to the mismatch in input dimensions, which requires reshaping of the embedding layer.
To address this issue and reduce the computational burden of training BOFormer, we developed an
efficient transfer learning strategy that enables model transfering across different numbers of objective
functions.

Our approach first loads the pre-trained weights for the transformer component from another trained
BOFormer, then initializes a linear embedding layer to match the dimension of the state-action pair.
Only the linear embedding layer is trained. This strategy significantly reduces training episodes and
computational requirements by allowing us to leverage pre-trained models for different numbers of
objective functions with minimal adjustments.

The efficiency of this transfer learning method is evident in the reduced number of training episodes.
While the original model requires approximately 3000 episodes to converge, the transfer model

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

achieves comparable performance after only 400 episodes of fine-tuning. This substantial reduction
in training episodes demonstrates the effectiveness of our approach in rapidly adapting pre-trained
models to new objective function configurations.

Positional Encoding. The positional encoding in BOFormer is designed specifically for the context
of sequential modeling in RL. Unlike the standard positional embeddings used in traditional Trans-
formers, where each position corresponds to a single token, our method assigns an embedding to
each timestep t, that is shared across multiple tokens (i.e., {(st, at), rt, Q(st, at)} for state-action
pairs, rewards, and Q-values). This approach allows the Transformer to capture the temporal context
effectively by providing explicit time indices for each token.

Temporal Information in State-Action Representation. Temporal information is also incorporated
into the state-action representation, specifically through terms like j/t in (5). As BOFormer is an
RL-based method, this essentially corresponds to the episodic RL setting (Dann et al., 2017; Neu &
Pike-Burke, 2020), where the length of each episode is fixed. In episodic RL, the value functions
Qπ

t (s, a) and V π
t (s, a) do depend on this temporal information t because the RL agent shall make

decisions based on the remaining time budget (i.e., T − t). In the context of MOBO, this temporal
information also serves as a budget indicator, similar to that in episodic RL. This is critical for learning
MOBO policies that can achieve high hypervolume in as few queries as possible by maximizing
cumulative reward within the given budget. In summary, the motivations for these two temporal
components differ:

• Positional Encoding ensures the Transformer can capture temporal information in the
historical queries.

• State-Action Temporal Representation directly informs the RL agent of the progress within
sequential decision-making with respect to the remaining budget, helping maximize future
cumulative rewards.

Off-Policy Learning and Prioritized Trajectory Replay Buffer These components are introduced
to address exploration, sample efficiency and learning stability:

• Off-Policy Learning enables BOFormer to leverage previously collected data, reducing the
need for additional costly sampling. This improves sample efficiency and facilitates the use
of a demo policy, allowing for more effective learning and faster convergence.

• Prioritized Trajectory Replay Buffer ensures that the most informative transitions (e.g., those
with significant temporal-difference errors) are replayed more frequently during training,
accelerating convergence.

Handling Continuous Domains Under BOFormer. As BOFormer is a learning-based acquisition
function (AF) implemented as a neural network, it can nicely handle continuous domains by leveraging
the common ways of finding an (approximate) AF maximizer, just like the existing learning-based
methods and neural AFs. Specifically:

• Approximate maximization by Sobol grids (commonly used by learning-based methods):
One can find an approximate maximizer of each learning-based AF by grid search with the
help of Sobol sequences, as suggested by (Volpp et al., 2020; Hsieh et al., 2021). Specifically,
one can (i) first selects N points spanning over the entire domain with the help of Sobol
sequence, (ii) chooses the top-M points in terms of AF value among the N candidates, (iii)
and then builds a local Sobol grid of K points for each of these M points. This is the default
choice of BOFormer.

• Gradient-based optimization with automatic differentiation (used by the rule-based meth-
ods in BoTorch): One can also optimize the AF by using gradient-based optimization
(e.g., multi-start L-BFGS-B in BOTorch available at https://botorch.org/docs/
optimization, with the help of automatic differentiation provided by deep learning
frameworks (e.g., PyTorch). This is the default approach adopted by BoTorch.

Q-Value Computation by Target Network for a Trajectory. Given a trajectory τ =
{s1, a1, r1, s2, · · · , st−1, at−1, rt−1}: (i) BOFormer computes Q(h0, s1, a1) using (s1, a1) as the
input. (ii) Then, it computes Q(h1, s2, a2) by letting (s1, a1, r1, s2, a2) as the input. (iii) This process
continues sequentially until Q(ht−2, st−1, at−1) is computed.

19

https://botorch.org/docs/optimization
https://botorch.org/docs/optimization

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Action Selection by Policy Network at time t. To select at at time t, BOFormer sam-
ples actions from a softmax policy where the logits correspond to Q-values: Pr(a|ht−1, st) =

exp
(
Q(ht−1, st, a)

)
/
∑

a′∈X exp
(
Q(ht−1, st, a

′)

)
.

Other Training Details.

• Demo policy: Each trajectory is collected using the demo policy with a probability of rdemo;
otherwise, it is collected by BOFormer itself.

• Batch sampling: BOFormer samples a batch from the prioritized trajectory experience replay
buffer, with each batch containing a batch of trajectories.

• Optimization: Gradient descent is performed on the policy network using the optimizer with
dropout.

• Target network: The target network is used to compute {Q(hi−1, si, ai)}t−1
i=1 , and synchro-

nized with the policy network every 5 episodes.

C.3 ABOUT TEMPORAL INFORMATION IN THE HISTORY REPRESENTATION OF BOFORMER

As BOFormer is a non-Markovian RL method for BO, and hence the design shall take both RL and
BO into account. Specifically:

• Temporal information in state-action representation serves as a budget indicator,
similar to episodic RL: In MOBO, we do want to attain high hypervolume by using as few
samples as possible, and hence each episode only has a small number of queries (or time
steps), e.g., T = 100. As BOFormer is an RL-based method, this essentially corresponds to
the episodic RL setting (e.g., [Dann et al., 2017; Neu and Pike-Burke, 2020]), where the
length of each episode is fixed. In episodic RL, the value functions Qπ

t (s, a) and V π
t (s, a) do

depend on this temporal information t because the RL agent shall make decisions based on
the remaining time budget (i.e., T − t). In the context of MOBO, this temporal information
also serves as a budget indicator, similar to that in episodic RL.

• Permutation-invariance of queries in posterior distributions: Anothe notable fact is that
in BO, the historical queries shall be permutation-invariant in the sense that the order of
previous queries should not affect the posterior distributions under GP.

By taking both into account, we choose to include the temporal information in the state-action
representation.

C.4 ISSUES WITH THE DIRECT IMPLEMENTATION IN SECTION 4.1

Recall that the direct implementation in Section 4.1 is designed to implement Generalized DQN with
the per-step observation that consists of two parts:

1. The posterior distributions of all K objective functions at all the domain points.

2. The best function values observed so far (denoted by y(i)∗, i = 1, ...,K).

Hence, the per-step observation is {(µ(i)(x), σ(i)(x), y(i)∗)x∈X,i∈[K]}. As described in Section 4.1,
this representation design is subject to two practical issues:

• Scalability issue in sequence length: Under this design, the sequence length of the per-step
observation would grow linearly with the number of domain points and pose a stringent
requirement on training.

• Limited cross-domain transferability: As this observation representation is domain-
dependent, the learned model is tightly coupled with the training domain and has very
limited transferability.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

We have tried this direct implementation, and we found that this design severely suffers from the
scalability issue and requires extremely long training time. Below we report the training time that we
observed:

• Even under a fairly small input domain of only 50 points (i.e., |X| = 50), we observe that
20 training iterations already take more than 36 hours of wall clock time to complete. **To
finish at least 1000 training iterations (based on our training experience with BOFormer),
this direct implementation would require about 75 days to complete one training run.

• Notably, the above training was already on a high-end GPU server with NVIDIA RTX 6000
Ada Generation GPUs and Intel Xeon Gold 5515+ CPU.

The above issue will be more severe under an input domain with more domain points (i.e., larger |X|).
This manifests that this direct implementation suffers significantly from the scalability issue and is
rather impractical. This also motivates the proposed BOFormer for substantiating the Generalized
DQN framework.

C.5 IMPLEMENTATION DETAILS OF OPTFORMER

Recall that the OptFormer and BoFormer have different application scopes: BOFormer is designed to
serve as a general-purpose optimization solver for MO black-box optimization, whereas OptFormer
is more task-specific as it is designed specifically for single-objective HPO and requires offline HPO
data for training. To adapt OptFormer to the general MOBO setting, there are some modifications
needed: (i) The core idea of OptFormer is to recast HPO as language modeling, and we adapt this
idea to MOBO. For instance, when training OptFormer for a 2-objective MOBOsetting, we modify
the input to include a representation that is more relevant to the MOBO problem, such as

“1st_dimension_x = 0.031 2nd_dimension_x = 0.531

1st_objective_y = 0.254 2nd_objective_y = 0.258

1st_dimension_x = 0.604 · · · ” (8)

To ensure the strength of OptFormer, we retrain the OptFormer model upon handling different
numbers of objective functions. (ii) Additionally, the metadata includes information derived from
the GP surrogate model, which is estimated online by maximizing the marginal likelihood (just
like all the other rule-based AFs and BOFormer). Given that OptFormer requires an offline dataset
for training, we collected the training dataset using rule-based AFs (e.g., Expected Hypervolume
Improvement), to ensure the model is effectively tailored to the MOBO setting.

D DETAILED EXPERIMENTAL RESULTS

D.1 DETAILED HYPERVOLUME STATISTICS AND INFERENCE TIME

In this section, we provide the additional and detailed statistics of the per-sample inference time and
the final hypervolume as follows.

The messages from Table 3 are mainly three-fold:

• We observe that for the baselines that are competitive in the attained hypervolume (such as
qNEHVI and qHVKG), the inference time scales significantly with the number of objectives,
whereas BOFormer maintains a lower and nearly constant inference time across different
number of objectives.

• Compared to the Markovian approach like FSAF, BOFormer only needs a slightly higher
per-step inference time and remains rather efficient. Hence, the non-Markovian nature of
BOFormer still consumes an inference time comparable to a Markovian approach.

• BOFormer enjoys a much lower inference time than the sophisticated OptFormer, which
views black-box optimization as a language modeling problem in a text-to-text manner and
hence involves text-based input representation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 1 Off-Policy BOFormer
1: Input: θ1, Training Episodes E, Time Horizon T , Demo Rate rdemo, Target Rate rtarget, Target

Network Qθ̄, Batch Size B, Replay buffer B, environment E .
2: for e = 1, 2, · · · , E do
3: E .reset()
4: se1 = E .state
5: demo = random.binomial(rdemo)
6: πe

t = ExpectedHypervolumeImprovement
7: for t = 1, 2, · · · , T do
8: if demo then
9: xe

t = πe
t (s

e
t)

10: else
11: for i = 1, 2, · · · , t− 1 do
12: Compute Qθ̄(h

e
i , o

e
i (x

e
i)) = Qθ̄

({
oej(x

e
j), r

e
j , Qθ̄(h

e
j−1, o

e
j−1(x

e
j−1))

}i−1

j=1
, oei (x

e
i)
)

.
13: end for
14: Select xe

t := argmaxx∈X Qθ̂ (h
e
t , o

e
t (x))

15: end if
16: set+1, r

e
t = E .step(xe

t)
17: end for
18: if e mod rtarget == 0 then
19: Qθ̄ = Qθe

20: end if
21: B.append(τe = {oei (xe

i), r
e
i }Ti=1)

22: Sample B batches from B.
23: for b = 1, 2, · · · , B do
24: Compute Qb

θ̄
(hb

1, o
b
1(x

b
1)) = Qθ̄

(
ob1(x

b
1)
)

25: for i = 1, 2, · · · , T − 1 do
26: Compute Qb

θ̂
(hb

i , o
b
i (x

b
i)) = Qθ̂

({
obi (x

b
j), r

b
j , Qθ̄(h

b
j−1, o

b
j−1(x

b
j−1))

}i−1

j=1
, obi (x

b
i)
)

.

27: Compute Qb
θ̄
(hb

i , o
b
i (x

b
i)) = Qθ̄

({
obj(x

b
j), r

b
j , Qθ̄(h

b
j−1, o

b
j−1(x

b
j−1))

}i−1

j=1
, obi (x

b
i)
)

.
28: end for
29: end for

30: Loss(θ) =
∑B

b=1

∑T−1
t=1

(
Qb

θ̂
(hb

i , o
b
i (x

b
i))− (rbt +max

x∈X
Qb

θ̄
(hb

i , o
b
i (x)))

)2

31: θe+1 = argmin
θ

Loss(θ)

32: end for

Algorithm 2 On-Policy BOFormer
1: Input: θ1, Training Episodes E, Time Horizon T , environment E ,
2: for e = 1, 2, · · · ,E do
3: E .reset()
4: s1 = E .state
5: for t = 1, 2, · · · , T do
6: Select xt := argmaxx∈X Qθt (ht, ot(x))
7: ot+1(x), rt = E .step(xt)

8: θt+1 = argmin
θ

(
Qθ (ht, ot(xt))− (rt + γmax

x∈X
Qθt

(ht+1, ot+1(x)))

)2

9: end for
10: end for

D.2 ABLATION STUDY ON THE DEMO POLICY IN BOFORMER

To further investigate the connection between BOFormer’s performance and the choice of demo
policy, we conducted additional experiments comparing qNEHVI (the original choice) and NSGA2
as demo policies, as well as a baseline where no demo policy is used.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 3: Average per-sample inference time of BOFormer and other benchmark methods.

Algorithms Time (second)
2 Objectives 3 Objectives 4 Objectives

BOFormer 0.01420 0.01420 0.01429
qNEHVI 0.00615 0.08042 0.22410

JES 0.04666 0.05015 0.05787
FSAF 0.00549 0.00655 0.00692

DT 0.00130 0.00128 0.00128
NSGA2 0.00017 0.00019 0.00020

qParEGO 0.00110 0.00142 0.00175
OptFormer 0.23733 0.36615 0.48551

qHVKG 0.37166 0.53337 0.66276
QT 0.00937 0.00971 0.00973

0 50 100

Number of Samples

0.1

0.2

0.3

0.4

0.5

H
y
p
e
rv

o
lu

m
e

90 100

0.45

0.5

0.55

0 50 100

Number of Samples

0.1

0.2

0.3

0.4

0.5

0.6
0.7

H
y
p
e
rv

o
lu

m
e

90 100

0.5

0.55

0.6

0.65

0.7

0 50 100

Number of Samples

0.1

0.15

0.2

0.25

0.3

0.35

0.4
0.45

H
y
p
e
rv

o
lu

m
e

90 100

0.42

0.44

0.46

(a) AR (b) ARa (c) BC

0 50 100

Number of Samples

0.5

0.6

0.7

0.8

0.9

H
y
p
e
rv

o
lu

m
e

90 100

0.86

0.88

0.9

0.92

0.94

0 50 100

Number of Samples

0.3

0.4

0.5

0.6

0.7

0.8

H
y
p
e
rv

o
lu

m
e

90 100

0.84

0.85

0.86

0.87

0 50 100

Number of Samples

0.3

0.4

0.5

0.6

0.7

0.8

H
y
p
e
rv

o
lu

m
e

90 100

0.84

0.85

0.86

(d) DRa (e) RBF (f) Matern52

Figure 5: Averaged attained hypervolume under synthetic functions with two objectives.

The results are available at Figure 9. Based on these results, we can observe the following:

• BOFormer (w/i qNEHVI) achieves favorable improvement in attained hypervolume than that
without using a demo policy. This demonstrates the benefit of off-policy learning via a demo
policy in the context of MOBO. By contrast, the improvement offered by the NSGA2-based
demo policy appears minimal.

• Recall that qNEHVI performs generally better than NSGA2 on these tasks (i.e., RBF, Matern,
and BC) as shown in Table 1 of the original manuscript and the performance profiles in
Figure 3. Intuitively, we would expect that the trajectories contributed by qNEHVI can
better help BOFormer explore the regions with higher hypervolume. This intuition also
resonates with the general understanding that RL performance can be correlated with the
data quality (Kumar et al., 2019).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 10 20 30

Number of Samples

0.65

0.7

0.75

0.8

0.85

0.9

H
y
p
e
rv

o
lu

m
e

20 30

0.84

0.86

0.88

0.9

0 10 20 30

Number of Samples

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

H
y
p
e
rv

o
lu

m
e

20 30

0.8

0.85

0.9

0 10 20 30

Number of Samples

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

H
y
p
e
rv

o
lu

m
e

20 30

0.8

0.85

0.9

0.95

(a) Chairs (b) Materials (c) Lego

Figure 6: Averaged attained hypervolume under HPO-3DGS with two objectives.

0 50 100

Number of Samples

0.1

0.15

0.2

0.25

0.3

0.35

H
y
p
e
rv

o
lu

m
e

90 100

0.33

0.34

0.35

0.36

0 10 20 30

Number of Samples

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

H
y
p
e
rv

o
lu

m
e

20 30

0.78

0.8

0.82

0.84

0.86

0.88

0 10 20 30

Number of Samples

0.8

0.85

0.9

0.95

H
y
p
e
rv

o
lu

m
e

20 30

0.94

0.95

0.96

0.97

(a) BCD (b) Mic (c) Ship

Figure 7: Averaged attained hypervolume under synthetic and HPO-3DGS with three objectives.

D.3 SCALABILITY OF BOFORMER TO HIGH-DIMENSIONAL PROBLEMS

We conducted additional experiments on black-box functions with higher-dimensional domains,
including:

• Matern52 and RBF functions under d = 10 and d = 30.

• (Ackley & Rosenbrock) and (Ackley & Rastrigin) under d = 40.

• DTLZ functions under d = 100. Notably, DTLZ is a family of synthetic functions for
MOBO and included in the pymoo library.

Figures 10-11 demonstrate that BOFormer remains competitive compared to other MOBO baseline
algorithms on these high-dimensional tasks. while FSAF requires metadata for few-shot updates,.
Notably, all the above results are obtained under the same BOFormer model without any fine-tuning,
and hence this further demonstrates the strong cross-domain transferability of BOFormer.

D.4 PERFORMANCE OF BOFORMER ON MORE CHALLENGING PROBLEMS

We conducted additional experiments on various challenging problems with more than 100 samples,
including scenarios with (1) higher domain dimensionality and (2) increased perturbation noise.
Accordingly, we set T = 200 or all the following experiments to better evaluate BOFormer and other
baselines. Figure 12 demonstrates that BOFormer remains competitive compared to other MOBO

24

https://pymoo.org/

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) DR (b) Matern52 (c) RBF

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

(d) BCD (e) Mic (f) Ship

Figure 8: Performance profiles in terms of hypervolume at the final step under synthetic functions
and HPO-3DGS.

baseline methods across various types of challenging scenarios. These findings highlight BOFormer’s
scalability, making it well-suited for more challenging black-box functions.
Remark D.1. To make the problems more challenging as suggested, for the HPO-3DGS tasks, the
perturbation noise is set as 0.1 to make the black-box functions more non-smooth.
Remark D.2. In the above, we compare BOFormer with the rule-based methods such as qNEHVI,
JES, and qParEGO as well as the learning-based method like FSAF. These MOBO methods have
been shown to be the most competitive among all the baselines (cf. Tables 1-2)
Remark D.3. FSAF is a metaRL-based method and requires some metadata for few-shot adaptation.
By contrast, BOFormer is evaluated on unseen testing functions in a zero-shot manner.

E ABOUT THE NON-MARKOVIAN NATURE OF MOBO

Defining the state representation as the complete set of historical queries along with the posterior
distribution of candidate points would indeed endow the problem with full observability. However, by
the standard definition of Markov property, this design is not Markovian (and hence does not result in
an MDP) because the definitions of the Markov property and MDP presume that the state space is of
fixed dimensionality. Specifically, this design involves two fundamental issues:

• The dimensionality of the state space would increase across time steps as more samples
are taken: To illustrate this more concretely, let us consider an example of K-objective
MOBO problem with objective functions f(x) = (f1(x), ..., fK(x)) with f(x) : X → RK ,
where the domain X is discrete and has N candidate points (a similar argument can be
used for continuous domains). Recall that we use (xi,yi) to denote the query and the
resulting observed function values at time step i. In this design, at the t-th step of an

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Number of Sa ples

−1.225

−1.200

−1.175

−1.150

−1.125

−1.100

−1.075

−1.050

−1.025
Hy
pe
rv
ol
u
e

AR
BOFor er (qNEHVI)
BOFormer (no demo policy)
BOFormer (NSGAII)

0 20 40 60 80 100
Number of Samp es

−1.050

−1.025

−1.000

−0.975

−0.950

−0.925

−0.900

−0.875

−0.850

Hy
pe

rv
o

um
e

ARa
BOFormer (qNEHVI)
BOFormer (NSGAII)
BOFormer (no demo policy)

0 20 40 60 80 100
Number of Samp es

−1.450

−1.425

−1.400

−1.375

−1.350

−1.325

−1.300

−1.275

−1.250

Hy
pe

rv
o

um
e

BC
BOFormer (qNEHVI)
BOFormer (no demo policy)
BOFormer (NSGAII)

0 20 40 60 80 100
Number of Samp es

−0.300

−0.275

−0.250

−0.225

−0.200

−0.175

−0.150

−0.125

Hy
pe

rv
o

um
e

DR

BOFormer (qNEHVI)
BOFormer (no demo policy)
BOFormer (NSGAII)

0 20 40 60 80 100
Number of Samp es

−0.400

−0.375

−0.350

−0.325

−0.300

−0.275

−0.250

−0.225

Hy
pe

rv
o

um
e

matern52

BOFormer (qNEHVI)
BOFormer (no demo policy)
BOFormer (NSGAII)

0 20 40 60 80 100
Number of Samp es

−0.450

−0.425

−0.400

−0.375

−0.350

−0.325

−0.300

−0.275

−0.250

Hy
pe

rv
o

um
e

RBF

BOFormer (qNEHVI)
BOFormer (no demo policy)
BOFormer (NSGAII)

Figure 9: Averaged attained hypervolume under synthetic functions with two objectives.

0 20 40 60 80 100
Number of Samples

−0.700

−0.675

−0.650

−0.625

−0.600

−0.575

−0.550

−0.525

−0.500

Hy
pe
rv
ol
um

e

RBF dim 10 (zoom in)
BOFormer
JES
 ParEGO
 NEHVI
FSAF

0 20 40 60 80 100
Number of Samples

−0.675

−0.650

−0.625

−0.600

−0.575

−0.550

−0.525

−0.500

Hy
pe
rv
ol
um

e

matern52 dim 10 (zoom in)
 NEHVI
JES
BOFormer
 ParEGO
FSAF

0 20 40 60 80 100
Number of Samples

−0.650

−0.625

−0.600

−0.575

−0.550

−0.525

−0.500

−0.475

Hy
pe
rv
ol
um

e

RBF dim 30 (zoom in)
 ParEGO
BOFormer
JES
 NEHVI
FSAF

0 20 40 60 80 100
Number of Samples

−0.700

−0.675

−0.650

−0.625

−0.600

−0.575

−0.550

−0.525

−0.500

Hy
pe
rv
ol
um

e

matern52 dim 30 (zoom in)
JES
BOFormer
FSAF
 ParEGO
 NEHVI

Figure 10: Averaged attained hypervolume under more challenging GP functions with higher-
dimensional domains.

Figure 11: Averaged attained hypervolume under various challenging functions, including synthetic
functions with 40-dimensional domains and the DTLZ function with a 100-dimensional domain.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 12: Averaged attained hypervolume under more challenging problems with 200 samples

episode, the state representation would consist of: (i) The complete set of historical queries
is {(x1,y1), . . . , (xt,yt)}. The dimensionality of this part is t(K + 1). (ii) The posterior
distribution of candidate points can be captured by {µt(x), σt(x)}x∈X . The dimensionality
of this part is 2KN . Therefore, we can see that the dimensionality of the state space would
increase with time step t.

• The state representation would be tightly coupled with the input domain: Based on the
above first point, we can see that under this design, part of the state representation involves
{(x1,y1), . . . , (xt,yt)}. This suggests that the state space is coupled with the domain of
each specific task. As a result, re-training is typically needed upon handling a new task. This
issue motivates the need and design for BOFormer, which has the favorable cross-domain
capability (i.e., the size and the dimensionality of the input domains can be different between
the training and testing).

27

	Introduction
	Related Work
	Multi-Objective Bayesian Optimization
	Single-Objective Black-Box Optimization via Learning

	Preliminaries
	Multi-Objective Bayesian Optimization
	General RL in Non-Markovian Environments

	Methodology
	Generalized DQN for Non-Markovian Problems
	BOFormer: An Enhanced Implementation of Generalized DQN

	Experiments
	Conclusion
	Bibliography
	
	Detailed Experimental Configuration
	Environment
	Hyperparameters of Learning-Based Approaches
	Hyperparameters of Rule-Based Approaches

	Additional Related Work
	Transformers and Sequence Modeling for RL
	A More Detailed Comparison to Q-Transformer

	Pseudo Code and Additional Implementation Details
	Pseudo Code of BOFormer
	Additional Implementation Details of BOFormer
	About Temporal Information in the History Representation of BOFormer
	Issues With the Direct Implementation in Section 4.1
	Implementation Details of OptFormer

	Detailed Experimental Results
	Detailed Hypervolume Statistics and Inference time
	Ablation Study on the Demo Policy in BOFormer
	Scalability of BOFormer to High-Dimensional Problems
	Performance of BOFormer on More Challenging Problems

	About the Non-Markovian Nature of MOBO

