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ABSTRACT

We consider the task of predicting Hamiltonian matrices to accelerate electronic
structure calculations, which plays an important role in physics, chemistry, and
materials science. Motivated by the inherent relationship between the off-diagonal
blocks of the Hamiltonian matrix and the SO(2) local frame, we propose a novel
and efficient network, called QHNetV2, that achieves global SO(3) equivariance
without the costly SO(3) Clebsch—Gordan tensor products. This is achieved by
introducing a set of new efficient and powerful SO(2)-equivariant operations and
performing all off-diagonal feature updates and message passing within SO(2)
local frames, thereby eliminating the need of SO(3) tensor products. Moreover, a
continuous SO(2) tensor product is performed within the SO(2) local frame at each
node to fuse node features. Extensive experiments on the large QH9 and MD17
datasets demonstrate that our model achieves superior performance across a wide
range of molecular structures and trajectories, highlighting its strong generalization
capability. The proposed SO(2) operations on SO(2) local frames offer a promising
direction for scalable and symmetry-aware learning of electronic structures.

1 INTRODUCTION

Quantum Hamiltonian, as a central element in the many-body Schrodinger equation of quantum
mechanics, plays a key role in governing the quantum states and physical properties of molecules and
materials, making it essential for physics, chemistry, and materials science. First-principles methods
such as density functional theory (DFT) (1 [2; I3) have been developed to solve the Schrodinger
equation and investigate the electronic structures of molecules and solids. Despite their success, these
methods struggle with high computational cost, limiting their application to systems with only a few
hundred atoms. In DFT, the central Kohn-Sham equation is solved using the self-consistent field (SCF)
method based on the variational principle of the second Hohenberg-Kohn theorem (2). The electronic
wavefunctions, energies, charge density, and Kohn-Sham Hamiltonian are iteratively calculated and
updated until convergence is achieved. This SCF calculation has a high time complexity of O(N3T),
where N, is the number of electrons and 7T is the number of SCF steps required for convergence.
Consequently, DFT remains computationally expensive for large and diverse quantum systems [B.1]

Recently, deep learning has demonstrated great potential in advancing scientific research (4; 15; 16} [7)).
In particular, several machine learning models (8; 95 [10; [115 1125 13} [14 [15)) have been developed
to directly predict the Hamiltonian matrix from atomic structures, achieving substantial speedup of
several orders of magnitude in inference time compared to traditional DFT calculations. Despite
these advances, achieving higher accuracy and more efficient training remains a key challenge in
the development of quantum tensor networks for predicting Hamiltonian matrices and many other
multi-physical coupling matrices.

To address the above challenge, here we propose a novel and efficient network QHNetV2, motivated
by the inherent relationship between the off-diagonal blocks of the Hamiltonian matrix and the SO(2)
local frame to achieve global SO(3) equivariance without using the computationally intensive SO(3)
Clebsch—Gordan tensor products. Specifically, we first eliminate the need of SO(3) tensor products
by introducing a set of new efficient and powerful SO(2)-equivariant operations and performing all
off-diagonal feature updates and message passing within SO(2) local frames. Second, to effectively
perform nonlinear node updates, we apply a continuous SO(2) tensor product within the SO(2) local
frame at each node to fuse node features, mimicking the symmetric contraction module used in
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MACE (16) for modeling many-body interactions. We conduct extensive experiments on the large
QHY and MD17 datasets, which shows the superior performance and strong generalization capability
of our new framework over a diverse set of molecular structures and trajectories. Additionally,
these novel SO(2) operations on SO(2) local frames presents a promising avenue for scalable and
symmetry-aware learning of electronic structures.

2 PRELIMINARIES

2.1 HAMILTONIAN MATRICES AND SO(3) EQUIVARIANCE

The Kohn-Sham equation of molecular and materials systems is given by: Hgs|tn) = €n|thn),
where Hysg is the Kohn-Sham Hamiltonian operator, 1, is single-electron eigen wavefunction (also
called molecular orbital), and ¢, is the corresponding eigen energy. Under a predefined basis set such
as the STO-3G atomic orbital basis {¢,} combining radial functions with spherical harmonics, the
Kohn-Sham equation can be converted into a matrix form: HC = €SC, with Hamiltonian matrix
element H,, = [ ¢;(r)ﬁKs¢q(r)dr and overlap matrix element S, = [ ¢5(r)¢,(r)dr. €isa
diagonal matrix of the eigen energies, and C contains wavefunction coefficients, with each eigen
wavefunction 1, as a linear combination of the basis functions ¢, (r) = > Cpnép(r) (17). More
details can be found in Appendices[B.1] [B.2]

Equivariance is a fundamental symmetry that must be preserved in the Hamiltonian matrix prediction
task. It arises from representing Hamiltonian matrix and wavefunctions in specific basis sets such
as atomic orbitals in DFT calculations which are sensitive to the spatial orientation. As a result,
when a molecular system undergoes a global rotation characterized by Euler angles («, 3,7), its
Hamiltonian matrix must transform accordingly. Each atom pairs and their orbital pairs can be labeled
as (a;,0s,a;5,0;). a; and a; are the atom indices which may refer to the same atom (i = j) or to
different atoms (i # j) in the molecular system. oz and o, indicate the orbitals belonging to a; and
a;, respectively, with angular momentum quantum numbers ¢, and ¢; and magnetic quantum number
ms and m,. Under a rotation specified by Euler angles (o, 3,~), the corresponding Hamiltonian

ot = (D (a, B, 7))71 H;; s+ D% (o, B,7), where two Wigner-D
matrices D*(cv, 3, ) are applied to the left and right sides of the original Hamiltonian matrix block,

respectively, according to the angular momentum of the orbital pairs in the block. This ensures the
block-wise SO(3) equivariance of the Hamiltonian matrix under rotations.

matrix block transforms as H

When learning the Hamiltonian matrix using machine learning models, it is essential to incorporate
high-degree equivariant features that align with the angular momentum quantum numbers ¢ of atomic
orbitals. This is particularly important for accurately capturing orbitals with high angular momentum
such as d-orbitals with ¢ = 2, requiring the highest degree of SO(3) equivariant features with
Lo > 4. Furthermore, the pairwise interactions are needed for predicting all Hamiltonian matrix
blocks while maintaining the block-wise SO(3) equivariance.

Machine learning demonstrates its power for property predictions, force field development, and
so on (185 [19; 205 215 225 23; 24). And numerous models have been built upon tensor product
(TP) have proven to be an effective approach (255 265 1235 127} 285 1295 1277} 1165 1305 1315 1325 133) with
high-degree equivariant features. However, the computational complexity of TPs is O(LS . ) which
increases significantly with the maximum degree L, .x, posing a substantial challenge for tasks such
as Hamiltonian matrix prediction where a high L, is often required. A promising alternative is to
replace full TPs by SO(2) convolutions, as proposed in eSCN (34). This approach demonstrates that
the SO(2) Linear operation can be equivalent to SO(3) TP while reducing computational complexity
to O(L3,,..)- This raises an intriguing direction to explore more diverse SO(2)-based operations for
modeling the Hamiltonian matrix more effectively and accurately, particularly in scenarios requiring
ahigh Ly ax.

2.2 SO(3) AND SO(2) IRREDUCIBLE REPRESENTATIONS

Under an arbitrary 3D rotation, the atomic orbital basis rotates accordingly. As a result, the Hamil-
tonian matrix element defined on the atomic orbital pairs transforms in an equivariant manner. It
is therefore necessary to introduce irreducible representations (irreps) of the 3D rotation group, i.e.
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SO(3) group. The SO(3) group consists of all 3D rotations, represented by 3 x 3 orthogonal matrices
with determinant 1. For each SO(3) irrep with degree ¢ € Ny, the corresponding representation space
has dimension 2¢ + 1, with spherical harmonics {Y% (0, ¢) fn:7 ¢ serving as a natural basis. For
each group element g € SO(3) (i.e. 3D rotation), the corresponding matrix representation for the ¢-th
irrep is the Wigner D-matrix D*(g) of shape (2¢ + 1) x (2¢ + 1). Then, D*(g) is applied via matrix
multiplication to perform the corresponding SO(3) rotation in the representation space. To develop
more advanced operations within the SO(2) symmetry space, it is essential to introduce irreducible
representations (irreps) of the SO(2) group. The SO(2) group describes 2D planar rotations, which
can be interpreted as rotations around a fixed axis in 3D space (typically the z-axis). The irreps
of SO(2) has dimension 2 for m > 0 and 1 for m = 0 or can be represented as complex values,
with order m € Ny. A natural basis function for SO(2) irreps is the set of real circular harmonics,
which take the form B™(3) = [sin(md), cos(md)]T for m > 1 and B°(8) = [1] for m = 0. Each
group element g € SO(2) corresponds to a rotation by an angle ¢ € [0, 27), and the matrix rep-
gos(mgo) Sln(m(p)) for m > 0, and 1 for m = 0.
—sin(my) cos(me)
Subsequently, the representation space under SO(2) rotation transforms via matrix multiplication. In
the complex circular harmonics basis €™, the representation space under SO(2) rotation transforms
via multiplication with ¢,

resentation for the m-th irrep is given by (

3 METHODS

This section introduces the model we have built for the Hamiltonian matrix prediction task. The key
is to develop the SO(2) local frame, where any powerful SO(2) equivariant operations can be applied
while maintaining the overall framework to be SO(3) equivariant. Here, we would like to clarify
that we adopt minimal frame averaging and extend the operation in eSCN to construct local frames,
enabling the application of arbitrary SO(2) operations and supporting frame construction on nodes,
edges, and node pairs beyond edges alone. Later on, we demonstrate that the model based on SO(2)
local frame achieve great efficiency and accuracy, especially these two key things for building this
networks especially considering the high L, is an unavoidable things.

3.1 SO(2) LocAL FRAMES

While the computation cost for SO(3) operations remains high, SO(2) operations can be more
efficient to conduct. Besides the SO(2) linear operation, which has been verified in previous
work (34) to maintain overall SO(3) equivariance, there is a need to provide a mechanism that
supports the usage of arbitrary SO(2) operations while ensuring the framework remains SO(3)-
equivariant. Therefore, inspired by the minimal frame averaging technique (35)), we construct local
frames that require SO(2) equivariance internally and employ canonicalization to guarantee overall
SO(3) equivariance.

Global Frame. The overall framework is built on a global coordinate system together with local
SO(2) frames. In the global system, the model operates on SO(3) irreps and preserves full SO(3)
equivariance. Consequently, the input to each local network ® is SO(3)-equivariant.

Definition of the Local Frame. A local frame is defined as a mapping from the 3D Euclidean
space to SO(3):

F:R3 — SO(3). (1)

To make this concrete, we introduce a fixed target vector v € R? that is used in the minimal frame
construction. Given a unit direction vector # € R3, which rotates consistently with the input 3D data,
and the fixed target vector 9, the local frame F'() is the rotation that maps 7 onto ¢. For example,
if we take the node pair direction 7;; and set 0 = (0, 0, 1), this reduces exactly to the setup used in
eSCN. Thus, eSCN can be viewed as a special case of our more general framework. As proved in
Appendix [C] such a local frame can be applied to any SO(2) operation beyond the linear case by
incorporating local frame averaging. Moreover, the placement of SO(2) local frames can be extended
whenever a reference unit vector 7 is available, for example by defining a local frame on each node.
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Figure 1: SO(2) equivariant operations. (a) SO(2) Linear. For SO(2) irreps with order m > 0,
this operation uses weight matrices ng)’ wém) € R where C is the number of channels for
input irreps. (b) SO(2) Gate. For the m = 0 features, a multi-layer perceptrons (MLP) is used to
update them. Simultaneously, for each irrep with order m > 0, the MLP outputs a gate value passed
through a sigmoid function, which modulates the corresponding SO(2)-equivariant features. (c) SO(2)
LayerNorm (LN). For the m = 0 features, a standard LN is applied. For m > 0 features, LN is
applied on the norm of SO(2) irreps according to Eq.[6} (d) SO(2) Tensor Product (TP). The SO(2)
tensor product fuses features by combining irreps under the constraints ms = m; + mo (shown as
solid lines) or mg = |m; — ms| (shown as dashed lines). The color of the path corresponds to its
originating SO(2) irreps. A more general case containing v — 1 TPs for v set of SO(2)-equivariant
features is shown in Eq.[9] Each valid combination defines a path, ensuring the resulting features
remain SO(2)-equivariant.

Mapping Between SO(3) and SO(2) Irreps. We use F'R(7) to denote the operation that projects
SO(3) irreps into SO(2) irreps within the local frame, and FR(#)~! for the inverse mapping.
Formally, given an SO(3) irrep x € R2**! with components indexed by m € {—¢,... ¢}, the
corresponding SO(2) irrep «’ after F'R(7) is defined as

?
2= D'(R)mm T, )

m/=—¢

where D(R) € RGHDX2H1) s the Wigner-D matrix associated with the rotation R obtained
from the canonicalization procedure to rotate reference direction  onto fixed target vector v. The
equivariance of such transformation is shown in Appendix [E]

3.2 SO(2) EQUIVARIANT OPERATIONS

Based on the above analysis of SO(2) local frame, any SO(2)-equivariant layer can be applied within
this frame while preserving the overall SO(3)-equivariance of the architecture. In this subsection, we
discuss several SO(2) equivariant building blocks used within the SO(2) local frame.

SO(2) Linear. SO(2) Linear layer is first introduced in eSCN (34)), and used in following works like
EquiformerV2 (36). This linear operation takes SO(2) irreducible representations x as input, and
applies the multiplication between the x and weights w with the formulation defined as

z wim o wi™ )\ (x

c,—m \ __ ,ce! ,ee! c/,—m

<zc m) =2 W) <xc/ m) ) ©)
’ ¢! 2,cc’ 1,cc’ ?

where ¢’ is the channel index for input x and c is the channel index for output features z. This linear

operation can be easily understood if we convert them into complex numbers. Specifically, we use
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c(m) _ ; _ =(m) 30 _(m) : ~(m) _ (m) | . (m) _ —(m) i0 (m) .,
Xy =X +iXe —m =Xy e e and weights W0 = Wy o+ Wy o = Woe e el
The above equation is equivalent to
~ ~ (m)~(m) <(m) = (m) (0, (m) .1 +0 (m)
2 = S W) = e (e et ), 4
c’ c’
where iém) = Z¢m + 9Zc,—m. It denotes a complex linear layer without bias term, which includes

internal weights on the scale w(") and rotation with angle 6, (), as well as self-interaction across
all input channels. Note that there is a set of weights for each individual x™ with m > 0.

SO(2) Gate. Gate activation is a useful component on various networks for SO(3) irreducible
representations (28;/36)), and this operation can also be applied to the SO(2) irreducible representations.
Specifically, the corresponding formulation is shown as

) { MLP(x"=0) ,if m =0,

1 Sigmoid(MLP(x™=0)) o x(™) if m > 0, )

An MLP is applied to learn the m = 0 features, and the other MLP takes the m = 0 features as
the input, applies a sigmoid gate activation, then multiplies with the m > 0 features to control the
irreducible features.

SO(2) Layer Normalization. Within the overall framework, it is often necessary to maintain a
set of SO(2)-equivariant features to model the target quantities. In our task, for each off-diagonal
block of the Hamiltonian matrix, it is required to model its corresponding SO(2) features. Since
LayerNorm (37) is an important technique to stabilize the training procedure, we extend to apply it to
SO(2) irreducible representations x(™)_ defined as

(m) (m)y — ;,(m)
IN(x(™) = —* o ((norm(x"™)) — pt™ g™ 4 pm) ©)
norm(x(™)) o(m) ’

where (™ = L5 norm(x\™), (™ € R¥N*1x1 i the mean of the norm across the channels
and ¢(™ = \/% S (norm(x™)) — p(m))2 g(m) ¢ RN*1x1 g the standard derivation of
norm over the channels. After normalization, learnable affine parameters are introduced with a scale
factor g™ € R*1%C and a bias term b("™) € R'*1*C which are used to rescale and recenter the
scale of the SO(2) equivariant features with m > 0. We refer to it as norm-based Layer Normalization
(LN), consistent with Eq. [0

SO(2) Tensor Product (TP). Similar to the tensor product used for SO(3) features, the SO(2) tensor
product provides a mechanism to fuse SO(2) features. Unlike previous operations that treat SO(2)
irreps with each order m separately, the SO(2) tensor product enables interactions between irreps
with different order m. Specifically, the formulation is given by

= (m1) _(m2) (m1)  (m2)

(m1) _ (m2) (m1) _(m2)
Z(mv) = Xgm1)7+1 ®Xgm2)7+1 = (Xl"mlx27 ZmQ +X17 1m1X2a2m2> B (7)
X1~,

ma 2, mg_xl,fml

where m, = mj + mg, and it is the multiplication between two complex number fusing SO(2)
features from different m.

Similarly, when m, = m; — mqy with m; > mg, the corresponding SO(2) TP can be formulated as

(m1) _(m2) (m1) _(m2)
Z(m") e X(ml)’-i_1 ®X(m2)’_1 = Xl’*lml 2, 2m2 M, lml 2,72m2 8)
-0l 2 - (m1) _(m2) (m1) _ (m2)
X1, miX2, ms T X1 X2,y

Given the input SO(2) irreps with maximum order M,,,,,., SO(2) TP includes all valid paths satisfying
me, = m1 + Mg, My = M1 — Mg, M1 > My OF M, = My — M1, My > mq, Where 0 < mq,mo <
M4z And the number of paths is O(M?2,,,.).

Moreover, inspired by the symmetric contraction module proposed in MACE (16) which uses the
generalized CG to fuse multiple SO(3)-equivariant features after aggregating the node features to
perform many-body interactions, a continuous SO(2) TP can be implemented in a similar way to
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Figure 2: The overall architecture of the proposed QHNetV2. In this figure, X denotes element-wise
multiplication, (-, -) denotes inner product. Gray color denotes scaler values, red color denotes SO(2)
irreps, and blue color denotes SO(3) irreps.

capture more complex interactions. Specifically, we consider the interactions among v sets of SO(2)-
equivariant features and for each path with constraint m, = symy + sgme + - - - + s, m, where s is
the sign value within the range {—1, +1}, the corresponding output of this path is

ZzMo — X(Ml),s1 ® X(mz),s2 R ® X(mq,),sl,. (9)

(v—1) TP

Considering a set of SO(2) irreducible representations with maximum order M,,, ., the number of
paths for SO(2) TP is O(M?, ...)-

Relationship between SO(2) operations and SO(3) operations. We show the connections between
SO(3) TP and SO(2) linear, SO(2) Gate and SO(3) Gate in Appendix [D} We use SO(2) TP as a way
to fuse SO(2) irreps and demonstrate its help in improving the performance in Table [d] Currently,
we regard SO(2) TP and SO(3) TP as non-equivalent operations. While SO(2) TP offers lower
computational complexity, it does not necessarily guarantee superior performance compared to SO(3)
TP.

3.3 MODEL ARCHITECTURE

With the above SO(2) equivariant operations, here we introduce our model based on these SO(2)
local frames and the global coordinate system for the Hamiltonian matrix prediction task.

Node Embedding and Node Pair Embedding. The node embedding learns one embedding for
each atomic type. The node pair embedding takes the node embeddings for both nodes as well as the
pairwise distance, denoted as

xg‘:o = MLP (Linear(s;;) o Linear(rbf(7;;))) (10)
Node-wise interaction. For the node-wise interaction module, the message passing paradigm of
Graph Neural Networks (GNNs) (38) is applied to aggregate node features from their neighbors while
preserving equivariance. As illustrated in Figure[J[b), a self-interaction layer and gate (25) operation

is first applied to the input SO(3) irreps h(“). After that, for each message, the hge) is rotated into

its local SO(2) frame F(r;;) obtaining the SO(2) irreps mz(-;-n). Then, SO(2) Linear and SO(2) Gate

operations are applied to the message mgn). The radial basis function (rbf), encoding the pairwise

distance information, denoted as rbf;;, is combined with the inner product of the equivariant features
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from both source and target nodes to multiply with m;;. Specifically, the inner product of node
features is defined as

sij = (B0 RO B B - |

<hf:‘€m,az, h?zfrnaa:>> , (11)

where (-, -) denotes the inner product and || represents vector concatenation across different SO(3)
degrees. Then, the message is defined as

m{" = SO(2)Linear(m{;"’) o MLP (Linear(s;;) o Linear(rbf(F;;)))) . (12)

Subsequently, is rotated back to the global coordinate system to get message mge) which is

then aggregated together. A self-interaction with gate is applied on the aggregated node irreps.

m!"”

Node feature updating with SO(2) Tensor Product (TP). Motivated by the symmetric contraction
module proposed in MACE, a node updating module is applied with consecutive SO(2) TPs after the
aggregations, as shown in Figure [[c).

First, we need to find the reference unit vector for each node to build the local frame on nodes.
Specifically, for node n;, we select the direction vector from the closest neighbor node to the center
node to build the local SO(2) frame, denoted as

]:(TLZ) = ‘F(’I:U) with arg min ’Ijij7 (13)
JEN;
where 7;; is the pairwise distance. Then, the node feature updating module is performed as

x™ = FR (n h§e>> %™ = SO(2)Linear (SO(Z)TP (x§’”>, v)) b = Fr! (n ig””) ,

(14)
where the SO(2)TP operation collects the SO(2) irreps according to Eq. [0 with v — 1 consecutive
SO(2) TP operations. The collected SO(2) irreps are then fed into a SO(2) Linear before being
transformed back to the global coordinate system. We show in Table [] that with the SO(2) TP within
the local frames on nodes can improve the performance.

Although selecting the nearest neighbor provides a fast and simple way to determine the local
reference vector for each node, this approach can lead to discontinuities in frame construction (39)).
Previous work (40) addressed this issue by constructing O(n?) frames to ensure global continuity.
Further improvements can be made by averaging over all local frames derived from the directions
between each node and its neighbors, rather than selecting only a single frame per node as in the
current framework. This approach requires building O(n) local frames per atom, resulting in O(n?)
frames in total.

Off-diagonal feature updating with SO(2) Feed Forward Networks (FFNs). The off-diagonal fea-
tures account for the majority of the final Hamiltonian matrix, and there is a one-one correspondence
between the SO(2) local frame and its off-diagonal matrix block. Therefore, we keep all the features
within this SO(2) local frame over the layers.

For each layer shown in Figure d), the features coming from the neighbors hz@) and hge) are
(m)

transferred to the local frame F(r;;), obtaining the corresponding SO(2) irreps m; "’ and rn;.m).
Hence, the associated off-diagonal feature is given by
(™) = SO(2) Linear (50(2) Gate (SO(z) Linear(m{™ ||m§.m>))) (15)

Overall architecture. The overall architecture is demonstrated in Figure [2[a). It contains two parts.
The left one updates the node features h'”. The skip connection is applied after the node-wise

interaction, and then, the Equivariant LayérNorm (36) is applied before feeding into the SO(2) TP
operations. The right one is used to update the pairwise features xg;n). With the updated pairwise
node features h; and hy, it applies the SO(2) FFN on them, followed by a skip connection with SO(2)
LayerNorm to update the pairwise SO(2) irreps iE;”)

Matrix Construction. We follow the expansion module in QHNet (10), which uses the

(®w£3)2f;’f22) = 223:_43 ((531 ’:Zsl))’(lz’mz)wfgs and establishes a mapping between the irrep
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blocks and the orbital pairs within the Hamiltonian matrix blocks. For the diagonal matrix block,
the node feature h(® is directly used as the input of Expansion module. For the off-diagonal matrix
blocks, the SO(2) irreps are first transformed back to the global coordinate system and then fed into
the Expansion module.

4 RELATED WORKS

Numerous studies have explored the task of Hamiltonian matrix prediction in quantum systems.
SchNorb (41)) takes the invariant SchNet (18)) as its backbone and build models for directly predicting
the Hamiltonian matrix blocks. Subsequent models such as PhiSNet (8) and QHNet (10) incorporate
equivariance into Hamiltonian modeling by leveraging tensor product (TP) operations and equiv-
ariant neural networks to respect the underlying rotational symmetries of the system. SPHNet (14)
introduces sparse gate on tensor product mechanism to accelerate equivariant computations while
maintaining competitive performance. WANet (13) addresses the nonlinearity of the Hamiltonian’s
eigenvalues—i.e., the energy spectrum—>by introducing an auxiliary loss function that directly con-
strains the predicted eigenvalues, enhancing both accuracy and physical consistency. For materials
datasets, the DeepH series of works (42} 43} 144} 45: 146) framework demonstrates the evolution from
invariant to fully equivariant architectures, capable of predicting both Hamiltonians and higher-order
tensors along material trajectories. HamGNN (12) takes use of TP to build the equivariant graph
networks for its prediction, and DeePTB (15) designs a strictly local model that efficiently captures
many-body interactions. As a plug-in module, TraceGrad (47) introduces an auxiliary objective based
on the norm of the predicted Hamiltonian blocks and corresponding blocks for improving the perfor-
mance of Hamiltonian matrix prediction. For the self-consistent training framework (48} 49; 50), it
combines the machine models with a self-consistent field (SCF) loop during training, enabling unsu-
pervised learning of quantum properties. Although this method enhances accuracy and expressiveness,
it introduces significant computational overhead due to iterative refinement.

5 EXPERIMENTS

We evaluate and benchmark our model on QH9 in Section[5.1]and MD17 in Section[5.2] Moreover,
we provide the efficiency studies in Appendix [A.T]and ablation studies in Appendix [A.2]of SO(2)
TP and SO(2) FFNs, demonstrating the contributions of each proposed component. We notice that a
new dataset, PubChemQH (13), has recently been introduced with larger molecule size and orbital
size. However, as this dataset is not yet publicly available, we will leave the experiments on this
dataset until access becomes open. Our code implementation is based on PyTorch 2.4.1 (51), PyTorch
Geometric 2.6.1 (52)), and e3nn (53)). In experiments, we train models on 80GB Nvidia A100 with
Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz or 46GB NVIDIA RTX 6000 with AMD EPYC
9684X 96-Core Processor for QH9 and 11GB Nvidia GeForce RTX 2080Ti GPU with Intel Xeon
Gold 6248 CPU for MD17.

Evaluation metrics. The evaluation metrics are the mean absolute error (MAE) on Hamiltonian
matrix H, as well as the eigen energies € and cosine similarity on the wavefunction coefficients
denoted as v on the occupied orbitals.

5.1 QH9

Datasets. The QH9 dataset (11) (CC BY-NC SA 4.0 license) consists of four distinct tasks. The
QHO9-stable includes 130k molecules derived from QM9 (54;155). The detailed description of QH9
dataset can be found in Appendix [F1}

Training Details. Our model follows the same training settings as the QH9 benchmark, with the
corresponding hyperparameters provided in Table [6]in the Appendix [F1]

Results. The experimental results are presented in Table[T} where we can observe a clear improvement
in the MAE of the Hamiltonian matrix H. Compared to SPHNet, our model achieves a reduction in
MAE on H by 33.7% on QH9-stable-id and 46.9% on QH9-stable-ood. The improvement is even
larger when compared to QHNet. For the MAE of the €, our model achieves at least 47.6% error
reduction compared to QHNet, and reasonable results compared to SPHNet.
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Table 1: Performance on QH9 dataset. The unit for the Hamiltonian H and eigen energies € is Hartree
denoted by Ej,. Lower is better for H and €; higher is better for 1. The best performance scores are
highlighted in bold. Underline indicates the second best performance scores.

H[1075E,] | 6 . —2

Dataset Model diagonal  off-diagonal all € [10 E"] oY [10 } T
QHNet 121 363 7631 TO8.5T 9585
. WANet - Z 79.99 833.61 96.86
QHO-stable-id SPHNet - - 45.48 33428 97.75
QHNetV2  73.62 2830 31.50 417.89 98.58
QHNet 1,72 6988 7210 644 17 93.68
QHY-stable-00d SPHNet _ z 4333 186.40 98.16
QHNetV2  61.09 2081 2297 165.89 97.68
; QHNet 166.99 9525 10019 843.14 04.95
QHY-dynamic-300k-geo | qpNeyy  87.08 31.67 35.60 270.02 98.77
— QHNet 26163 10870 11966  2I78.15 90.72
QHY-dynamic-300k-mol | Ny 138,26 4206  49.01 629.64 97.43

Table 2: Performance on MD17 dataset. The unit for the Hamiltonian H and eigen energies € is
Hartree denoted by E},. Lower is better for H and €; higher is better for @. The best performance
scores are highlighted in bold. Underline indicates the second best performance scores.

Dataset Method  Training Strategies H[107%E,] | €[1079E,] L [1072] 1
PhiSNet LSW (10,000, 200,000) 17.59 85.53 100.00
Water QHNet LSW (10,000, 200,000) 10.36 36.21 99.99
SPHNet LSW (10,000, 200,000) 23.18 182.29 100.0
QHNetV2  LSW (10,000, 200,000) 22.55 106.64 99.99
PhiSNet LSW (10,000, 200,000) 20.09 102.04 99.81
Ethanol QHNet LSW (10,000, 200,000) 20.91 81.03 99.99
SPHNet LSW (10,000, 200,000) 21.02 82.30 100.00
QHNetV2  LSW (10,000, 200,000) 12.05 70.46 99.99
PhiSNet LSW (10,000, 200,000) 21.31 100.60 99.89
Malondialdehyde QHNet LSW (10,000, 200,000) 21.52 82.12 99.92
Y SPHNet LSW (10,000, 200,000) 20.67 95.77 99.99
QHNetV2  LSW (10,000, 200,000) 10.85 67.46 99.92
PhiSNet LSW (10,000, 200,000) 18.65 143.36 99.86
Uracil QHNet LSW (10,000, 200,000) 20.12 113.44 99.89
SPHNet LSW (10,000, 200,000) 19.36 118.21 99.99
QHNetV2  LSW (10,000, 200,000) 10.38 107.42 99.91
5.2 MD17

Datasets. The MD17 datasets (41)) (CC BY-NC license) consists of four molecular trajectories for
water, ethanol, malondialdehyde, and uracil, respectively. The corresponding number of geometries
for each trajectory for train/val/test split is provided in Table

Training Details. The training hyperparameters are shown in Table[§]following the settings and split
of previous works.

Results. The results of MD17 is summarized in Table@ We can find that in ethanol, malondialdehyde
and uracil, our model provides a significant better performance on the MAE for H with at least 42%
error reduction. Meanwhile, our model provides a better MAE on €. For the water dataset, as shown
in Table[7] it contains only 500 geometries compared to 25,000 geometries for each of the other three
molecules. It indicates that our model tends to achieve better performance when the training set
includes a larger number of geometries.

6 CONCLUSION

In this work, we propose a novel network QHNetV2 for Hamiltonian matrix prediction that leverages
the SO(2) local frame to achieve global SO(3) equivariance while eliminating the need for tensor
product (TP) operations in both diagonal and off-diagonal components. By introducing the SO(2)
local frame, we develop a set of new SO(2)-equivariant operations to construct powerful and efficient
neural networks. The proposed approach ensures high computational efficiency by avoiding costly
SO(3) TPs entirely. Experimental results on the QH9 and MD17 datasets demonstrate the effectiveness
of our method. Our work opens the door to further incorporating efficient and powerful SO(2)-based
operations and frames into geometric deep learning, while preserving global SO(3) equivariance.
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Table 3: Efficiency Studies. This efficiency comparison is performed on the QH9-stable-id task.

Model Memory [GB/Sample] | | Speed [Sample/Sec] 1 | Speedup Ratio +
QHNet 0.70 19.20 1.00x
SPHNET 0.23 76.80 4.00x
QHNetV2 0.32 83.33 4.34x

Table 4: Ablation study results on the QH9-stable-id task for our model with SO(2) TPs on the node
updating modules and SO(2) FFNs on the off-diagonal feature updating modules.

Index | Architecture [ yrp6p1 1 c[10-55,] | [10-21
| SO2) TP SO(2) FFNs |
I v v 3150 417.89 98.58
2 x v 36.50 42917 98.18
3 X x 49.84 823.93 97.88

A EXPERIMENTS

A.1 EFFICIENCY STUDIES

To compare the efficiency of our model compared to existing baselines, we follow the settings
of (14) to run our model on a single A6000 with the maximum available batch size, and compare the
corresponding results are shown in Table[3] We can observe a clear speed improvement compared to
previous QHNet model with 4.34x faster, demonstrating the efficiency improvement introduced by
the new SO(2) operations to eliminate the SO(3) TP operations. Compared to the SPHNet which is
based on sparse gate to prune the path in tensor product for accelerating the training procedure, our
model shows a faster training speed with a slightly higher GPU memory occupation.

A.2 ABLATION STUDIES

We performed ablation studies on two main components of our model: SO(2) TP and SO(2) FFN.
The SO(2) TP is applied to update the node features, while the SO(2) FFN is applied to update the
pair node features. The final results are shown in Table f] We observe that both proposed SO(2) TP
and SO(2) FFNs improve the final model performance.

B BACKGROUND

B.1 DENSITY FUNCTIONAL THEORY

Density Functional Theory (DFT) (1} 2;13) provides a powerful and efficient computational framework
for modeling electronic structures of quantum systems and predicting a wide range of chemical
and physical properties for gas-phase molecules and solid-state materials. DFT-based electronic
structure methods reduce the reliance on the laboratory experiments, significantly advancing scientific
research in physics, chemistry, and materials science. The key motivation behind DFT is to address
the well-known many-body Schrodinger equation that governs the quantum states of systems such
as their energies and wavefunctions. Mathematically, the Schrodinger equation for a system of
total N, electrons is given by: HU (r1,ro, - ,ry,) = EVU(ry,ro,--- ,ry,), where H is the
Hamiltonian operator and ¥ (ry,ra,- -+ , 1y, ) is the many-body electronic wavefunction. Although
the Schrodinger equation can describe the entire system exactly, its computational complexity grows
exponentially with the number of electrons. Specifically, even without accounting for the spin
degrees of freedom, the many-body electronic wave function ¥ depends on 3V.-dimensional spatial
variables. Hence, the associated function space expands exponentially with respect to IV, making it
computationally infeasible for computers to accurately solve complex and diverse quantum systems.
To address this challenge, Hohenberg and Kohn proved that the ground-state properties of a many-
body electronic system is uniquely determined by its three-dimensional electron density p(r) (1),
thus avoiding the need to explicitly handle the full 3/N.-dimensional many-electron wavefunction
VU (ry,ra, - ,ry, ). Kohn and Sham proposed a practical approach to map a many-body interacting
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system onto a set of non-interacting one-body systems where each electron moves in an effective
potential arising from the nuclei and the average effect of other electrons (2). This leads to the
well-known single-particle Kohn-Sham equation: Hs|1,) = €,[t,) for individual electrons, where
H ks is the Kohn-Sham Hamiltonian, v, is the single-electron eigen wavefunction, and ¢, is the
correspondmg eigen energy The Kohn-Sham Hamiltonian is given by o KS = T + VHamree + VXC +
cht, where T = — —VQ is the kinetic energy operator, VHartrCC is the Hartree potential, ch is the
exchange-correlation potentlal, and Vi is external potential. The electron density from the Kohn-
Sham equation with the exact exchange correlation energy functional, should be same as that of the
many-body interacting system: p(r Z [ Folp(r)|?dr = [|¥ (r,r2,--- ,rN,.)|?drs---dry,,
where f, is the occupation number of the p-th Kohn- Sham eigen state. Therefore, solving the full
many-electron wavefunction ¥ is no longer required.

B.2 ATOMIC ORBITALS AND HAMILTONIAN MATRICES

The Kohn-Sham equation, as the central equation in DFT, can be solved in a predefined basis set,
such as the STO-3G atomic orbital basis which combines radial functions with spherical harmonics
centered on each atom. The calculated Kohn-Sham eigen wavefunction 1, often referred to as
molecular orbital in the context of molecules, can be expressed as a linear combination of these
predefined basis functions 1, (r) = > Cp,é,(r), known as the Linear Combination of Atomic
Orbital (LCAO) method (17). Each single-electron wavefunction 1, (r) depends only on three
spatial variables, thereby avoiding the exponential scaling associated with the 3 N.-dimensional full
many-electron wavefunction. By applying the predefined orbitals and the LCAO method within DFT,
the Kohn-Sham equation can be converted into the following matrix form:

HC = €SC, (16)

where H is the Hamiltonian matrix of size RNo*™o_ Each matrix element is defined by evaluating
the Hamiltonian operator in a pair of predefined atomic orbitals, shown as H,, = <¢p|H Ks|dg) =
J ¢ H Ks®q(r)dr. Here, N, denotes the number of predefined orbitals which typically increases

11near1y with the number of electronics N,. C € RN>*No denotes the wavefunction coefficient
matrix. € € RVo*Ne s a diagonal matrix where each diagonal element corresponds to the eigen
energy of each molecular orbital. S € R™e*Ne ig the overlap matrix, where each entry is the integral
of a pair of predefined basis over the spatial space S,, = [ ¢5(r) ¢, (r)dr

C SO(3) EQUIVARIANCE OF SO(2) LoCAL FRAMES

Frame averaging (56} 39; [35) is a technique that enforces equivariance to any model ¢ by an
SO(3)-equivariant frame F : R® — SO(3) such that

Y g (g7t ) (17)

(@) #(7) =

With a little abuse of the definition, we further consider the input space includes the SO(3) irreps
which is build upon the global coordinate system. Since there are many candidate frame constructions
for frame averaging, we use the minimal frame averaging (35)) to give an analytic frame construction
with a minimal frame size. To apply the minimal frame averaging (35), the canonicalization is
required to transfer the input features into its canonical form, defined in Definition 3.3 (35). We
define the canonicalization operation based on a reference vector 7 as ¢(#) = h~! - 7 = 9, where a
rotation h € SO(3) is applied to align the reference vector # with the fixed target vector 9.

By Theorem 3.2 in (35), the minimal frame is defined by F(7*) = hStabg s (©) where
Stabso(s)(0) = {g € SO(3) | g- v =¥}

Instead of employing an arbitrary local model which could make the direct sum over all g €
Stabg(3) () computationally expensive or even intractable, since Stabgqs) (%) is isomorphic to
SO(2) (rotations about the y-axis), we consider ® to be Stabgos) (0)-equivariant with respect to
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the reference axis r. That’s to say, for any rotation g € Stabgo3)(?), the local network satisfies
®(g - 7) = gP(7). In this case, the frame-averaging sum collapses such that

F)= P (g7
1 .
= Sbsom )] 2 Nk

gESlabso(3) (’D)

1 Z hg.(p(gflhfl .

|Stabso(3) (U)l gESlabso(g) (’ﬁ) (18)

1 Z hgg™' - ® (A7 - #)

~ [Stabsos) (0)]
| a 30(3)(U)| gEStabso (3 (V)

1
e h-®(h~ L. 5
Stabso ()] . 2 (h=-7)

g€Stabgo(3) ()

=h-®(h 7).

>
S—

Thus, the entire frame reduces to the single rotation ~ making the computation simple and tractable.
We then define the 7 built upon the Stabgq sy (r)-equivariant ® as the SO(2) local frame.

D SO(2) OPERATIONS AND SO(3) OPERATIONS

D.1 SO(2) LINEAR AND SO(3) TP WITH SPHERICAL HARMONICS

The relationship between SO(2) linear operations defined with a local frame and the SO(3) tensor
product between irreducible representations and spherical harmonics has been investigated in the
eSCN paper (34). For completeness, we briefly rehearse their proof here. If so, below we first provide
the specific set of parameters for the SO(2) linear operation with SO(2) local frames that can exactly
reproduce the results of the SO(3) TP with transformed CG coefficients. We will then explain why
SO(2) linear operation with SO(2) local frames has the capacity to replicate it. Note that it is not
to say that SO(2) linear with SO(2) local frame is definitely better, but it should have the potential
to be at least the same. When performing SO(3) tensor product between the rotated SO(3) irreps
and rotated spherical harmonics, the rotated spherical harmonics will be zero in the position with
m # 0, and 1 for the position m = 0. Therefore, we can treat it as the corresponding transformed
CG coefficients are nonzero for the following position.

(loym)

(1o m).(11,0) ifm >0
l07 3

(cliayn),, = c(li,g;,(lf’o) ifm=0 (19)
lo,—m .
(tim) (15,0 iEm <0

In this way, the SO(3) TP can be represented as
lo) _ l; (lo,mo0)
£ =D (Xg ))m, Cuimity 0P ds o (20)

where f is the output irreps and h is the coefficients for each path.
From the proposition in 3.1 from eSCN (34)), we have

(lo,m) _ C(lo,—m) (lo,m) _ (lo,—m)
(livm)’(lf’o) (liﬂfm)1(lf!0)’ (l’i17m)v(lf 70) (liv'rn)’(lf’o)7

and m, = m; or m, = —m,;.
By using this proposition, the previous equation can be deducted into

lo) _ I (losmo)
f”(no) - Z (Xg ))’rni C(liami)v(lfvo)hli’lf’lo’ (21)

m;=me,—Mg
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And then, if we write fr(é‘;) and fﬁl;’,zo together, it will become

(o P R () x{")
( mo ) _ hmo ih_mo . ( < )mo >’ (22)

lo
4, (=)
s
(Lislo

where wyy, ) = sz hag s 0, - (€1, 1, )m is the weight in the SO(2) linear case for m,, # 0.

Furthermore, since the parameters in SO(2) linear are learnable, the model may discover another set
of parameterizations with lower training loss, potentially achieving better performance. Conceptually,
SO(3) TP with transformed CG corresponds to a particular point in the parameter space of the SO(2)
linear with SO(2) local frame. If the optimal parameters can be identified within this space, the model
should perform at least as well as with SO(3) TP.

D.2 SO(2) GATE AND SO(3) GATE

SO@3) Gate. The SO(3) Gate takes the features with [ = 0 as the input of an MLP, and then provides
a gate value that is multiplied on each SO(3) feature with [ > 0 as well as the new SO(3) features
with [ = 0. For convenience, we assume that the local frame, designed to rotate consistently with the
input molecule, is currently aligned with the y-axis direction, so that the rotation procedure can be
omitted.

SO(2) Gate. Under this setup, the SO(2) Gate uses m = 0 features as the input of its MLP, including
both [ = 0 features and m = 0,1 # 0 features. The MLP then produces a separate gate value for each
SO(2) feature with different m, as well as new m = 0 features.

Comparison. Because the MLP in the SO(2) Gate includes all the inputs of the SO(3) Gate (i.e.,
I = 0 components), it can replicate the same behavior as the SO(3) Gate. However, since the MLP
contains nonlinear functions and can produce nonlinear results for the m = 0,1 # 0 parts, the SO(3)
Gate cannot approximate the SO(2) Gate. By including additional higher-order m = 0 inputs and
using nonlinear functions to produce m = 0 outputs, the SO(2) Gate can therefore learn mappings
that the SO(3) Gate cannot express. The details are demonstrated in Table 5]

Table 5: Comparison between SO(2) Gate and SO(3) Gate.

Aspect SO(2) Gate SO(3) Gate

MLP Input m = 0 features (includes [ = 0 | [ = 0 features only
andm = 0,1 > 0)

Gate Applied To Each SO(2) feature with differ- | Each SO(3) feature
entm >0 with different [ > 0

New Output Components | m = 0 (including both [ = 0 | [ = 0 only
and [ > 0)

E EQUIVARIANCE OF THE IRREP MAPPING

For the rotation within the local frame, an SO(2) rotation with angle « applied to features of order m
corresponds to the following rotation matrix:

Ron(a) = (cos(ma) sin(ma)) ' 23)

sin(ma)  cos(ma)

For SO(3) rotations acting on SO(3) irreps, if the rotation is restricted to the z-axis (i.e., the exact
m = 0 feature for [ = 1), it corresponds to the ZYZ Euler rotation with parameters («, 8,7) =
(e, 0,0). The corresponding rotation matrix is

DY (0,0,0) = €™ 8, (24)

mn
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for SO(3) irreps with angular momentum £.
With the change of basis Uy derived in Equation (25) of the eSCN, the rotation matrix can be expressed
in the same block-diagonal format as

(Oé) = Ug D(Z)

complex

DO

real

(,0,0)U, = diag(1, Ri(c), Ra(c), ..., Re(c)), (25)
where each block R, («) matches the SO(2) rotation matrix defined above.

Then, for the equivariance of the mapping operation F'R(7), the formal definition of equivariance for

amap f is
flg-z) = plg) f(2), (26)
where g € SO(3) acts on the input, and p(g) is the induced SO(2) action on the output irreps.

In our setting, f denotes the operation mapping from SO(3) to SO(2) with the local frame defined
as F'R(r;;). When g € SO(3) is applied to the input space, the corresponding stabilizer rotation
is given by ¢’g~ !, where ¢’ is a rotation around the z-axis that maps the rotated direction vector
grij back to the z-axis. Applying ¢’g~" to the rotated input gz is equivalent to applying ¢’ to the
original SO(3) irreps = before rotation. As shown earlier, the rotation matrix for SO(3) features
with only a # 0 reduces to the SO(2) rotation form. Hence, the stabilizer rotation g’ serves as the
corresponding p(g) acting on the output SO(2) irreps.

F HYPERPARAMETER SETTINGS AND MODEL ARCHITECTURES

F.1 QH9

In the QH9-stable-id setting, the training, validation and test sets are randomly split. In contrast, the
QHO9-stable-ood settings use a split based on molecular size, with validation and test sets consisting
of molecules larger than those in the training set. The QH9-dynamic-300k dataset is an extended
version of the QH9-dynamic benchmark, comprising 300k molecular geometries generated from 3k
molecules, each with a molecular dynamics trajectory of 100 steps. In the QH9-dynamic-300k-geo
setting, the training, validation, and test sets consist of the same molecules but different geometries
sampled from their respective trajectories. In contrast, the QH9-dynamic-300k-mol setting is split
based on different molecules, with all geometries from a given trajectory assigned to the same split.
This setup is designed to evaluate the model’s ability to generalize to unseen molecules with diverse
geometries. We follow the model and training hyperparameters in Table[6]to perform our experiments.

Table 6: Hyperparameters in QHO.

Hyperparameters \ Values/search space

Batch size 32

Cutoff distance (Bohr) 15

Initial learning rate Se-4

Final learning rate le-7

Learning rate strategy linear schedule with warmup
Learning rate warmup batches 1,000

# of batches in training 26,000

# of layers 3

Lmaw 4

hidden irreps 256x0e+128x1e+64x2e+32x3e+16x4e
hidden mirreps 1024x0m+256x 1m+64x2m+32x3m+16x4m
hidden ffn mirreps 2048x0m+512x 1m+256x2m+64x3m+32x4m
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F.2 MD17

The statistics of MD17 is shown in Table We follow the model and training hyperparame-
ters in Table [§] to perform our experiments. Specifically, for the model molecule, we choose a
smaller model since the number of training geometries is smaller. We choose hidden irreps to be
64x0e+32x1e+16x2e+8x3e+8x4e, hidden mirreps to be 64x0m+32x Im+16x2m+8x3m+8x4m, and
hidden ffn mirreps to be 64x0m+32x1m+16x2m+8x3m+8x4m.

Table 7: The statistics of MID17 dataset.

Dataset Molecule # of structures Train Val  Test
Water H20 4,900 500 500 3,900
Ethanol CyH5;0OH 30,000 25,000 500 4,500
Malondialdehyde CHy(CHO), 26,978 25,000 500 1,478
Uracil C4H4N3Oo 30,000 25,000 500 4,500
Table 8: Hyperparameters in MD17.

Hyperparameters \ Values/search space

Batch size 5,10, 16

Cutoff distance (Bohr) 15

Initial learning rate le-3, Se-4

Final learning rate le-6, le-7

Learning rate strategy linear schedule with warmup

Learning rate warmup batches 1,000

# of batches in training 20,000

# of layers 2,3

Lmaz 4

hidden irreps 256x0e+128x1e+64x2e+32x3e+16x4e

hidden mirreps 1024x0m+256x 1 m+64x2m+32x3m+16x4m

hidden ffn mirreps 2048x0m+512x 1m+256x2m+64x3m+32x4m
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