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Abstract

Reconstruction of 3D neural fields from posed images has emerged as a promising
method for self-supervised representation learning. The key challenge preventing
the deployment of these 3D scene learners on large-scale video data is their depen-
dence on precise camera poses from structure-from-motion, which is prohibitively
expensive to run at scale. We propose a method that jointly reconstructs camera
poses and 3D neural scene representations online and in a single forward pass. We
estimate poses by first lifting frame-to-frame optical flow to 3D scene flow via
differentiable rendering, preserving locality and shift-equivariance of the image
processing backbone. SE(3) camera pose estimation is then performed via a
weighted least-squares fit to the scene flow field. This formulation enables us to
jointly supervise pose estimation and a generalizable neural scene representation
via re-rendering the input video, and thus, train end-to-end and fully self-supervised
on real-world video datasets. We demonstrate that our method performs robustly
on diverse, real-world video, notably on sequences traditionally challenging to
optimization-based pose estimation techniques.

1 Introduction

Recent learning-based 3D reconstruction techniques show promise in estimating the underlying 3D
appearance and geometry from just a few posed image observations, in a single feed-forward pass [1–
19]. These techniques offer an exciting new perspective on computer vision: Instead of making
predictions only on pixels, computer vision models might operate directly on the corresponding 3D
scenes. This would be a significant step towards a generalist computer vision model, applicable to
any task involving interaction with the physical world.

A core challenge to the generality of these methods is that they cannot be trained from just video, but
instead require knowledge of per-frame camera poses. Existing methods thus rely on curated datasets
that obtain camera poses via Structure-from-Motion, but this is prohibitively expensive to compute at
scale. Lifting this dataset prerequisite would unlock orders of magnitude more training data, making
large-scale 3D representation learning tractable. Meanwhile, odometry and SLAM methods offer
online camera pose estimation, but may fail to track sequences with dominant camera rotation or with
sparse visual features, and do not reconstruct dense 3D scene representations. While recent efforts
leveraging differentiable rendering have demonstrated impressive results at joint reconstruction of
camera poses and 3D scenes, they still require minutes or hours per scene. Further, these optimization-
based methods cannot leverage learned priors for camera pose estimation, leaving significant progress
in computer vision of the last decade untapped. While prior work has demonstrated self-supervised
learning of joint depth and camera pose prediction [20, 21], these models are constrained to tight
video distributions, such as self-driving video, and do not infer a full 3D representation, only depth.
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We present a method for jointly training feed-forward generalizable 3D neural scene representation
and camera trajectory estimation, self-supervised only by re-rendering losses on video frames,
completely without ground-truth camera poses or depth maps. We propose to leverage single-image
neural scene representations and differentiable rendering to lift frame-to-frame optical flow to 3D
scene flow. We then estimate SE(3) camera poses via a robust, weighted least-squares solver on the
scene flow field. Regressed poses are used to re-construct the underlying 3D scene from video frames
in a feed-forward pass, where weights are shared with the neural scene representation leveraged in
camera pose estimation.

We validate the efficacy of our model for feed-forward novel view synthesis and online camera pose
estimation on the real-world RealEstate10K and KITTI datasets, as well as the challenging CO3D
dataset. We further demonstrate results on in-the-wild scenes in Ego4D and Walking Tours streamed
from YouTube. We demonstrate generalization of camera pose estimation to out-of-distribution
scenes and achieve robust performance on trajectories on which a state-of-the-art SLAM approach,
ORB-SLAM3 [22], struggles.

To summarize, the contributions of our work include:

• We present a new formulation of camera pose estimation as a weighted least-squares fit of an SE(3)
pose to a 3D scene flow field obtained via differentiable rendering.

• We combine our camera pose estimator with a multi-frame 3D reconstruction model, unlocking
end-to-end, self-supervised training of camera pose estimation and 3D reconstruction.

• We demonstrate that our method performs robustly across diverse real-world video datasets,
including indoor, self-driving, and object-centric scenes.

2 Related Work
Generalizable Neural Scene Representations. Recent progress in neural fields [23–25] and
differentiable rendering [10, 26–31] have enabled novel approaches to 3D reconstruction from few or
single images [1–19], but require camera poses both at training and test time. An exception is recently
proposed RUST [32], which can be trained for novel view synthesis without access to camera poses,
but does not reconstruct 3D scenes explicitly and does not yield explicit control over camera poses.
We propose a method that is similarly trained self-supervised on real video, but yields explicit camera
poses and 3D scenes in the form of radiance fields. We outperform RUST on novel view synthesis
and demonstrate strong out-of-distribution generalization by virtue of 3D structure.
SLAM and Structure-from-Motion (SfM). SfM methods [33–35], and in particular,
COLMAP [34], are considered the de-facto standard approach to obtaining accurate geometry and
camera poses from video. Recent progress on differentiable rendering has enabled joint estimation of
radiance fields and camera poses via gradient descent [36–40], enabling subsequent high-quality novel
view synthesis. Both approaches require offline per-scene optimization. In contrast, SLAM methods
usually run online [22, 41, 42], but are notoriously unreliable on rotation-heavy trajectories or scenes
with sparse visual features. Prior work proposes differentiable SLAM to learn priors over camera
poses and geometry [43, 44], but requires ground-truth camera poses for training. Recent work has
also explored how differentiable rendering may be directly combined with SLAM [45–48], usually
using a conventional SLAM algorithm as a backbone and focusing on the single-scene overfitting case.
We propose a fully self-supervised method to train generalizable neural scene representations without
camera poses, outperforming prior work on generalizable novel view synthesis without camera
poses. We do not claim state-of-the-art camera pose estimation, but provide an analysis of camera
pose quality nevertheless, demonstrating robust performance on sequences that are challenging to
state-of-the-art SLAM algorithms, ORB-SLAM3 [22] and Droid-SLAM [43].
Neural Depth and Camera Pose Estimation. Prior work has demonstrated joint self-supervised
learning of camera pose and monocular depth [20, 21, 49–51] or multi-plane images [52]. These
approaches leverage a neural network to directly regress camera poses with the primary goal of
training high-quality monocular depth predictors. They are empirically limited to sequences with
simple camera trajectories, such as self-driving datasets, and do not enable dense, large-baseline novel
view synthesis. We ablate our flow-based camera pose estimation with a similar neural network-based
approach. Most closely related to our work are approaches that infer per-timestep 3D voxel grids
and train a CNN to regress frame-to-frame poses [53, 54]. We benchmark with the most recent
approach in this line of work, Video Autoencoder [53]. Lastly, we strongly encourage the reader
to peruse impressive concurrent work DBARF [55], which also regresses camera poses alongside a
generalizable NeRF. Key differences are that we leverage a pose solver based on 3D-lifted optical
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Figure 1: Method Overview. Given a set of video frames, our method first computes frame-to-frame camera
poses (left) and then re-renders the input video (right). To estimate pose between two frames, we compute
off-the-shelf optical flow to establish 2D correspondences. Using single-view pixelNeRF [1], we obtain a surface
point cloud as the expected 3D ray termination point for each pixel, X,Y respectively. Because X and Y are
pixel-aligned, optical flow allows us to compute 3D scene flow as the difference of corresponding 3D points. We
then find the camera pose P ∈ SE(3) that best explains the 3D flow field by solving a weighted least-squares
problem with flow confidence weights W. Using all frame-to-frame poses, we re-render all frames. We enforce
an RGB loss and a flow loss between projected pose-induced 3D scene flow and 2D optical flow. Our method is
trained end-to-end, assuming only an off-the-shelf optical flow estimator.

flow for real-time odometry versus predicting iterative updates to pose and depth via a neural network.
Further, we extensively demonstrate our method’s performance on rotation-dominant video sequences,
in contrast to a focus on forward-facing scenes. Lastly, we solely rely on the generalizable scene
representation in contrast to leveraging a monocular depth model for pose estimation.

3 Learning 3D Scene Representations from Unposed Videos

Our model learns to map a monocular video with frames {It}Nt=1 as well as off-the-shelf optical
flow {Vt}N−1

t=1 to per-frame camera poses {Pt}Nt=1 and a 3D scene representation Φ in a single
feed-forward pass. We leverage known intrinsic parameters when available, but may predict them
if not. We will first introduce the generalizable 3D scene representation Φ. We then discuss how
we leverage Φ for feed-forward camera pose estimation, where we lift optical flow into 3D scene
flow and solve for pose via a weighted least-squares SE(3) solver. Finally, we discuss how we obtain
supervision for both the 3D scene representation and pose estimation by re-rendering RGB and
optical flow for all frames. An overview of our method is presented in Fig. 1.

Notation. It will be convenient to treat images sometimes as discrete tensors, such as It ∈ RH×W×3,
and sometimes as functions I : R2 → R3 over 2D pixel coordinates p ∈ R2. We will denote
functions in italic I , while we denote the corresponding tensors sampled on the pixel grid in bold as I.

3.1 Defining Our Image-Conditioned 3D Scene Representation

First, we introduce the generalizable 3D scene representation we aim to train. Our discussion
assumes known camera poses; in the subsequent section we will describe how we can use our scene
representation to estimate them instead. We parameterize our 3D scene as a Neural Radiance Field
(NeRF) [28], such that Φ is a function that maps a 3D coordinate x to a color c and density σ as
Φ(x) = (σ, c). To render the color for a ray r, points (x1,x2, ...,xn) are sampled along r between
predefined near and far planes [t1, tf ], fed into Φ to produce corresponding color and density tuples
[(σ1, c1), (σ2, c2), ..., (σn, cn)], and alpha-composited to produce a final color value C(r):

C(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, where Ti = exp(−
i−1∑
j=1

σjδj), (1)
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Figure 2: Video Reconstruction Results. Our model reconstructs video frames from sparse context frames with
higher fidelity than all baselines. While VidAE’s renderings often appear with convincing texture, they are often
not aligned with the ground truth. RUST’s renderings are well aligned but are blurry due to their coarse set latent
representation.

CO3D-Hydrants CO3D-10 RealEstate KITTI
Model LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑
Vid-AE [53] 0.3427 18.56 0.3889 18.50 0.4173 18.03 0.3272 17.65
RUST [32] 0.6126 17.50 0.6145 17.71 0.5692 18.07 0.5584 15.44
Ours 0.2250 23.94 0.2687 24.17 0.2224 24.25 0.1928 23.39

Table 1: Quantitative Comparison on View Synthesis. On the task of view synthesis, our method outperforms
other unposed methods by wide margins.

where δi = ti+1 − ti is the distance between adjacent samples. By compositing sample locations
instead of colors, we can compute an expected ray-surface intersection point S(r) ∈ R3:

S(r) =

N∑
i=1

Ti(1− exp(−σiδi))xi. (2)

We require a generalizable NeRF that is not optimized for each scene separately, but instead predicted
in a feed-forward pass by an encoder that takes a set of M context images and corresponding camera
poses {(Ii,Pi)}Mi as input. We denote such a generalizable radiance field reconstructed from images
Ii as Φ(x | {(Ii,Pi)}Mi ). Many such models have been proposed [1–10]. We base our model
on pixelNeRF [1], which we briefly discuss in the following - please find further details in the
supplement. pixelNeRF first extracts per-image features Fi from each input image Ii. A given 3D
coordinate x is first projected onto the image plane of each context image Ii via the known camera
pose and intrinsic parameters to yield pixel coordinates pi. We then retrieve the features Fi(pi) at
that pixel coordinate. Color and density (σ, c) at x are then predicted by a neural network that takes
as input the features {Fi(pi)}Mi and the coordinates of x in the coordinate frame of each camera,
{P−1

i x}Mi . Importantly, we can condition pixelNeRF on varying numbers of context images, i.e.,
we may run pixelNeRF with only a single context image as Φ(x | (I,P)), or with a set of M > 1
context images Φ(x | {(Ii,Pi)}Mi ).

3.2 Lifting Optical Flow to Scene Flow with Neural Scene Representations

Equipped with our generalizable 3D representation Φ, we now describe how we utilize it to lift optical
flow into confidence-weighted 3D scene flow. Later, our pose solver will fit a camera pose to the
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Figure 3: Qualitative Pose Estimation Comparison. On short sequences, we compare our pose estimation to
Video Autoencoder [53], and on long sequences, we compare our method’s sliding-window estimations against
the per-scene optimization BARF [38]. The trajectory for the bicycle sequence was obtained using a model
trained on hydrant sequences: despite never having seen a bicycle before, our model predicts accurate poses.

(a)
Hydrant 10-Cat. RE10K KITTI

VidAE [53] 0.100 0.101 0.090 0.084
Ours 0.041 0.042 0.020 0.010

(b)
Top Bot. % Tracked

ORB3 [22] 0.021 0.034 49
DROID [43] 0.028 0.049 100

Ours 0.015 0.025 100
Table 2: Quantitative Pose Estimation Comparison. In (a) we compare against VideoAutoencoder [53] on
short-sequence odometry estimation (20 frames), reporting the ATE. In (b) we compare against
ORB-SLAM3 [22] and DROID-SLAM [43] on long sequences (∼200 frames) from the CO3D 10-Category
dataset. We separately report scores on the top and bottom 50% of sequences (“Top” and “Bot.”) in terms of
quality of ground-truth poses as indicated by the dataset. We report ATE and percent of sequences tracked
(“Tracked”). ORB-SLAM3 fails to track over half of these challenging sequences.

estimated scene flow. Given two sequential frames It−1, It we first use an off-the-shelf method [56]
to estimate backwards optical flow Vt : R2 → R2. The optical flow Vt maps a 2D pixel coordinate
p to a 2D flow vector, such that we can determine the corresponding pixel coordinate in It−1 as
p′ = p+ Vt(p).

We will now lift pixel coordinates pt and pt−1 to an estimate of the 3D points that they observe in the
coordinate frame of their respective cameras. To achieve this, we cast rays from the camera centers
through the corresponding pixel coordinates pt and pt−1 using the intrinsics matrix K. Specifically,
we compute rt = K−1p̃t and rt−1 = K−1p̃t−1, where p̃ represents the homogeneous coordinate( p

1

)
. Next, we sample points along the rays rt and rt−1 and query our pixelNeRF model in the

single-view setting. This involves invoking Φ(·|(It, I4×4)) and Φ(·|(It−1, I4×4)), i.e., pixelNeRF is
run with only the respective frame as the context view and the identity matrix I as the camera pose.
Applying the ray-intersection integral defined in Eq. 2 to the pixelNeRF estimates, we obtain a pair
of 3D points (xt,xt−1) corresponding to the estimated surfaces observed by pixels pt and pt−1,
respectively. We repeat this estimation for all optical flow correspondences, resulting in two sets of
surface point clouds, X,X′ ∈ RH×W×3. Equivalently, we may view this as defining the 3D scene
flow as X′ −X.

Flow confidence weights. We further utilize a confidence weight for each flow correspondence.
To accomplish this, we employ a neural network Ψ, which takes image features Ft(p), Ft−1(p

′) as
input for every pixel correspondence pair (p,p′). The network maps these features to a weight w,
denoted as Ψ(Ft(p), Ft−1(p

′)) = w ∈ [0, 1]. Ψ can importantly overcome several failure modes
which lead to faulty pose estimation, including incorrect optical flow, such as in areas of occlusions,
dynamic objects, such as pedestrians, or challenging geometry estimates, such as sky regions. We
show in Fig. 9 that Ψ indeed learns such content-based rules.

Predicting Intrinsic Camera Parameters K. Camera intrinsics are often approximately known,
either published by the manufacturer, saved in video metadata, or calibrated once. Nevertheless, for
purposes of large-scale training, we leverage a simple scheme to predict the camera field-of-view for
a video sequence. We feed the feature map of the first frame F0 into a convolutional encoder that
directly regresses the field of view. We assume that the optical center is at the sensor center. We find
that this approach enables us to train on real-world video from YouTube, though more sophisticated
schemes [57] will no doubt improve performance further.
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Figure 4: Robustness. Our method works even on
sequences challenging to ORB-SLAM3, which fails
on 49% of CO3D. We show one successful and one
failed sequence.
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Figure 5: Learned geometry. Our model’s expected
ray termination illustrates the unsupervised
geometry learned by our model on the challenging
CO3D dataset.

3.3 Camera Pose Estimation as Explaining the Scene Flow Field

We will now estimate the camera pose between frame It and It−1. In the previous section, we lifted
the input optical flow into scene flow, producing 3D correspondences X,X′, or, equivalently, 3D
scene flow. We cast camera pose estimation as the problem of finding the rigid-body motion that
best explains the observed scene flow field, or the transformation mapping points in X to X′, while
considering confidence weights W. Note that below, we will refer to the matrices X, X′, and W as
column vectors, with their spatial dimensions flattened.

We use a weighted Procrustes formulation to solve for the rigid transformation that best aligns the set
of points X and X′. The standard orthogonal Procrustes algorithm solves for the SE(3) pose such
that it minimizes the least squares error:

argmin
P∈SE(3)

∥X̃−PX̃′∥22, (3)

with P =
(
R t
0 1

)
as a rigid-body pose with rotation R and translation t and homogeneous X̃ =

(
X
1

)
.

In other words, the minimizer of this loss is the rigid-body transformation that best maps X onto X′,
and, in a static scene, is therefore equivalent to the sought-after camera pose.

As noted by Choy et al. [58], this formulation equally weights all correspondences. As noted in
the previous section, however, this would make our pose estimation algorithm susceptible to both
incorrect correspondences as well as correspondences that should be down-weighted by nature of
belonging to parts of the scene that are specular, dynamic, or have low confidence in their geometry
estimate. Following [58], we thus minimize a weighted least-squares problem:

argmin
P∈SE(3)

∥W1/2(X̃−PX̃′)∥22 (4)

with the diagonal weight matrix W = diag(w). Conveniently, this least-squares problem admits a
closed-form solution, efficiently calculated via Singular Value Decomposition, as derived in [58]:

R = USVT and t = (X−RX′)W1, where UΣVT = SVD(ΣX′X), (5)

ΣX′X = XKWKX′T , K = I−
√
w
√
w

T
, and S = diag(1, ..., det(U)det(V)). (6)

Composing frame-to-frame poses. Solving this weighted least-squares problem for each subsequent
frame-to-frame pair yields camera transformations (P′

2,P
′
3, . . . ,P

′
n), aligning each It to its prede-

cessor It−1. We compose frame-to-frame transformations to yield camera poses (P1,P2, . . . ,Pn)
relative to the first frame, such that P1 = I3×3, concluding our camera pose estimation module.

3.4 Supervision via Differentiable Video and Flow Re-Rendering

We have discussed our generalizable neural scene representation Φ and our camera pose estimation
module. We will now discuss how we derive supervision to train both modules end-to-end. We have
two primary loss signals: First, a photometric loss LRGB scores the visual fidelity of re-rendered
video frames. Second, a pose-induced flow loss Lpose scores how similar the flow induced by the
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Figure 6: Wide-Baseline View Synthesis. Given an input video without poses, our model first infers camera
poses and can then render wide-baseline novel views of the underlying 3D scene, where we use the first, middle,
and final frame of the video as context views.

predicted camera transformations and surface estimations are to optical flow estimated by RAFT [59].
Our model is trained on short (∼15 frames) video sequences.

Photometric Loss. Our photometric loss LRGB comprises two terms: A multi-context loss and a
single-context loss. The multi-context loss ensures that the full 3D scene is reconstructed accurately.
Here, we re-render each frame of the input video sequence It, using its estimated camera pose Pt

and multiple context images {(Ij ,Pj)}Jj . The single-context loss ensures that the single-context
pixelNeRF used to estimate surface point clouds Xt in the pose estimation module is accurate.

LRGB =
1

N

N∑
i=t

∥∥It − C(Pt | {(Ij ,Pj)}Jj )
∥∥2
2︸ ︷︷ ︸

Multi-Context Loss

+ ∥It − C(I4×4 | (It, I4×4))∥22︸ ︷︷ ︸
Single-Context Loss

, (7)

where, in a slight abuse of notation, we have overloaded the rendering function C(P|{(Ij ,Pj)}Jj )
defined in Eq. 1 as rendering out the full image obtained by rendering a pixelNeRF with context
images {(Ij ,Pj)}Jj from camera pose P. N refers to the number of frames in the video sequence and
J refers to the subset of context frames use for re-rendering the entire sequence. We first attempted
picking the first frame only, however, found that this does not converge due to the uncertainty of the
3D scene given only the first frame: single-view pixelNeRF will generate blurry estimates for parts of
the scene that have high uncertainty, such as occluded regions or previously unobserved background.

Pose-Induced Flow Loss. An additional, powerful source of supervision for both the estimated
geometry and camera poses can be obtained by comparing the optical flow induced by the predicted
surface point clouds and pose with the off-the-shelf optical flow. We define this pose-induced flow
loss as

Lpose =
1

N − 1

N−1∑
t=1

∥∥Vt − (π(P−1
t ·Pt+1 ·Xt+1)− uv)

∥∥2
2
, (8)

with projection operator π(·) and grid of pixel coordinates uv ∈ R2. Intuitively, this transforms the
surface point cloud of frame t+1 into the coordinate frame of frame t and projects it onto that image
plane. For every pixel coordinate p at timestep t+ 1, this yields a corresponding pixel coordinate p′

at timestep t, which we compare against the input optical flow.

3.5 Test-time Inference

After training our model on a large dataset of short video sequences, we may infer both camera poses
and a radiance field of such a short sequence in a single forward pass, without test-time optimization.

Sliding Window Inference for Odometry on Longer Trajectories. Our method estimates poses
for short (∼15 frames) subsequences in a single feed-forward pass. To handle longer trajectories that
exceed the capacity of a single batch, we divide a given video into non-overlapping subsequences.
We estimate poses for each subsequence individually and compose them to create an aggregated
trajectory estimate. This approach allows us to estimate trajectories for longer video sequences.

Test-Time Adaptation. Frame-to-frame camera pose estimation methods, both conventional and
the proposed method, accumulate pose estimation error over the course of a sequence. SLAM and
SfM methods usually have a mechanism to correct for drift by globally optimizing over all poses and
closing loops in the pose graph [60]. We do not have such a mechanism, but propose fine-tuning our
model on specific scenes for more accurate feed-forward pose and 3D estimation. For a given video
sequence, we may fine-tune our pre-trained model using our standard photometric and flow losses
on sub-sequences of the video. Note that this is not equivalent to per-scene optimization or direct
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Figure 7: Fine-tuned Pose Estimation and View Synthesis on Large-Scale, Out-of-Distribution Scene. We
evaluate our RealEstate10K-trained model on a significantly out-of-distribution scene from the Tanks and
Temples dataset [61], first without any scene-adaptation and then with. Even with this significant distribution
gap, our method’s estimated trajectory captures the looping structure of the ground truth, albeit with
accumulated drift. After a scene-adaptation fine-tuning stage (around 7 hours), our model estimates poses which
align closely with the ground truth. We also plot the trajectory estimated by BARF [38], which fails to capture
the correct pose distribution.

optimization of camera poses and a radiance field, as performed e.g. in BARF [38]: neither camera
poses nor the radiance field are free variables. Instead, we fine-tune the weights of our convolutional
inference backbone and MLP renderer for more accurate feed-forward prediction.

4 Experiments

We benchmark our method on generalizable novel view synthesis on the RealEstate10k [62],
CO3D [63], and KITTI [64] datasets. We provide further analysis on the Tanks & Temples dataset
and in-the-wild scenes from Ego4D [65] and YouTube. Though we do not claim to perform state-of-
the-art camera pose estimation, we nevertheless provide an analysis of the accuracy of our estimated
camera poses. Please find more results, as well as precise hyperparameters, implementation, and
dataset details, in the supplemental document and video. We utilize camera intrinsic parameters
where available, predicting them only for the in-the-wild Ego4D and WalkingTours experiments.
Pose Estimation. We first evaluate our method on pose estimation against the closest self-supervised
neural network baseline, Video Autoencoder (VidAE) [53]. We then analyze the robustness of our pose
estimation with ORB-SLAM3 [66] and DROID-SLAM [43] as references. Finally, we benchmark
with BARF [38], a single-scene unposed NeRF baseline. Tab. 2a compares accuracy of estimated
poses of our method and VidAE on all four datasets. The performance gap is most pronounced on the
challenging CO3D dataset, but even on simpler, forward-moving datasets, RealEstate10k and KITTI,
our method significantly outperforms VidAE. Next, we analyse the robustness of our pose estimation
module on CO3D, using SfM methods ORB-SLAM3 and DROID-SLAM as references. See Tab. 2b
and Fig. 4 for quantitative and qualitative results. To account for inaccuracies in the provided CO3D
poses we utilize as ground-truth, we additionally report separate results for the top and bottom 50%
of sequences, ranked based on the pose confidence scores provided by the authors. Although we do
not employ any secondary pose method as a proxy ground truth for the bottom half of sequences, this
division serves as an approximate indication of the level of difficulty each sequence poses from a SfM
perspective. On both subsets, our method outperforms both DROID-SLAM and ORB-SLAM3. Also
note that ORB-SLAM3 fails to track poses for over half (50.7%) of the sequences. On the sequences
where ORB-SLAM3 succeeds, our method predicts poses significantly more accurately. Even on
the sequences where ORB-SLAM3 fails, our performance does not degrade (.025 ATE). Lastly, we
compare against the single-scene unposed NeRF baseline, BARF. Since BARF requires ∼one day
to reconstruct a single sequence, we evaluate on two representative sequences: a forward-walking
sequence on RealEstate10K, and an outside-in trajectory on CO3D. We plot recovered trajectories in
Fig. 3. While BARF fails to recover the correct trajectory shape on the CO3D scene, our method
produces a trajectory that more accurately reflects the ground-truth looping structure.
Novel View Synthesis. We compare against VidAE [53] and RUST [32] on the task of novel view
synthesis. Tab. 1 and Fig. 6 report quantitative and qualitative results respectively. Our method
outperforms both baselines significantly. Since VidAE fails to capture the pose distribution on
the CO3D datasets, its novel view renderings generally do not align with the ground truth. On
RealEstate10K and KITTI, their method successfully captures the pose distribution, but still struggles
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Figure 8: View Synthesis on Ego4D and Walking
Tours: We train on a collection of YouTube walking
tour videos and Ego4D sequences with unknown
camera parameters, and render novel views after a
short fine-tuning stage.
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Figure 9: Flow Weights: Our flow-confidence
weights allow our model to down-weight unreliable
flow correspondences due to occlusions, specular
highlights, or dynamic objects, and up-weight
well-textured regions.

to render high-fidelity images. We similarly outperform RUST, which struggles to capture high-
frequency content due to its coarse scene representation. Also note that RUST estimates latent camera
poses rather than explicit ones. We further qualitatively evaluate our method on wide-baseline novel
view synthesis, where no ground-truth is available - please see Fig. 6 for these results.

Test-Time Adaptation We evaluate the ability of our model to estimate camera poses on out-
of-distribution scenes, augmented by test-time optimization as discussed in section 3.5. Fig.7
displays the camera poses estimated by our method on the Bulldozer sequence from the Tanks
and Temples dataset[61], using our model trained on the RealEstate10k dataset. Even without any
test-time adaptation, our method generalizes impressively, generating a trajectory that follows the
outside-in trajectory as determined by COLMAP. We refer to this generalization mode as “zero-
shot.” Nevertheless, camera poses are not perfect and exhibit some drift. We thus perform test-time
optimization, fine-tuning the weights of our feed-forward method on subsequences of the video.
Though geometry is plausible after roughly 10 minutes of fine-tuning, we continued optimization
for 7 hours for finer details. Our scene-adapted estimates are close to ground truth with little drift,
and we find that novel view synthesis results with significant baseline are visually compelling with
sound depth estimates. We further show the result of BARF on this sequence, which fails to recover a
plausible trajectory.

Results on In-the-Wild Video. We present preliminary results on the Ego4D dataset [65], a recent
ego-centric dataset captured with headset cameras, and a new Walking Tours dataset, in which we
stream walking tour videos from YouTube. Both datasets comprise some scene motion, such as
pedestrians, cars, or people. Images from Ego4D are further subject to radial camera distortion,
which we do not model. Nevertheless, after fine-tuning on Walking Tours and Ego4D for 20 minutes
and 1.5 hours, we can generate plausible novel views and depth maps, illustrated in Fig. 8. We find
that our model is generally robust to dynamic scene content, such as pedestrians or humans, which
obtain low flow-confidence flow scores. We further run COLMAP on a subset of the Walking Tours
and Ego4D videos, yielding pseudo ground-truth poses for 3 videos from each dataset. The Walking
Tour subset is selected randomly, and the Ego4D subset is chosen as the first three relatively-static
videos we found (to ensure COLMAP convergence). We divide each video into subsequences of 20
frames at 3fps, corresponding to roughly 7 meters of forward translation per clip. Here, we achieve a
competitive ATE of 0.013 and 0.026 on Walking Tours and Ego4D, respectively. We also compute
PSNR values on subsequences of 10 frames using two context views, and obtain 18.87dB and 21.59db
on Walking Tours and Ego4D, respectively, indicating generally plausible novel view synthesis.

↑ PSNR ↓ LPIPS

MLP-Pose 18.50 0.54
No Flow Weights 17.87 0.51
Full 21.02 0.38

Table 3: Ablation study.

Ablations. In Tab. 3, we ablate key contributions related
to our pose formulation, evaluated on the CO3D Hydrant
dataset. We first ablate our proposed flow-based pose for-
mulation in favor of concatenating adjacent frames and
predicting a pose directly via a CNN, as is common in
the Monodepth [67] line of work. We further ablate our
weighted flow formulation in favor of a non-weighted

Procrustes estimation. Both methods perform significantly worse than our full flow-based pose for-
mulation, and qualitatively often lead to degenerate geometry estimates. Please see the supplemental
material for additional ablations and ablation details.

9



5 Discussion
Limitations. While we believe our method makes significant strides, it still has several limitations.
As an odometry method, it accumulates drift and has no loop closure mechanism. Our model further
does not currently incorporate scene dynamics, but recent advancements in dynamic NeRF papers
[68–70] present promising perspectives for future research.
Conclusion. We have introduced FlowCam, a model capable of regressing camera poses and
reconstructing a 3D scene in a single forward pass from a short video. Our key contribution is
to factorize camera pose estimation as first lifting optical flow to pixel-aligned scene flow via
differentiable rendering, and then solving for camera pose via a robust least-squares solver. We
demonstrate the efficacy of our approach on a variety of challenging real-world datasets, as well
as in-the-wild videos. We believe that they represent a significant step towards enabling scene
representation learning on uncurated, real-world video.
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