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Abstract

While unmanned aerial vehicles (UAVs) offer wide-area, high-altitude coverage
for anomaly detection, they face challenges such as dynamic viewpoints, scale
variations, and complex scenes. Existing datasets and methods, mainly designed
for fixed ground-level views, struggle to adapt to these conditions, leading to sig-
nificant performance drops in drone-view scenarios. To bridge this gap, we in-
troduce A2Seek (Aerial Anomaly Seek), a large-scale, reasoning-centric bench-
mark dataset for aerial anomaly understanding. This dataset covers various sce-
narios and environmental conditions, providing high-resolution real-world aerial
videos with detailed annotations, including anomaly categories, frame-level times-
tamps, region-level bounding boxes, and natural language explanations for causal
reasoning. Building on this dataset, we propose A2Seek-R1, a novel reasoning
framework that generalizes R1-style strategies to aerial anomaly understanding,
enabling a deeper understanding of “Where” anomalies occur and “Why” they
happen in aerial frames. To this end, A2Seek-R1 first employs a graph-of-thought
(GoT)-guided supervised fine-tuning approach to activate the model’s latent rea-
soning capabilities on A2Seek. Then, we introduce Aerial Group Relative Pol-
icy Optimization (A-GRPO) to design rule-based reward functions tailored to
aerial scenarios. Furthermore, we propose a novel “seeking” mechanism that
simulates UAV flight behavior by directing the model’s attention to informative
regions. Extensive experiments demonstrate that A2Seek-R1 achieves up to a
22.04% improvement in AP for prediction accuracy and a 13.9% gain in mIoU
for anomaly localization, exhibiting strong generalization across complex envi-
ronments and out-of-distribution scenarios. Our dataset and code are released at
https://2-mo.github.io/A2Seek/.

1 Introduction

Traditional anomaly detection [42, 38, 9] relies on fixed-view cameras and primarily focuses on
anomaly classification, offering limited semantic interpretation. Their static perspectives and nar-
row fields of view significantly limit their effectiveness in monitoring large and dynamic environ-
ments [78]. With the rapid advancement of unmanned aerial vehicle (UAV) technology, aerial
surveillance has emerged as a powerful paradigm for wide-area anomaly detection. Droneview
footage introduces frequent viewpoint shifts, scale changes, complex backgrounds and occlusions,
as well as environmental disturbances (lighting, weather, moving shadows) [10, 16]. Crucially,
anomalous regions in aerial scenes are often subtle, spatially sparse, and occupy only a small por-
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Figure 1: Overview of the A2Seek Benchmark. (a) Challenges in aerial anomaly detection. Tra-
ditional methods rely on static surveillance views and focus mainly on classification, making it
difficult to answer “Where” and “Why” anomalies occur under dynamic UAV perspectives. (b)
Dataset statistics on multiple dimensions. (c) Reasoning pipeline. The method consists of two
stages: SFT (supervised fine-tuning) for reasoning activation, and RL (reinforcement learning) for
dynamic reasoning. (d) High-frequency word of dataset. (e) Reasoning process. The framework
integrates multiple reasoning stages (Trigger, Diagnose, Reasoning, Reflection and Seeking), em-
phasizing reasoning-driven anomaly understanding. (f) Performance comparison.

tion of the field of view, making them difficult to perceive. Even when alarms are triggered, human
observers often struggle to localize these subtle, spatially sparse events. Moreover, traditional mod-
els rely on stable spatial priors invalidated when a drone’s pose constantly changes. Consequently,
groundview approaches fail to generalize to aerial data, exhibiting poor robustness to dynamic
scenes and variable spatial distributions. As Figure 1 illustrates, anomaly detection in drone-view
footage requires precise spatial localization (“Where is the anomaly?”) and semantic interpretation
(“Why is it an anomaly?”). Drone-captured videos often span large, dynamic environments, where
subtle anomalies can be easily overlooked or misinterpreted without robust contextual reasoning.
These factors demand models capable of adaptively focusing on critical regions and abstracting
high-level reasoning to explain anomalies. In the following, we distill these into two core problems
critical for robust aerial anomaly understanding.

CHALLENGE 1: Spatial Localization in Wide-Area, Dynamic Scenes. Traditional ground-
based anomaly detection typically relies on fixed-view cameras, where anomalies are often promi-
nent and relatively easy to identify. However, aerial anomaly detection is fundamentally different.
Drone-view videos cover expansive and dynamic scenes with complex backgrounds and frequent
motion. Anomalies are often small, sparse, and easily obscured by cluttered surroundings, making
them difficult to detect even when anomalies are flagged (e.g., a person falling in Figure 1a). There-
fore, aerial anomaly detection requires not only determining whether an event is anomalous but also
providing accurate localization of the anomalous objects to support anomaly judgment.

CHALLENGE 2: Semantic Generalization Across Diverse Aerial Contexts. Aerial anomaly
detection faces significant scene dependency and distributional shifts, as the same behavior (e.g.
running) may exhibit vastly different visual characteristics and interactions across environments (e.g.
playgrounds or academic buildings). Relying solely on feature classification or reconstruction errors
fails to capture this diversity and hinders reliable generalization to unseen scenarios. To address this,
models must deeply understand scene context and behavioral semantics to effectively tackle the
generalization challenge.

Recent advances in multimodal large language models (MLLMs) [1, 14, 4, 30] have demonstrated
significant potential in cross-modal alignment and semantic understanding, particularly in complex
reasoning scenarios [45, 65, 74]. However, their application to aerial anomaly understanding re-
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mains underexplored due to two major limitations: (1) the lack of large-scale multimodal aerial
datasets with temporal annotations, precise spatial localization, and semantic reasoning explanations,
which hinders effective training and evaluation; and (2) the absence of structured reasoning frame-
works and adaptive strategies, making it difficult to address diverse anomalies in complex aerial
perspectives. To address the above challenges, we present A2Seek, a reasoning-centric benchmark
specifically designed for aerial anomaly understanding. Collected across 10 campus scenes over
one year, the dataset spans 23 hours of UAV footage with diverse flight altitudes, speeds, and tra-
jectories, including 3.79 hours of complex anomalies and the rest normal behaviors. It features 542
untrimmed 4K drone videos and over 32k curated keyframes, annotated with fine-grained anomaly
labels, spatiotemporal bounding boxes, and structured reasoning graphs. These annotations enable
comprehensive evaluation of detection accuracy and reasoning interpretability. To tackle practical
challenges such as occlusion and low-light conditions, A2Seek incorporates telephoto footage for
high-altitude scenes and infrared modalities for nighttime scenarios, facilitating the detection of
subtle or visually ambiguous anomalies.

Building on this benchmark, we propose A2Seek-R1, a novel reinforcement fine-tuning framework
designed to enhance the reasoning capabilities of models for aerial anomaly understanding. A2Seek-
R1 first employs a graph-of-thought (GoT)-guided supervised fine-tuning (SFT) approach, which ac-
tivates the model’s latent reasoning capabilities by leveraging structured reasoning annotations in the
A2Seek dataset. These annotations consist of optional stages, including trigger, diagnosis, reasoning,
reflection, and seeking, effectively guiding the model to handle anomalies of varying complexity in
a progressive manner. Among them, seeking is set as a potential region of interest for the model in
video frames with insufficient information, such as blurry or occluded images, thus achieving a new
type of seeking mechanism that simulates the flight behavior of unmanned aerial vehicles, enabling
the model to dynamically focus on specific regions of interest. Second, it introduces a tailored ex-
tension of Group Relative Policy Optimization (GRPO), termed A-GRPO, specifically designed for
aerial anomaly understanding. A-GRPO extends the original accuracy and format function rewards
by incorporating localization and seeking rewards. Localization rewards enhance the model’s spatial
understanding of anomaly regions, while seeking rewards focus on aligning the model’s predictions
with human annotations of anomaly candidate areas, ensuring the extraction of valuable spatial infor-
mation for better understanding. Additionally, to address the diverse perspectives of drones, a length
reward function is introduced to encourage concise responses in simple scenarios and allocate more
computational effort to complex situations. By combining these components, A2Seek-R1 achieves
precise spatial localization and robust reasoning for aerial anomalies, setting a new benchmark for
anomaly understanding in complex, real-world environments.

Contributions: (1) We present A2Seek, a large-scale, reasoning-centric benchmark specifically de-
signed for multi-scenario anomaly understanding from aerial perspectives. (2) We propose A2Seek-
R1, a novel multi-stage reinforcement fine-tuning framework that significantly enhances the aerial
anomaly understanding capabilities of multimodal foundation models. (3) This work is the first to
simulate UAV motion characteristics in the context of anomaly understanding, enabling models to
actively acquire detailed regional information in challenging scenarios. (4) Extensive experiments
across multiple scenarios validate the superiority of A2Seek-R1. Compared to models trained solely
with GoT-SFT, A2Seek-R1 achieves an improvement of 6.72% in prediction accuracy.

2 Related Work

Video Anomaly Detection. Early efforts focused on single-scene datasets [34, 42] using fixed-view
RGB cameras for pedestrian anomaly detection. Later datasets [38, 52, 15, 47] that towards real-
world introduced more complex scenes with crowded traffic, yet remained unimodal, fixed-view,
and emphasized foreground representation. Larger-scale datasets [57, 66, 64, 79] improved diver-
sity and duration, but still relied on ground-view perspectives and coarse anomaly labels, lacking
spatial localization or causal reasoning. Methodologically, the field evolved from handcrafted fea-
tures to learned representations [3, 75, 34] and behavior modeling [48, 35, 27]. Recent approaches
span reconstruction/prediction-based [20, 46, 19, 67, 70, 39], object-centric [40, 33, 44, 60, 18, 76],
distribution-aware [21, 62, 49, 29], and llm-driven paradigms [17, 72, 45, 74], with growing em-
phasis on generalization and scene dependency. Recent methods [77, 25] incorporate chain-of-
reasoning mechanisms to enhance anomaly understanding, enabling more interpretable and goal-
directed decision-making. However, existing benchmarks and methods largely overlook aerial-
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Figure 2: Comparison of scene diversity and complexity. Left: fixed-view surveillance datasets.
Right: diverse aerial views in A2Seek.

specific challenges such as extreme viewpoint shifts and scale variation. Moreover, the absence
of multimodal and reasoning-oriented annotations limits fine-grained analysis.

Aerial Anomaly Understanding. Anomaly detection in aerial videos remains underexplored. Early
pioneer datasets [7, 8, 26, 61] adopt aerial perspectives but provide only frame-level or coarse
labels, limiting fine-grained analysis. Existing methods focus on motion cues, including optical
flow [8], reconstruction-based schemes[28], or spatiotemporal modeling with 3D CNNs [61] and
Transformer [26], but rarely support precise region-level reasoning. While multimodal large lan-
guage models (MLLMs) [1, 23, 14, 13, 30, 68] have advanced semantic understanding in ground-
view tasks, their application to aerial scenarios is limited. Current approaches [6, 59, 74] often
lack explicit, grounded reasoning and rely on post hoc explanations. To bridge this gap, we intro-
duce a reasoning-centric aerial anomaly dataset with fine-grained spatial-temporal annotations and
dynamic reasoning trajectories.

3 The A2Seek Dataset

Existing video anomaly detection methods primarily rely on fixed-view ground-based cameras,
which are designed for limited fields of view and relatively static backgrounds. These methods
face significant limitations when applied to drone-view videos, which involve frequent viewpoint
changes, scale variations, dynamic occlusions, and complex environmental disturbances (e.g., light-
ing changes, weather variations). These factors significantly increase the challenges of spatial local-
ization and semantic generalization of anomaly detection. To address these challenges, we introduce
A2Seek, a reasoning-centric aerial anomaly understanding benchmark. It supports precise spatial lo-
calization of anomalies (“Where is the anomaly?”) and in-depth semantic reasoning explanations
(“Why is it anomalous?”). The dataset spans diverse real-world scenarios and anomaly types, pro-
viding high-resolution RGB and infrared video data with detailed frame-level labels, region-level an-
notations, and structured natural language reasoning explanations. Figure 2 illustrates the dataset’s
diversity, showcasing various scenes, altitudes, speeds, weather conditions, and times of day. Unlike
traditional ground-based datasets, which focus on static viewpoints and limited environmental vari-
ations, A2Seek leverages the dynamic and expansive nature of UAV perspectives, making it a more
challenging and realistic benchmark. This benchmark aims to advance research on generalization,
robustness, and interpretability in aerial anomaly understanding.

3.1 Data Collection and Annotation

The A2Seek dataset was collected using a DJI M30T drone equipped with wide-angle, telephoto,
and infrared cameras. Flights were conducted at varying altitudes (10 to 60 meters) and speeds
(0 to 20 m/s) to capture diverse aerial perspectives. Trajectory patterns included hovering, linear
cruising, curved circling, and area scanning, enabling dynamic viewpoint shifts across scenes. In
total, A2Seek comprises 542 untrimmed 4K videos (over 23 hours), recorded across 10 campus
environments, covering more than 20 types of anomalous events (e.g., falling, fighting, jaywalking)
under varying conditions such as day/night, clear/foggy weather, and so on.
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Table 1: Comparison of A2Seek with existing video anomaly detection datasets († denotes web-
sourced datasets; ‡ denotes simulated or virtual datasets).

Perspective Dataset
Frames Scene

Count
Anomaly

Types Resolution Scene
Dependency

Scale
Variation

Reasoning
Annotation

Multi-
modalTotal Normal Abnormal

Surveillance

CUHK Avenue [42] 30,652 26,832 3,820 1 5 640×360 7 7 7 7
ShanghaiTech [43] 317,398 300,308 17,090 13 11 856×480 7 7 7 7
Street Scene [52] 203,257 159,341 43,916 1 17 1,280×720 7 7 7 7
Subway [3] 209,151 192,548 16,603 2 8 512×384 7 7 7 7
UBI-Fight† [15] 8,530,080 8,287,381 242,699 - 1 1,280×720 7 7 7 7
LAD† [64] 3,625,237 3,016,213 609,024 - 14 320×240 7 7 7 7
IITB Corridor [11] 483,566 301,999 181,567 1 10 1,920×1,080 7 7 7 7
UCSD Ped2 [34] 4,560 2,924 1,636 1 5 360×240 7 7 7 7
UMN [51] 7,741 6,165 1,576 3 1 320×240 7 7 7 7
XD-Violence† [66] 18,697,729 - - - 6 640×360 7 7 7 3
UCF-Crime† [71] 13,741,393 - - - 13 320×240 7 7 7 7
TAD [47] 540,272 462,578 77,694 - 7 1,280×720 7 7 7 7
UBnormal‡ [2] 236,902 147,887 89,015 29 22 1,080×720 7 7 7 7
NWPU Campus [9] 1,466,073 1,400,807 65,266 43 28 2,048×1,536 3 7 7 7
MSAD† [78] 447,236 308,792 138,444 14 55 1,920×1,080 7 7 7 7

Drone-view

Minidrone [7] 23,295 14,821 8,474 1 10 1,280×720 7 7 7 7
AU-AIR-Anomaly [8] 32,823 30,000 2,823 1 8 1,920×1,080 7 7 7 3
Drone-Anomaly [26] 87,488 51,635 35,853 7 1 640×640 7 7 7 7
UIT-ADrone [61] 206,194 142,709 63,485 3 10 1,920×1,080 7 7 7 7
A2Seek (Ours) 2,485,859 2,087,160 398,699 27 20 3,840×2,160 3 3 3 3

The anomaly categories in A2Seek were carefully curated based on the principle of “potential dis-
ruption to campus public safety or order,” rather than broadly labeling daily activities as abnormal.
For instance, running on a playground is not considered anomalous, whereas running in an aca-
demic building area is. Similarly, riding a bicycle on the road is normal, but riding on sidewalks is
considered anomalous. Drawing from classic VAD datasets [34, 42, 43, 9], we focus on behavior
categories with strong relevance to real-world campus safety. Anomalies are categorized into three
risk levels. High-risk events such as carrying weapons, fighting, and robbery require immediate in-
tervention. Medium-risk events such as running, falling, animal intrusions, and illegal cycling may
escalate but do not cause immediate harm. Low-risk events such as loitering, littering, and walking
on grass pertain to order maintenance or environmental management.

To ensure high-quality and comprehensive labeling, A2Seek employs a rigorous multi-level anno-
tation framework. This process includes spatiotemporal bounding boxes, fine-grained categories,
and structured reasoning paths. A multi-stage annotation process was designed, encompassing trig-
ger identification, anomaly diagnosis, causal reasoning, reflection, and seeking phases (as shown
in Figure 1e). Specific formatting rules were enforced to align model-generated responses with
human annotations. During annotation, the model produced multiple candidate explanations, from
which professional annotators selected and refined the most appropriate. The final annotations are
integrated into a reasoning-centric framework, enabling both precise anomaly localization and high-
level semantic understanding. For privacy, all facial regions and identity-related visual attributes are
blurred. Further procedural details are provided in Appendix D.

3.2 Dataset Characteristics and Comparative Analysis

Unlike conventional surveillance datasets, where anomalies often occupy the most salient portions
of the frame, aerial-captured anomalies are typically small, scattered, and heavily context-dependent
due to increased altitude, oblique angles, and limited focal length. As a result, the decisive infor-
mation for anomaly detection lies not in the entire frame but in semantically rich yet spatially tiny
regions, referred to as region-aware anomalies. The A2Seek dataset is specifically curated to address
this challenging setting, providing a benchmark that closely mirrors real-world aerial inspection de-
mands. Table 1 compares A2Seek with existing aerial and ground-based anomaly detection datasets.
As the largest aerial anomaly detection dataset, A2Seek comprises over 2.4 million frames, includ-
ing 398k frames containing anomalies, significantly surpassing other drone-view datasets in both
scale and diversity. The dataset covers 10 major scene categories, such as roadways, sidewalks,
playgrounds, and industrial zones. These categories are further divided into 27 specific sub-scenes,
providing comprehensive coverage of complex real-world environments.

Beyond its scale and diversity, A2Seek is the first aerial anomaly detection dataset to provide natural
language reasoning annotations with precise spatial localization labels. These annotations enable
models to perform deep anomaly understanding and reasoning, bridging the gap between detection
and interpretability. Furthermore, A2Seek explicitly addresses challenges unique to aerial perspec-
tives, such as scene dependency, subtle anomalies, complex backgrounds, and scale variations, while
also integrating multimodal data (RGB and infrared) to handle diverse environmental conditions. In
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summary, A2Seek excels in data modalities, scene richness, and fine-grained annotations, directly
addressing the two core challenges of aerial anomaly detection: spatial localization and seman-
tic generalization. By establishing a robust data foundation and offering clear research directions,
A2Seek sets a new benchmark for advancing aerial video anomaly detection and promoting deeper
exploration in this domain. More details about our A2Seek data are reported in Appendix A.

4 Methodology

Anomaly detection from aerial perspectives poses unique challenges, requiring both precise spa-
tial localization (“Where is the anomaly?”) and comprehensive semantic reasoning (“Why is it an
anomaly?”). To address these challenges, we propose A2Seek-R1, a reasoning-centric framework
specifically designed for aerial anomaly understanding. The framework integrates two key stages:
(1) Supervised Fine-Tuning (SFT), which leverages Graph-of-Thought (GoT) annotations to activate
the model’s initial reasoning capabilities by structuring reasoning into explicit semantic stages, and
(2) Reinforcement Fine-Tuning (RFT), which employs Aerial Group Relative Policy Optimization
(A-GRPO) to refine the model’s reasoning and localization strategies through task-specific reward
functions. Among them, the seeking reward enables the model to dynamically identify regions re-
quiring additional high-resolution context for further analysis, while the length reward encourages
concise answers in simple scenarios and allocates more reasoning effort to complex and challenging
scenes. Through A-GRPO-driven reinforcement fine-tuning, the model not only achieves accurate
anomaly detection but also generates interpretable and verifiable reasoning traces, making it effec-
tive for real-world aerial applications.

STAGE 1: SFT-based Reasoning Activation. The first stage aims to activate the model’s ini-
tial reasoning capabilities through supervised fine-tuning (SFT) on the A2Seek dataset, specifically
designed for aerial anomaly understanding. Each sample consists of an n-frame clip, an anomaly
behavior label, and optional annotations such as different steps of Graph-of-Thought (GoT) reason-
ing or candidate bounding boxes. Missing fields are represented by a placeholder token <NULL>.
To accommodate diverse supervision, we apply a binary mask over the target sequence, activating
gradients only on annotated tokens. The supervised loss is defined as:

LSFT = −E(x,r,b,a)∼DA2Seek

T∑
t=1

mt log πθ(yt | x, y<t), (1)

where DA2Seek is the data distribution, x represents the input frames, r denotes the reasoning se-
quence, b refers to the bounding boxes, and a is the anomaly label. The binary mask mt indicates
whether the t-th token in the target sequence y is supervised (mt = 1) or not (mt = 0). The model’s
output distribution πθ(yt | x, y<t) represents the conditional probability of generating the t-th token
yt, given the input x and the preceding tokens y<t. The loss is computed over all supervised tokens
in the sequence.

To enhance interpretability, we introduce a Graph-of-Thought (GoT) annotation (as shown in Figure
1e) that structures reasoning into explicit semantic stages, including visual signals (<|Trigger|>),
anomaly diagnosis (<|Diagnose|>), causal explanation (<|Reasoning|>), confidence reflection
(<|Reflection|>), and follow-up action (<|Seeking|>). Among these, the <|Seeking|> tag intro-
duces a novel mechanism that enables the model to actively identify regions requiring additional
high-resolution context, rather than merely localizing anomalies. Specifically, the model predicts a
bounding box representing a potential region of interest, rather than a specific object, to be cropped
and analyzed further. This mechanism mimics the behavior of UAVs actively adjusting their view-
points to gather more detailed information. Unlike localization, which aims to pinpoint the exact
position of an anomaly, seeking emphasizes identifying broader regions that warrant further inspec-
tion, enabling the model to effectively handle complex or ambiguous scenarios. These tags are
injected into the target sequence and jointly trained under the same objective, guiding the model to
generate coherent and verifiable reasoning traces. This structured supervision enables the model to
generalize across varying annotation levels, from label-only samples to full reasoning and localiza-
tion instances, providing a foundation for interpretable downstream adaptation.

STAGE 2: RL-based Reasoning Exploration. The second stage refines the model’s reasoning
and localization strategies through reinforcement fine-tuning (RFT). This stage aims at addressing
the dynamic complexity of aerial anomaly detection, where environmental conditions and scene
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semantics vary significantly. Anomaly understanding could be formulated as a sequential decision-
making problem and optimize the model using reinforcement learning. Following [58], we define the
model’s output as a policy πθ(y|x), which represents the model’s output distribution parameterized
by θ. The objective is to maximize the expected reward:

J(θ) = Ey∼πθ(y|x) [R(x, y)] , (2)

where R(x, y) measures the quality of the output y for the given input x. The reward R(x, y) is
composed of multiple components, including format, accuracy, localization, seeking, and length
rewards. Format and accuracy rewards constrain the model to produce outputs in the correct format
and focus on prediction accuracy, while the localization reward evaluates the model’s judgment
of anomaly evidence. The seeking and length rewards hierarchically guide the model to achieve
dynamic reasoning paths. More detailed reward function designs are provided in Appendix B.

Building on this, we formulate reinforcement fine-tuning as a reward-weighted log-likelihood max-
imization problem with prior regularization. Specifically, let X denote the input space, which con-
sists of sequences of aerial video frames, and Y denote the output space, which includes structured
reasoning traces and anomaly prediction. A policy π ∈ Π maps inputs x ∈ X to a distribution over
outputs y ∈ Y . The reinforcement fine-tuning objective is defined as:

π⋆ = argmax
π∈Π

Ex∼DA2Seek
Ey∼π(y|x)[R(x, y)]− β ·DKL(π(y|x) ∥πref(y|x)), (3)

where πref is a reference policy. The KL divergence regularizes π to stay close to πref, with β control-
ling the trade-off between reward maximization and regularization. To implement this efficiently, we
adopt Aerial Group Relative Policy Optimization (A-GRPO). Unlike existing reinforcement learn-
ing approaches [12, 41], our A-GRPO algorithm explicitly incorporates anomaly location and region
seeking stages, making it particularly effective for aerial anomaly understanding. For each input x,
K candidates {y(1), . . . , y(K)} are sampled from a policy group, and reward rankings are computed.
The best-performing candidate is used to update the main policy via gradient ascent:

∇θJ(θ) ≈ ∇θ log πθ(y
(k∗)|x) ·

(
R(x, y(k

∗))− b(x)
)
, (4)

where k∗ = argmaxk R(x, y(k)), and b(x) is a baseline, defined as the mean reward of the group,
to reduce variance during optimization. This reflection-aware RFT stage leverages A2Seek’s com-
prehensive annotations to refine reasoning behaviors, enabling the model to generalize to unseen
environments and adaptively revise predictions. More theoretical analysis on the effectiveness of
our GoT data and seeking mechanism is discussed in the Appendix C.

5 Experiment

5.1 Implementation Details

We employ Qwen2.5-VL-3B-Instruct [4] as the base model due to its strong performance in vision-
language understanding. We employed LoRA [22] to adjust all fully connected layers within the
model, and set a learning rate of 1e−5, using 4 epochs for SFT and 1 epoch for RL. Input resolution
is set to 896 × 448, with 4 frames per sequence. Batch size is 1, and gradient accumulation is
performed over 16 steps. A cosine learning rate scheduler with a warm-up phase (5%) is used. All
experiments are conducted in PyTorch on a platform with an Intel Xeon Platinum 8350 CPU, four
NVIDIA A100 GPUs, and 1,024 GB of memory.

5.2 Overall Performance

To highlight the contributions of our dataset and method, we design the following experimental
settings: (1) Zero-Shot, serving as a baseline without any fine-tuning; (2) RL-Zero, which applies
GRPO with basic format and accuracy rewards; (3) ANS-SFT, utilizing anomaly labels for super-
vised fine-tuning; (4) CoT-SFT, incorporating chain-of-thought to guide inference; and (5) GoT-SFT,
leveraging our graph-of-thought reasoning data to enable structured anomaly understanding. We
evaluate all methods using category-level average precision (APc) for anomaly detection and mean
Intersection over Union (mIoU ) for localization, providing a balanced assessment of classification
and grounding performance.
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Table 2: Performance comparison across different scenarios on the A2Seek benchmark.

Method
Scene Indices

Average
S00 S01 S02 S03 S04 S05 S06 S07 S08 S09

SSRL [32] 11.50 10.20 08.30 09.40 20.10 12.70 05.80 14.20 16.80 11.00 12.00
HSTforU [28] 47.41 50.18 43.52 30.03 29.68 25.01 09.70 37.28 48.72 33.69 47.66
ANDT [26] 10.89 39.00 48.82 25.21 20.20 19.94 30.18 37.68 49.99 28.63 40.42
AnomalyRuler [69] 17.40 15.00 09.80 22.50 25.60 14.90 06.00 19.30 21.70 18.80 17.10
LAVAD [72] 12.80 15.20 11.00 19.50 24.70 20.50 04.30 19.10 22.10 14.90 16.41
Holmes-VAU [74] 17.00 18.50 16.00 23.40 25.00 20.50 13.34 21.12 27.20 17.60 19.97
LLavaVideo [37] 12.00 10.00 16.00 15.00 24.00 13.00 04.00 23.00 12.00 22.00 15.10
InternVL-3.0 [14] 35.62 49.75 48.21 47.08 27.43 23.94 72.40 29.64 36.99 42.33 41.34

Zero-shot [4] 44.83 44.92 35.15 23.88 22.42 19.16 62.80 30.05 29.44 27.62 34.03
RL-Zero 00.56 14.32 07.59 02.06 29.10 04.94 01.60 16.07 18.84 29.10 12.42
ANS-SFT 07.87 32.10 45.89 25.12 32.63 16.79 44.00 34.29 47.95 14.29 30.09
CoT-SFT 42.81 51.36 42.41 62.20 23.47 25.02 73.60 25.36 24.66 39.68 41.06
GoT-SFT 49.44 54.32 54.02 64.96 32.34 23.20 63.20 26.43 54.45 41.80 46.42
A2Seek-R1 51.12 56.54 55.36 75.60 40.84 26.86 81.60 38.21 61.30 43.92 53.14

Scene-wise Performance across Environments. As shown in Table 2, the proposed A2Seek-R1
consistently outperforms other methods in most cases, demonstrating its robustness and adaptability.
Notably, in the Playground (S03) and Rooftop (S06) scenes, our method achieves the highest scores
of 75.6% and 81.6%, respectively, significantly surpassing the second-best method. On average,
A2Seek-R1 achieves a score of 53.14%, which is 19.11% higher than the baseline and 6.52% higher
than GoT-SFT. These results highlight the effectiveness of our proposed method in aerial anomaly
understanding and its strong generalization capability across diverse environments.

Table 3: Evaluation of anomaly detection and localization.

(a) Average precision and language metrics

Method APc BLEU METEOR ROUGE CIDEr Samples/s

Zero-Shot 34.03 0.2835 0.2145 0.3263 0.8147 0.6097
ANS-SFT 31.10 0.3821 0.3452 0.4379 1.0462 0.9174
GOT-SFT 46.42 0.4478 0.3325 0.4439 1.1528 0.2890
A2Seek-R1 53.14 0.4564 0.3543 0.4882 1.2989 0.3267

(b) Localization performance

Method mIoU AP0.00 AP0.25 AP0.50 AP0.75 AP0.90

Zero-Shot 03.50 72.40 03.94 01.81 00.63 0.00
ANS-SFT 17.05 50.70 40.01 31.94 15.74 0.70
GOT-SFT 20.81 43.85 35.88 27.60 16.01 1.03
A2Seek-R1 26.03 53.31 45.43 35.33 20.11 4.34

Language Semantic Evaluation. To evaluate the ability of models to handle semantic ambiguity
and similarity in aerial anomaly understanding, we adopt language-based metrics such as BLEU [50],
METEOR [5], ROUGE [36], and CIDEr [63]. These metrics capture both lexical and structural
alignment between predicted and ground-truth descriptions. As shown in Table 3a, A2Seek-R1
achieves the highest scores across all metrics, with BLEU of 0.4564, METEOR of 0.3543, ROUGE
of 0.4882, and CIDEr of 1.2989. The throughput is 0.3267 samples per second, which is lower than
ANS-SFT (0.9174) and Zero-Shot (0.6097) because our method allocates a larger token budget at
test time for reasoning, leading to better anomaly understanding. These results demonstrate its abil-
ity to generate accurate and semantically meaningful descriptions even under ambiguous scenarios.
By leveraging visual evidence during reasoning, A2Seek-R1 ensures that its language-based predic-
tions are contextually grounded, effectively bridging the gap between semantic understanding and
visual perception.

Supporting Region Grounding Accuracy. To further evaluate whether the model relies on vi-
sual information to understand anomalies, we assess its localization performance using both mIoU
and AP under varying IoU thresholds. As shown in Table 3b, A2Seek-R1 achieves the highest
mIoU score of 26.03%, outperforming Zero-Shot and GoT-SFT by 22.53% and 5.22%, respectively.
Notably, although Zero-Shot and ANS-SFT achieve relatively high AP values in AP0.00, this is
mainly attributed to their tendency to predict overly broad and vague regions, rather than accurately
indicating the anomalous areas. This limitation is further reflected in their significantly degraded
performance (nearly zero in AP0.90) at higher IoU thresholds, indicating a tendency toward random
guessing. These results confirm that the spatial reasoning mechanism introduced in our approach en-
hances the model’s ability to precisely localize subtle and ambiguous anomalies, thereby improving
both detection accuracy and interpretability for real-world aerial anomaly understanding.

Data Efficiency and Generalization. The in-domain (ID) data in A2Seek includes scenarios
present in the training set, while the out-of-domain (OOD) data comprises unseen scenarios, specif-
ically designed to assess the model’s generalization capability in novel and challenging settings. As
shown in Figure 3, A2Seek-R1 demonstrates both high data efficiency on in-domain data and strong
generalization to out-of-domain scenarios. On ID data (Figure 3b), A2Seek-R1 achieves consis-
tent performance improvements throughout training, whereas GoT-SFT shows stagnation or minor
fluctuations. Notably, on OOD data (Figure 3c), A2Seek-R1 continues to gain accuracy as training
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Figure 3: Performance comparison of different settings on A2Seek benchmark.

progresses, reaching 48.98% at 400 steps, a relative improvement of 4.57%. In contrast, GoT-SFT
degrades from 44.41% to 41.84% over the same period. This observation suggests that A2Seek-R1
not only leverages training data more effectively but also exhibits better robustness under domain
shifts.

Table 4: Ablation studies of the A2Seek-R1 framework.

Idx
Supervised Fine-Tuning Reinforcement Learning Metric

ANS CoT GoT Accuracy Reward Location Reward Seeking Reward APc mIoU

0 3 31.10 12.13
1 3 3 38.24 17.05
2 3 3 46.42 20.81
3 3 3 12.42 09.66
4 3 3 3 52.82 18.77
5 3 3 3 3 51.78 24.03
6 3 3 3 3 3 53.14 26.03

5.3 Ablation Studies

Table 4 presents the results of ablation studies on the A2Seek dataset, analyzing the contributions of
supervised fine-tuning (SFT) strategies and reinforcement learning (RL) reward components.

Impact of Supervised Fine-Tuning on A2Seek. Table 4 (Rows 0-2) evaluate the effect of different
SFT strategies: ANS, CoT, and GoT. Using only ANS (Row 0) achieves a baseline APc of 31.10%
and mIoU of 12.13%. Incorporating CoT (Row 1) improves APc to 38.24% and mIoU to 17.05%,
demonstrating the benefit of chain-of-thought reasoning. Replacing CoT with GoT (Row 2) fur-
ther boosts APc to 46.42% and mIoU to 20.81%, highlighting the effectiveness of goal-oriented
reasoning in establishing a stronger foundation for anomaly detection and understanding.

Impact of Reinforcement Learning Rewards. Rows 3-6 progressively incorporate RL reward
components, including accuracy, location, and seeking rewards. Using only accuracy and location
rewards (Row 5) achieves APc of 51.78% and mIoU of 24.03%. Adding the seeking reward (Row
6) further improves APc to 53.14% and mIoU to 26.03%, achieving the best overall performance.
These results demonstrate that the synergistic integration of all three reward components is critical
for enhancing both detection accuracy and localization precision.

Table 5: Effectiveness of A2Seek-R1 on different base models.

Method APc(%) ∆AP (%) mIoU(%) ∆mIoU(%)

QwenVL-2.5-7B-Instruct 44.65 – 08.24 –
+ A2Seek-R1 57.07 +12.42 29.71 +21.47

InternVL-3.0-2B-Instruct 20.03 – 00.10 –
+ A2Seek-R1 48.76 +28.73 18.89 +18.79

Impact of Foundation Models. As shown in Table 5, we evaluate the generalization of A2Seek-R1
on two additional vision-language models beyond the base model, i.e., QwenVL-2.5-3B-Instruct [4].
On QwenVL-2.5-7B-Instruct [4], it improves AP by 12.42% and mIoU by 21.47%, indicating ef-
fective scaling with capacity. On InternVL-3.0-2B-Instruct [14], it increases AP from 20.03% to
48.76% and mIoU from 0.10% to 18.89%. These results demonstrate consistent gains across model
sizes and architectures, supporting strong generalization and transferability.

5.4 Qualitative Visualization

As illustrated in Figure 4, traditional deep neural networks (DNNs) provide only binary classifi-
cations (normal or abnormal) without explanations or spatial context. Multimodal large language
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<think> In the sequence of images, there is a noticeable 
change in the position of a person near the center-right area 
of the parking lot. The individual appears to be moving 
quickly across the pavement, which suggests a dynamic 
action. The person's rapid movement across the parking lot, 
as indicated by their changing position from one frame to 
another, suggests a high level of speed and urgency. This 
behavior is consistent with running rather than walking or 
standing still. There are no other individuals or objects in 
the immediate vicinity that would suggest alternative 
explanations such as loitering or sneaking. </think>
<answer> ["Running"] </answer>

MLLM

A2Seek-R1

E01S04L2P0A0V0_G009I2F04160

··· ······ DNNs

<answer>["Abnormal"] </answer> <think> In the sequence of images, there is a 
noticeable presence of a person near the parked cars, 
specifically in the area between the vehicles. The 
individual appears to be standing still, which could 
indicate loitering behavior. The person is positioned 
close to the parked cars, remaining stationary across the 
frames. This behavior does not align with typical 
activities such as walking through the parking lot or 
interacting with the vehicles. The lack of movement 
suggests that the individual might be loitering, which 
is defined as lingering without a clear purpose in an 
area where such behavior is unusual. </think>

<answer>["Loitering"]; [[512, 218, 539, 241]] </answer>
<seeking> [450, 166, 607, 306] </seeking>

<think> Two individuals are seen walking across a paved 
area near a building. Their movement appears consistent 
with normal pedestrian behavior, but there is a slight change 
in their posture and direction that warrants closer inspection. 
The individuals are moving along a paved path, which 
suggests they are walking rather than running. However, 
their body language indicates a slight pause or hesitation, 
which could imply they are loitering. Additionally, their 
movement does not seem to follow a straight path, 
suggesting they might be sneaking or avoiding detection. 
</think>
<answer> ["Sneaking"] </answer>

MLLM

A2Seek-R1

E03S04L0P0A0V0_G181I6F01216

··· ······ DNNs

<answer>["Normal"] </answer> <think> The two individuals in the center of the frame appear to be 
engaged in some form of interaction, possibly a conversation, as they 
are standing close to each other and facing each other. Hold on, I 
might have missed something; let me check again. In the sequence of 
images, there are two individuals standing close to each other near the 
center of the courtyard area. Their body language and proximity 
suggest some form of interaction that appears unusual for a public 
space. The individuals remain stationary and close to one another 
across the frames. There is no indication of movement or normal 
conversation that would typically occur in such a setting. Instead, 
their posture and lack of separation suggest a potential conflict or 
confrontation, which aligns with the category of 'Fighting.' </think>

<answer>["Fighting"]; [[464, 263, 507, 287]] 
</answer>

<seeking> <no need> </seeking>

Figure 4: Qualitative results of A2Seek-R1. Beyond predicting anomaly categories, our method
provides reasoning traces and accurately localizes the key regions that support its judgment.

models (MLLMs) improve upon this by generating textual descriptions to explain anomalies but
lack the ability to localize specific regions, limiting their utility in complex aerial scenarios. In
contrast, A2Seek-R1 combines detailed reasoning with precise spatial localization. By reflecting
on individuals’ body language and proximity, the model iteratively refines its understanding, iden-
tifying interactions such as “Fighting” and providing bounding box coordinates to substantiate its
reasoning. Additionally, A2Seek-R1 mimics UAV flight behavior by dynamically focusing on re-
gions of interest, enabling adaptive refinement of predictions and enhancing both detection accuracy
and localization precision.

6 Conclusions

This work introduces A2Seek, a large-scale, reasoning-centric dataset for aerial anomaly under-
standing. Built upon diverse aerial scenarios, A2Seek is meticulously annotated with fine-grained
anomaly labels, spatiotemporal bounding boxes, and structured reasoning graphs. These annota-
tions enable models to not only detect anomalies but also provide interpretable explanations for
“why” and “where” anomalies occur. Building on this benchmark, we introduce A2Seek-R1, a novel
multi-stage reinforcement fine-tuning framework that integrates graph-of-thought (GoT)-guided su-
pervised fine-tuning, and an improved A-GRPO algorithm with tailored reward functions, including
a seeking mechanism that simulates UAV flight behavior. This framework achieves state-of-the-
art performance in both accuracy and interpretability, excelling in complex anomaly scenarios and
demonstrating strong cross-domain generalization capabilities.

Limitations and Societal Impact. Despite strong performance, the complexity of reasoning chains
and strategy learning limits inference speed and deployment efficiency. The framework mainly fo-
cuses on spatial-level anomaly perception, whereas the understanding and modeling of long-duration
temporal anomalies are still limited, which we regard as an important avenue for future exploration.
Additionally, given its potential applications in sensitive areas like public safety, privacy protection
and algorithmic fairness must be prioritized to avoid societal risks from misjudgments.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction state that the paper (i) releases A2Seek, a large-
scale, multimodal UAVview dataset with fine-grained temporal, spatial and reasoning anno-
tations, and (ii) proposes A2Seek-R1, a multi-stage reinforcement fine-tuning framework
with tailored reward functions that markedly boosts detection accuracy and interpretability;
they also emphasise the novelty of simulating UAV motion via a seeking mechanism and
report consistent performance gains across in-domain and out-of-distribution tests. These
claims are precise, limited to the datasets scope and the demonstrated algorithmic improve-
ments, and they align with the detailed contributions and experimental evidence presented
later in the paper, so they accurately reflect the works contributions and boundaries.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The section titled “Discussion” and the appendix section titled “Limitations,
Open Challenges and Future Directions” explicitly outlines the current shortcomings.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The manuscript’s technical content is centred on releasing the reasoning-
centric A2Seek dataset and designing an RL-based fine-tuning framework.
Justification: The manuscript’s technical content is centred on releasing the A2Seek dataset
and designing an RL-fine-tuning framework; although it introduces several scoring func-
tions, reward equations and upper/lower-bound inequalities to motivate the algorithm (e.g.,
the reflection-reward inequality and the seeking bound analysis) , these expressions are il-
lustrative rather than formal theoremsnone are numbered, no complete set of assumptions
is stated, and no rigorous proofs are provided in the main text or appendix. Experimental
benchmarking that shows the method works belongs to empirical validation, not to theo-
retical results. Therefore the checklist item on Theory assumptions and proofs should be
marked NA, indicating that the paper does not claim formal theoretical results requiring
full proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5 (Experiment) discloses every critical element needed to replicate
the study.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The appendix makes the release plan explicit: all annotations are “released
as COCO-VID-style JSON files” and “the final dataset and its metadata are distributed
in read-only form under a click-through licence that forbids re-identification”; the same
supplemental bundle provides the annotation GUI, data-handling scripts and evaluation
code together with step-by-step commands, so any group can download the data, run the
scripts and exactly reproduce the results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The main papers Implementation Details lists the foundation model, fine tun-
ing method, down-sampling input resolution (896 × 448), optimiser, learning rate schedule,
weight-decay and etc.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: This paper follows standard experimental practices in computer vision, report-
ing average performance using widely adopted metrics. While explicit error bars or statisti-
cal significance tests are not included, the reported results are consistent across benchmarks
and reproducible under the same settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Please see Sec. 5 (“Experiment Detail”), where lists the GPU hardware configuration as
four NVIDIA A100 40 GB GPUs for running all experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed and adhered to the NeurIPS Code of Ethics: all
UAV videos were captured in public spaces with local authority approval, all individuals in-
volved in the data collection, including actors and annotators, received appropriate compen-
sation in accordance with institutional and legal guidelines, personally identifying elements
(faces, licence plates) are automatically blurred before release, no sensitive attributes were
inferred, and the dataset licence explicitly forbids re-identification or military use; thus the
research respects privacy, fairness, safety and legal compliance in every aspect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The manuscript devotes a titled subsection Limitations and Societal Impact
in the discussion part, together with an earlier Privacy Preservation, Licensing and Ethical
Compliance appendix, to address both sides of the societal ledger. On the positive side,
it argues that releasing a richly annotated 4K UAV-video corpus will advance research
on generalisation, robustness and interpretability in aerial anomaly detection and thereby
strengthen public-safety applications in complex campus environments. On the risk side,
it recognises privacy threats and possible misuse for surveillance; concrete mitigations are
spelled outevery frame passes an offline sanitisation pipeline that irreversibly scrambles
faces and licence plates, and dataset access is gated by a click-through, non-commercial
licence that forbids re-identification or military use. By explicitly balancing benefits against
hazards and describing safeguards, the paper satisfies the checklist requirement to discuss
both potential positive and negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justificat1ion: The paper provides detailed descriptions of the safeguards implemented, in-
cluding irreversible anonymization of sensitive information, restricted access to the dataset/-
model, and the use of a click-through license agreement to prevent unauthorized use or
misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All third-party assets are properly credited and their terms respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: The new A2Seek dataset is distributed with a structured README, JSON
metadata schema, licence, collection protocol and usage examples (see Appendix E), so all
new assets are properly documented and released together with their documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [Yes]
Justification: All individuals involved in the data collection, including actors and annota-
tors, received appropriate compensation in accordance with institutional and legal guide-
lines.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The work does not involve crowdsourcing or research with human subjects;
therefore IRB approval is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: This work employs a multimodal large language model to assist in the data an-
notation process and also uses a multimodal LLM as a backbone model in the experimental
design.
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Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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A Data Collection, Annotation and Statistics

A.1 Dataset Acquisition Protocol

To address the challenges of spatial localization and scene generalization, the data collection process
was carefully designed to maximize diversity and realism. The A2Seek dataset was collected using
a DJI M30T drone equipped with wide-angle, telephoto, and infrared cameras. The drone operated
at varying altitudes (10 to 60 meters) and speeds (0 to 20 m/s) to capture a wide range of scale vari-
ations for anomalous objects. Flight trajectories included hovering, linear cruising, curved circling,
and area scanning, reflecting dynamic viewpoint changes. The dataset comprises 542 untrimmed
4K videos recorded at 30 FPS across 10 campus environments, subdivided into 27 sub-scenes. Each
video has an average duration of 153.74 seconds, with a total duration exceeding 23 hours. Among
these, 19.3 hours feature normal behaviors, while 3.79 hours capture diverse and complex anoma-
lies, including parallel, sequential, occluded, and scene-dependent events. As shown in Figure 5,
our dataset includes over 20 anomaly categories, such as falling, fighting, playing with water, and
jaywalking. Spanning nearly a year of recording, it covers various seasons, times of day (daytime,
nighttime, twilight), and environmental conditions, including clear, cloudy, foggy, and rainy weather
(as shown in Figure 6). This diversity provides a robust foundation for developing and evaluating
aerial anomaly detection models. Table 6 presents a unified overview of all categorical codes used
in this paper. The Type column groups related codes, the Code column lists shorthand labels, and
the Definition column provides detailed descriptions.

Figure 5: Representative anomaly types in the A2Seek dataset. Our dataset covers a broad spectrum
of anomalous behaviors across different risk levels, highlighting the diversity and complexity of
aerial anomaly detection.

Figure 6: Examples of scenes from the A2Seek dataset.
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Figure 7: Fourstage annotation workflow. Step 1 (blue) Temporal annotators use our in-house GUI
to mark the start/end frames and class of every anomalous episode, exporting a JSON timeline.
Step 2 (salmon) For the first frame of each event, experts draw a bounding box around the anoma-
lous region and supply a natural-language description, yielding single-frame spatial seeds. Step 3
(green) A pretrained tracker propagates each seed through the clip to form full-length trajectories;
an automated checker screens the results, flags uncertain cases for human correction, and funnels
all approved tracks into the spatial-label repository. Step 4 (violet) Vision-language models (VLMs)
ingest the temporal tags, spatial tracks, and human captions; via chain-of-thought reasoning, they
merge these cues into consolidated frame-level annotations, producing the final label set.

Our collection workflow for A2Seek streamlines a campus drone survey into a single, reproducible
loop while preserving fine-grained control:

• Scene & Time: ten functional zones, further divided into 27 sub-scenes, are revisited
across four seasons, three day parts (twilight: 06:00 to 08:00 or 16:00 to 19:00, daylight:
10:00 to 16:00, night: 19:00 to 22:00) and five weather classes, producing initial multi-
modal videos.

• Airframe & Optics: a DJI M30T (1-inch CMOS, 20 MP, 3,840×2,160@30 fps) plus a co-
aligned 640×512 thermal sensor for nocturnal sorties; the on-board GNSSIMU logs pose
at 50 Hz.

• Flight Envelope: grid missions with 80% side and 70% forward overlap (for routine cov-
erage), dynamically switchable to follow or orbit mode for rare anomalies, at altitudes of
10–60 m above ground level (≤ 30 m at night) and ground speeds of 0–15 m/s.

• Data Handling: RGB, thermal and telemetry streams are recorded to a 512 GB UHS-II
SD card, then mirrored to an offline workstation upon landing; filenames are encoded with
UTC timestamps and scene IDs for instant indexing.

• Quality Gate: all sorties are checked daily by two senior annotators for focus, exposure
and occlusion. Flights flagged for privacy concerns or other disqualifying conditions are
scheduled to be re-flown.

This lean yet rigorous protocol provides high-resolution, context-rich footage tailored to drone-view
anomaly detection while keeping field operations swift and fully repeatable.

A.2 Annotation Workflow and Quality Assurance

Dataset Annotation. The A2Seek dataset employs a rigorous multi-level annotation framework to
ensure high-quality and comprehensive labeling. As illustrated in Figure 7, the annotation process
begins with manually labeling anomaly categories and identifying relevant regions in keyframes,
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Table 6: Unified code definitions for scenes, actions, parameters, weather conditions, and risk levels.

Type Code Definition

Scene

S00 Miscellaneous: other or unspecified scenes
S01 Roadway: street and vehicular paths
S02 Sidewalk: pedestrian walkways along roads
S03 Playground: open recreational areas
S04 Open Area: unstructured outdoor space
S05 Park: landscaped public green spaces
S06 Rooftop: building rooftop areas
S07 Entrance: school gate or entryway region
S08 Wall Zone: perimeter walls and boundaries
S09 Academic Building: building facade and courtyard

Action

E00 Normal: no anomalous activity
E01 Loitering: prolonged stationary presence near entrances or perimeter areas
E02 Trespassing on Lawn: entering grass areas illegally
E03 Running: fast movement on foot in restricted or non-sport areas
E04 Animal: appearance of animals within the scene
E05 Vandalism: intentional damage to property
E06 Falling: loss of balance leading to a fall
E07 Unable to Stand: person unable to recover after a fall
E08 Playing with Water: interacting with fountains or water bodies
E09 Unconventional Vehicle: use of nonstandard or unauthorized vehicles
E10 Wall Climbing: scaling vertical surfaces
E11 Carrying Weapon: person holding or drawing a weapon
E12 Jaywalking: crossing road outside crosswalk
E13 Bicycling: riding a bicycle in pedestrian or restricted areas
E14 Bullying: aggressive behavior towards others
E15 Lost Item: dropping or leaving behind personal belongings
E16 Sneaking: moving stealthily or furtively
E17 Theft: unauthorized taking of property
E18 Fighting: physical aggression between persons
E19 Robbery: theft involving force or threat
E20 Littering: discarding waste improperly in public areas

Height H0 10–20 m (Low altitude flight)
H1 20–50 m (High altitude flight)

Velocity
M0 0–3 m/s (Low speed)
M1 3–10 m/s (Moderate speed)
M2 10–20 m/s (High speed)

Time of Day
L0 10:00–16:00 (Daytime)
L1 08:00–10:00, 16:00–18:00 (Morning/Evening)
L2 18:00–22:00 (Evening/Night)

Weather

W0 Clear: no precipitation or clouds
W1 Cloudy: partial cloud cover
W2 Overcast: full cloud cover
W3 Rain: rainfall conditions
W5 Fog: reduced visibility due to fog
W8 Night: after sunset until pre-dawn

Risk Level
High-risk Actions likely to cause serious harm or property damage (E05, E11, E14, E17, E18, E19)
Moderate-risk Actions that may result in moderate safety concerns or disruption (E06, E07, E09, E10, E12, E16)
Low-risk Actions considered minor with minimal safety risk (E00, E01, E02, E03, E04, E08, E13, E15, E20)

which are then extended to adjacent video frames using Grounded-SAM-2 [53, 54]. These anno-
tations undergo cross-verification by human annotators to ensure consistency and accuracy. Based
on this initial information, prompts were designed to guide a vision-language model in generat-
ing detailed annotations, including region-level, frame-level, and segment-level information. The
model-generated annotations were further reviewed and refined by professional annotators to ensure
alignment with human-labeled categories.

To enhance the reliability of the annotations, a multi-stage process was designed, encompassing trig-
ger, diagnose, reasoning, reflection, and seeking phases. Specific formatting rules were employed
to align the model outputs with human annotations, ensuring consistency and interpretability. Dur-
ing this process, the model was guided to generate multiple responses, from which professional
annotators selected the most appropriate ones for further refinement. The finalized annotations were
integrated into a reasoning-centric framework, providing structured explanations that include spatial
localization, fine-grained category labels, and causal reasoning paths. This process ensures that the
dataset not only supports precise anomaly detection but also facilitates in-depth semantic reasoning.
The annotation framework includes precise timestamps for each anomalous event, identifying the
specific frame sequences where anomalies occur. Spatial localization is achieved through bound-
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Figure 8: Screenshots of our in-house annotation toolkit. (a) Temporal labeling interface: annotators
record only the start frame, end frame and anomaly category for each event. (b) Frame browser:
allows rapid navigation to any frame in a clip so that timestamp alignment between raw videos
and labels inside the same video group can be visually verified. (c) Label-transfer panel: human
validators inspect SAM-generated masks and copy only approved instances into the final ground-
truth store, filtering out noisy or redundant versions. (d) Single-frame spatial labelling: experts
draw a bounding box for every anomaly, attach a free-text description and supply key-words that
drive the subsequent Grounding-SAM tracking step.

ing boxes that accurately mark the positions of anomalous objects, ensuring high precision and
reliability in anomaly detection. Additionally, natural language explanations describe the causes
and contextual background of anomalies, forming dynamic reasoning paths based on visual scene
content. To maintain data quality, low-quality videos were removed, and privacy-sensitive informa-
tion, such as faces and license plates, was processed to ensure compliance with ethical standards.
This meticulous annotation process ensures that the A2Seek dataset provides a robust foundation
for developing and evaluating aerial anomaly detection models in complex scenarios. Fifteen do-
main specialists spent roughly one month creating the A2Seek labels. The pipeline concentrates on
three elementstemporal boundaries, spatial trajectories, and textual descriptionsimplemented with
lightweight in-house tools (as shown in Figure 8) and a round-robin verification scheme. All outputs
are released as COCO-VID-style JSON files.

Temporal Boundaries. We built a browser-based tool that lets an annotator scrub through each
clip and press Start/End buttons while selecting one of the 20 anomaly classes. Every video is
labelled independently by two experts; a third reviewer resolves mismatches. The final time-stamps
are exported to temporal_labels.json together with the flight metadata recorded on location.

Spatial Trajectories. For the first frame of each temporally marked event, an expert draws a
bounding box and writes a short noun phrase (e.g., “Bicycle”). Two complementary tracking modes
are then launched:

• BBox-only: the seed box is propagated frame-by-frame with a pretrained tracker.

• Keyword-guided: Grounding DINO(Grounding DEtection with Improved deNoising an-
chor boxes)[73] detects all boxes matching the phrase; the one with highest IoU to the
seed is chosen, and Grounding-SAM(Grounding Segment Anything Model)[55] refines
and tracks the mask.
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The two results are merged, and a second annotator scrolls through the track to accept or flag it.
Flagged cases are re-seeded or re-edited until they pass inspection. Approved trajectories are stored
in spatial_labels.json.

Textual Descriptions. Grounding-SAM’s <Caption> head produces frame-level and clip-level
captions. In addition, annotators provide a multi-steps description for every anomaly to capture
intent and context. Captions are lightly proof-read before being written to text_labels.json.

Unlike CoT-RAG [31], which models factual relationships between knowledge units, GoT focuses
on structuring the reasoning trajectory. This design allows adaptive control of reasoning depth in
aerial-view anomaly understanding, where scene complexity and anomaly subtlety vary widely.

Graph-of-Thought (GoT) explicitly structures reasoning through stage-specific tags inserted into
the generated sequence: <|Trigger|>, <|Diagnose|>, <|Reasoning|>, <|Reflection|>,
<|Seeking|>.

Each stage represents a distinct cognitive operation:

• Trigger: Scene perception and anomaly signal activation.

• Diagnose: Hypothesis formation for possible anomaly categories.

• Reasoning: Contextual analysis and evidence-driven judgment.

• Reflection: Self-evaluation or consistency check of reasoning.

• Seeking: Optional localization or reference search for key regions.

Each stage is skippable, allowing GoT to shorten reasoning chains for simple scenes and extend
them for complex ones. We provide below two representative GoT annotations illustrating both
simple and complex reasoning cases.

GoT Annotation Example (a): Simple Scene (Normal)

{
"trigger": "No individuals or objects are present in the scene. The environment consists of a
running track, a soccer field, and an adjacent area with no visible activity or anomalies.",
"diagnose": ["Normal"],
"reasoning": "<no need>",
"reflection": "<no need>",
"seeking": "<no need>"
}

GoT Annotation Example (b): Complex Scene (Lost Item)

{
"trigger": "In the sequence of images, there is a noticeable change in the lower left area of
the frame. Specifically, a person appears to be walking along a pathway near the edge of the
lawn. This individual’s presence was not evident in the initial frames but becomes apparent as
the sequence progresses.",
"diagnose": "Possible anomaly categories include ‘Trespassing on Lawn’ or ‘Lost Item’. The
appearance of the person near the edge of the lawn could indicate an unusual presence, especially
if they are not supposed to be in that area. Alternatively, the person might have dropped
something, which would classify as a ‘Lost Item’.",
"reasoning": "The person is seen moving along a designated pathway, which suggests normal
pedestrian behavior. However, their proximity to the lawn edge raises suspicion. Upon closer
inspection, there is no direct indication of the person interacting with the lawn itself, such as
stepping onto it. Instead, the focus shifts to the possibility of a lost item, as the person’s
movement does not suggest any abnormal interaction with the environment beyond walking.",
"reflection": "Given the lack of direct interaction with the lawn and the person’s adherence to
the pathway, the most plausible explanation is that the person has dropped an item. This aligns
with the category ’Lost Item’, as the person’s movement pattern does not suggest trespassing but
rather a search for something they may have misplaced.",
"seeking": "[270, 170, 582, 447]"
}

These examples illustrate how GoT represents reasoning as a semantic graph of thought stages,
bridging perception and interpretation in an interpretable and controllable manner.
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A.3 Dataset Features

Anomaly Duration The anomalous events in the A2Seek dataset can be divided into three cate-
gories according to their duration: long-term, short-term, and instantaneous anomalies. Long-term
anomalies are generally difficult to identify from a single frame and require extended contextual
information for accurate judgment; such anomalies are often somewhat predictable, for example,
prolonged loitering in restricted areas. Short-term anomalies last for a shorter period and typically
require certain prior knowledge for detection, though some can still be recognized from individual
frames; for instance, running across a pedestrian walkway may constitute a short-term anomaly.
Instantaneous anomalies occur extremely rapidly, usually within only a few frames, making them
difficult to detect. For instance, in theft scenarios, the entire action may occur in an instant, thereby
complicating the identification process.

S00 S01 S02 S03 S04 S05 S06 S07 S08 S09 Sum
W0 6 31 23 22 52 32 5 13 17 0 201
W2 12 9 5 35 37 25 2 5 2 0 132
W3 0 18 1 0 8 29 5 8 0 0 69
W1 2 3 3 18 14 1 0 5 0 1 47
W5 0 0 0 0 0 0 0 0 0 6 6
Sum 20 61 32 75 111 87 12 31 19 7 455

Figure 9: Summary of weather, time, and scene types in our dataset. W0, W1, W2, W3, and W5
represent clear, cloudy, overcast, rainy, and foggy conditions, respectively, while S00 to S09 denote
various scenes such as pathways and courtyards. The dataset covers recordings from morning, noon,
and afternoon, excluding nighttime due to weather capture limitations. Out of 542 total videos, only
455 are included in the analysis.

Scene-dependent Anomaly Scene-dependent anomalies are a significant feature of the A2Seek
dataset, encompassing behavior anomalies that depend on specific scene contexts and occlusion
anomalies caused by environmental obstructions. Scene-dependent anomalies can be categorized
into two types: cross-video-segment scene-dependent anomalies, where a behavior that appears
normal in one segment may be anomalous in another (as shown in Figure 10), and drone-specific
scene-dependent anomalies, influenced by dynamic viewpoint shifts within the same segment (as
shown in Figure 11). Occlusion anomalies also frequently occur in drone views due to obstruc-
tions such as trees or buildings, posing unique challenges that require models to infer anomalies by
leveraging temporal cues from preceding and succeeding frames. These complexities make drone-
view anomaly detection substantially different from traditional surveillance settings, highlighting
the importance of context-aware analysis.

Serial and Parallel Anomalies Our dataset encompasses both serial anomalies and parallel
anomalies. Serial anomalies refer to multiple anomalies occurring consecutively within the same
time period, often exhibiting causal relationships, i.e., the occurrence of one anomaly triggers an-
other. In contrast, parallel anomalies involve multiple anomalies occurring simultaneously within
the same time period. These anomalies are generally independent of one another, lacking any causal
connections. Figure 12 demonstrate the serial and parallel anomaly in A2Seek dataset.
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Figure 10: (a) Scene-dependent anomalies in different environments: An object left on the road
is anomalous, while on the playground it is normal. (b) Scene-dependent anomalies in the same
environment: Crossing outside a crosswalk is anomalous, while within it is normal.

Figure 11: The left image shows two individuals chasing each other before entering the shadow of a
tree. The middle image depicts the moment of occlusion, where they are fully obscured. The right
image shows them emerging from the shadow after occlusion.

B Reward Design for Aerial Anomaly Understanding

Format Reward To encourage structured and interpretable outputs, we introduce a format adher-
ence reward. The model is required to organize its reasoning and final answer within optional
intermediate steps, i.e., <think>, <seeking>, and <answer> tags. A reward of 1 is given for strict
adherence to the template, while a reward of 0 is assigned if the format deviates.

Accuracy Reward. Let ĉ and c∗ denote the predicted and reference anomaly classes extracted from
the <answer> tag. The scalar reward Rcls is defined as Rcls = 1 when ĉ = c∗ (exact match);
Rcls = 0.1 when ĉ ̸= c∗ yet both classes are abnormal (i.e., ĉ ̸= Normal and c∗ ̸= Normal); and
Rcls = 0 in all other cases, including missing predictions. This scheme awards full credit for correct
categorisation, partial credit for correctly flagging abnormality while misidentifying the subtype,
and no credit for normalanomaly confusion or omitted labels.

Localization Reward. The localization reward Rloc is defined as the Intersection over Union (IoU)
between the predicted bounding boxes B̂ and the ground truth boxes B∗. This reward encourages
the model to focus on the most relevant regions of the input, thereby improving its ability to identify
and understand anomalies in complex aerial scenes.
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Figure 12: (a) shows a robbery followed by a chase, representing a serial anomaly. (b) depicts
simultaneous anomalies at two locations, representing parallel anomalies.

Seeking Reward. The seeking reward Rseek is designed to incentivize the model to determine
the necessity of additional high-resolution context and, when required, to precisely localize the
corresponding regions. Formally, it is expressed as Rseek = I[ŝ = s∗] · IoU(B̂, B∗), where s∗

and ŝ are the ground truth and predicted seeking decisions, and IoU(B̂, B∗) measures the overlap
between the predicted bounding box B̂ and the ground truth B∗. This formula rewards the model
for directly outputting predictions in simple scenarios, while encouraging it to simulate the process
of focusing on suspicious areas by cropping and analyzing these regions for further inspection in
complex scenarios.

Length Reward. To address the overthinking phenomenon [56] in simple scenarios, we couple
answer correctness with reasoning length L (tokens in the <think> segments). If the answer is
correct we favour brevity, setting Rd = 1

log(1+L)
; if it is wrong we encourage elaboration with

Rd = min(L/Lmax, 1), where Lmax equals the model’s maximum output length. The reward is zero
whenever either <think> or <answer> is missing.

C Discussed on the effectiveness of A2Seek-R1

C.1 Self-Correction via Reflection with Reasoning Annotations

To further analyze how GoT-guided reasoning annotation in our A2Seek improves reasoning quality,
we study model behavior with and without access to reasoning annotations.

Without GoT-guided Reasoning Annotations. For input x, the model predicts y0 based on a
scoring function sθ(x, y):

Pθ(y | x) = exp(sθ(x, y))∑
y′ exp(sθ(x, y′))

. (5)

If y0 is incorrect, there is no mechanism to revise it.

With GoT-guided Reasoning Annotations. Reasoning annotations prompt the model to evaluate
its own output and produce a refined prediction ỹ:

Pθ(ỹ | x, y0) ∝ exp (sθ(x, ỹ) + λ∆r(x, y0, ỹ)) , (6)

where ∆r(x, y0, ỹ) = R(x, ỹ)−R(x, y0) is the reflection-induced reward difference.

Assuming auxiliary rewards remain unchanged (e.g., localization), we approximate:

∆r(x, y0, ỹ) ≈ Rcls(x, ỹ)−Rcls(x, y0). (7)

with

Rcls(x, y) = I[y = y∗], ∆r(x, y0, ỹ) = I[y0 ̸= y∗ ∧ ỹ = y∗]− I[y0 = y∗ ∧ ỹ ̸= y∗]. (8)

This reward difference yields a reflection-aware update:

∆θ = −η∇θE[∆r(x, y0, ỹ)]. (9)
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Finally, the improvement in expected classification reward is lower-bounded by:

E[Rcls(ỹ)]− E[Rcls(y0)] ≥ ηλE[∆r]. (10)

This analysis supports our empirical observation that reflection-guided self-correction leads to con-
sistent gains in both accuracy and interpretability, and further highlights the value of structured
annotations provided in A2Seek. In summary, the reflection mechanism enables the model to revise
suboptimal predictions by leveraging auxiliary hints and structured annotations, proving especially
beneficial in scenarios with subtle or ambiguous anomalies. However, when the input information
itself is insufficient (e.g., incomplete visual context or occlusions), self-correction alone may fail to
imagine the missing clues. This motivates us to introduce a seeking mechanism that actively queries
for additional data, as detailed in the next section.

Seeking Mechanism. In scenarios where the input information is insufficient for accurate reason-
ing, the <seeking> mechanism allows the model to actively query for additional context, bridging
the gap between the available input and the required information for correct predictions. To for-
malize this, we leverage the Information Bottleneck (IB) theory [24], which balances the trade-off
between the sufficiency of information for the task and the complexity of the representation.

Let Iinput denote the information provided by the input x, and Irequired represent the total informa-
tion needed for accurate reasoning. If Iinput < Irequired, the model’s reasoning process is under-
constrained, leading to ambiguous or incorrect predictions. The <seeking> mechanism dynami-
cally retrieves additional information Iseek, such that the total information available becomes:

Itotal = Iinput + Iseek.

The seeking reward Rseek is designed to encourage the model to query for Iseek only when Iinput is
insufficient. Formally, the reward is defined as:

Rseek =

{
β · Iseek

Irequired
, if Iinput < Irequired,

0, otherwise,

where β is a scaling factor that controls the weight of the seeking reward. This formulation ensures
that the model is incentivized to seek additional information only when it is necessary for accurate
reasoning.

Information Bottleneck Perspective. From the perspective of the Information Bottleneck theory,
the <seeking> mechanism can be viewed as a way to optimize the mutual information I(X;Y )
between the input X and the output Y , while minimizing the complexity of the intermediate repre-
sentation Z. The objective can be expressed as:

LIB = I(X;Z)− λI(Z;Y ),

where Z represents the information retrieved through <seeking>, and λ balances the trade-off
between retaining sufficient information for the task and minimizing unnecessary complexity.

By incorporating the seeking reward Rseek, the model dynamically adjusts I(Z;Y ) based on the
complexity of the input. For simple cases where Iinput ≈ Irequired, the model minimizes I(Z;Y ) by
avoiding unnecessary seeking. For complex scenarios where Iinput ≪ Irequired, the model increases
I(Z;Y ) by retrieving additional information, ensuring robust reasoning.

Unified Framework for Seeking and Reasoning. The seeking reward integrates seamlessly with
the A-GRPO algorithm, influencing both the reflection reward ∆r(x, y0, ỹ) and the policy update.
Specifically, the total reward R(x, y) now includes Rseek as a component:

R(x, y) = Rformat +Racc +Rloc +Rlength +Rseek.

This unified framework ensures that the model balances exploration (querying for additional infor-
mation) and exploitation (using the retrieved information to refine predictions). By dynamically
adjusting the seeking process, the model achieves near-optimal performance across diverse and chal-
lenging UAV scenarios.
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Figure 13: Examples of privacy protection in aerial video frames. (a) License plates are pixelated
to prevent vehicle identification. (b) Facial regions are blurred to anonymize pedestrians. These
anonymization procedures ensure compliance with privacy-preserving standards during dataset re-
lease.

D Privacy Preservation, Licensing and Ethical Compliance

Because human subjects are typically captured at oblique, metre-scale distances in the drone view,
direct identification is already improbable; nevertheless, every frame is passed through an offline
sanitisation pipeline. First, a lightweight YOLO-Face detector isolates facial regions, whose pixels
are then scrambled with block-wise spectral noise in CIELab space and re-integrated via Poisson
blending, leaving no reversible biometric cues while preserving motion and silhouette statistics for
anomaly-detection research.

Although licence plates are rarely resolvable at the recorded altitudes, a human-in-the-loop audit
team inspected every frame and manually applied the same irreversible scrambling procedure to any
plate that remained decipherable. The final dataset and its metadata are distributed in read-only form,
and access is gated by a click-through licence that explicitly forbids re-identification attempts and
extends identical non-commercial, attribution requirements to all derivative models.

E Limitations, Open Challenges and Future Directions

We introduce A2Seeka largescale, multimodal UAV-view dataset enriched with dense bounding-
box tracks and sentence-level descriptionsand A2Seek-R1, a multi-stage RL-fine-tuning framework
that not only detects anomalies but also explains where and why they occur. To date, we measure
performance with frame-level average precision and mean IoU, but our richly annotated data enable
much more: future work will add region-aware metrics (e.g., temporal IoU of predicted vs. ground-
truth tubes) and spatio-temporal localization scores that jointly reward correct timing and placement
of anomaly predictions. Moreover, the moving UAV perspectivewhere objects shrink with altitude,
perspective shifts continuously, and the camera itself panscalls for bespoke evaluation criteria that
penalize false alarms on distant clutter more heavily and incentivize early anticipation of emerging
anomalies.

Methodologically, a UAV frame offers far richer cues than a static CCTV image. Parallax reveals
3D layout, rotor vibration modulates motion patterns, and onboard audio can flag sudden events
like collisions or alarms. Building on this, forthcoming models will fuse high-resolution appearance
with optical flow, depth priors and language grounding, while dynamically adapting their receptive
fields as the drone zooms or sweeps its view. By mining these latent, multimodal signals, we aim
to push anomaly detection beyond asking whether something is wrong toward explaining what is
wrong, where it happens and why it matters.

Societal Impact

Our proposed dataset focuses on abnormal event detection from UAV (Unmanned Aerial Vehicle)
perspectives, with the primary goal of enhancing public safety and promoting robust perception mod-
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els for long-range, real-time surveillance in open environments. This effort holds several positive
societal impacts:

• Safety and early warning: UAV-based monitoring allows timely detection of anomalous
behaviors in large-scale outdoor areas (e.g., campuses, industrial zones), potentially pre-
venting incidents such as violence or theft.

• Technological advancement: The dataset promotes the development of embodied multi-
modal AI models capable of spatial-temporal reasoning and active scene understanding.

• Academic contribution: It fills a gap in existing datasets by providing controlled abnor-
mal scenarios with diverse contextual challenges, enabling reproducible and fine-grained
benchmarking for the research community.

Despite these benefits, we recognize potential negative societal impacts, such as:

• Privacy concerns: UAVs capture aerial footage, which may inadvertently include individ-
uals or locations without consent.

• Risk of misuse: The dataset or associated models could potentially be adapted for surveil-
lance beyond legitimate or ethical use cases.

To mitigate these risks, we take several strict measures:

• Ethical review and anonymization: All collected data undergoes internal ethical review.
No original raw video data is released; only extracted visual features and annotations are
provided.

• Identity protection: All identifying visual information (e.g., faces, license plates, etc.) is
blurred or removed. No personal metadata is stored or shared.

• Controlled data collection: All actors performing abnormal events are volunteers from our
research lab, who participated with full informed consent and received fair compensation.

• Transparency and access control: We provide access to visual features and metadata un-
der the CC BY-NC-SA 4.0 license, strictly for academic, non-commercial research. Video
URLs are included only to promote reproducibility, and content access remains subject to
platform-level permissions.

We believe these efforts ensure that our work advances the field of multimodal abnormal event
understanding in a safe, ethical, and socially beneficial manner.
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