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Abstract

Motivated by the phenomenon of strategic agents gaming a recommender system to
maximize the number of times they are recommended to users, we study a strategic
variant of the linear contextual bandit problem, where the arms can strategically
misreport privately observed contexts to the learner. We treat the algorithm design
problem as one of mechanism design under uncertainty and propose the Optimistic
Grim Trigger Mechanism (OptGTM) that incentivizes the agents (i.e., arms) to
report their contexts truthfully while simultaneously minimizing regret. We also
show that failing to account for the strategic nature of the agents results in linear
regret. However, a trade-off between mechanism design and regret minimization
appears to be unavoidable. More broadly, this work aims to provide insight into
the intersection of online learning and mechanism design.

1 Introduction
Recommendation algorithms that select the most relevant item for sequentially arriving users or
queries have become vital for navigating the internet and its many online platforms. However,
recommender systems are susceptible to manipulation by strategic agents seeking to artificially
increase their frequency of recommendation [31, 33, 38]. These agents, ranging from sellers on
platforms like Amazon to websites aiming for higher visibility in search results, employ tactics such
as altering product attributes or engage in aggressive search engine optimization [29, 32]. By gaming
the algorithms, agents attempt to appear more relevant than they actually are, often compromising the
integrity and intended functionality of the recommender system. Here, the key issue lies in the agents’
incentive to manipulate the learning algorithm to maximize their utility (i.e., profit). To address this
challenge, we study and design algorithms in a strategic variant of the linear contextual bandit, where
the agents (i.e., arms) have the ability to misreport privately observed contexts to the learner. Our
main contribution is connecting online learning with approximate mechanism design to minimize
regret while, at the same time, discouraging the arms from gaming our learning algorithm.

The contextual bandit [2, 24] is a generalization of the multi-armed bandit problem to the case where
the learner observes relevant contextual information before pulling an arm. It has found application
in various domains including healthcare [37] and online recommendation [25]. We here focus on the
linearly realizable setting [1, 6], where each arm’s reward is a linear function of the arm’s context
in the given round. In the standard linear contextual bandit, at the beginning of round t, the learner
observes the context x∗

t,i ∈ Rd of every arm i ∈ [K], selects an arm it, and receives a reward drawn
from a distribution with mean ⟨θ∗, x∗

t,it
⟩ where θ∗ ∈ Rd is an unknown parameter. In the strategic

linear contextual bandit, we assume that each arm is a self-interested agent that wants to maximize
the number of times it gets pulled by manipulating its contexts.

More precisely, we consider the situation where each arm i privately observes its true context x∗
t,i

every round, e.g., its relevance to the user arriving in round t, but reports a potentially gamed context
vector xt,i to the learner. The learner does not observe the true contexts, but only the reported contexts
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Xt = {xt,1, . . . , xt,K} and chooses an action from this gamed action set Xt. When the learner pulls
arm it, the learner then observes a reward rt,it drawn from a distribution with mean ⟨θ∗, x∗

t,it
⟩. In

other words, the arms can manipulate the contexts the learner observes, but cannot influence the
underlying reward. This is often the case as superficially changing attributes or meta data has no
effect on an item’s true relevance to a user.

In summary, our contributions are:

• We introduce a strategic variant of the linear contextual bandit problem, where each arm, in
every round, can misreport its context to the learner to maximize its utility, defined as the total
number of times the learner selects the arm over T rounds (Section 3). We demonstrate that
incentive-unaware algorithms, which do not explicitly consider the incentives they (implicitly)
create for the arms, suffer linear regret in this strategic setting when the arms respond in Nash
Equilibrium (NE) (Proposition 3.3). This highlights the necessity of integrating mechanism design
with online learning techniques to minimize regret in the presence of strategic arms.

• We begin with the case where θ∗ is known to the learner in advance (Section 4). This simplifies the
problem setup, allowing us to establish fundamental concepts while highlighting the challenges of
designing a sequential mechanism without payments. For this scenario, we propose the Greedy
Grim Trigger Mechanism (GGTM), which incentivizes the arms to be approximately truthful
while minimizing regret. We show that (a) Truthful reporting is an Õ(

√
T )-NE for the arms

(Theorem 4.1) and (b) GGTM has Õ(K2
√
KT ) regret under every NE of the arms (Theorem 4.2).

• Next, we consider the case where θ∗ is unknown to the learner in advance (Section 5). Without
access to the true contexts, estimating θ∗ accurately appears intractable, as the arms can manipulate
the estimation process. Surprisingly, we show that learning θ∗ is not necessary for minimizing
regret in the strategic linear contextual bandit. We construct confidence sets (which may not
contain θ∗) to derive pessimistic and optimistic estimates of our expected reward. These estimates
are used to construct the Optimistic Grim Trigger Mechanism (OptGTM). Despite possibly
incorrect estimates of θ∗, OptGTM bounds the impact of misreported contexts on both regret and
the utility of all arms. We show that (a) Truthfulness is an Õ(d

√
KT )-NE for which OptGTM

has regret Õ(d
√
KT ) (Theorem 5.1) and (b) OptGTM incurs at most Õ(dK2

√
KT ) regret under

every NE of the arms (Theorem 5.2).

• Finally, we support our theoretical findings with simulations of strategic gaming behavior in
response to OptGTM and LinUCB (Section 6). We simulate how strategic arms adapt what
contexts to report over time by equipping the arms with decentralized gradient ascent and letting
the arms (e.g., vendors) and the learner (e.g., platform) repeatedly interact over several epochs.
The experiments confirm the effectiveness of OptGTM and illustrate the shortcomings of incentive-
unaware algorithms, such as LinUCB.

2 Related Work
Linear Contextual Bandits. In related work on linear contextual bandits with adversarial reward
corruptions [3, 20, 39, 45], an adversary corrupts the reward observation in round t by some amount ct
but not the observed contexts. In this problem, the optimal regret is given by Θ(d

√
T + dC), where

C ..=
∑

t |ct| is the adversary’s budget. To the best of our knowledge, adversarial context corruptions
have only been studied by [8], who achieve Õ(dC̃

√
T ) regret with C̃ ..=

∑
t,i∥x∗

t,i − xt,i∥, where
x∗
t,i and xt,i are the true and corrupted contexts, respectively. In contrast, we do not assume a bounded

corruption budget so that these regret guarantees become vacuous (cf. Proposition 3.3). Moreover,
instead of taking the worst-case perspective of purely adversarial manipulation, we assume that each
arm is a self-interested agent maximizing their own utility.

Strategic Multi-Armed Bandits. Braverman et al. [4] were the first to study a strategic variant
of the multi-armed bandit problem and considered the case where the pulled arm privately receives
the reward and shares only a fraction of it with the learner. An extension of this setting has recently
been studied in [12]. In other lines of work, [9, 13] study the robustness of bandit learning against
strategic manipulation, however, simply assume a bounded manipulation budget instead of performing
mechanism design. [11, 35] consider multi-armed bandits with replicas where strategic agents can
submit replicas of the same arm to increase the number of times one of their arms is pulled. Buening
et al. [5] combine multi-armed bandits with mechanism design to discourage clickbait in online

2



Interaction Protocol 1: Strategic Linear Contextual Bandits
1 Learner publicly commits to algorithm M
2 for t = 1, . . . , T do
3 Every arm i ∈ [K] privately observes its context x∗

t,i ∈ Rd

4 Every arm i ∈ [K] reports a (potentially gamed) context xt,i ∈ Rd to the learner
5 Learner observes the gamed contexts Xt = {xt,1, . . . , xt,K}, selects arm it ∈ [K], and

receives reward

rt,it := ⟨θ∗, x∗
t,it⟩+ ηt,

where ηt is zero-mean sub-Gaussian noise. Note that the reward is generated with respect
to the unknown parameter θ∗ ∈ Rd and the unobserved true context x∗

t,it
.

recommendation. In their model, each arm maximizes its total number of clicks and is characterized
by a strategically chosen click-rate and a fixed post-click reward. However, all of these works
substantially differ from our work in problem setup and/or methodology.

Modeling Incentives in Recommender Systems. A complementary line of work studies content
creator incentives in recommender systems [16, 21, 22, 23, 27, 40, 41, 42] and how algorithms shape
the behavior of agents more generally [7]. These works primarily focus on modeling content creator
behavior and studying content creator incentives under existing algorithms. Instead, our goal is the
design of incentive-aware learning algorithms which incentivize content creators (arms) to act in a
desirable fashion (truthfully) while maximizing the recommender system’s performance.

Strategic Learning. We also want to mention the extensive literature on strategic learning [14, 15,
18, 19, 26, 43, 44] and strategic classification [10, 17, 34, 36]. Similarly to the model we study in
this paper, the premise is that rational agents strategically respond to the learner’s algorithm (e.g.,
classifier) to obtain a desired outcome. However, the learner interacts with the agents only once and
the agents are assumed to be myopic and to suffer a cost for, e.g., altering their features. Moreover,
there is no competition among the agents like in the strategic linear contextual bandit. In contrast to
these works, we wish to design a sequential (online learning) mechanism to incentivize truthfulness,
which is only possible because we repeatedly interact with the same set of agents (i.e., arms).

3 Strategic Linear Contextual Bandits
We study a strategic-variant of the linear contextual bandit problem, where K strategic agents (i.e.,
arms) aim to maximize their number of pulls by misreporting privately observed contexts to the
learner. The learner follows the usual objective of minimizing regret, i.e., maximizing cumulative
rewards, despite not observing the true contexts. We here focus on the case where the strategic arms
respond in Nash equilibrium to the learning algorithm. The interaction between the environment, the
learning algorithm, and the arms is specified in Interaction Protocol 1.

Notice that the arms can manipulate the contexts that the learner observes (and the learner only
observes these gamed contexts and never the actual contexts), but the rewards are generated w.r.t. the
true contexts. Moreover, if all arms are non-strategic and—irrespective of the learning algorithm—
report their features truthfully every round, i.e., xt,i = x∗

t,i for all (t, i) ∈ [T ] × [K], the problem
reduces to the standard non-strategic linear contextual bandit.

3.1 Strategic Arms and Nash Equilibrium
We assume that each arm i reports a possibly gamed context xt,i to the learner after observing its
true context x∗

t,i and potentially other information. For example, the arms may have prior knowledge
of θ∗ and observe the identity of the selected arm at the end of each round. However, we do not
use any specific assumptions about the observational model of the arms. Our results can be viewed
as a worst-case analysis over all such models. For concreteness, consider the case where the arms
have prior knowledge of θ∗ and, at the end of every round, observe which arm was selected and the
generated reward.1

1We naturally expect that the more information the arms observe each round, the more challenging the
problem becomes for the learner, as the arms’ ability to manipulate the learning algorithm increases.
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Let σi be a (mixed) strategy of arm i that is history-dependent and in every round t maps from
observed true contexts x∗

t,i to a distribution over reported contexts xt,i in Rd. We define σ−i as the
strategies of all arms except i and define a strategy profile of the arms as σ ..= (σ1, . . . , σK). We call
arm i truthful if it truthfully reports its privately context every round, i.e., xt,i = x∗

t,i for all t ∈ [T ].
This truthful strategy is denoted σ∗

i and we let σ∗ = (σ∗
1 , . . . , σ

∗
K).

We now formally define the objective of the arms. Let nT (i) ..=
∑T

t=1 1{it = i} be the number of
times arm i is pulled by the learner’s algorithm M . The objective of every arm is to maximize the
expected number of times it is pulled by the algorithm given by

ui(M,σ) ..= EM

[
nT (i) | σ

]
,

where we condition on the arm strategies σ as these will (typically) impact the algorithm’s decisions.
We assume that the arms respond to the learning algorithm M in Nash Equilibrium (NE).

Definition 3.1 (Nash Equilibrium). We say that σ = (σ1, . . . , σK) forms a NE under the learner’s
algorithm M if for all i ∈ [K] and any deviating strategy σ′

i:

EM

[
nT (i) | σi, σ−i

]
≥ EM

[
nT (i) | σ′

i, σ−i

]
.

Let NE(M) ..= {σ : σ is a NE under M} be the set of NE under algorithm M . We also consider
ε-NE, which relax the requirement that no arm has an incentive to deviate.

Definition 3.2 (ε-Nash Equilibrium). We say that σ = (σ1, . . . , σK) forms a ε-NE under algorithm
M if for all i ∈ [K] and any deviating strategy σ′:

EM

[
nT (i) | σi, σ−i

]
≥ EM

[
nT (i) | σ′

i, σ−i

]
− ε.

3.2 Strategic Regret
In the strategic linear contextual bandit, the performance of an algorithm depends on the arm strategies
that it incentivizes. Naturally, minimizing regret when the arms always report their context truthfully
is easier than when contexts are manipulated adversarially. We are interested in the strategic regret
of an algorithm M when the arms act according to a Nash equilibrium under M . Formally, for
σ ∈ NE(M) the strategic regret of M is defined as

RT (M,σ) = EM,σ

[
T∑

t=1

⟨θ∗, x∗
t,i∗t
⟩ − ⟨θ∗, x∗

t,it⟩

]
,

where i∗t = argmaxi∈[K]⟨θ∗, x∗
t,i⟩ is the optimal arm in round t. The regret guarantees of our

algorithms hold uniformly over all NE that they induce, i.e., for maxσ∈NE(M) RT (M,σ).

Regularity Assumptions. We allow for the true context vectors x∗
t,i to be chosen adversarially by

nature, and make the following assumptions about the linear contextual bandit model. We assume
that both the context vectors and the rewards are bounded, i.e., maxi,j∈[K]⟨θ∗, x∗

t,i − x∗
t,j⟩ ≤ 1

and ∥x∗
t,i∥2 ≤ 1 for all t ∈ [T ]. Moreover, we assume a constant optimality gap. That is, letting

∆t,i
..= ⟨θ∗, x∗

t,i∗t
− x∗

t,i⟩, we assume that ∆ ..= mint,i:∆t,i>0 ∆t,i is constant.

3.3 The Necessity of Mechanism Design
The first question that arises in this strategic setup is whether mechanism design, i.e., actively aligning
the arms’ incentives, is necessary to minimize regret. As expected, we find that this is the case.
Standard algorithms, which are oblivious to the incentives they create, implicitly incentivize the arms
to heavily misreport their contexts which makes minimizing regret virtually impossible.

We call a problem instance trivial if the algorithm that selects an arm uniformly at random every
round achieves sublinear regret. Conversely, we call a problem instance non-trivial if the uniform
selection suffers linear expected regret. We show that being incentive-unaware generally leads to
linear regret in non-trivial instances (even when the learner has prior knowledge of θ∗).

Proposition 3.3. On any non-trivial problem instance, the incentive-unaware greedy algorithm that
in round t plays it = argmaxi∈[K]⟨θ∗, xt,i⟩ (with ties broken uniformly) suffers linear regret Ω(T )
when the arms act according to any Nash equilibrium under the incentive-unaware greedy algorithm.
Note that the incentive-unaware greedy algorithm has knowledge of θ∗.
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Mechanism 1: The Greedy Grim Trigger Mechanism (GGTM)

1 initialize: A1 = [K]
2 for t = 1, . . . , T do
3 Observe reported contexts xt,1, . . . , xt,K

4 Play the (active) arm with largest reported reward: it = argmaxi∈At
⟨θ∗, xt,i⟩

5 Observe reward rt,it from playing arm it.
6 if

∑
ℓ≤t : iℓ=it

⟨θ∗, xℓ,it⟩ > UCBt(r̂t,it) then
7 Eliminate arm it from the active set: At+1 ← At \ {it}.
8 if At+1 = ∅ then
9 Stop playing any arm and receive zero reward for all remaining rounds.

Similarly, algorithms for stochastic linear contextual bandits (LinUCB [1, 6]) and algorithms for
linear contextual bandits with adversarial context corruptions (RobustBandit [8]) suffer linear regret
when the arms act according to any Nash equilibrium that the algorithms incentivize.

Proof Sketch. We demonstrate that the only NE for the arms lies in strategies that myopically
maximize the probability of being selected in every round, which results in linear regret for the
learner, because all arms always appear similarly good. The proof can be found in Appendix B.

Another natural question to ask is whether exact incentive-compatibility is possible in the strategic
linear contextual bandit. A learning algorithm is called incentive-compatible if truthfulness is a NE,
i.e., reporting the true context xt,i = x∗

t,i every round is maximizing each arm’s utility [14, 30]. For
the interested reader, in Appendix A, we provide an incentive-compatible algorithm with constant
regret in the fully deterministic case, where θ∗ is known a priori as well as the rewards of pulled arms
directly observable. However, when θ∗ is unknown and/or the reward observations are subject to
noise, we conjecture that exact incentive-compatibility (i.e., truthfulness is an exact NE, not ε-NE) is
irreconcilable with regret minimization (cf. Appendix A).

4 Warm-Up: θ∗ is Known in Advance
There are a number of challenges in the strategic linear contextual bandit. The most significant one is
the need to incentivize the arms to be (approximately) truthful while simultaneously minimizing regret
by learning about θ∗ and selecting the best arms, even when observing (potentially) manipulated
contexts. Notably, Proposition 3.3 showed that if we fail to align the arms’ incentives, minimizing
regret becomes impossible. Therefore, in the strategic linear contextual bandit, we must combine
mechanism design with online learning techniques.

The uncertainty about θ∗ poses a serious difficulty when trying to design such incentive-aware
learning algorithms. As we only observe xt,i and rt,i = ⟨θ∗, x∗

t,i⟩+ ηt, but do not observe the true
context x∗

t,i, accurate estimation of θ∗ is extremely challenging (and arguably intractable). We go
into more depth in Section 5 when we introduce the Optimistic Grim Trigger Mechanism. For now,
we consider the special case when θ∗ is known to the learner in advance. This lets us highlight some
of the challenges when connecting mechanism design with online learning in a less complex setting
and introduce high-level ideas and concepts. When θ∗ is known in advance, it can be instructive to
consider what we refer to as the reported (expected) reward ⟨θ∗, xt,i⟩ instead of the reported context
vector xt,i itself. Taking this perspective, when arm i reports a d-dimensional vector xt,i, we simply
think of arm i reporting a scalar reward ⟨θ∗, xt,i⟩. In what follows, it will prove useful to keep this
abstraction in mind.2

4.1 The Greedy Grim Trigger Mechanism
One idea for a mechanism is to use a grim trigger. In repeated social dilemmas, the grim trigger
strategy ensures cooperation among self-interested players by threatening with defection for all
remaining rounds if the grim trigger condition is satisfied [28]. Typically, the grim trigger condition
is defined so that it is immediately satisfied if a player defected at least once.

2We use the expressions ’reported reward’ and ’expected reward’ interchangeably to mean the reward we
would expect to observe based on the context reported by the arm.
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In the strategic contextual bandit, from the perspective of the learner, an arm can be considered to
’cooperate’ if it is reporting its context truthfully. In turn, an arm ’defects’ when it is reporting a
gamed context. However, when an arm is reporting some context xt,i we do not know whether this
arm truthfully reported its context or not, because we do not have access to the true context x∗

t,i. For
this reason, we instead compare the expected reward ⟨θ∗, xt,i⟩ and the true reward ⟨θ∗, x∗

t,i⟩. While
we also cannot observe ⟨θ∗, x∗

t,i⟩ directly, we do observe rt,i ..= ⟨θ∗, x∗
t,i⟩+ ηt.

Grim Trigger Condition. Intuitively, if for any arm i the total expected reward
∑

ℓ≤t : iℓ=i⟨θ∗, xℓ,i⟩
is larger than the total observed reward r̂t,i ..=

∑
ℓ≤t : iℓ=i rℓ,i, then arm i must have been misreporting

its contexts. However, rℓ,i ..= ⟨θ∗, x∗
ℓ,i⟩+ ηℓ is random so that we instead use the optimistic estimate

of the observed reward given by

UCBt(r̂t,i) ..=
∑

ℓ≤t : iℓ=i

rℓ,i + 2
√

nt(i) log(T ) (1)

where 2
√
nt(i) log(T ) is the confidence width which can be derived from Hoeffding’s inequality. To

implement the grim trigger, we then eliminate arm i in round t if the total expected reward is larger
than the optimistic estimate of the total observed reward, i.e.,∑

ℓ≤t : iℓ=i
⟨θ∗, xℓ,i⟩ > UCBt(r̂t,i).

Note that using the optimistic estimate of the total observed reward ensures that elimination is justified
with high probability. Conversely, we can guarantee with high probability that we do not erroneously
eliminate a truthful arm.

Selection Rule. To complete the Greedy Grim Trigger Mechanism (GGTM, Mechanism 1), we then
combine this with a greedy selection rule that pulls the arm with largest reported reward ⟨θ∗, xt,i⟩ in
round t from the set of arms that we believe have been truthful so far. Interestingly, even though we
here assumed θ∗ to be known in advance, we see that GGTM still utilizes online learning techniques
such as the optimistic estimate (1) to align the arms’ incentives.

It is also worth noting that—similar to its use in repeated social dilemmas—our grim trigger mecha-
nism is mutually destructive in the sense that eliminating an arm for all remaining rounds is inherently
bad for the learner (and of course for the eliminated arm as well).3 Here lies the main challenge of
the mechanism design and we must ensure that the arms are incentivized to “cooperate” (i.e., remain
active) for a sufficiently long time.

4.2 Regret Analysis of GGTM
In what follows, we assume that each arm’s strategy is restricted to reporting their ’reward’ ⟨θ∗, xt,i⟩
not strictly lower than their true (mean) reward ⟨θ∗, x∗

t,i⟩. It seems intuitive that no rational arm would
ever under-report its value to the learner and make itself seem worse than it actually is. However, there
are special cases, where under-reporting allows an arm to arbitrarily manipulate without detection.
We discuss this later in Remark 4.3 and, more extensively, in Appendix C.

Assumption 1. We assume that ⟨θ∗, xt,i⟩ ≥ ⟨θ∗, x∗
t,i⟩ for all (t, i) ∈ [T ]× [K].

We now demonstrate that GGTM approximately incentivizes the arms to be truthful in the sense that
the truthful strategy profile σ∗ such that xt,i = x∗

t,i for all (t, i) ∈ [T ]× [K] is an Õ(
√
T )-NE under

GGTM. When the arms always report truthfully and no arm is erroneously eliminated, the greedy
selection rule naturally selects the best arm every round so that GGTM’s regret is constant.

Theorem 4.1. Under the Greedy Grim Trigger Mechanism, being truthful is a Õ(
√
T )-NE for the

arms. The strategic regret of GGTM when the arms act according to this equilibrium is at most

RT (GGTM,σ∗) ≤ 1/T .

Proof Sketch. By design of the grim trigger, it is straightforward to show that the probability that
a truthful arm gets eliminated is at most 1/T 2. Moreover, the grim trigger ensures that no arm can
‘poach’ selections from a truthful arm more than order

√
T times by misreporting its contexts. This

achieves two things: (a) it protects truthful arms and guarantees that truthfulness is a good strategy,
and (b) limits an arm’s profit from being untruthful. The proof can be found in Appendix D.2.

3Note that in linear contextual bandits there is no single optimal arm, but the optimal arm changes per round.
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Theorem 4.1 tells us that truthfulness is an approximate NE. We now also provide a more holistic
strategic regret guarantee of Õ(K2

√
KT ) in every Nash equilibrium under GGTM. Proving this is

more complicated as the arms can profit from exploiting our uncertainty about their truthfulness (i.e.,
the looseness of the grim trigger).

Theorem 4.2. The Greedy Grim Trigger Mechanism has strategic regret

RT (GGTM,σ) = O

√
KT log(T )︸ ︷︷ ︸

cost of manipulation

+ K2
√
KT log(T )︸ ︷︷ ︸

cost of mechanism design

 (2)

for every σ ∈ NE(GGTM). Hence, maxσ∈NE(GGTM) RT (GGTM,σ) = Õ
(
K2
√
KT

)
.

Proof Sketch. The regret analysis is notably more complicated than the one in Theorem 4.1, as we
must bound the regret due to the arms exploiting our uncertainty as well as the cost of committing to
the grim trigger. Both of these quantities do not play a role when the arms always report truthfully
(like in Theorem 4.1). A complete proof can be found in Appendix D.

The regret bound (2) suggests that there are two sources of regret. The first term is due to our
mechanism design being approximate (relying on estimates), which leaves room for the arms to
exploit our uncertainty and misreport their contexts to obtain additional selections. The second
part of (2) is the cost of the mechanism design, i.e., the cost of committing to the grim trigger. We
suffer constant regret any round in which the round-optimal arm is no longer in the active set. In the
worst-case, this quantity is of order K2

√
KT .

Remark 4.3. We want to briefly comment on Assumption 1. It appears intuitive that any rational
arm would never under-report its value, i.e., make itself look worse than it actually is. However, in
Appendix C, we provide a simple example where occasionally under-reporting its value allows an
arm to simulate an environment where it is always optimal, even though it is in fact only optimal
half of the time. We will explain in the example that without additional strong assumptions on the
noise distribution the two environments are indistinguishable so that such manipulation by the arms
appears unavoidable when trying to maximize rewards.

5 The Optimistic Grim Trigger Mechanism
The problem of estimating the unknown parameter θ∗ appears daunting given that the arms can
strategically alter their contexts to manipulate our estimate of θ∗ to their advantage. In fact, imagine
an arm manipulating its contexts orthogonal to θ∗ so that ⟨θ∗, xt,i − x∗

t,i⟩ = 0 but xt,i ̸= x∗
t,i.

Observing only xt,i and rt,i ..= ⟨θ∗, x∗
t,i⟩+ ηt, our estimate of θ∗ becomes biased and could be

arbitrarily far off the true parameter θ∗ even though the gamed context and true context have the
same reward w.r.t. θ∗. This is also the case more generally. Since we observe neither θ∗ nor x∗

t,i, any
observed combination of xt,i and rt,i will “make sense” to us. But, how can we incentivize the arms
to report truthfully and minimize regret despite incorrect estimates of θ∗?

Our key observation is that learning θ∗ is not necessary to incentivize the arms or minimize regret; it
appears to be a hopeless endeavour after all. The idea of the Optimistic Grim Trigger Mechanism
(OptGTM, Mechanism 2) is to construct pessimistic estimates of the total reward we expected
from pulling an arm. Importantly, we can construct such pessimistic estimates of the expected (i.e.,
“reported”) reward even when the contexts are manipulated. OptGTM then threatens arms with
elimination if our pessimistic estimate of the expected reward exceeds the optimistic estimate of the
observed reward. Interestingly, this does not relate to the amount of corruption in the feature space
and, in fact,

∑
t,i∥xt,i − x∗

t,i∥2 could become arbitrarily large. However, it does bound the effect of
each arm’s strategic manipulation on the decisions we make and thereby allows for effective incentive
design and regret minimization.

To construct pessimistic (and optimistic) estimates of the expected reward, we use independent
estimators θ̂t,i and confidence sets Ct,i around θ̂t,i, which do not take into account that the contexts
are potentially manipulated. That is, we have a separate estimator and confidence set for each arm
i ∈ [K]. This will prevent one arm influencing the elimination of another. It also stops collusive arm
behavior, where a majority group of the arms could dominate and steer our estimation process.
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Mechanism 2: The Optimistic Grim Trigger Mechanism (OptGTM)

1 initialize: A1 = [K]
2 for t = 1, . . . , T do
3 Observe reported contexts Xt = {xt,1, . . . , xt,K}.
4 Play the active arm with largest reported optimistic reward

it = argmax
i∈At

UCBt,i

(
xt,i

)
.

5 Receive reward rt,it from playing arm it.
6 if

∑
ℓ≤t : iℓ=it

LCBℓ,it(xℓ,it) > UCBt(r̂t,it) then
7 Eliminate arm it from the active set: At+1 ← At \ {it}.
8 if At+1 = ∅ then
9 Stop playing any arm and receive zero reward for all remaining rounds.

Confidence Sets. For every arm i ∈ [K] we define the least-squares estimator θ̂t,i w.r.t. its reported
contexts and observed rewards before round t as

θ̂t,i = argmin
θ∈Rd

(∑
ℓ<t : iℓ=i

(
⟨θ, xℓ,i⟩ − rℓ,i

)2
+ λ∥θ∥22

)
, (3)

where λ > 0. We then define the confidence set Ct,i
..= {θ ∈ Rd : ∥θ̂t,i − θ∥2Vt,i

≤ βt,i} where
βt,i

..= O(d log(nt(i))) is the confidence size. Here, Vt,i is the covariance matrix of reported contexts
of arm i given by V1,i

..= λI and Vt,i
..= λI +

∑
ℓ<t : iℓ=i xℓ,ix

⊤
ℓ,i.

4

It is well-known that if the contexts were always reported truthfully, i.e., xt,i = x∗
t,i, then with high

probability θ∗ ∈ Ct,i. But, if the sequence of reported contexts xt,i substantially differs from the true
contexts x∗

t,i there is no (high probability) guarantee that the true parameter θ∗ is element in Ct,i.
In the literature on learning with adversarial corruptions (in linear contextual bandits), the standard
approach to deal with this is to widen the confidence set. However, for this to be effective we would
need to assume a sufficiently small corruption budget for the arms and prior knowledge of the total
amount of corruption, both of which we explicitly do not assume here.

Slightly overloading notation, we instead define the optimistic and pessimistic estimate of the expected
reward of a context vector x w.r.t. arm i as

UCBt,i(x) ..= ⟨θ̂t,i, x⟩+
√
βt,i∥x∥V −1

t,i
and LCBt,i(x) ..= ⟨θ̂t,i, x⟩ −

√
βt,i∥x∥V −1

t,i
.

We chose to state these estimates using additive bonuses. However, it can be convenient to think of
them as UCBt,i(x) ≈ maxθ∈Ct,i

⟨θ, x⟩ and LCBt,i(x) ≈ minθ∈Ct,i
⟨θ, x⟩.

Grim Trigger Condition. In round t ∈ [T ], we eliminate arm i from At if the pessimistic estimate
using the reports is larger than the optimistic estimate using the total observed reward, i.e.,∑

ℓ≤t : iℓ=i

(
⟨θ̂ℓ,i, xℓ,i⟩ −

√
βℓ∥xℓ,i∥V −1

ℓ,i

)
>

∑
ℓ≤t : iℓ=i

rℓ,i + 2
√

nt(i) log(T ). (4)

In other words,
∑

ℓ≤t : iℓ=i LCBℓ,i(xℓ,i) > UCBt(r̂t,i).

Examining the left side of (4), the careful reader may wonder why we do not simply use our latest
and arguably best estimate θ̂t,i, but instead the whole sequence of “out-dated” estimators θ̂ℓ,i from
previous rounds. In fact, this is crucial for the grim trigger. Using θ̂t,i renders the grim trigger
condition ineffective, because, by definition, θ̂t,i is the (least-squares) minimizer (3) of the difference
between

∑
ℓ≤t : iℓ=i⟨θ̂t,i, xℓ,i⟩ and

∑
ℓ≤t : iℓ=i rℓ,i. Hence, when using θ̂t,i the grim trigger condition

may not be satisfied even when the arms significantly and repeatedly misreport their contexts.

Selection Rule. We complete the OptGTM algorithm by selecting arms optimistically with respect
to each arm’s own estimator and confidence set. That is, OptGTM selects the active arm with maximal
optimistic (expected) reward UCBt,i(xt,i) ..= ⟨θ̂t,i, xt,i⟩+

√
βt,i∥xt,i∥V −1

t,i
in round t. We see that

4For more details on the design of least-squares estimators and the confidence sets, we refer to Abbasi-Yadkori
et al. [1] and Lattimore and Szepesvári [24] (Chapter 20).
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the grim trigger (4) incentivizes arms to ensure that over the course of all rounds LCBt,i(xt,i) is not
much smaller than rt,i ..= ⟨θ∗, x∗

t,i⟩+ ηt. Hence, UCBt,i(xt,i) is also not substantially smaller than
the true mean reward ⟨θ∗, x∗

t,i⟩. This suggests that playing optimistically is a good strategy for the
learner as long as the selected arm does not satisfy (4).

5.1 Regret Analysis of OptGTM
When θ∗ was known to the learner in advance, we assumed that the arms never report a value smaller
than their true value, i.e., ⟨θ∗, xt,i⟩ ≥ ⟨θ∗, x∗

t,i⟩ for all (t, i) ∈ [T ]× [K]. Now, when θ∗ is unknown
to the learner, we similarly assume that the arms do not report their optimistic value less than their true
value. Again, it seems intuitive that in any given round, no arm would under-report its worth.

Assumption 2. We assume that maxθ∈Ct,i
⟨θ, xt,i⟩ ≥ ⟨θ∗, x∗

t,i⟩ for all (t, i) ∈ [T ]× [K].

We find that OptGTM approximately incentivizes the arms to be truthful and, when the arms report
truthfully, OptGTM suffers at most Õ(d

√
KT ) regret.

Theorem 5.1. Under the Optimistic Grim Trigger Mechanism, being truthful is a Õ(d
√
KT )-NE.

When the arms report truthfully, the strategic regret of OptGTM under this approximate NE is at most

RT (OptGTM,σ∗) = Õ(d
√
KT ).

The optimal regret in standard non-strategic linear contextual bandits is Θ(d
√
T ) so that OptGTM is

optimal up to a factor of
√
K (and logarithmic factors) when the arms report truthfully. The additional

factor of
√
K is caused by the fact that OptGTM maintains independent estimates for each arm. We

now also provide a strategic regret bound for every NE of the arms under OptGTM.

Theorem 5.2. The Optimistic Grim Trigger Mechanism has strategic regret

RT (OptGTM,σ) = O
(
d log(T )

√
KT + d log(T )K2

√
KT

)
.

for every σ ∈ NE(OptGTM). Hence, maxσ∈NE(OptGTM) RT (OptGTM,σ) = Õ
(
dK2
√
KT

)
.

The proof ideas of Theorem 5.1 and Theorem 5.2 are similar to their counterparts in Section 4. The
main difference lies in a more technically challenging analysis of the grim trigger condition (4). We
also see that in contrast to non-strategic linear contextual bandits, where the regret typically does
not depend on the number of arms K, Theorem 5.1 and Theorem 5.2 include a factor of

√
K and

K2
√
K, respectively. A dependence on K is expected due to the strategic nature of the arms which

forces us to explicitly incentivize each arm to be truthful. However, we conjecture that the regret
bound in Theorem 5.2 is not tight in K and expect the optimal dependence on the number of arms to
be
√
K. The proofs of Theorem 5.1 and Theorem 5.2 can be found in Appendix E.

6 Experiments: Simulating Strategic Context Manipulation
We here experimentally analyze the efficacy of OptGTM when the arms strategically manipulate their
contexts in response to our learning algorithm. We compare the performance of OptGTM with the
traditional LinUCB algorithm [1, 6], which—as shown in Proposition 3.3—implicitly incentivizes
the arms to manipulate their contexts and suffers large regret when the arms are strategic.

Contrary to the assumption of arms playing NE, we here model strategic arm behavior by letting the
arms update their strategy (i.e., what contexts to report) based on past interactions with the algorithms.
More precisely, we assume that the strategic arms interact with the deployed algorithm (i.e., OptGTM
or LinUCB) over the course of 20 epochs, with each epoch consisting of T = 10k rounds. At the end
of each epoch, every arm then updates its strategy using gradient ascent w.r.t. its utility. Importantly,
this approach requires no prior knowledge from the arms, as they learn entirely through sequential
interaction. This does not necessarily lead to equilibrium strategies, but serves as a natural model of
strategic gaming behavior under which to study the algorithms.

Experimental Setup. We associate each arm with a true feature vector y∗i ∈ Rd1 (e.g., product
features) and randomly sample a sequence of user vectors ct ∈ Rd2 (i.e., customer features). We
assume that every arm can alter its feature vector y∗i by reporting some other vector yi, but cannot
alter the user contexts ct. We use a feature mapping φ(ct, yi) = xt,i to map yi ∈ Rd1 and ct ∈ Rd2

to an arm-specific context xt,i ∈ Rd that the algorithm observes. At the end of every epoch, each
arm then performs an approximated gradient step on yi w.r.t. its utility, i.e., the number of times it is
selected. We let K = 5 and d = d1 = d2 = 5 and average the results over 10 runs.
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(a) Total strategic regret RT as the
arms adapt their strategies to the de-
ployed algorithm over the course of
20 epochs.

(b) Epoch 0 (Truthful Arms): Regret
as a function of t before the arms
have interacted with the deployed
algorithm.

(c) Epoch 20 (Strategic Arms): Re-
gret as a function of t after the arms
have interacted with the deployed
algorithm.

Figure 1: Comparison of the strategic regret of OptGTM and LinUCB. The strategic arms adapt
their strategies gradually over the course of 20 epochs. OptGTM performs similarly across all
epochs, whereas LinUCB performs increasingly worse as the arms adapt to the algorithm (Figure 1a).
Figure 1b and 1c provide a closer look at the regret of the algorithms across the T rounds in the initial
epoch, where the arms are truthful, and the final epoch after the arms have adapted to the algorithms.

Figure 2: Context manipu-
lation

∑
t,i∥x

∗
t,i − xt,i∥2.

Figure 3: Utility of the arms
for each of the 10 runs.

Results. In Figure 1a, we observe that
OptGTM performs similarly well across
all epochs, which suggests that OptGTM
successfully discourages the emergence of
harmful gaming behavior. In contrast, as
the arms adapt their strategies (i.e., what
features to report), LinUCB suffers increas-
ingly more regret and almost performs as
badly as uniform sampling in the final
epoch. In epoch 0, when the all arms are
truthful, i.e., are non-strategic, LinUCB performs better than OptGTM (Figure 1b). This is expected
as OptGTM suffers additional regret due to maintaining independent estimates of θ∗ for each arm
(as a mechanism to incentivize truthfulness). However, OptGTM significantly outperforms LinUCB
as the arms strategically adapt, which is most evident in the final epoch (Figure 1c). Interestingly,
as already suggested in Section 5, OptGTM cannot prevent manipulation in the feature space (see
Figure 2). However, OptGTM does manage to bound the effect of the manipulation on the regret
(Figure 1a) and, most importantly, the effect on the utility of the arms as well (Figure 3). As a result,
the arms are discouraged from heavily gaming their contexts and the context manipulation has only a
minor effect on the actions taken by OptGTM.

7 Discussion

We study a strategic variant of the linear contextual bandit problem, where the arms strategically
misreport privately observed contexts to maximize their selection frequency. To address this, we
design two online learning mechanisms: the Greedy and the Optimistic Grim Trigger Mechanism, for
the scenario where θ∗ is known and unknown, respectively. We demonstrate that our mechanisms
incentivize the arms to be approximately truthful and, in doing so, effectively minimize regret. More
generally, with this work, we aim to advance our understanding of problems at the intersection
of online learning and mechanism design. As the digital landscape, including online platforms
and marketplaces, becomes increasingly agentic and dominated by self-interested agents, it will be
crucial to understand the incentives created by learning algorithms and to align these incentives while
optimizing for performance.

Limitations. One limitation is the otherwise intuitive assumption that the arms do not under-report
their value to the learner (Assumption 1 and Assumption 2). Secondly, we believe that the factor of K2

in the universal regret guarantees of Theorem 4.2 and Theorem 5.2 is suboptimal and we conjecture
that the optimal worst-case strategic regret is given by O(d

√
KT ). We leave this investigation for

future work.
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A Remarks on Incentive-Compatible No-Regret Algorithms
In Section 3, we conjectured that there exists no incentive-compatible no-regret algorithm when the
reward observations are subject to noise and θ∗ unknown. For the interested reader, we here consider
the fully deterministic case where θ∗ is known a priori and reward observations are directly observable,
i.e., subject to no noise so that ηt ≡ 0. We can design the following provably incentive-compatible
no-regret algorithm. In fact, we show that this mechanism is strategyproof, i.e., incentive-compatible
in weakly dominant strategies.

Mechanism 3: Incentive-Compatible No-Regret Algorithm in the Fully Deterministic Case

1 initialize: A1 = [K]

2 for t < T − (K + 1) do
3 Play it ∈ argmaxi∈At

⟨θ∗, xt,i⟩
4 Observe reward r∗t,it := ⟨θ

∗, x∗
t,it
⟩ (i.e., rewards of chosen arms are directly observable)

5 if ⟨θ∗, xt,it⟩ ≠ r∗t,it then
6 Eliminate arm it: At+1 ← At \ {it}.
7 for t ≥ T − (K + 1) do
8 Play it ∼ Uniform(At)

9 Observe reward r∗t,it := ⟨θ
∗, x∗

t,it
⟩

10 if ⟨θ∗, xt,it⟩ ≠ r∗t,it then
11 Eliminate arm it: At+1 ← At \ {it}.

Lemma A.1. Mechanism 3 is strategyproof, i.e., being truthful is a weakly dominant strategy for
every arm. Moreover, Mechanism 3 suffers at most K + 1 strategic regret in every Nash equilibrium
of the arms.5

Proof. Incentive-Compatibility in Weakly Dominant Strategies. It is easy to see that for the last
K + 1 rounds, reporting truthfully, i.e., reporting x∗

t,i, is a weakly dominant strategy, since the the
set of active arms is played uniformly and nothing can be gained from misreporting (an arm can
only miss out on being selected by misreporting in the last K + 1 steps). Hence, conditional on any
history, reporting truthfully is the best continuation for any arm. In particular, when an arm plays
truthfully in these rounds the obtained utility in the last K + 1 steps is at least K+1

K , since |At| ≤ K.

Now, for the time steps t < T − (K + 1) note that any untruthful strategy can obtain at most one
more allocation than the truthful strategy, because if it = i and ⟨θ∗, xt,i⟩ > ⟨θ∗, x∗

t,i⟩, then arm i
is eliminated immediately. Hence, at most utility 1 can be gained from receiving an allocation by
misreporting. However, in this case the arm gets eliminated and receives utility 0 in the last K + 1
rounds. As seen before the minimum utility the truthful strategy receives in the last K + 1 receives is
K+1
K > 1. Consequently, irrespective of the other arms strategies, the truthful strategy is (weakly)

optimal for arm i.

One may wonder why the truthful strategy is not strictly dominant. To see this note that reporting any
xt,i ̸= x∗

t,i such that the difference xt,i − x∗
t,i is orthogonal to θ∗, i.e., ⟨θ∗, xt,i − x∗

t,i⟩ = 0, does not
cause elimination and is equivalent under Mechanism 3. In other words, such untruthful strategies,
which however have no effect on the selection, are equally good.

Regret. The regret in the last K + 1 rounds is trivially bounded by K + 1. When showing that
the algorithm is strategyproof we showed that any untruthful strategy such that there exists it = i
with ⟨θ∗, xt,i⟩ > ⟨θ∗, x∗

t,i⟩ is worse than the truthful strategy independently from what the other
arms are playing. Hence, in any Nash equilibrium arm i chooses strategies such that if it = i then
⟨θ∗, xt,i⟩ = ⟨θ∗, x∗

t,i⟩. In other words, since the selection is greedy, Mechanism 3 selected the best
arm in the given round. Mechanism 3 therefore suffers zero regret in the first T − (K + 1) regret in
any Nash equilibrium of the arms.

As discussed in Section 3, we conjecture that there exists no incentive-compatible no-regret algorithm
for the strategic linear contextual bandits when the reward observations are subject to noise. The

5Note that since truthfulness is only weakly dominant there could be other Nash equilibria.
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intuition for this conjecture is as follows. Suppose there exists a learning algorithm M that is
incentive-compatible and no-regret, that is, the strategy profile where every arm is always truthful
is a NE. Since M is also no-regret, the selection policy of M must depend on the reported contexts
in some way. In particular, in some round t in which M does not select arm i—but M maps from
reported contexts to an action in [K]—there must exist a context x̃t that arm i could report that
increases its probability of being selected.

Suppose arm i changes its strategy from σ∗
i (i.e., being truthful) to the strategy that is always truthful

except for round t where it reports x̃t instead of x∗
t,i. The algorithm M then observes a reward drawn

from a distribution with mean ⟨θ∗, x∗
t,i⟩, but might have expected a reward drawn from a distribution

with mean ⟨θ∗, x̃t⟩. We believe that the difference in observed and expected reward is statistically
insignificant when arm i only misreports a single or constant number of times. However, due to the
intricate relationship between the learning algorithm and the induced NE strategies for the K arms,
providing a rigorous argument for this is challenging.

B Proof of Proposition 3.3
Proof of Proposition 3.3. We begin with the incentive-unaware greedy algorithm that in round t
pulls arm it = argmaxi∈[K]⟨θ∗, xt,i⟩. Let x̃ ..= argmax∥x∥≤1⟨θ∗, x⟩ and w.l.o.g. we assume that
x̃ is unique. We show that the strategy profile, where every arm always reports x̃ is the only Nash
equilibrium under the incentive-unaware greedy algorithm. Let σ be any strategy profile which is
such that there exists a round t and arm i such that xt,i ̸= x̃. We distinguish between two cases.

Case 1: There exists a round t and arm i such that ⟨θ∗, xt,i⟩ < maxj∈[K]⟨θ∗, xt,j⟩.

Note that this implies that arm i is not selected by the learner. However, by reporting x̃ instead of
xt,i, arm i is guaranteed to be selected with probability at least 1/K. Hence, reporting xt,i is strictly
worse than reporting x̃ so that σ cannot be a NE.

Case 2: ⟨θ∗, xt,i⟩ = maxj∈[K]⟨θ∗, xt,j⟩ for all rounds t and arms i.

Note that this implies that each arm i is selected with probability 1/K every round.6 Suppose that
for any of these rounds t we have maxj∈[K]⟨θ∗, xt,j⟩ < ⟨θ∗, x̃⟩. Then, by reporting x̃ instead of xt,i

arm i could ensure to be selected with probability one. Hence, the strategy where arm i in round t
reports x̃ instead of xt,i is a strictly better response. Therefore, σ cannot be a NE. The other case
is when maxj∈[K]⟨θ∗, xt,j⟩ = ⟨θ∗, x̃⟩, but this cannot be because σ is supposed to be different to
always reporting x̃.

Consequently, the strategy profile where every arm always reports x̃ is the only NE under the incentive-
unaware greedy algorithm. Under this strategy profile, the incentive-unaware greedy algorithm will
play uniformly and therefore suffer linear regret.

Insufficiency of Non-Strategic Linear Contextual Bandit Algorithms. It is not really surprising
that algorithms for non-strategic linear contextual bandits fail in the strategic linear contextual bandit,
since such algorithms implicitly incentivize the arms to “compete” in every round by misreporting
their context as the best possible one. Nothing prevents the arms to not myopically optimize their
probability of being selected every round. As an example of a standard algorithm for non-strategic
linear contextual bandits we consider LinUCB that in the non-strategic problem setup enjoys a regret
guarantee of Õ(d

√
T ).

The reasons for LinUCB’s failure in this strategic problem are the same as for the incentive-unaware
greedy algorithm from before. It will be the strictly dominant strategy for the arms to maximize their
selection probability in the given round by misreporting their context. Recall that LinUCB maintains
a least-squares estimator given by

θ̂t = argmin
θ∈Rd

t−1∑
ℓ=1

(⟨θ, xℓ,iℓ⟩ − rℓ,iℓ)
2 + λ∥θ∥22

6This already implies linear regret, but it will be instructive to still show that the only NE is in maximally
gaming strategies.
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and in round t selects arm (ties broken uniformly at random)

it = argmax
i∈[K]

⟨θ̂t, xt,i⟩+
√

βt∥xt,i∥V −1
t

,

where βt ≈ d log(T ) and Vt = λI +
∑t−1

i=1 xℓ,iℓx
⊤
ℓ,i. Let UCBt(x) ..= ⟨θ̂t, x⟩+

√
βt∥x∥V −1

t
.

The argument for LinUCB will be the same as for the incentive-unaware greedy algorithm. Let
x̃t

..= argmax∥x∥2≤1 UCBt(x) and w.l.o.g. assume that x̃t is unique.

Importantly, in what follows, keep in mind that it will not matter how the reports of arm i influenced
θ̃t or Vt in previous rounds. Once again, suppose σ is a strategy profile such that there exists a round
t and arm i such that conditioned on the history xt,i ̸= x̃t. Once again we distinguish between the
following two cases:

Case 1: There exists a round t and arm i such that UCBt(xt,i) < maxj∈[K] UCBt(xt,j).

This implies that arm i was not selected by the learner in round t. However, by reporting x̃t and in all
future rounds report x̃ℓ for ℓ > t, arm i can guarantee to be selected with probability at least 1/K in
round t and at least as many selections as under σi. Hence, σi cannot be a best response to σ−i.

Case 2: UCBt(xt,i) = maxj∈[K] UCBt(xt,j) for all rounds t and arms i.

Note that this implies that arm i is selected with probability 1/K every round. Suppose that for any
round t it is the case that maxj∈[K] UCBt(xt,j) < UCBt(x̃). Then, by choosing strategy x̃t in round
t and x̃ℓ adaptively for all future rounds ℓ > t, arm i obtains more selections than when reporting
xt,i. Hence, σ cannot be a NE.

As a result, the strategy profile where all arms report x̃t in round t is the only NE and LinUCB suffers
linear regret, as it pulls arms uniformly at random. In exactly the same way, we can also show that
the algorithms for linear contextual bandits with adversarial context corruptions in [8] suffer linear
regret.

C Assumption 1 and Remark 4.3
Example 1. We here give a simple example where a strategic arm can simulate a situation where it is
always optimal even though it is only optimal half of the time.

Let θ∗ = 1 and consider the following problem instance with two arms 1 and 2, where

x∗
t,1 =

{
0, t is even
1, t is odd

and x∗
t,2 = 1/4.

Now, suppose that arm 1 always reports xt,1 = 1/2 and arm 2 reports truthfully (or approximately
so). Then, arm 1 appears optimal every round t. In particular, on average arm when we pull arm 1 it
has reward 1/2, which is consistent with its report of xt,1 = 1/2.

Now, consider a second problem instance, where

x∗
t,1 = 1/2 and x∗

t,2 = 1/4.

Recall that we assume that, like almost always in the literature, the noise is sub-Gaussian. As an
example, let’s consider Bernoulli-noise such that P(rt,i = 1) = x∗

t,i = 1− P(rt,i = 0). Then, the
first environment when arm 1 manipulates as suggested is identical to the second environment when
the arms are truthful. In the second environment, to suffer sublinear regret we must select arm 1 order
T many times. However, in the first environment, we must select arm 1 only order o(T ) many times.

Discussion. Based on these observations, we expect that we would have to make additional (strong)
assumptions about the distribution of the noise and the prior knowledge of the learner in order to
drop Assumption 1. As an example, let’s assume standard normal noise N (0, 1) and that the learner
knows that the variance is always 1 a priori. Then, one potentially effective approach would be to
extend our current grim trigger to additionally threaten arms that misreport their variance. Of course,
the variance is unknown, however, we could estimate the variance of each arm’s reports separately
and use confidence intervals around the estimated variance. We could then threaten an arm with
elimination if the arm’s estimated variance falls out of the confidence interval. However, we expect
there to be several technical subtleties in analyzing such variance-aware mechanisms.
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D Proof of Theorem 4.1 and Theorem 4.2
D.1 Preliminaries
We begin with some preliminaries that we use in the proofs of both Theorem 4.1 and Theorem 4.2.
Note that E[rt,i] = ⟨θ∗, x∗

t,i⟩ and we denote the total true mean reward by

r̂∗t,i
..=

∑
ℓ≤t : iℓ=i

⟨θ∗, x∗
ℓ,i⟩.

Let us also recall the definition of the total observed reward as r̂t,i ..=
∑

ℓ≤t : iℓ=i rℓ,i and recall
its upper confidence bound UCBt(r̂t,i) ..= r̂t,i + 2

√
nt(i) log(T ) and define the lower confidence

bound LCBt(r̂t,i) ..= r̂t,i − 2
√
nt(i) log(T ).

We now analyze the basic properties of the grim trigger condition of GGTM, which eliminates arm i
in round t if ∑

ℓ≤t : iℓ=i

⟨θ∗, xℓ,i⟩ > UCBt(r̂t,i),

or equivalently ∑
ℓ≤t : iℓ=i

(
⟨θ∗, xℓ,i⟩ − rℓ,i

)
> 2

√
nt(i) log(T ).

Define the good event G as the event that
G ..=

{
LCBt(r̂t,i) ≤ r̂∗t,i ≤ UCBt(r̂t,i) ∀t ∈ [T ], i ∈ [K]

}
.

By Hoeffding’s inequality, we know that the good event occurs with probability at least P(G) ≥ 1− 1
T 2 .

Next, let
τi := min{t ∈ [T ] : i ̸∈ At}

denote the first round in which i is no longer active and, by convention, let τi = T if i ∈ AT . By
design of the grim trigger condition, note that τi = T for all i ∈ [K] on the good event G if all arms
always report truthfully.

We now provide a general result bounding the maximal amount of manipulation any arm can exercise
before being eliminated by GGTM.

Lemma D.1. On the good event G, for any round t ∈ [T ] and any arm i ∈ At it holds that∑
ℓ≤t : iℓ=i

(
⟨θ∗, xℓ,i⟩ − x∗

ℓ,i

)
≤ 4

√
nt(i) log(T ).

From the definition of τi this entails that∑
ℓ≤τi : iℓ=i

(
⟨θ∗, xℓ,i⟩ − x∗

ℓ,i

)
≤ 4

√
nτi(i) log(T ).

Proof. On the good event G, it holds that∑
ℓ≤t : iℓ=i

(
⟨θ∗, x∗

ℓ,i⟩ − rℓ,i
)
∈
[
− 2

√
nt(i) log(T ),+2

√
nt(i) log(T )

]
,

which implies that∑
ℓ≤t : iℓ=i

(
⟨θ∗, xℓ,i⟩ − rℓ,i

)
≥

∑
ℓ≤t : iℓ=i

⟨θ∗, xℓ,i − x∗
ℓ,i⟩ − 2

√
nt(i) log(T ).

Hence, if
∑

ℓ≤t : iℓ=i⟨θ∗, xℓ,i − x∗
ℓ,i⟩ > 4

√
nt(i) log(T ), then∑

ℓ≤t : iℓ=i

(
⟨θ∗, xℓ,i⟩ − rℓ,i

)
> 2

√
nt(i) log(T ),

which means that arm i is eliminated from At. Finally, τi is defined as the first round such that i ̸∈ At

so that ∑
ℓ≤t : iℓ=i

(
⟨θ∗, xℓ,i⟩ − x∗

ℓ,i

)
≤ 4

√
nt(i) log(T )

for all t ≤ τi and
∑

ℓ≤τi+1: iℓ=i

(
⟨θ∗, xℓ,i⟩ − x∗

ℓ,i

)
> 4

√
nτi(i) log(T ).
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For completeness, we also formally state the fact that on the good event G any truthful arm is not
eliminated with high probability.

Lemma D.2. If arm i reports truthfully every round, i.e., plays strategy σ∗
i with xt,i = x∗

t,i for all
round t ∈ [T ], then on the good event G arm i stays active for all rounds.

Proof. When arm i is truthful, then
∑

ℓ≤t : iℓ=i⟨θ∗, xℓ,i⟩ = r̂∗t,i. On the good event, r̂∗t,i ≤
UCBt(r̂t,i) for all t ∈ [T ]. Hence, the grim trigger condition is never satisfied and arm i remains
active throughout all T rounds.

D.2 Proof of Theorem 4.1
Proof of Theorem 4.1. We have to show that the strategy profile σ∗, where every arm always truth-
fully reports their context, i.e., xt,i = x∗

t,i for all (t, i) ∈ [T ]× [K], forms a Õ(
√
T )-Nash equilibrium

for the arms under GGTM. We do this by showing that any deviating strategy σi for arm i cannot
gain more than this

√
T clicks. Recall that i∗t is the optimal arm in round t and it the arm the learner

selects.

We begin by deriving the minimum utility of every arm when everyone is truthful. To this end, let
n∗
T (i)

..=
∑T

t=1 1{i∗t = i} be the number of times arm i is the optimal arm. If every arm i is truthful,
then on the good event G no arm gets eliminated (Lemma D.2) and ⟨θ∗, xt,i⟩ = ⟨θ∗, x∗

t,i⟩ for all
(t, i) ∈ [T ]× [K]. As a result, GGTM pulls the optimal arm i∗t in every round t. First, note that:

Eσ∗ [nT (i)] ≥ n∗
T (i)−

1

T
,

because on the good event G (when everyone is truthful), we have nT (i) ≥ n∗
T (i). Since by

construction P(G) ≥ 1− 1/T 2, the lower bound follows.

Next, we bound the utility of a deviating strategy σi in response to GGTM and the other arms’ truthful
strategies σ∗

−i. On the good event G, when the arms play strategies (σi, σ
∗
−i), we have

nT (i) =

T∑
t=1

1{it = i, i∗t = i}+
T∑

t=1

1{it = i, i∗t ̸= i}

≤
T∑

t=1

1{i∗t = i}+
T∑

t=1

1{it = i, i∗t ̸= i}

= n∗
T (i) +

T∑
t=1

1{it = i, i∗t ̸= i}.

We will now bound the sum on the right hand side from above.

Every arm j ̸= i is truthful and therefore, on the good event, j ∈ At for all t. If the optimal arm is
not i, i.e., i∗t ̸= i, it means that ⟨θ∗, x∗

t,i∗t
− x∗

t,i⟩ > 0. Next, since GGTM selects the arms greedily
according to the reported reward, the event it = i implies that

⟨θ∗, xt,i⟩ ≥ ⟨θ∗, x∗
t,i∗t
⟩,

where we used that any arm i∗t ̸= i is truthful so that ⟨θ∗, xt,i∗t
⟩ = ⟨θ∗, x∗

t,i∗t
⟩. As a result, we can

apply Lemma D.1 to obtain

T∑
t=1

1{i∗t ̸= i, it = i}⟨θ∗, x∗
t,i∗t
− x∗

t,i⟩ ≤
T∑

t=1

1{it = i, i∗t ̸= i}⟨θ∗, xt,i − x∗
t,i⟩

≤
τi∑
t=1

1{it = i}⟨θ∗, xt,i − x∗
t,i⟩

≤ 4
√

nτi(i) log(T ).
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Since for i∗t ̸= i the gap ⟨θ∗, x∗
t,i∗t
− x∗

t,i⟩ is positive and assumed to be constant, we get that∑T
t=1 1{i∗t ̸= i, it = i} ≤ O(

√
nτi(i) log(T )). We coarsely upper bound nτi(i) by T and using

that the good event G has probability at least 1− 1/T 2, we obtain

Eσi,σ∗
−i
[nT (i)] ≤ n∗

T (i) +O
(√

T log(T )
)
.

We have thus shown that

Eσ∗ [nT (i)] ≥ Eσi,σ∗
−i
[nT (i)] +O

(√
T log(T )

)
for any deviating (dishonest) strategy σi. This means that σ∗ is a Õ(

√
T )-Nash equilibrium for the

arms.

Finally, the regret of GGTM when the arms are truthful is quickly bounded by 1/T by using the fact
that on the good event no arm gets eliminated and, therefore, GGTM picks the round-optimal arm
every round. The event that G does not hold has probability at most 1/T 2 which implies expected
regret 1/T , i.e., RT (GGTM,σ∗) ≤ 1/T .

D.3 Proof of Theorem 4.2

Proof of Theorem 4.2. The proof of Theorem 4.2 is notably more involved than that of Theorem 4.1,
even though the general proof idea remains similar.

We begin by decomposing of GGTM into the rounds where the optimal arm is active and the rounds
in which it is being ignored. To this end, recall the definition of the arm that is optimal in round t as
i∗t

..= argmaxi∈[K]⟨θ∗, x∗
t,i⟩. We have

RT = E

[
T∑

t=1

1{i∗t ∈ At}⟨θ∗, x∗
t,i∗t
− x∗

t,it⟩

]
︸ ︷︷ ︸

I1

+E

[
T∑

t=1

1{i∗t ̸∈ At}⟨θ∗, x∗
t,i∗t
− x∗

t,it⟩

]
︸ ︷︷ ︸

I2

.

We now bound I1 and I2 separately as follows.

Lemma D.3 (Bounding I1).

E

[
T∑

t=1

1{i∗t ∈ At}⟨θ∗, x∗
t,i∗t
− x∗

t,it⟩

]
≤ O

(√
KT log(T )

)
.

Proof. Let it denote the selection of GGTM in round t. Recall that GGTM greedily selects the arm
in At with highest reported value in round t, that is, ⟨θ∗, xt,it⟩ = maxi∈At⟨θ∗, xt,i⟩. Consequently,
on event {i∗t ∈ At}, we have

⟨θ∗, x∗
t,i∗t
⟩ ≤ ⟨θ∗, xt,i∗t

⟩ ≤ max
i∈At

⟨θ∗, xt,i⟩ = ⟨θ∗, xt,it⟩,

where the first inequality holds by the assumption the optimal arm i∗t reports their value at least as
high as their true value. As a consequence, it holds that ⟨θ∗, x∗

t,i∗t
− x∗

t,it
⟩ ≤ ⟨θ∗, xt,it − x∗

t,it
⟩ which

implies:

E

[
T∑

t=1

1{i∗t ∈ At}⟨θ∗, x∗
t,i∗t
− x∗

t,it⟩

]
≤ E

[
T∑

t=1

1{i∗t ∈ At}⟨θ∗, xt,it − x∗
t,it⟩

]
. (5)

When i∗t ∈ At, a necessary condition for arm i to be selected in round t (i.e., it = i) is that t ≤ τi.
Finally, we split the sum into each arm’s contribution and apply Lemma D.1 to obtain

(5) ≤ E

[
K∑
i=1

τi∑
t=1

1{it = i}⟨θ∗, xt,it − x∗
t,it⟩

]
≤ E

[
K∑
i=1

4
√
nτi(i) log(T )

]
≤ 4

√
KT log(T ),

where the last step follows from Jensen’s inequality by bounding nτi(i) by nT (i) and using that∑K
i=1 nT (i) ≤ T by definition of nT (i).
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While bounding I1 is fairly straightforward and we did not have to rely on the fact that the arms
respond in Nash equilibrium, bounding I2 becomes more challenging as we must argue that it is in
each arms’ interest to maintain active for a sufficiently long time.

Lemma D.4 (Bounding I2).

E

[
T∑

t=1

1{i∗t ̸∈ At}
(
µ∗
t,i∗t
− µ∗

t,it

)]
≤ 5K2

√
KT log(T ) (6)

Proof. To bound I2 we argue via the best response property of the Nash equilibrium. This requires
some intermediate steps. We begin with a lower bound on the expected number of selections any arm
must receive when the arms act according to a Nash equilibrium under GGTM.

Recall the definition n∗
τ (i)

..=
∑τ

t=1 1{i∗t = i} and that the indicator variables 1{i∗t = i} are not
random, since we work under an adversarially chosen sequence of true contexts. In contrast, the
indicator 1{it = i} is a random variable as it generally depends on the random reward observations
and any randomization of the algorithm.

The following lemma provides a lower bound on the number of allocations any arm must receive in
equilibrium. To prove the lemma, we show that we are able to protect any truthful arm from losing
more than order

√
KT allocations to manipulating arms. This is crucial as it would be impossible

to incentivize approximately truthful arm behavior if an arm would lose too many allocations, e.g.,
order T many, by doing so.

A key challenge here is that under two different strategies σi and σ′
i, the set of active arms can be quite

different. This is the case since even though we estimate each arm’s expected reward independently,
arm i can still slightly influence the elimination of some other arm j by poaching selections from
them. As a result, we must content ourselves with a more conservative bound than one may originally
expect.

Lemma D.5. Let σ ∈ NE(GGTM). Then,

Eσ[nT (i)] ≥ n∗
T (i)−O

(√
KT log(T )

)
.

In particular, it holds that Eσ[nt(i)] ≥ n∗
t (i)−O

(√
KT log(T )

)
for any t ∈ [T ].

Proof. We use the fact that if σ = (σ1, . . . , σK) is a NE under GGTM, then σi must be a best
response to σ−i, i.e., Eσi,σ−i

[nT (i)] ≥ Eσ′
i,σ−i

[nT (i)] for all strategies σ′
i. In particular, it must hold

for the truthful strategy σ∗
i that

Eσi,σ−i
[nT (i)] ≥ Eσ∗

i ,σ−i
[nT (i)].

We focus on the good event G so that i ∈ At for all t given that arm i is truthful. We are interested in
the number of rounds such that i∗t = i and it ̸= i. Given strategies (σ∗

i , σ−i) so that i ∈ AT on the
good event, we have

T∑
t=1

1{i∗t = i, it ̸= i} =
∑
j ̸=i

τj∑
t=1

1{i∗t = i, it = j}.

Note that it = j with i∗t = i ∈ At implies that ⟨θ∗, xt,j⟩ ≥ ⟨θ∗, xt,i⟩. Moreover, because i is truthful
and i∗t = i, we have ⟨θ∗, xt,i⟩ = ⟨θ∗, x∗

t,i∗t
⟩ so that ⟨θ∗, xt,j⟩ > ⟨θ∗, x∗

t,i∗t
⟩. As a result,

⟨θ∗, x∗
t,i∗t
− x∗

t,j⟩ < ⟨θ∗, xt,j − x∗
t,j⟩.

It then follows from Lemma D.1 that
τj∑
t=1

1{i∗t = i, it = j}⟨θ∗, x∗
t,i∗t
− x∗

t,j⟩ <
τj∑
t=1

1{i∗t = i, it = j}⟨θ∗, xt,j − x∗
t,j⟩ (7)

≤
τj∑
t=1

1{it = j}⟨θ∗, xt,j − x∗
t,j⟩ (8)

≤ 4
√

nτj (j) log(T ). (9)
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Since ⟨θ∗, x∗
t,i∗t
− x∗

t,j⟩ is constant for i∗t = i, it = j, we obtain∑
j ̸=i

T∑
t=1

1{i∗t = i, it ̸= i} ≤
∑
j ̸=i

O
(√

nτj (j) log(T )
)
≤ O

(√
KT log(T )

)
,

where the last inequality follows from Jensen’s inequality. Recalling that P(G) ≥ 1 − 1/T 2, this
provides us with the following lower bound on the utility of the truthful strategy

Eσ∗
i ,σ−i [nT (i)] = Eσ∗

i ,σ−i

[
T∑

t=1

1{it = i}

]

≥ Eσ∗
i ,σ−i

[
T∑

t=1

1{i∗t = i} −
T∑

t=1

1{i∗t = i, it ̸= i}

]
≥ n∗

T (i)−O
(√

KT log(T )
)

Note that we, like before, we account for the event Gc by increasing the constant factor by one, since
(1− 1/T 2)nT (i) ≥ nT (i)− 1/T as nT (i) ≤ T .

Since σi has to be a best response to σ−i, it must be as least as good as σ∗
i sot that

Eσ[nT (i)] ≥ Eσ∗
i ,σ−i [nT (i)] ≥ n∗

T (i)−O
(√

KT log(T )
)
.

To get the result for any t ∈ [T ], suppose that on the good event G it holds that nt(i) < n∗
t (i) −

ω(
√
KT log(T )). Now, recall from equation (7) that the number of rounds such that i∗t = i

and it ̸= i is bounded by O(
√

Kt log(T )) on event G. Hence, since we assumed that nt(i) <

n∗
t (i)− ω(

√
KT log(T )) and ⟨θ∗, xt,i − x∗

t,i⟩ ≥ 0, it must hold that τi < t. Consequently, on the
good event G, we obtain

nτi(i) ≤ nt(i) < n∗
t (i)− ω

(√
KT log(T )

)
.

This implies that

Eσ[nτi(i)] <
(
1− 1/T 2

) (
n∗
t (i)− ω

(√
KT log(T )

))
+ 1/T ≤ n∗

t (i)− ω
(√

KT log(T )
)
.

This stands in contradiction to the earlier lower bound of Eσ[nT (i)] = Eσ[nτi(i)] ≥ n∗
T (i) −

O
(√

KT log(T )
)
.

Next, we provide an upper bound on the number of times an arm is pulled in any Nash equilibrium.
In other words, we bound the profit any arm can make under GGTM from misreporting contexts.

Lemma D.6. Let σ be any NE under GGTM. Then,

Eσ[nT (i)] ≤ Eσ[n
∗
τi(i)] +O

(
(K − 1)

√
KT log(T )

)
Proof. Note that

∑K
i=1 n

∗
τ (i) =

∑K
i=1

∑τ
t=1 1{i∗t = i} = τ for any τ ∈ [T ]. Using Lemma D.5,

we then obtain
Eσ[nT (i)] = Eσ[nτi(i)]

= Eσ

[
τi∑
t=1

1{it = i}

]

= Eσ

[
τi∑
t=1

(1− 1{it ̸= i})

]
= Eσ [τi]−

∑
j ̸=i

Eσ [nτi(j)]

≤ Eσ[τi]−
∑
j ̸=i

Eσ[n
∗
τi(j)] +O

(
(K − 1)

√
KT log(T )

)
= Eσ[n

∗
τi(i)] +O

(
(K − 1)

√
KT log(T )

)
21



Combining Lemma D.5 and Lemma D.6 we get for any Nash equilibrium σ ∈ NE(GGTM) that

Eσ[n
∗
T (i)]−O

(√
KT log(T )

)
≤ Eσ[nT (i)] ≤ Eσ[n

∗
τi(i)]−O

(
(K − 1)

√
KT log(T )

)
,

which implies that
Eσ[n

∗
T (i)− n∗

τi(i)] ≤ O
(
K
√
KT log(T )

)
. (10)

The expression n∗
T (i)−n∗

τi(i) is the number of rounds where arm i was optimal but already eliminated
by the grim trigger. As a result, we can express the total number of rounds where the round-optimal
arm i∗t was no longer active as follows.

Lemma D.7. For any σ, we have

Eσ

[
T∑

t=1

1{i∗t ̸∈ At}

]
=

K∑
i=1

Eσ[n
∗
T (i)− n∗

τi(i)].

Proof. Rewriting {i∗t ̸∈ At} yields

Eσ

[
T∑

t=1

1{i∗t ̸∈ At}

]
=

K∑
i=1

Eσ

[
T∑

t=1

1{i∗t = i, i ̸∈ At}

]

=

K∑
i=1

Eσ

[
T∑

t=1

1{i∗t = i} −
T∑

t=1

1{i∗t = i, i ∈ At}

]

=

K∑
i=1

Eσ

[
n∗
T (i)− n∗

τi(i)
]
.

Finally, note that ⟨θ∗, x∗
t,i∗t
− x∗

t,it
⟩ ≤ 1 so that from equation (10) it follows that

E

[
T∑

t=1

1{i∗t ̸∈ At}⟨θ∗, x∗
t,i∗t
− x∗

t,it⟩

]
≤ E

[
T∑

t=1

1{i∗t ̸∈ At}

]

=

K∑
i=1

E
[
n∗
T (i)− n∗

τi(i)
]

≤
K∑
i=1

O
(
K
√
KT log(T )

)
= O

(
K2

√
KT log(T )

)
.

Connecting the bound on I1 and I2, we then obtain the final regret bound of Theorem 4.2

RT (GGTM,σ) ≤ O

√
KT log(T )︸ ︷︷ ︸
Lemma D.3

+K2
√
KT log(T )︸ ︷︷ ︸

Lemma D.4

 ≤ Õ (
K2
√
KT

)
.

Remark D.8. We want to briefly comment on the existence of a Nash equilibrium. Since each arm’s
strategy space, given by {x ∈ Rd : ∥x∥2 ≤ 1} in every round, is continuous, it is not obvious that a
Nash equilibrium for the arms exists under every algorithm. However, Glickberg’s theorem shows
that the continuity of the arms’ utility in the arms’ strategies is a sufficient condition for the existence
of a NE, since the strategy space is compact. We can then ensure the continuity by, e.g., choosing arms
proportionally to exp(T ⟨θ∗, xt,i⟩) in GGTM and exp(TUCBt(xt,i)) in OptGTM, and remarking
that the probability of eliminating arm i in round t is continuous in xt,i conditional on any history.
Due to the exponential scaling with T the effect of such slight randomization is negligible in the regret
analysis.
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E Proof of Theorem 5.1 and Theorem 5.2
The following preliminaries are fundamental to the proofs of Theorem 5.1 and Theorem 5.2 so that
we derive them jointly here.

E.1 Preliminaries
We begin by recalling the definition of the least-squares estimator w.r.t. arm i’s reported contexts and
the corresponding confidence ellipsoid Ct,i. Note that since the arms are manipulating their contexts,
the least-squares estimator may not accurately estimate θ∗ and θ∗ may not be contained in Ct,i w.h.p.
As discussed in the main text, since accurate estimation of θ∗ appears hopeless, the main idea idea is
to incentivize arms to report contexts such that our expected reward does not differ substantially from
the observed reward.

The least-squares estimator w.r.t. arm i is given by

θ̂t,i = argmin
θ∈Rd

(∑
ℓ<t : iℓ=i

(
⟨θ, xℓ,i⟩ − rℓ,i

)2
+ λ∥θ∥22

)
,

where λ > 0. In the algorithm, we set the penalty factor to λ = 1. The closed form solution is then
given by

θ̂t,i = V −1
t,i

∑
ℓ<t : iℓ=i

xℓ,irℓ,i with Vt,i = λI +
∑

ℓ<t : iℓ=i

xℓ,ix
⊤
ℓ,i.

The confidence set Ct,i is defined as

Ct,i =
{
θ ∈ Rd : ∥θ̂t,i − θ∥2Vt

≤ βt,i

}
,

where we let βt,i =

√
d log

(
1+nt(i)/λ

δ

)
+
√
λS with ∥θ∗∥2 ≤ S and δ = 1/T 2.

We now translate the standard result used to assert the validity of the confidence set to our situation.
Clearly, when the sequence of xt,i differs significantly from the true contexts x∗

t,i, the true parameter
θ∗ will not be contained in Ct,i. Instead, we will formulate the concentration result as follows.

Lemma E.1. Suppose there exists θ∗i ∈ Rd such that for all t with it = i:

⟨θ∗, x∗
t,i⟩ = ⟨θ∗i , xt,i⟩. (11)

In other words, the reported features xt,i are linearly realizable by some parameter θ∗i .

For any δ ∈ (0, 1) let the confidence size be

βt,i =

√
d log

(
1 + nt(i)/λ

δ

)
+
√
λS,

where ∥θ∗i ∥2 ≤ S. Note that the typical expression also includes some constant L such that
∥xt,i∥2 ≤ L, which we here simply set to 1. With probability at least 1−δ it then holds that θ∗i ∈ Ct,i.
In what follows, we choose δ = 1/T 2.

As a special case, when arm i is always truthful so that xt,i = x∗
t,i, the true parameter θ∗ trivially

satisfies (11) and the result reduces to the standard confidence bound statement [1, 24] restricted to
observations from arm i.

Proof. Let θ∗i satisfy (11). Then, note that rt,i ..= ⟨θ∗, x∗
t,i⟩ + ηt = ⟨θ∗i , xt,i⟩ + ηt. Hence, the

sequence of reported features xt,i and observed reward rt,i yield a standard linear contextual bandit
structure with unknown parameter θ∗i (instead of θ∗). Then, to obtain the confidence bound follow
the arguments from [1, 24], where we remark that we choose the confidence radius βt,i arm specific.
However, we could also choose a larger confidence radius such as βt ≈ d log(t) or even constant
β ≈ d log(T ). This will only have a negligible effect on the final regret.

The grim trigger condition (4) of OptGTM stated that arm i gets eliminated in round t if∑
ℓ≤t : iℓ=i

(
⟨θ̂ℓ,i, xℓ,i⟩ −

√
βℓ∥xℓ,i∥V −1

ℓ,i

)
>

∑
ℓ≤t : iℓ=i

rℓ,i + 2
√

nt(i) log(T ). (12)
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Equivalently,
∑

ℓ≤t : iℓ=i LCBℓ,i(xℓ,i) > UCBt(r̂t,i).

As a sanity check, we show that when an arm always reports truthfully, i.e., xt,i = x∗
t,i for all t, it

doesn’t get eliminated with probability at least 1− 1/T 2.

Lemma E.2. When arm i always reports truthfully it does not get eliminated with high probability,
that is, i ∈ AT with probability at least 1− 1/T 2.

Proof. We consider the event that the true parameter θ∗ is contained in Ct,i, i.e., G′i ..= {θ∗ ∈
Ct,i ∀t ∈ [T ]}. The event G′i has probability at least 1− 1/T 2 according to Lemma E.1 when arm i
is truthful. Moreover, suppose that the reward observations concentrate as well, i.e., we assume the
good event G ..=

{
LCBt(r̂t,i) ≤ r̂∗t,i ≤ UCBt(r̂t,i) ∀t ∈ [T ], i ∈ [K]

}
. Recall that G has probability

at least 1− 1/T 2 according to Hoeffding’s inequality. A union bound then shows that the intersection
of the two events has probability at least 1− 2/T 2.

Now, since arm i is truthful, we have xt,i = x∗
t,i and ⟨θ, xt,i⟩ = ⟨θ, x∗

t,i⟩ for all θ ∈ Rd. Using
Cauchy-Schwarz inequality and the fact that θ∗ ∈ Ct,i, we get that

⟨θ̂t,i, xt,i⟩ − ⟨θ∗, x∗
t,i⟩ = ⟨θ̂t,i − θ∗, x∗

t,i⟩ ≤ ∥θ̂t,i − θ∗∥Vt,i
∥x∗

t,i∥V −1
t,i
≤

√
βt,i∥xt,i∥V −1

t,i

Moreover, as we work on the good event G, we have∑
ℓ≤t : iℓ=i

(
⟨θ∗, x∗

ℓ,i⟩ − rℓ,i
)
∈ [−2

√
nt(i) log(T ),+2

√
nt(i) log(T )].

Combining these two statements yields∑
ℓ≤t : iℓ=i

(
⟨θ̂ℓ,i, xt,i⟩ − rℓ,i

)
≤

∑
ℓ≤t : iℓ=i

√
βℓ,i∥xℓ,i∥V −1

ℓ,i
+ 2

√
nt(i) log(T )

for all t ∈ [T ]. In other words, the grim trigger condition is never satisfied so that i ∈ AT on event
G ∩ G′i, which, as we saw, occurs with probability at least 1− 1/T 2.

We now analyze the grim trigger of the OptGTM algorithm. As before, let τi ..= min{t : i ̸∈ At}
with the convention that τi = T if i ∈ AT . The following lemma upper bounds the total amount of
manipulation that an arm can exert before being eliminated by OptGTM’s grim trigger elimination
rule.

Lemma E.3. On the good event G:∑
t≤τi : it=i

(
⟨θ̂t,i, xt,i⟩ − ⟨θ∗, x∗

t,i⟩
)
≤

∑
t≤τi : it=i

√
βt,i∥xt,i∥V −1

t,i
+ 4

√
nτi(i) log(T ).

Or equivalently, since UCBt,i(xt,i) = ⟨θ̂t,i, xt,i⟩+
√

βt,i∥xt,i∥V −1
t,i

, it holds that∑
t≤τi : it=i

(
UCBt,i (xt,i)− ⟨θ∗, x∗

t,i⟩
)
≤

∑
t≤τi : it=i

2
√
βt,i∥xt,i∥V −1

t,i
+ 4

√
nτi(i) log(T ).

Proof. Let t ∈ [T ]. On the good event G ..=
{
LCBt(r̂t,i) ≤ r̂∗t,i ≤ UCBt(r̂t,i) ∀t ∈ [T ], i ∈ [K]

}
and by definition of UCBℓ,i(xℓ,i, it follows that∑
ℓ≤t : iℓ=i

(
⟨θ̂ℓ,i, xℓ,i⟩ − rℓ,i

)
≥

∑
ℓ≤t : iℓ=i

(
UCBℓ,i(xℓ,i)− ⟨θ∗, x∗

ℓ,i⟩
)
−

∑
ℓ≤t : iℓ=i

√
βℓ,i∥xℓ,i∥V −1

ℓ−1,i
− 2

√
nt(i) log(T )︸ ︷︷ ︸

R ..=

.

Hence, if
∑

ℓ≤t : iℓ=i

(
UCBℓ,i(xℓ,i)− ⟨θ∗, x∗

ℓ,i⟩
)
> 2R, then∑

ℓ≤t : iℓ=i

(
⟨θ̂ℓ,i, xℓ,i⟩ − rℓ,i

)
>

∑
ℓ≤t : it=i

√
βℓ,i∥xℓ,i∥V −1

ℓ,i
+ 2

√
nt(i) log(T ),
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which means that arm i must have been eliminated in a previous round or in round t, i.e., τi > t.
Hence, for any t ≤ τi, the the left hand side must be smaller or equal to the right hand side.

Interestingly, notice that we worked on the good event G that only concerns the realization of the
rewards and not the validity of the confidence set. This is important, since it is generally not true that
the true parameter θ∗ is contained in the confidence set Ct,i.

Lastly, before we begin with the proof Theorem 5.1 and Theorem 5.2, we establish a bound on the
total exploration bonus, which after some additional work follows from the well-known elliptical
potential lemma [1, 24].

Lemma E.4. It holds that∑
t≤τi : it=i

√
βt∥xt,i∥V −1

t,i
≤ O

(
d log(T )

√
nτi(i)

)
.

The constant on the right hand side can be derived from the choice of βt,i.

Proof. Before we can apply the elliptical potential lemma[1], we need to make sure that the explo-
ration bonus does not blow up in early rounds. To this end, recall the definition of

Vt,i
..= λI +

∑
ℓ<t : iℓ=i

xℓ,ix
⊤
ℓ,i.

Let A =
∑

ℓ≤t : iℓ=i xℓ,ix
⊤
ℓ,i. Note that A is positive semi-definite so that λI +A is positive definite

and its inverse (λI +A)−1 as well. The matrix inversion lemma let’s us express this inverse as

(λI +A)−1 = λI − (λI +A)−1A.

Now, the eigenvalues of B = (λI + A)−1A are given by λi/(1 + λi), where λi ≥ 0 are the
eigenvalues of A, which means that B is positive semi-definite. Consequently,

∥xt,i∥2V −1
t,i

= x⊤
t,i(λI +A)−1xt,i = x⊤

t,iλxt,i − x⊤
t,iBxt,i ≤ λ∥xt,i∥22.

We assumed that ∥xt,i∥22 ≤ 1 (similarly we could assume an upper bound L) so that ∥xt,i∥V −1
t,i
≤
√
λ.

For convenience, we set the penalty factor to λ = 1. We then apply Cauchy-Schwarz to get∑
t≤τi : it=i

√
βt,i∥xt,i∥V −1

t,i
≤

√
nτi(i)βT

∑
t≤τi : it=i

min{1, ∥xt,i∥2V −1
t,i

}.

The elliptical potential lemma [1, 24] bounds the sum on the right hand side as∑
t≤τi : it=i

min{1, ∥xt,i∥2V −1
t,i

} ≤ 2d log

(
d+ nτi(i)

d

)
Finally, recall that we chose βt,i = O

(
d log

(
nt(i)

))
, which then yields the claimed bound.

E.2 Proof of Theorem 5.1
Proof of Theorem 5.1. We begin by proving that being truthful is an approximate Nash equilibrium
under OptGTM.

Truthfulness is a Õ(d
√
KT )-NE. In a fist step, we show that if every arm is truthful, every arm is

guaranteed at least n∗
T (i)− Õ(d

√
T ) utility, where n∗

T (i)
..=

∑T
t=1 1{i∗t = i}. To this end, we write

nT (i) =

T∑
t=1

1{it = i, i∗t = i}+
T∑

t=1

1{it = i, i∗t ̸= i}

≥
T∑

t=1

1{i∗t = i} −
T∑

t=1

1{i∗t = i, it ̸= i},
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and our task will be bounding the sum on the right hand side. We focus on the event that θ∗ ∈ Ct,i

for all (t, i) ∈ [T ]× [K], which according to Lemma E.1 occurs with probability at least 1− 1/T 2.

Since θ∗ ∈ Ct,i, we have UCBt,i(x
∗
t,it

) ≥ ⟨θ∗, x∗
t,i∗t
⟩ for every i ∈ [K]. Let i∗t = i but it = j with

j ̸= i. Keeping in mind that xt,i = x∗
t,i for all (t, i) ∈ [T ] × [K], since all arms are truthful, this

implies that
UCBt,i(x

∗
t,j) ≥ UCBt,i(x

∗
t,i) ≥ ⟨θ∗, x∗

t,i∗t
⟩.

As a result, it holds that
UCBt,i(x

∗
t,j)− ⟨θ∗, x∗

t,j⟩ ≥ ⟨θ∗, x∗
t,i∗t
− x∗

t,j⟩.

Next, since θ∗ ∈ Ct,i and θ̂t,i ∈ Ct,i, we find that

UCBt,j(x
∗
t,j)− ⟨θ∗, x∗

t,j⟩ ≤ ⟨θ̂t,j , x∗
t,j⟩ − ⟨θ∗, x∗

t,j⟩+
√
βt,j∥xt,j∥V −1

t,j

≤ ∥θ̂t,j − θ∗∥Vt,j
∥xt,j∥V −1

t,j

≤
√
βt,j∥xt,j∥V −1

t,j
,

where the second line follows from Cauchy-Schwarz inequality. Using Lemma E.4, this implies∑
t≤T : it=j

UCBt,j(x
∗
t,j)− ⟨θ∗, x∗

t,j⟩ ≤
∑

t≤T : it=j

√
βt,j∥xt,j∥V −1

t,j

≤ O
(
d log(T )

√
nτj (j)

)
.

Since ⟨θ∗, x∗
t,i∗t
− x∗

t,j⟩ is constant for i∗t ̸= j, this means that
T∑

t=1

1{i∗t = i, it = j} ≤ O
(
d log(T )

√
nτj (j)

)
so that by Jensen’s inequality

T∑
t=1

1{i∗t = i, it ̸= i} =
∑
j ̸=i

T∑
t=1

1{i∗t = i, it = j} ≤ O
(
d log(T )

√
KT

)
.

In a second step, we show that for any deviating strategy σi that is not truthful, the utility of arm
i is upper bounded by n∗

T (i) + Õ(d
√
T ). In what follows, we work on the event that j ∈ At and

θ∗ ∈ Ct,j for all t ∈ [T ] and j ̸= i and recall that this event has probability at least 1− 1/T 2 since the
arms are reporting truthfully (see Lemma E.2). Since j ∈ AT for all j ̸= i, we have

nT (i) ≤
T∑

t=1

1{i∗t = i}+
T∑

t=1

1{it = i, i∗t ̸= i},

and we are tasked with bounding the sum on the right hand side appropriately. Now, similarly to
before if it = i and i∗t ̸= i (given i∗t ∈ At), then

UCBt,i(xt,i) ≥ UCBt,i∗t
(xt,i∗t

) ≥ ⟨θ∗, x∗
t,i∗t
⟩,

where we used that θ∗ ∈ Ct,i∗t
since the arm i∗t ̸= i is truthful. Consequently,

UCBt,i(xt,i)− ⟨θ∗, x∗
t,i⟩ ≥ ⟨θ∗, x∗

t,i∗t
− x∗

t,i⟩.
Combining Lemma E.3 and Lemma E.4 tells us that∑

t≤τi : it=i

UCBt,i(xt,i)− ⟨θ∗, x∗
t,i⟩ ≤ O

(
d log(T )

√
T
)
,

where we coarsely upper bounded nτi(i) by T . Since ⟨θ∗, x∗
t,i∗t
− x∗

t,i⟩ for i∗t ̸= i is positive and
constant, it follows that

T∑
t=1

1{it = i, i∗t ̸= i} ≤ O
(
d log(T )

√
T
)
.

In summary, we have shown that

Eσ∗ [nT (i)] ≥ n∗
T (i)− Õ

(
d
√
KT

)
and Eσi,σ∗

−i
[nT (i)] ≤ n∗

T (i) + Õ
(
d
√
T
)

for any deviating strategy σi. Hence, σ∗ is a Õ(d
√
KT )-Nash equilibrium under OptGTM.
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Regret analysis. Since we maintain estimates and confidence sets for each arm independently, it is
natural to decompose the regret as

T∑
t=1

⟨θ∗, x∗
t,i∗t
− x∗

t,it⟩ =
K∑
i=1

∑
t≤T : it=i

⟨θ∗, x∗
t,i∗t
− x∗

t,i⟩. (13)

Note that w.h.p. no truthful arm gets eliminated and θ∗ ∈ Ct,i for all (t, i) ∈ [T ]× [K]. The regret
analysis then proceeds similarly to that of LinUCB.

Since θ∗ ∈ Ct,i, we know that for any round such that it = i that

⟨θ∗, x∗
t,i∗t
⟩ ≤ UCBt,i∗t

(x∗
t,i∗t

) = UCBt,i∗t
(xt,i∗t

) ≤ UCBt,i(xt,i) = UCBt,i(x
∗
t,i).

Then, again for any round with it = i, applying Cauchy-Schwarz inequality yields

⟨θ∗, x∗
t,i∗t
− x∗

t,i⟩ ≤ UCBt,i(x
∗
t,i)− ⟨θ∗, x∗

t,i⟩ ≤ 2
√
βt,i∥xt,i∥V −1

t,i
. (14)

Next, first using Cauchy-Schwarz inequality and the elliptical potential lemma (Lemma E.4), and
then Jensen’s inequality, it follows that

2

K∑
i=1

∑
t≤T : it=i

√
βt,i∥xt,i∥V −1

t,i
≤ O

(
d log(T )

√
KT

)
. (15)

Hence, connecting equations (13)-(15), we obtain RT (OptGTM,σ∗) ≤ Õ(d
√
KT ). We see that

the additional
√
K factor emerges due to OptGTM maintaining independent estimates for each arm.

Usually a dependence on the action set size can be prevented since observations from one arm can be
used for another arm as well. However, to prevent collusion in the strategic linear contextual bandit it
is important to limit the influence an arm has on the selection (and elimination) of other arms.

E.3 Proof of Theorem 5.2

Proof of Theorem 5.2. We begin the proof of Theorem 5.2 by decomposing the regret into two
expression, which we then separately bound.

Decomposing strategic regret. We now decompose the regret of OptGTM into the rounds t
where the optimal arm in round t is still active and the rounds where it is not. Like before, let
i∗t

..= argmaxi∈[K]⟨θ∗, x∗
t,i⟩ be the optimal arm in round t. For any σ ∈ NE(OptGTM), we have

RT (σ) = Eσ

[
T∑

t=1

1{i∗t ∈ At}⟨θ∗, x∗
t,i∗t
− x∗

t,it⟩

]
︸ ︷︷ ︸

J1

+Eσ

[
T∑

t=1

1{i∗t ̸∈ At}⟨θ∗, x∗
t,i∗t
− x∗

t,it⟩

]
︸ ︷︷ ︸

J2

.

(16)

With the help of Lemma E.3 and Lemma E.4 we now bound J1.

Lemma E.5 (Bounding J1).

Eσ

[
T∑

t=1

1{i∗t ∈ At}⟨θ∗, x∗
t,i∗t
− x∗

t,it⟩

]
≤ O

(
d
√
KT log(T )

)
.

Proof. By design of OptGTM, we we have⟨θ∗, x∗
t,i∗t
⟩ ≤ UCBt,i∗t

(xt,i∗t
) ≤ UCBt,it(xt,it). Then, on

the good event G, Lemma E.3 yields∑
t≤τi : it=i

⟨θ∗, x∗
t,i∗t
− x∗

t,i⟩ ≤
∑

t≤τi : it=i

(
UCBt,it(xt,it)− ⟨θ∗, x∗

t,i⟩
)

≤ 2

2
√

nτi(i) log(T ) +
∑

t≤τi : it=i

√
βt,i∥xt,i∥V −1

t,i

 .
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Then, on the good event, we have

T∑
t=1

1{i∗t ∈ At}⟨θ∗, x∗
t,i∗t
− x∗

t,it⟩ =
K∑
i=1

τi∑
t=1

1{it = i}⟨θ∗, x∗
t,i∗t
− x∗

t,i⟩

≤
K∑
i=1

∑
t≤τi : it=i

2
√

βt,i∥xt,i∥V −1
t,i

+

K∑
i=1

2
√
nτi(i) log(T )

≤
K∑
i=1

O
(
d log(T )

√
nτi(i)

)
+

K∑
i=1

2
√
nτi(i) log(T )

≤ O
(
d log(T )

√
KT

)
where we applied Jensen’s inequality in the last inequality and used that

∑K
i=1 nτi(i) ≤ T .

Lemma E.6 (Bounding J2).

Eσ

[
T∑

t=1

1{i∗t ̸∈ At}⟨θ∗, x∗
t,i∗t
− x∗

t,it⟩

]
≤ O

(
dK2
√
KT log(T )

)
.

Proof. The proof idea is the same as the one for Lemma D.4, which was used to show the regret
upper bound of the Greedy Grim Trigger Mechanism (Theorem 4.2, Appendix D). Recall that by
assumption ⟨θ∗, x∗

t,i∗t
− x∗

t,it
⟩ ≤ 1. We reuse Lemma D.7 from the proof of Theorem 4.2 to get

Eσ

[
T∑

t=1

1{i∗t ̸∈ At}⟨θ∗, x∗
t,i∗t
− x∗

t,it⟩

]
≤ Eσ

[
T∑

t=1

1{i∗t ̸∈ At}

]
=

K∑
i=1

Eσ

[
n∗
T (i)− n∗

τi(i)
]
,

where n∗
t (i)

..=
∑t

s=1 1{i∗s = i} is the number of rounds up to round t that i is the optimal. To bound
the right hand side, we first prove a lower bound on Eσ[nT (i)] for any NE σ ∈ NE(OptGTM).

Lemma E.7. Let σ ∈ NE(OptGTM). It holds that

Eσ [nT (i)] ≥ n∗
T (i)−O

(
d log(T )

√
KT

)
.

In particular, it holds that Eσ [nt(i)] ≥ n∗
t (i)−O

(
d log(T )

√
KT

)
for t ∈ [T ].

Since G occurs with probability 1− 1/T 2 and nT (i) ≤ T by definition, on event G, we have

nT (i) ≥ n∗
T (i)−O

(
d log(T )

√
KT

)
nt(i) ≥ n∗

t (i)−O
(
d log(T )

√
KT

)
.

Proof. Given that arm i always reports truthfully, i.e., xt,i = x∗
t,i for all t, consider the event that

θ∗ ∈ Ct,i for all t. Recall that this event has probability at least 1− 1/T 2 according to Lemma E.1.

We use the best response property of the Nash equilibrium by comparing against the truthful strategy.
To this end, consider the strategy profile (σ∗

i , σ−i) and the event that θ∗ ∈ Ct,i for all t as well as G.
We then have that

nT (i) ≥
T∑

t=1

1{i∗t = i} −
T∑

t=1

1{i∗t = i, it ̸= i}

= n∗
T (i)−

∑
j ̸=i

τi∑
t=1

1{i∗t = i, it = j}, (17)

where the sum on the right hand side is the number of rounds where i is optimal but OptGTM pulls
another arm (because it has reported a larger optimistic value).
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Next, recall that θ∗ ∈ Ct,i so that for i∗t = i it follows that

UCBt,i(xt,i) = UCBt,i(x
∗
t,i) ≥ ⟨θ∗, x∗

t,i⟩ = ⟨θ∗, x∗
t,i∗t
⟩.

Now, it = j implies UCBt,j(xt,j) ≥ UCBt,i(xt,i) ≥ ⟨θ∗, x∗
t,i∗t
⟩, since i ∈ At for all t and OptGTM

selects the arm with maximal optimistic value. As a result, when i∗t = i and it = j, we obtain that

UCBt,j(xt,j)− ⟨θ∗, x∗
t,j⟩ ≥ ⟨θ∗, x∗

t,i∗t
− x∗

t,j⟩.

Importantly, we have shown in Lemma E.3 that the total difference on the left hand side is bounded
before elimination, i.e., before round τj . As a consequence, we get

τi∑
t=1

1{i∗t = i, it = j}⟨θ∗, x∗
t,i∗t
− x∗

t,j⟩ ≤
τi∑
t=1

1{i∗t = i, it = j}
(
UCBt,j(xt,j)− ⟨θ∗, x∗

t,j⟩
)

≤
τi∑
t=1

1{it = j}
(
UCBt,j(xt,j)− ⟨θ∗, x∗

t,j⟩
)

≤ 2

τj∑
t=1

1{it = j}
√
βt,j∥xt,j∥V −1

t,j
+ 4

√
nτj (i) log(T )

≤ O
(
d log(T )

√
nτj (j)

)
+ 4

√
nτj (i) log(T )

≤ O
(
d log(T )

√
nτj (j)

)
,

where we first used Lemma E.3 and then Lemma E.4. Recalling that ⟨θ∗, x∗
t,i∗t
−x∗

t,j⟩ > 0 is constant
for j ̸= i∗t by assumption of a constant optimality gap, it then follows from Jensen’s inequality that∑

j ̸=i

τi∑
t=1

1{i∗t = i, it = j} ≤
∑
j ̸=i

O
(
d log(T )

√
nτj (j)

)
≤ O

(
d log(T )

√
KT

)
,

where we used that
∑

j ̸=i nτj (j) ≤ T . Hence, equation (17) yields

nT (i) ≥ n∗
T (i)−O

(
d log(T )

√
KT

)
.

Since σi must be a best response to σ−i, we obtain

Eσ[nT (i)] ≥ Eσ∗
i ,σ−i [nT (i)] ≥ n∗

T (i)−O
(
d log(T )

√
KT

)
.

To obtain the result for t ∈ [T ]l, suppose that on the good event G the contrary is true so that
nt(i) < n∗

t (i)−ω(d log(T )
√
KT ). However, similarly to before, Lemma E.3 tells us that the number

of rounds that are “poached” from arm i, i.e., i∗t = i and it ̸= i, is upper bounded from above by
O(d log(T )

√
Kt). Hence, since UCBt,i(xt,i) ≥ ⟨θ∗, x∗

t,it
⟩ and nt(i) ≤ n∗

t (i)− ω(d log(T )
√
KT ),

it must hold that τi < t. Then, on the good event G, it follows that nτi(i) ≤ nt(i) < n∗
t (i) −

ω(d log(T )
√
KT ). Since event G has probability at least 1− 1/T 2, this implies

Eσ[nT (i)] = Eσ[nτi(i)] ≤ n∗
t (i)− ω

(
d log(T )

√
KT

)
.

This contradicts the lower bound of Eσ[nT (i)] ≥ n∗
T (i)−O(d log(T )

√
KT ).

Lemma E.8. Let σ ∈ NE(OptGTM). Then,

Eσ[nT (i)] ≤ Eσ[n
∗
τi(i)]−O

(
d log(T )K

√
KT

)
,

where the expectation on the right hand side is taken w.r.t. τi.
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Proof. We have
∑K

i=1 n
∗
τ (i) =

∑K
i=1

∑τ
t=1 1{i∗t = i} = τ for any τ ∈ [T ]. Using Lemma E.7, we

obtain

Eσ[nT (i)] = Eσ[nτi(i)]

= Eσ

[
τi∑
t=1

1{it = i}

]

= Eσ

[
τi∑
t=1

(1− 1{it ̸= i})

]
= Eσ [τi]−

∑
j ̸=i

Eσ [nτi(j)]

≤ Eσ[τi]−
∑
j ̸=i

Eσ[n
∗
τi(j)] +O

(
d log(T )K

√
KT

)
= Eσ[n

∗
τi(i)] +O

(
d log(T )K

√
KT

)
.

Combing the lower and upper bounds on each arm’s utility of Lemma E.7 and Lemma E.8, we get

n∗
T (i)−O

(
d log(T )

√
KT

)
≤ Eσ[nT (i)] ≤ Eσ[n

∗
τi(i)]−O

(
d log(T )K

√
KT

)
. (18)

It then follows that

Eσ[n
∗
T (i)− n∗

τi(i)] ≤ O
(
d log(T )K

√
KT

)
so that

K∑
k=1

Eσ

[
n∗
T (i)− n∗

τi(i)
]
≤ O

(
d log(T )K2

√
KT

)
.

This concludes the proof of Lemma E.6.

Finally, recalling the regret decomposition from the beginning of the proof and using Lemma E.5 and
Lemma E.6, we obtain for any σ ∈ NE(σ) that

RT (GGTM,σ) ≤ O

d log(T )
√
KT︸ ︷︷ ︸

Lemma E.5

+ d log(T )K2
√
KT︸ ︷︷ ︸

Lemma E.6

 ≤ Õ (
dK2
√
KT

)
.

E.4 Linear Realizability of Reported Contexts
In the following, we comment on an interesting observation in the strategic linear contextual bandit
that may also provide some insight into the effectiveness of OptGTM. Suppose that each arm
reports its contexts in a linearly realizable fashion (without us explicitly incentivizing them to do so).
Formally, we can express this as the following assumption.

Assumption 3 (Linear Realizability of Reported Contexts). Every arm reports so that its reports
follow some linear reward model. That is, for every arm i ∈ [K], there exists a vector θ∗i ∈ Rd such
that for all t ∈ [T ]

⟨θ∗, x∗
t,i⟩ = ⟨θ∗i , xt,i⟩. (19)

Perhaps surprisingly, the regret analysis of OptGTM becomes straightforward when the arms’ strate-
gies satisfy Assumption 3. Moreover, we can prove that OptGTM suffers Õ

(
d
√
KT

)
strategic

regret in every Nash equilibrium of the arms. That is, the regret guarantee is better than that of
Theorem 5.2.
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A quick regret analysis. Let σ be any NE under OptGTM. When we observe a reward rt,i after
pulling arm i in round t, we can interpret the reward as rt,i ..= ⟨θ∗, x∗

t,i⟩ + ηt = ⟨θ∗i , xt,i⟩ + ηt.
Hence, isolating arm i, the learner is essentially playing a linear contextual bandit with true unknown
parameter θ∗i , contexts xt,i, and rewards rt,i = ⟨θ∗i , xt,i⟩+ηt. As a result, the independent estimators
θ̂t,i for every arm i, are in fact estimating θ∗i and, according to Lemma E.1, with high probability
θ∗i ∈ Ct,i. It is then also easy to see that OptGTM will never eliminate any of the arms with high
probability. Now, since θ∗i ∈ Ct,i,

⟨θ∗, x∗
t,i⟩ = ⟨θ∗i , xt,i⟩ ≤ UCBt,i(xt,i).

As a result, using Cauchy Schwarz inequality, we obtain

UCBt,i(xt,i)− ⟨θ∗, x∗
t,i⟩ ≤ ⟨θ̂t,i − θ∗i , xt,i⟩+

√
βt,i∥xt,i∥V −1

t,i

≤ ∥θ̂t,i − θ∗i ∥Vt,i
∥xt,i∥V −1

t,i
+

√
βt,i∥xt,i∥V −1

t,i
≤ 2

√
βt,i∥xt,i∥V −1

t,i
.

In every round t, OptGTM selects the arm with maximal optimistic reported value UCBt,i(xt,i) so
that UCBt,i∗t

(xt,i∗t
) − UCBt,it(xt,it) ≤ 0. We can then bound the instantaneous regret in round t

as

⟨θ∗, x∗
t,i∗t
− x∗

t,it⟩ ≤ UCBt,i∗t
(xt,i∗t

)− ⟨θ∗, x∗
t,it⟩

≤ UCBt,i∗t
(xt,i∗t

)−UCBt,it(xt,it) + 2
√
βt,it∥xt,it∥V −1

t,it

≤ 2
√

βt,it∥xt,it∥V −1
t,it

.

Using the elliptical potential lemma and Jensen’s inequality (Lemma E.4, [1, 24]), the total regret of
OptGTM is given by

RT (OptGTM,σ) ≤
K∑
i=1

∑
t≤T : it=i

2
√

βt,i∥xt,i∥V −1
t,i
≤ O

(
d log(T )

√
KT

)
.

We have thus shown the following guarantee.

Corollary E.9. Suppose that Assumption 3 holds. Then,

RT (OptGTM,σ) = Õ
(
d
√
KT

)
for every Nash equilibrium σ ∈ NE(OptGTM).
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract, we list the main claims of this paper in a general fashion.
Then, in the introduction we state them in more detail. They accurately reflect the paper’s
contribution and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations and assumptions of our work throughout the paper.
Additional limitations are highlighted in the discussion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best

32



judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions can be found in Section 3 and in the paragraphs before the
theorems. We provide proof sketches in the main text and complete proofs in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]

Justification: We do not see any potential negative social impact of this work. On the contrary,
this work aims to improve the fairness and equity of online platforms by discouraging
harmful gaming behavior in response to recommendation algorithms.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work addresses the problem of aligning agent incentives with that of learn-
ing algorithms. While there are some potential positive societal impacts of this theoretical
work, we do not believe that it is necessary to highlight them here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.

36



• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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