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ABSTRACT

In many critical machine learning (ML) applications it is essential for a model to in-
dicate when it is uncertain about a prediction. While large language models (LLMs)
can reach and even surpass human-level accuracy on a variety of benchmarks, their
overconfidence in incorrect responses is still a well-documented failure mode. Tra-
ditional methods for ML uncertainty quantification can be difficult to directly adapt
to LLMs due to the computational cost of implementation and closed-source nature
of many models. A variety of black-box methods have recently been proposed,
but these often rely on heuristics such as self-verbalized confidence. We instead
propose a framework for measuring an LLM’s uncertainty with respect to the
distribution of generated explanations for an answer. While utilizing explanations
is not a new idea in and of itself, by interpreting each possible model+explanation
pair as a test-time classifier we can calculate a posterior answer distribution over
the most likely of these classifiers. We demonstrate how a specific instance of
this framework using explanation entailment as our classifier likelihood improves
confidence score metrics (in particular AURC and AUROC) over baselines across
five different datasets. We believe these results indicate that our framework is a
promising way of quantifying uncertainty in LLMs.

1 INTRODUCTION

Large language models (LLMs) are known to at times confidently provide wrong answers, which can
greatly mislead non-expert users of the model (Xiong et al., 2023; Chang et al., 2023). In the some
cases an LLM may even ‘hallucinate’ facts all together (Xiao & Wang, 2021; Zhang et al., 2023).
Although scaling generally improves factual accuracy, past work has shown that even the largest
models can give incorrect answers to certain types of questions (Lin et al., 2021).

To prevent these misleading scenarios, one intuitive approach is to have the model also report its
confidence (or uncertainty) in the accuracy of its own response. This task, known as uncertainty
quantification, has a vast associated literature (Abdar et al., 2021; Gawlikowski et al., 2023). In its
most naive form, this can entail taking the softmax of prediction logits to calculate a ‘distribution’
over answers. However in most cases there is no guarantee that this metric should correspond to the
actual probability of correctness on a new datum. Empirically this mismatch has been demonstrated
for LLM token logits (Kuhn et al., 2023; Achiam et al., 2023).

One might instead hope that by probing the model (e.g. through its weights or activations) one
could infer a measure of confidence that somehow aligns with our expectations. However, full
access to a large language model is often infeasible due to a combination of proprietary restrictions
and computational expense. Recently a range of ‘black-box’ approaches have been proposed that
avoid the need for access to internal model information (Kadavath et al., 2022; Xiong et al., 2023;
Shrivastava et al., 2023). These approaches typically rely on custom prompting strategies to elicit
self-verbalized (linguistic) confidence or generate multiple variations of a response (consistency).
While empirically promising, these methods are heuristic and still return overconfident responses in
many cases.

We reason that a central issue with existing uncertainty quantification methods for LLMs stems from
the underlying inductive assumption that test and training data are sampled from the same distribution.
Unfortunately, this is often not true in practice, meaning any uncertainty quantification strategy that is
well-calibrated on one dataset is not guaranteed to be calibrated on new test data. However, an LLM
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offers a unique opportunity to adjust its decision boundary at test-time, i.e. transductively (Vapnik &
Kotz, 2010). It does this via intermediate text (explanations) generated after observing the question.
While inserting random text would likely lead to a high-entropy decision distribution, adding relevant
facts or logical step-by-step reasoning serves to ‘stabilize’ the sampled answers around an isolated
minimum. Indeed, prompts inducing chain of thought (CoT) reasoning have already shown to
improve model accuracy in this manner (Wei et al., 2022) and reduce entropy (see Appendix B.4).
However, more recent work has suggested that even CoT explanations can be biased and may not
correspond with the correct answer (Turpin et al., 2024). Therefore, to properly determine an LLMs
uncertainty for new questions, one must determine which explanations are ‘stable’, both in the sense
of reducing entropy towards a single answer and maintaining consistency with observed evidence.

In this work we propose a method for generating confidence scores from the distribution of LLM-
generated explanations for an answer. This method, which we call stable explanations confidence,
can be thought of as computing the posterior predictive distribution by marginalization over likely test-
time classifiers. We illustrate the usefulness of these scores on two common uncertainty quantification
tasks: calibration, in which we measure how close confidence is to empirical accuracy, and selective
uncertainty, in which we determine how well the scores can discriminate between correct and
incorrect predictions. We compare to other recently proposed methods across five datasets of different
scope and complexity (CommonsenseQA, TruthfulQA, MedQA, MMLU Professional Law, MMLU
Conceptual Physics) using two popular LLMs (GPT-3.5 (Brown et al., 2020) and GPT4 (Achiam et al.,
2023)). We find that our method on average outperforms baselines on the selective uncertainty task
(measured via AUROC and AURC), particularly for more complex question-answering problems.

2 RELATED WORK

In this section we first summarize the uncertainty quantification problem in machine learning. We
then highlight key challenges in the natural language generation setting and the ‘confidence gap’ of
existing LLM models. Lastly we discuss exisiting approaches for LLM uncertainty quantification
and methods for their evaluation.

2.1 UNCERTAINTY QUANTIFICATION IN MACHINE LEARNING

Defining and reasoning about uncertainty has been a long-standing problem in different disciplines
including philosophy, statistics, and economics. Many formal representations with unique properties
have been proposed, (e.g. Dempster-Shafer belief functions, ranking functions, etc. (Halpern, 2017)),
but in the machine learning setting uncertainty quantification typically relies on the standard language
of probability measures. For a classification task we can think of the sequential training data-label
pairsD := {(xi, yi)}Ni=1 as the model’s source of knowledge about the world. Given some test datum
xN+1, we would like the model to both make a prediction ŷN+1 and provide a ‘useful’ confidence
score rN+1 ∈ [0, 1]. Useful confidence scores should allow models to express their belief in the
accuracy of a prediction, and is called well-calibrated if on average predictions with confidence r
are correct close to 100r% of the time. If the classification task also specifies cases for which it is
better to return no prediction than a wrong one, we can imagine creating some selection rule using
confidence scores to determine whether to trust the classifier’s prediction. We will formalize these
two related goals later when discussing evaluation metrics in Section 4.1.

Uncertainty quantification methods differ from one another based on their assumptions about where
uncertainty is coming from. Sources of uncertainty are traditionally categorized into two broad
classes: epistemic uncertainty arising from the agent’s incomplete knowledge of the world, and
aleatoric uncertainty inherent to the data generating process (e.g. the flip of a coin). In reality,
definitions vary among the machine learning community (Baan et al., 2023) and most methods do
not fit neatly into either category. In this work we discuss a few of most common methods based on
the underlying assumptions placed on the test data. We make this distinction because without this
fundamental assumption it is impossible to know anything about the test distribution from training
data. Note that for a full discussion and taxonomy of the numerous uncertainty quantification methods
in machine learning we refer to a suvery paper such as (Abdar et al., 2021; Gawlikowski et al., 2023).

Related Training and Test Worlds. Most uncertainty quantification methods rely on the fundamen-
tal assumption that the test data comes from the same distribution as the training set. Under this type
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of assumption Bayesian approaches such as Bayesian Neural Networks (BNNs) are popular. BNNs
measure epistemic uncertainty through a posterior on the learned weights, which can be reduced as
more data is recieved (Neal, 2012; Jospin et al., 2022). Another popular method is that of conformal
prediction, which introduces a somewhat dual notion of the conformal set. Under a slightly weaker
exchangibility assumption (i.e. that the joint distribution remains the same under permutations of
the training and test data), the conformal set of predictions is guaranteed to contain the true label
with error probability less than some ϵ (Shafer & Vovk, 2008). Weaker predictive models result in
larger conformal sets, and so set size can be taken as an indicator for higher model uncertainty. Other
methods include looking at the robustness of predictions under semantic-preserving transformations
of the input, as mentioned in (Gawlikowski et al., 2023).

Different Training and Test Worlds. Small and large differences between training and test
distributions are typically denoted as distribution shift and out-of-distribution respectively (Yang
et al., 2021). In this setting methods like prior networks attempt to capture the specific notion of
this distributional uncertainty through and additional prior over predictive distributions and training
explicitly on a loss objective (Malinin & Gales, 2018).

2.2 UNCERTAINTY QUANTIFICATION IN LLMS

Recently much attention has been devoted to measuring uncertainty specifically in LLMs (Geng et al.,
2023; Huang et al., 2023). Since LLMs are generative models, uncertainty may be measured with
respect to an infinite set of text sequences as opposed to a fixed number of classification labels (Baan
et al., 2023). Many works, however, use multiple choice question answering tasks to evaluate LLMs
using standard classification methodologies (Wang et al., 2022; Kadavath et al., 2022), and we will
follow a similar approach in this work. Issues with using token logits directly to compute confidence
are well known. Recent works (Achiam et al., 2023; Kadavath et al., 2022; Steyvers et al., 2024)
show that larger models are typically better calibrated on multiple choice datasets than smaller ones,
but are still sensitive to question reformulations as well as typical RLHF training strategies. Another
recent work (Yin et al., 2023) notes that language models fail to identify unanswerable questions at a
higher rate than humans.

At a high level, existing techniques for LLM confidence elicitation can be classified as either white-
box, requiring access to internal model weights and token probabilities, or black-box, using only
samples from the model (Geng et al., 2023). We choose to summarize inference time interventions
below, as training time interventions are often computationally expensive and require strict inductive
assumptions.

White-box Methods. Access to the last activation layer of the LLM (token logits) admits calculating
token and token sequence probabilities via the softmax function. One can incorporate text sequence
probabilities to implement conformal prediction (Kumar et al., 2023) methods, or adjust them based
on semantic importance of individual tokens to improve calibration (Duan et al., 2023). Surrogate
models can also serve as an effective substitute if access the original model is restricted-access
(Shrivastava et al., 2023). Internal activations can also be observed to determine if certain feature
directions are more or less truthful (Azaria & Mitchell, 2023; Burns et al., 2022).

Black-box Methods. Black-box confidence typically uses one or both of the following approaches:
Sample+aggregate methods involve analyzing the distributions of multiple responses sampled from
the model (Xiong et al., 2023). Responses can be generated in a variety of ways, such as using
chain-of-thought prompting (Wang et al., 2022), asking for multiple answers in a single response
(Tian et al., 2023), or perturbing the question in-between samples (Li et al., 2024). Confidence can
be found by observing the frequency with which answers occur, or by averaging over other metrics
(Chen & Mueller, 2023). Self-evaluation methods use customized prompts in order for the model to
generate its own confidence estimates in natural language (Kadavath et al., 2022). These methods can
also be augmented with chain-of-thought or other more complex reasoning steps (Dhuliawala et al.,
2023). Much effort has been put into analyzing how changes in prompt (e.g. by including few-shot
examples) affects these confidences (Zhou et al., 2023; Zhao et al., 2024).
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3 STABLE EXPLANATIONS

Given a question, we would like to assign a confidence value to an answer based on how plausible its
associated explanations are. Intuitively, humans are confident in an answer when likely explanations
exist for it and no other answers have reasonable explanations. However, the space of explanations
(variable-length token sequences) is infinite and hard to work with directly. To overcome this, we
will first approximate this distribution by sampling a set of explanations from the LLM conditioned
on the question, and then reweight based on their logical consistency with the question description.
Afterwards we can compute the degree to which explanations support each answer. We can view
these two steps as estimating the posterior likelihood of the explanation given the question, and the
conditional answer distribution of the test-time model parameterized by this explanation. These two
components will allow us to compute a posterior predictive distribution in a Bayesian fashion. We
formalize each step in the following subsections, and summarize the complete method in Algorithm 1.

Algorithm 1 Stable Explanation Confidence Calculation
Input: LLM ϕ, question q and selected answer ai ∈ A, explanation sample size N
Output: Confidence estimate p̂(ai|q)
for n = 1 . . . N do

en ∼ ϕ(promptexplain(q)) // sample explanations
ρn ← ϕ(promptentail(q, en)) // compute probability that q |= en

end
z ←

∑N
n=1 ρn

p̂(ai|q)←
∑N

n=1
ρn

z softmax(ϕ(q, en))i // marginalize over explanations

return p̂(ai|q)

Preliminaries. Consider a multiple choice question q := {x1, . . . , xt} = xt consisting of a
sequence of tokens in some alphabet xj ∈ A, and a set of possible answers a ∈ S ⊆ A which are
also some subset of tokens in the same alphabet. We will designate ϕ as an LLM, which will take any
variable length token sequence as input and output a token logit vector of size |A|. We use ϕ(s1, s2)
to denote the direct concatenation of two token sequences in the LLM input, and ϕ(prompt(s)) to
denote adding prompt instructions to the input. Finally, s ∼ ϕ will be used to denote sampling a
token sequence from the LLM.

3.1 ANSWER LIKELIHOOD CONDITIONED ON EXPLANATIONS

In its default configuration, providing a question to an LLM ϕ without further input can be used to
find an answer:

argmax
S

ϕ(q, { }) = a (1)

One can also naively compute a ‘probability distribution’ over possible answers by taking the softmax
of token logits produced by the model. We will denote this calculation as

pϕ(a|q) := softmax(ϕ(q, { }))i, (2)

where i denotes the logit index of a. However, these default token probabilities have been shown
to be miscalibrated and sensitive to variations in the input (Kadavath et al., 2022; Tian et al., 2023).
Next, we formally say that explanations, like questions, are also some τ -length sequences of tokens
e ∈ Aτ located between question and answer. If the model generates these explanations (like in
the chain-of-thought reasoning paradigm (Wei et al., 2022)) then the sequences can be thought of
as a possible trajectory from the question to an answer. While the set of possible trajectories is
infinite, we can group explanations into equivalence classes by noting that two semantically identical
explanations must support the same answers (Liu et al., 2024; Soatto et al., 2023). This notion leads
us to the following idea: characterize the distribution of explanations by looking at the new answers
they lead to.

argmax
S

ϕ(q, e) = a′ (3)
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This idea is related to the semantic entropy method of (Kuhn et al., 2023), but here we use the next
token distribution pϕ(a|e, q) instead of a pairwise explanation similarity to ‘cluster’ explanations. If
we can enumerate all likely explanations, we can calculate the posterior answer probability as follows

p̂(a|q) =
∑
e

pϕ(a|e, q)p(e|q) (4)

A key detail omitted so far is how to efficiently approximate the distribution of all ‘stable’ explanations.
We will see in the following subsection that this can be achieved using only the LLM ϕ.

3.2 DETERMINING LIKELY EXPLANATIONS

A naive method for estimating the posterior p(e|q) would be to sample explanations using a modified
prompt and examine some frequency of occurrence (e.g. using a CoT ‘think step-by-step’ approach).
Indeed, a number of consistency-based question-answering methods work by sampling and then
aggregating explanations and answers in this manner (Wang et al., 2022; Chen & Mueller, 2023).
However, due to the way LLMs are trained, this token-level probability distribution does not nec-
essarily represent the probability that an explanation actually explains the data in the question (Yu
et al., 2023; Turpin et al., 2024). Instead, we enforce logical consistency by checking the entailment
probability of our sampled explanations (q |= e), which can be approximated by using the LLM and
a modified prompt ϕentail(q, e) (Sanyal et al., 2024). This results in the following estimate for the
explanation posterior:

p(e|q) = p(q|e)p(e)
p(q)

≈ ϕent.(q, e)∑
e′∈E ϕent.(q, e′)

=: p̂(e|q), (5)

where E is the set of explanations sampled from our model and which implicitly defines our prior.
We reason that enforcing logical structure prevents trusting explanations that ‘overfit’ to the test
datum. For example while an explanation such as ‘the answer is always (a)’ is syntactically correct
and may result in a confidently correct answer for our test question, it would prove a useless classifier
on previous training data. While we use entailment probability in our main results, an exploration of
alternative explanation plausibility calculations can be found in Appendix B.5.

4 EXPERIMENTS

To gain insight into the usefulness of LLM-sampled explanations we first examine differences in
distributions of explanations resulting in correct vs. incorrect answers (see Figure 1) and find
explanation entailment (Section 3.2) can help distinguish between the two. We then conduct a series
of experiments to compare our proposed stable explanation confidence (Algorithm 1) with exisiting
approaches across a set of five benchmark datasets and discuss our findings below.

4.1 SETUP

Evaluation Method. How do we know whether a proposed confidence metric is useful or not?
In line with previous works (Kadavath et al., 2022; Xiong et al., 2023; Shrivastava et al., 2023;
Tian et al., 2023) there are typically two tasks that uncertainty metrics are evaluated on. The first is
confidence calibration, where the goal is to produce confidence scores approximating the empirical
probability that the model answers the question correctly. Expected calibration error (ECE) (Naeini
et al., 2015; Nixon et al., 2019) attempts to estimate this using differences between the average
confidence and accuracy for a group of similarly scored answers, however ECE can be misleading
(see Section 5). We still include this metric in our reports for ease of comparison with previous work.
The second related task is typically called selective uncertainty (also known as failure prediction).
Here the goal is to create a binary classifier using confidence scores that predict when the model
should return ‘I don’t know’ instead of its original prediction. A variety of classifier metrics can be
used, depending on how one chooses to penalize false positive (overconfident) and false negative
(underconfident) predictions. In this work we use two of the most common metrics: area under the
reciever-operator curve (AUROC) (Hendrycks & Gimpel, 2016), and area under the risk-coverage
curve (AURC)(Ding et al., 2020). Uninformative (i.e. completely random) confidence scores will
have a worst-case AUROC of 0.5 and an worst-case AURC equal to average model accuracy. The
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Dataset Avg. Question Length (# Chars) GPT-3.5 Accuracy GPT-4 Accuracy
CSQA 151 0.79 0.84
TruthQA 329 0.54 0.85
MedQA 916 0.59 0.82
MMLU Law 1233 0.46 0.64
MMLU Physics 172 0.57 0.92

Table 1: Average question length and accuracy for each of the datasets tested in this work. One
can observe a weak correlation between question length and difficulty, as typically longer questions
describe more complex scenarios and logical structure.

best possible value for both AUROC and AURC is 1.0. We include formal definitions for each of
these metrics in Appendix A.

Datasets and Models. We evaluate our method using five standard question answering datasets
covering a variety of reasoning tasks: CommonsenseQA (CSQA) (Talmor et al., 2018), TruthfulQA
(Lin et al., 2021), MedQA (Jin et al., 2021), MMLU Professional Law, and MMLU Conceptual
Physics (Hendrycks et al., 2020). Besides covering a range of topics, these datasets also vary largely
in their complexity. As seen in Table 1, the average length of an MMLU law question is almost
ten times that of the average CSQA question. Shorter questions typically resemble more traditional
classification tasks (e.g. ‘Something that has a long and sharp blade is a? ’ from CSQA), while longer
questions typically include descriptions of a specific scenario that require more complex reasoning.
We test both methods and baselines on snapshots of two state-of-the-art models GPT-3.5-turbo
(Brown et al., 2020) and GPT-4-turbo (Achiam et al., 2023). Further data and model details can be
found in Appendix B.

Compared Metrics. We use five different baselines for comparison purposes. Token probabilities
for each answer can be produced by taking the softmax over the models logit vector and are one of the
most commonly used confidence metrics during model evaluation (Achiam et al., 2023; Chang et al.,
2023). The P(True) method from (Kadavath et al., 2022) similarly uses the ‘true’ token probability
after posing question and answer pair as a true/false question. Linguistic and Top-k methods both
ask the model for a verbalized confidence estimate directly, the former prompting the model for a
single answer and confidence estimate while the later asks for the k-best guesses and associated
confidences (Tian et al., 2023; Shrivastava et al., 2023). Lastly the sef-consistency method samples
multiple responses from the model and approximates confidence via the relative frequency of parsed
answers. Here we use a particular variant of this method, CoT-Consistency (Wang et al., 2022),
which uses a zero-shot chain-of-thought prompt to generate responses, and which has been shown to
outperform the vanilla method (Xiong et al., 2023). We use the similar prompts to those selected in
previous work for comparison purposes, the details of which can be found in Appendix B.1.

4.2 LIKELY EXPLANATIONS NOT ALWAYS CORRECT

We first illustrate how explanation likelihood, as measured via conditional token log probability, does
not always correspond with the correctness of the supported answer. These results align with previous
findings differentiating syntactically vs. semantically correct model responses (Lin et al., 2021; Kuhn
et al., 2023), and help us to motivate using entailment probability in our method. First recall that the
length-normalized conditional log-likelihood for sequence xt given sequence s is defined as

LL(xt|s) := 1

t

t∑
i=1

log(Pϕ(xi|s, x1, x2, . . . , xi−1)), (6)

which can also be thought of as the average token logit value. Higher log-likelihood of explanations
should mean higher chance of being sampled by the LLM. We can observe in Figure 1 two distri-
butions of explanations: one set (in blue) results in answers we know are correct, the second set (in
red) are those that result in incorrect responses. The model prompt for each set is the same and is
given in Appendix B.1. We see that while the mean log-likelihood for correct explanations is slightly
higher than that of incorrect explanations, the two distributions are hard to distinguish. In contrast
there is clearly a distinct tail for the distribution of incorrect explanations measured via entailment
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Figure 1: Empirical distribution of explanation log likelihoods (top left) and explanation
entailment probabilities (top right) generated for the TruthQA dataset using token logits from
GPT3.5-Turbo. Red denotes explanations generated leading to incorrect answers and blue denotes ex-
planations justifying the correct answer. While mean likelihood for the two explanation distributions
are different, there is significant overlap. In contrast the tail of the incorrect explanation distribution is
distinct when using entailment probability. The example explanation (lower) suggests we can use this
entailment measure to distinguish semantically unlikely explanations in cases where likelihood fails.

probability. This result suggests that we may be able to discount certain explanations sampled by the
LLM but that are well written but logically ‘unstable’, hence improving our confidence score.

4.3 STABLE CONFIDENCE IMPROVES SELECTIVE UNCERTAINTY

For each dataset we evaluate our stability method using both a simple explanation prompt and explicit
chain-of-thought explanation thought (‘think step by step’) inspired by (Wang et al., 2022) (see
Appendix B.1). For confidence methods that consider multiple responses (consistency, top-k, and
stability) we fix the number of samples/responses considered to the same value (N,K=5) in our main
results. We further analyze the effect of changing sample size in Appendix B.

When testing on the GPT-3.5-turbo model, we first observe (Figure 2a) that on average both variants
of stable explanation confidence outperform baselines on selective uncertainty tasks. Average AURC
is 0.777 vs. next best of 0.761, while average AUROC is 0.796 vs. 0.784. Looking at individual
datasets paints a more complete picture, as we see for more complex reasoning tasks such as MMLU
law or TruthQA, the improvement in AURC for example is ∼ 5%. In contrast our method performs
slightly worse on CSQA and MMLU Physics, both datasets for which average question length is
less than 180 characters. For the GPT-4-turbo model (Figure 2b) we see that AURC and AUROC
improves consistently for each dataset tested. AUROC improves in particular over baselines by about
6% on average, indicating better ability to distinguish between correct and incorrect predictions. ECE
is roughly the same as the best baseline (CoT-consistency) in this case.

4.4 ABLATION STUDY

We perform an ablation study in an attempt to isolate the effect of the two key components of our
stable explanation method. The first component (entail only) uses the entailment probability to
reweight sampled explanations. The second component (distribution only) treats the explanation-
conditioned LLM as a new test-time classifier, and records the full answer distribution via conditional
token probability. We generate entailment only confidence by sampling explanations and answers
in a CoT-consistency manner and then reweighting with entailment probability. Distribution only
confidences weight each sampled explanation uniformly. We look at the effect of each component
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Method CSQA TruthQA MedQA MMLU Law MMLU Physics Average
Linguistic 0.823 0.662 0.632 0.543 0.599 0.652
Token Prob. 0.914 0.75 0.727 0.622 0.751 0.753

AURC ↑ CoT-Consistency 0.885 0.773 0.73 0.623 0.793 0.761
Top-K 0.861 0.68 0.61 0.529 0.675 0.671
P(true) 0.8 0.663 0.626 0.55 0.587 0.645
Stability (Ours) 0.91 0.805 0.73 0.65 0.77 0.773
CoT-Stability (Ours) 0.898 0.817 0.745 0.638 0.787 0.777
Linguistic 0.644 0.673 0.607 0.629 0.564 0.623
Token Prob. 0.806 0.772 0.702 0.676 0.747 0.741

AUROC ↑ CoT-Consistency 0.761 0.828 0.769 0.715 0.846 0.784
Top-K 0.698 0.65 0.54 0.575 0.614 0.616
P(true) 0.585 0.689 0.593 0.609 0.521 0.6
Stability (Ours) 0.796 0.858 0.772 0.734 0.818 0.796
CoT-Stability (Ours) 0.795 0.866 0.774 0.709 0.834 0.796
Linguistic 0.137 0.215 0.263 0.279 0.306 0.24
Token Prob. 0.173 0.344 0.319 0.358 0.312 0.301

ECE ↓ CoT-Consistency 0.096 0.116 0.155 0.196 0.12 0.136
Top-K 0.147 0.134 0.292 0.14 0.131 0.169
P(true) 0.192 0.356 0.367 0.437 0.398 0.35
Stability (Ours) 0.11 0.161 0.165 0.219 0.165 0.164
CoT-Stability (Ours) 0.123 0.18 0.169 0.241 0.191 0.181

(a) Confidence Elicitation Strategies on GPT-3.5-turbo.

Method CSQA TruthQA MedQA MMLU Law MMLU Physics Average
Linguistic 0.904 0.906 0.919 0.754 0.929 0.882
Token Prob. 0.941 0.939 0.91 0.828 0.936 0.911

AURC ↑ CoT-Consistency 0.916 0.934 0.946 0.822 0.963 0.916
Top-K 0.922 0.953 0.914 0.772 0.946 0.901
P(true) 0.931 0.955 0.926 0.814 0.945 0.915
Stability (Ours) 0.958 0.969 0.967 0.832 0.977 0.941
CoT-Stability (Ours) 0.959 0.975 0.957 0.852 0.98 0.945
Linguistic 0.696 0.697 0.712 0.583 0.753 0.688
Token Prob. 0.798 0.842 0.784 0.745 0.813 0.796

AUROC ↑ CoT-Consistency 0.782 0.82 0.864 0.767 0.884 0.823
Top-K 0.74 0.846 0.678 0.645 0.824 0.747
P(true) 0.793 0.826 0.751 0.711 0.822 0.781
Stability (Ours) 0.882 0.924 0.909 0.752 0.934 0.88
CoT-Stability (Ours) 0.86 0.934 0.883 0.765 0.951 0.879

Linguistic 0.116 0.182 0.143 0.187 0.123 0.15
Token Prob. 0.11 0.122 0.096 0.229 0.1 0.131

ECE ↓ CoT-Consistency 0.105 0.06 0.075 0.156 0.048 0.089
Top-K 0.131 0.127 0.185 0.129 0.11 0.136
P(true) 0.213 0.234 0.255 0.328 0.17 0.24
Stability (Ours) 0.084 0.072 0.077 0.201 0.043 0.095
CoT-Stability (Ours) 0.095 0.072 0.088 0.208 0.049 0.102

(b) Confidence Elicitation Strategies on GPT-4-turbo.

Figure 2: Comparision of LLM Confidence Elicitation Strategies. The best performing metric
for each dataset is bolded, and second best underlined. (a) We see on GPT-3.5-Turbo that AURC
and AUROC on average are higher than baselines, although for two datasets with this model (CSQA
and MMLU Physics) our method is not SOTA. ECE is highlighted in red as this evaluation can be
misleading (Ding et al., 2020), but still include for transparency (see section 5 for discussion).(b) For
GPT-4-Turbo we see that our stability or chain-of-thought stability method outperforms baselines for
selective uncertainty task on each dataset (AUC, AUROC). This effect is particularly pronounced for
complex logical reasoning tasks such as MedQA.
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on performance below using the same model (GPT-3.5-Turbo) across all datasets. In Table 2, we
generally see that the combination of the two methods provide higher performance on selective
uncertainty tasks compared to either alone, with the greatest lift being seen in MedQA and MMLU
Law datasets. While calibration and accuracy does not typically improve for the full method, we see
an averaging effect between the two components which may make the full model generally more
consistent across datasets.

Stability Entail Only Stability Distr. Only Stability Full
AURC ↑ AUROC ↑ ECE ↓ Acc. ↑ AURC ↑ AUROC ↑ ECE ↓ Acc. ↑ AURC ↑ AUROC ↑ ECE ↓ Acc. ↑

CSQA 0.882 0.708 0.21 0.7 0.899 0.783 0.131 0.784 0.901 0.779 0.123 0.796
TruthQA 0.739 0.818 0.19 0.668 0.79 0.859 0.196 0.656 0.801 0.853 0.21 0.644
MedQA 0.74 0.762 0.186 0.62 0.735 0.778 0.16 0.688 0.784 0.798 0.169 0.633
MMLU Law 0.626 0.733 0.198 0.528 0.655 0.774 0.196 0.568 0.67 0.792 0.213 0.556
MMLU Physics 0.777 0.812 0.146 0.668 0.79 0.832 0.164 0.723 0.792 0.834 0.186 0.719

Table 2: Ablation Study isolating the effects of entailment reweighting and explanation-conditioned
answer distributions. Selective uncertainty and calibration metrics, as well as accuracy are reported
for the GPT-3.5-Turbo model. Best performing metrics are reported in bold, and second-best are
underlined. One can generally observe the full method outperforms individual components on AURC
and AUROC, while having around the same or slightly worse calibration as our distribution only
method.

5 DISCUSSION

In this study, we propose a framework for eliciting confidences from large language models (LLMs)
by estimating the distribution of semantically likely explanations, which can be thought of as a set of
conditional classifiers. We compare our method with five other common confidence metrics across
five benchmark datasets and find that our method on average improves the ability to predict incorrect
answers (selective uncertainty), particularly for GPT-4-Turbo and for more complex questions such as
MedQA. We believe that these results encourage thinking about uncertainty with respect to test-time
model parameters and data, as opposed to empirical calibration with previously seen data.

Alternate Perspectives. While the most straightforward description of our stable explanation
method is via a Bayesian predictive posterior, there are interesting connections to be made with
transductive inference, stability analysis, and asymptotically to Solomonoff induction. We highlight
the transductive connection here, and include additional perspectives in Appendix C. Transductive
learning optimizes a classifier at inference-time based on a combination of training and test data,
typically by fine-tuning some classifier parameter based on an explicit loss objective (Dhillon et al.,
2020; Vapnik; Joachims et al., 1999). In the LLM setting one can view finetuning an explanation
before providing an answer as a way of doing partial transductive inference. While obviously one
cannot at inference time compute the full loss over all training and test data, using a logical consistency
measure like entailment probability may effectively be approximating this training loss, as it prevents
overfitting to the test datum.

Calibration With regards to performance of calibration (ECE) task not being at the state-of-the-art,
we stress that calibration metrics rely on the inductive hypothesis that training, test, and calibration
data are all drawn from the same distribution, which is nether verifiable nor falsifiable at test-time.
Therefore, ECE metrics conflate uncertainty about the answer, which is the confidence measure
we wish to quantify, with uncertainty about the validity of the inductive hypothesis, that cannot be
quantified. Additionally previous work such as (Ding et al., 2020) have demonstrated bias in the
metric depending on accuracy and binning strategy. For this reason we indicate the ECE metric in red
in the tables, but include the results nonetheless for transparency and ease of comparison.

Limitations and Future Work A notable exception to the observed trend of improved selective
uncertainty occurs when making stable confidence predictions on simpler questions (e.g. average
question lengths of CSQA and MMLU Conceptual Physics are less than half of others). We hy-
pothesize that when questions resemble classical inductive classification tasks, the advantage of
our test-time computation is less evident. Additionally, our analysis is limited in scope to multiple
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choice datasets, leaving open-ended responses to future work. While entailment probability does
help discount some logically incorrect explanations (Figure 1), there are still instances where it
fails to properly distinguish. We test some alternatives to explanation faithfulness in Appendix B.5,
but further exploration is needed. Efficiently sampling high quality explanations remains an open
question as well. Our method adjusts the given explanation distribution based on plausibility, but
better explanations may still exist that are not sampled by the LLM. One possible solution could
involve using our entailment probability measure as a way to accept or reject incoming samples,
increasing complexity but ensuring higher quality.
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APPENDIX

A EVALUATION OF UNCERTAINTY METRICS

In this section we provide formal definitions for each of the confidence evaluation metrics used.
Consider the paired dataset (xi, yi) ∈ D where each datapoint xi has associated label yi. Each yi
takes on one value in the discrete set Y := {1, 2, . . . , ℓ}. Now our chosen prediction model ϕ outputs
a prediction ŷi := ϕ(xi) and our confidence function f produces a score f(xi, ŷi) = ri ∈ [0, 1]. We
use the indicator variable ci to denote whether the prediction is correct (ci := 1(yi = ŷi)). Lastly we
define the full sequence of predictions Ŷ and confidence predictions R on dataset D of size N as

Ŷ := {ŷi = ϕ(xi) | xi ∈ D} (7)
R := {ri = f(xi, ϕ(xi)) | xi ∈ D} (8)

Expected Calibration Error (ECE) To calculate expected calibration error, we first group our
data into M partitions based on confidence interval. We denote the set of indices in each partition as:

Bm :=

{
i | i ∈ N,

(m− 1)

M
< ri ≤

m

M

}
(9)

Next, the empirical accuracy and average confidence functions for each partition are defined as

Acc(Bm) :=
1

|Bm|
∑
i∈Bm

ci, Conf(Bm) :=
1

|Bm|
∑
i∈Bm

ri (10)

Then the ECE is defined as the following weighted average:

ECE(R, Ŷ ,M) :=
∑
m∈M

|Bm|
M
|Acc(Bm)− Conf(Bm)| (11)

The lower this error is, the better calibrated the model should be (with respect to the data distribution).
While an easy metric to compute, there is a dependence on hyperparameter M and in some cases
variance within a partition with few samples will be high. To reduce this issue, we folllow (Nixon
et al., 2019) in selecting adaptive partitions such that the number of samples are equal. That is our
partitions are instead defined as

B′
m := {i | i ∈ N, (m− 1) ∗ ⌊N/(M − 1)⌋ < i ≤ m ∗ ⌊N/(M − 1)⌋} . (12)

Another well known issue with ECE is that when accuracy is very high, simply giving a high constant
confidence estimate will result in very low calibration error (Ding et al., 2020; Xiong et al., 2023).
Despite these drawbacks, we still choose to report the ECE metric as it is intuitive and serves as a
common reference point with previous work.

Area Under the Risk-Coverage Curve (AURC) For now, assume that ri ̸= rj ∀i ̸= j. Define the
subset R≥ri as

R≥ri := {r ∈ R | r ≥ ri} (13)
We now say that the ordering map σ : {1, . . . , N} → {1, . . . , N} is the function that returns the
dataset index i of the kth largest element in R. Formally:

σ(k) := i s.t. |R≥ri | = k (14)
To summarize so far, this ordering essentially gives us the dataset index of the kth most confident
prediction. We can now finally define subsets of our most confident predictions as

ŶK := {ŷσ(k) | k ∈ {1, . . . ,K}} (15)

The risk-coverage curve will measure the tradeoff between the size of ŶK and the accuracy. For
each coverage level h := K/N ∈ [0, 1], we plot the accuracy Acc(ŶK) ∈ [0, 1] to obtain the curve.
Naturally h = 1 =⇒ K = N and so the loss is simply the average model accuracy for the
entire dataset. If our confidence measure is a good one, we expect higher accuracy when restricting
our evaluation to a smaller subset of the most confident answers. Formally, the area under the
risc-coverage curve (AURC) is is

AURC(R, Ŷ ) :=

N∑
K=1

Acc(ŶK)
K

N
(16)
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Area Under the Receiver Operator Curve (AUROC) For any binary classification problem, the
receiver operator curve looks at the tradeoff between false positive rate α (plotted on the x-axis) and
true positive rate β (y-axis), based on retaining only predictions with scores above some threshold
t. We denote a thresholded set of predictions as Ŷt := {yi ∈ D | ri > t}, and tα as the threshold
such that FP(Ŷtα) = α. If we have built a perfect classifier of correct and incorrect predictions,
there should exist a threshold t0 for which Ŷt0 contains all of the predictions the model got right and
none of which it got wrong. This would correspond to a true positive rate of β = 1.0 for all false
positive levels α ∈ [0, 1]. Conversely, if confidence metrics were generated at random, any Xt is
likely to contain just as many false positives and true positives, and so the ROC curve will resemble a
diagonal line. Therefore we would like the area under the reciever operator curve to be as closer to 1
as possible. Formally, this area is written as

AUROC(R, Ŷ ) :=

∫ 1

0

TP(Ŷtα)dα, (17)

B EXPERIMENTAL DETAILS

In this section we discuss the implementation details of LLM prompts, dataset characteristics, and
evaluation methods. We also include additional experiments examining the effect of explanation
hyperparameters.

B.1 PROMPTS

In this section we provide the prompts used for each confidence elicitation method. Text in red
represents substitutions that are made to the prompt at inference time, for example adding the text of
the specific multiple choice question. For the stable explanations method in Figure 3 we provide
our explanation generation prompt and conditional answer generation prompt. We use the response
from this first prompt to generate our default question explanations (discarding the answer that comes
after). We then use the logits from the second prompt conditioned on explanations as the posterior
answer distribution for that explanation. The entailment probability prompt used is the same as in
(Sanyal et al., 2024). For the token probability prompt (Figure 4) we use a simple question and
answer format, and use the softmax of next token logits to determine answer confidence. For the
linguistic confidence prompt in Figure 5 we follow (Shrivastava et al., 2023) best prompt choice
and parse the returned response for answer and confidence value. For chain-of-thought consistency
confidence we use a zero-shot modified version of the prompt from (Fu et al., 2023) (Figure 6) to
generate multiple explanations and answers (discarding explanations and taking a majority vote over
returned answers). We also explore using this prompt to generate explanations (discarding answers
instead) for our CoT-stability confidence metric. The top-k confidence prompt is provided in Figure 7;
the resulting LLM response is parsed for k confidence values. Lastly we include the conditional
explanation prompt used to generate correct and incorrect explanations in Figure 1. Unless otherwise
noted, temperature for all generated explanations is set to Temp=0.7 for both stable explanations and
CoT-consistency method.

Figure 4: Token Probability Prompt
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Figure 3: Stable Explanation Prompts

Figure 5: Linguistic Confidence Prompt
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Figure 6: Chain of Thought Explanation Prompt

Figure 7: Top-K Confidence Prompt

B.2 DATASET DETAILS

We can observe in Appendix B.2 that the QA datasets with longer questions typically are harder for
the model to answer correctly. We see that our method, like many other sample+aggregate based
answering methods generally has higher accuracy than the baseline model (Wang et al., 2022). This
accuracy boost is less pronounced however for GPT-4.

For GPT-3.5-Turbo results we generate confidence scores for 500 questions per dataset (or maximum
dataset size if smaller). Due to computational cost we only use 200 questions per dataset when
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Figure 8: Risk coverage (left) and receiver-operator (right) curves for confidence metrics generated
on the MedQA questions using GPT-4. Our stability method outperforms others on this dataset as
evidenced by larger area under the curves. We can also observe that questions with confidences in the
top 50% were all correct.

testing on GPT-4-Turbo. We use validation splits for CSQA, TruthQA, and test splits for MedQA and
MMLU datasets.

Method Avg. Question Length GPT-3.5 Acc. GPT-3.5 Stability Acc. GPT-4 Acc. GPT-4 Stability Acc.
CSQA 151 0.79 0.80 0.84 0.88
TruthQA 329 0.54 0.64 0.85 0.91
MedQA 916 0.59 0.68 0.82 0.84
MMLU Law 1233 0.46 0.56 0.64 0.67
MMLU Physics 172 0.57 0.72 0.92 0.92

Table 3: Comparing accuracy for default model predictions vs. most confident stability predictions
across benchmark datasets. One can observe a clear improvement in accuracy for both GPT-3.5 and
GPT-4.

B.3 EVALUATION DETAILS

When evaluating confidence methods, it is important to note that performance implicitly depends on
the prediction set Ŷ . For example, a metric may be well calibrated on correct answers but still be
overconfident on incorrect ones, meaning the confidence metric would evaluate as worse on a less
accurate prediction set. Therefore, for comparison purposes we use the same set of default LLM
predictions (setting Temp=0) for GPT-3.5 and GPT-4 results.

In order to break possible ties in confidence when evaluating AURC and AUROC methods, we follow
the approach of (Shrivastava et al., 2023) and add a small amount of gaussian noise (σ = 1e − 6)
to each confidence score. We repeat this process for r = 10 times and take the average AURC and
AUROC scores. We also follow common practice in previous works by using M = 10 as the number
of bins when calculating ECE (Achiam et al., 2023).

We use OpenAI’s gpt-3.5-turbo-1106 snapshot for GPT-3.5 experiments and gpt-4-1106-preview
snapshot for GPT-4. Generating and evaluating confidence scores for each method on one dataset
takes on the order of an hour for GPT-3.5-Turbo, and two hours for GPT-4 using OpenAI’s API.

B.4 EFFECT OF EXPLANATIONS ON ANSWER ENTROPY

We compare the entropy of the default model answer distribution pϕ(a|q) to the entropy after
conditioning on a CoT-generated explanation pϕ(a|e, q) (e.g. using the prompt from figure 6). In
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Figure 9 we find that for the majority of questions (>75%), the entropy becomes smaller as the model
becomes more confident in a single answer.

Figure 9: Difference in entropy the of answer distribution before and after conditioning on a CoT-style
explanation for GPT-3.5.

B.5 ALTERNATE EXPLANATION PLAUSIBILITY MEASURES

Inspired by (Kadavath et al., 2022), which looks at the true/false token probability an LLM assigns
to a given answer being true, we explore evaluating the probability that an explanation is ‘true’. To
do this, we provide the model with both question and explanation and ask: ‘Is this the most likely
explanation? (T/F)’. We also try asking the question ‘Does the explanation completely describe
the question? (T/F)’. We then repeat the experiment in Section 4.2, examining distributions of
explanations measured via these probabilities. We find in figure 10 that these measures fail to properly
distinguish between different explanations.

B.6 SENSISTIVITY TO EXPLANATION PROMPTING

Our stable explanation method reweights explanations based on entailment probability, but if the
quality of sampled explanations is poor to begin with our resulting distribution will still be inaccurate.
Here we will discuss the effect of instructing the LLM to generate explanations before or after an
answer (i.e. the order of ‘explanation’ and ‘answer’ in the stability explanation prompt in Figure 3).
We observe in Appendix B.6 that generating explanations before the answer clearly results in higher
quality explanations, as evidenced by improved performance on selective uncertainty and calibration
tasks.

Pre-Answer Stability (Default) Post-Answer Stability
AURC ↑ AUROC ↑ ECE ↓ AURC ↑ AUROC ↑ ECE ↓

CSQA 0.901 0.779 0.123 0.866 0.731 0.201
TruthQA 0.801 0.853 0.21 0.792 0.839 0.254
MedQA 0.784 0.798 0.169 0.743 0.743 0.251
MMLU Law 0.642 0.736 0.259 0.629 0.706 0.289
MMLU Physics 0.792 0.834 0.186 0.779 0.811 0.252

Table 4: Comparing stability confidence performance using explanations generated before and after
an answer for GPT-3.5. One can clearly observe that explanations generated before the answer (i.e.
in chain-of-thought fashion) outperform those generated afterwards across all performance metrics.
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Figure 10: Empirical distribution of MMLU explanations when measured via GPT-3.5 probability
of being ‘most-likely explanation’ (left) and probability of ‘completely describing’ the question
(right). One can see that true (blue) and false (red) answer-conditioned explanations are difficult to
distinguish.

(a) AURC vs. Number of Explanations for the
stable explanations confidence metric.

(b) AUROC vs. Number of Explanations for the
stable explanations confidence metric.

(c) ECE vs. Number of Explanations for the stable
explanations confidence metric.

Figure 11: Comparison of stable explanation confidence using different numbers of explanations per
question (M = {1, 3, 5}). Testing is done on GPT-3.5-Turbo for all five benchmark datasets. One
can observe improving but saturating performance for each dataset.

B.7 VARYING SAMPLE SIZE

In this section we briefly analyze the effect that the number of sampled explanation has on our
confidence metric. In Figure 11 we observe that selective uncertainty performance (AURC and
AUROC) saturates quickly for simpler questions answering tasks such as commonsenseqa. On the
other hand MedQA and MMLU Law datasets both demonstrate steady performance gains up to
M = 5 samples per question. Calibration error gradually decreases for all datasets examined.
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B.8 COMPARISON TO SEMANTIC ENTROPY

Semantic Entropy (Kuhn et al., 2023) reduces to the naive entropy in the case of multiple choice
questions, as answer clusters are already well defined (i.e. no variation syntactically). Therefore we
have chosen to use answer token probability as our main confidence metric baseline. However, we
have added additional experiments demonstrating that directly using the entropy metric corresponds
to the token probability almost exactly when it comes to the selective uncertainty task. This is
unsurprising as the model typically assigns most probability to a single token, meaning the entropy is
strongly dependent on this specific confidence.

Method CSQA TruthQA MedQA MMLU Law MMLU Physics Average
AURC ↑ Token Prob. 0.914 0.75 0.727 0.622 0.751 0.753

Semantic Entropy 0.912 0.747 0.722 0.62 0.752 0.751

AUROC ↑ Token Prob. 0.806 0.772 0.702 0.676 0.747 0.741
Semantic Entropy 0.808 0.775 0.701 0.673 0.75 0.741

Table 5: Comparison of semantic entropy metric with the token probability metric on GPT-3.5.
Results for AURC and AUROC are almost identical.

Method CSQA TruthQA MedQA MMLU Law MMLU Physics Average
AURC ↑ Token Prob. 0.941 0.939 0.91 0.828 0.936 0.911

Semantic Entropy 0.94 0.94 0.917 0.825 0.939 0.912

AUROC ↑ Token Prob. 0.798 0.842 0.784 0.745 0.813 0.796
Semantic Entropy 0.799 0.842 0.787 0.741 0.803 0.794

Table 6: Comparison of semantic entropy metric with the token probability metric on GPT-4. Results
for AURC and AUROC are almost identical.

B.9 COMPARISON TO TTA

Contemporaneously to this manuscript’s submission, another method related to our approach was
proposed (Li et al., 2024). The Think-Twice before assure (TTA) method asks for explanations
conditioned on different answers, then does a top-k confidence elicitation using these explanations in
the prompt. Although similar in the sense that confidence metrics are being generated by conditioning
on explanations, their combination of explanations into a single prompt does not match the ensemble
of test-time classifiers view that our method takes. The authors have not yet released code or dataset
splits, but we have implemented their method by following the written procedure and using the same
prompts (see Figure 12). We found during our implementation on the shared CSQA dataset, the
evaluation results for selective uncertainty tasks are slightly below that what the authors report (AURC,
AUROC), most likely due to the difference in specific questions used during testing. Nonetheless we
report the full results of our implementation in table 7, and note that this metric does appear to have
lower ECE in many cases.

TTA (Our Implementation)
AURC ↑ AUROC ↑ ECE ↓ Acc. ↑

CSQA 0.885 0.688 0.104* 0.736
TruthQA 0.698 0.706 0.093* 0.672*
MedQA 0.641 0.581 0.207 0.505
MMLU Law 0.574 0.657 0.148* 0.456
MMLU Physics 0.717 0.697 0.1* 0.557

Table 7: Evaluation for the TTA Confidence metric (Our implementation) on GPT-3.5. Results that
outperform our stable explanations metric are marked with an asterisk.
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Figure 12: TTA Confidence Prompt

C ALTERNATIVE PERSPECTIVES OF STABLE EXPLANATIONS

C.1 CONFIDENCE THROUGH THE VIEWPOINT OF TRANSDUCTIVE INFERENCE

Transductive learning selects a classifier at inference-time based on a combination of training and test
data (Dhillon et al., 2020; Vapnik; Joachims et al., 1999). Typically transductive learning involves
fine-tuning some classifier parameter w based on an explicit loss objective. However, we claim that
using an LLM to generate a sequence of text before an answer (i.e. an explanation) is an alternate
way of doing transductive reasoning. First, note that answering a question after an explanation, such
as in chain-of-thought prompting (Wei et al., 2022), effectively changes the decision boundary of the
LLM classifier at inference time. Second, consider that when an LLM generates an explanation, it
produces concepts related to those in the question. These additional concepts can be thought of as
forcing the LLM at inference time to pay more attention to the decision boundary in the area around
the test datum. In-context learning literature, which examines LLM performance after manually
inserting demonstrations similar to the test question, has already shown a direct connection between
transformer context adjustment and classical fine-tuning behavior (Dai et al., 2022).

To formalize this perspective, let Dt = {(x1, y1), . . . , (xt, yt)} be a dataset of sequential data
up to time t, with xi ∈ X ⊂ RM and labels yi ∈ Y ⊂ {1, . . . ,K}. We denote with Dt

− =
{(x1, y1), . . . , (xt−1, yt−1), xt} the dataset without the last label yt. We can write our transductive
prediction for xt given data Dt

− including xt as:

ŷt = argmin
w,y

1

t
ℓ(fw(xt), y) +

1

t

t−1∑
i=1

ℓ(fw(xi), yi)︸ ︷︷ ︸
.
=L(w;(Dt

−,y))

. (18)

If ℓ is interpreted as a log likelihood, then L can be interpreted as the negative log posterior probability
over hypotheses. If we think of optimizing instead over explanations where fe(xt) = ϕ(xt, e), then
the problem reduces to finding an explanation that strongly supports a single answer without biasing
predictions on original test data. The second term in equation (18) is expensive to compute at
inference time, but if some approximation of this training loss existed it would make optimization
tractable. We hypothesize that if the explanation under consideration is plausible and faithful to
the question (as determined using the same LLM), it should not reduce the accuracy of previous
decisions too much. Therefore we can avoid having to optimize over all previous questions and
instead optimize over whatever faithfulness measure gϕ(e) we define:

ŷt = argmin
e,y

ℓ(ϕ(xt, e), y) + λgϕ(e) (19)

This looks exactly like the typical transductive setting but with a more easily computable ‘transductive
prior’.
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C.2 CONFIDENCE THROUGHT THE VIEWPOINT OF SOLOMONOFF INDUCTION

While transductive inference typically finds single test-time classifier, our method looks for a distri-
bution of likely classifiers. In this sense, our method can be seen as a special case of Solomonoff in-
duction (Kolmogorov, 1965). Solomonoff induction considers how well data-generating programs,H ,
(i.e. a binary string run on a Turing machine) explain the test data, D

P (H|D) =
P (D|H)P (H)

P (D|H)P (H) +
∑

A̸=H P (D|A)P (A)
, (20)

where A are alternative programs. Solomonoff induction formalizes the principle of Occam’s razor
by choosing a universal prior P (H) that gives a higher probability to shorter-length programs. Then
to predict new data D′ given previous observations, one simply computes

P (D′|D) = EH [P (D′|H,D)] =
∑
H

P (D′|H,D)P (H|D). (21)

While these Bayesian equations seem simple, Solomonoff’s induction is provably uncomputable.
However, our method can be interpreted as restricting our hypothesis class from the set of all
computable programs H to the set of all LLM-interpretable programs e. Instead of a prior on program
length, we can use the LLM’s prior likelihood of valid sequences in the language pϕ(e). This
restriction makes our calculations more tractable, as we can easily approximate expectations over our
hypothesis class by sampling explanations from the LLM.

C.3 CONFIDENCE THROUGH THE VIEWPOINT OF STABILITY

Another recent line of work has been analyzing LLMs through the lens of stochastic dynamical
models (Soatto et al., 2023). Through the perspective of stability analysis one could interpret our
method’s preference for explanations convening to a single answer as searching for fixed points of a
specific LLM system. This LLM dynamical system consists of two alternating steps, first generating
an explanation conditioned on one of the answers (e← ϕ(q, a)) then generating a new answer based
on this explanation (a′ ← ϕ(q, e)). Intuitively this system mirrors how a human expert may think
about a question by considering alternative conclusions one could draw given beliefs about the world.
An answer with only a single plausible explanation that strongly supports that same answer (i.e.
decision distribution collapses to a singleton) forms a stable cycle in this system.
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