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ABSTRACT

Siamese networks are one of the most trending methods to achieve unsupervised
visual representation learning. Meanwhile, Neural Architecture Search (NAS) is
becoming increasingly important as a technique to discover efficient deep learn-
ing architectures. In this article, we present NASiam, a novel approach that uses
for the first time differentiable NAS to improve the Multilayer Perceptron projec-
tor and predictor (encoder/predictor pair) architectures inside Siamese networks
frameworks while preserving the simplicity of previous baselines. We show that
these new architectures allow backbone convolutional models to learn strong rep-
resentations efficiently. NASiam reaches competitive performance in both small-
scale (CIFAR) and large-scale (ImageNet) image classification datasets. We dis-
cuss the composition of the NAS-discovered architectures and emit hypotheses on
why they manage to prevent collapsing behavior.

1 INTRODUCTION

Deep Learning (DL) has experienced rapid growth in the past few years. Two DL subfields have
received much attention: Unsupervised Representation Learning and Automated Deep Learning
(AutoDL).

Unsupervised representation learning aims to make DL models learn strong representations from
unlabeled data. This is especially useful when considering that data labeling is often a costly and
laborious human-made process. One of the most common approaches to unsupervised visual rep-
resentation learning is siamese networks (Bromley et al., 1993). Siamese networks consist of two
weight-sharing branches (i.e., ”twins”) applied to two or more inputs. The output feature vectors
of the two branches are compared to compute a loss (e.g., a “contrastive” loss). In the case of rep-
resentation learning, the inputs are usually data augmentations of the same image, and the siamese
networks seek to maximize the similarity between the output feature vectors of the two branches
(Chen et al., 2020a; 2021a; 2020b).

On the other hand, AutoDL tries to remove the human factor from the DL pipeline. Architecture
design is one part of this pipeline that has proven particularly relevant to automate. Most DL archi-
tectures are handcrafted and lack the certainty of an optimal solution (Chollet, 2017; Szegedy et al.,
2017; He et al., 2016). Neural Architecture Search (NAS) aims to solve this issue by using a meta-
learner to search for neural network architectures relevant to a given task (e.g., image classification,
semantic segmentation, or object detection). NAS algorithms efficiently browse large search spaces
that would prove challenging to navigate manually. The first NAS works used reinforcement learn-
ing (Zoph & Le, 2017; Zoph et al., 2018) or evolutionary methods (Chen et al., 2019; Real et al.,
2019) but proved particularly inefficient, with thousands of GPU days needed to obtain a competitive
architecture (e.g., 2000 GPU days for NASNet (Zoph & Le, 2017)). Nowadays, most approaches
use differentiable NAS (Chu et al., 2020; Ye et al., 2022; Dai et al., 2021) (i.e., gradient-based search
process) as it requires far less computational resources and often yields better results.

This article leverages differentiable NAS to discover encoder (projector) and predictor architectures
(i.e., Multilayer Perceptrons) that enable backbone Convolutional Neural Networks (CNNs) to ef-
ficiently learn strong representations from unlabeled data. To the extent of our knowledge, this is
the first time that NAS has been applied to enhance the architecture of Siamese networks. Thus,
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we improved the performance of several Siamese network frameworks such as SimSiam (Chen &
He, 2021), SimCLR (Chen et al., 2020a), or MoCo (Chen et al., 2020b), with an encoder-predictor
pair discovered by a meta-learner inspired by DARTS (Liu et al., 2019), a popular differentiable
NAS method. We dubbed our approach NASiam (“Neural Architecture Search for Siamese Net-
works”). We show that NASiam reaches competitive results on small-scale (CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009)) and large-scale (ImageNet (Russakovsky et al., 2015)) datasets. Thus,
Section 3 highlights our main following contributions:

• A novel way to design encoder/predictor pairs for Siamese Networks using Differentiable
Neural Architecture Search.

• A novel search space specifically designed for the Multi-Layer Perceptron (MLP) heads of
encoder/predictor pairs.

The rest of the article is structured as follows: Section 2 features a short survey on related differen-
tiable NAS and Siamese Networks works, Section 4 presents the results of different image classifica-
tion experiments and showcases a discussion on the composition of the discovered encoder/predictor
pair architectures, and Section 5 brings a conclusion to our work while giving some insights about
future work.

2 RELATED WORK

This section briefly recalls related work in Differentiable Neural Architecture Search (DNAS),
Siamese Networks for Representation Learning, and Neural Architecture Search for Contrastive
Learning.

2.1 DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH

One of the most trending differentiable NAS family of methods is derived from Differentiable AR-
chiTecture Search (DARTS) (Liu et al., 2019). This method uses Stochastic Gradient Descent (SGD)
to optimize a set of weights (denoted α) that represent operations inside a building block (i.e., an ele-
mentary component of the network) called a ”cell”. A cell C can be considered a direct acyclic graph
whose nodes represent states. Its edges are a mix of the K different operations O = {o1, ..., oK}
that define the search space S. As part of a weight-sharing mechanism, DARTS only searches for
two types of cells: normal cells (i.e., cells that make up most of the network) and reduction cells
(i.e., cells that perform dimension reduction). The reduction cells are typically positioned at the 1/3
and 2/3 of the network. As the SGD on α occurs while the supernet containing all cells is being
trained on a given dataset, DARTS is practically solving a bi-level optimization problem. Moreover,
the α weights are discretized through a softmax (Bridle, 1990) operation as follows:

oi,j(x) =

K∑
k=1

exp(αk
i,j)∑K

k′=1 exp(α
k′
i,j)

ok(x) (1)

where oi,j(x) is the mixed output of edge ei,j for input feature x and αk
i,j ∈ αi,j is the weight

associated with operation ok ∈ O for ei,j .

Several works attempted to improve on DARTS. P-DARTS (Chen et al., 2021a) significantly re-
duced the search time by progressively deepening the architecture when searching, leading to a
better search space approximation and regularization. PC-DARTS (Xu et al., 2019) attempted to
reduce DARTS’ memory cost by sampling only a portion of the supernet to avoid redundancy in the
search space exploration. FairDARTS (Chu et al., 2020) tried to solve two critical problems that oc-
curred in DARTS, the over-representation of skip connections and the uncertainty in the probability
distribution of operations. To this end, the authors used the sigmoid function rather than softmax
(see Eq. 1) and crafted a novel loss function that can push α values towards 0 or 1. DARTS- (Chu
et al., 2021) introduced auxiliary skip connections that are less prone to become dominant, thus en-
suring a fairer competition with the other operations. β-DARTS (Ye et al., 2022) introduced a new
regularization method, called Beta-Decay, that prevents the architectural parameters from saturat-
ing. Beta-Decay led to increased robustness and better generalization ability. Finally, D-DARTS
(Heuillet et al., 2021) proposed a mechanism to distribute the search process to the cell level. This
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approach led to the individualization of each cell, thus increasing the diversity among the candidate
architectures and expanding the search space.

2.2 SIAMESE NEURAL NETWORKS

Bromley et al. (1993) first proposed the Siamese Neural Networks (SNNs) architecture as “twin”
(i.e., identical and sharing the same weights) models that process two or more inputs and compare
their outputs. The central intuition behind this concept is that comparing the output feature vec-
tors will highlight the discrepancies between the inputs. Hence, this approach is advantageous in
signature (Bromley et al., 1993) or face (Taigman et al., 2014) recognition applications.

Another application of SNNs is Unsupervised Representation Learning, also designated as Self-
Supervised Learning (SSL). In particular, it is possible to learn representations from unlabeled data
by feeding variations of the same input to twin Convolutional Neural Network (CNN) (LeCun et al.,
1995) models and computing the similarity between the output feature vectors. This similarity metric
is used as a loss function, leading the SNNs to learn robust representations (i.e., resisting disturbance
in the input data). This process is denoted as contrastive unsupervised learning. Momentum Contrast
(MoCo) (He et al., 2020) pre-trains a CNN using unsupervised learning with a momentum encoder
and fine-tunes its classifier head on standard supervised linear classification. The authors of MoCo
show that the unsupervised pre-trained approach can surpass standard CNN on multiple ImageNet
(Russakovsky et al., 2015) computer vision tasks. SimCLR (Chen et al., 2020a) added a Multi-Layer
Perceptron (MLP) head as a predictor and highlighted the critical role of strong data augmentation
and large batches (e.g., 8000) in contrastive learning. Following up on this, Chen et al. (2020b)
proposed an improved version of MoCo (dubbed MoCo V2) that added a two-layer MLP head in
the encoder and modified the data transforms according to those of SimCLR. Bootstrap Your Own
Latent (BYOL) (Grill et al., 2020) proposed an SNN framework centered around an online network
and a target network. The output of the target network is iteratively bootstrapped to serve as input
to the online network. The authors showed that BYOL could learn more robust representations than
previous approaches. Finally, SimSiam (Chen & He, 2021) introduced a simpler SNN architecture
that removes the need for negative sample pairs, momentum encoders, and large batches. More
specifically, SimSiam implements a stop-grad mechanism that stops gradient backpropagation in
one of the two branches of the twin model. Despite being a more straightforward approach than
previous baselines, SimSiam reaches a competitive score on ImageNet classification.

2.3 NEURAL ARCHITECTURE SEARCH FOR CONTRASTIVE SELF-SUPERVISED LEARNING

A handful of previous works have already explored using NAS for Contrastive Self-Supervised
Learning (SSL). Kaplan & Giryes (2020) first introduced a method to leverage NAS to improve
existing SSL frameworks such as SimCLR (Chen et al., 2020a). Their approach, dubbed SSNAS,
is derived from DARTS (Liu et al., 2019) and reached competitive performance compared with
supervised models. Nguyen & Chang (2021) proposed CSNAS, a novel way to search for SSL-
focused CNN architectures using Sequential Model-Based Optimization. CSNAS leverages a cell-
based search space similar to DARTS (Liu et al., 2019) and performs Constrastive SSL using PIRL
(Misra & van der Maaten, 2020). The authors showed that CSNAS managed to overperform or
match both handcrafted architectures and supervised NAS models on image classification tasks.
Another work of note is SSWP-NAS (Li et al., 2022), a proxy-free weight-preserving NAS method
for SSL. Similarly to CSNAS, SSWP-NAS is based on DARTS and navigates through a cell-based
search space to discover new CNN architectures. SSWP-NAS overperformed previous SSL NAS
methods and reached competitive results compared to supervised NAS approaches. In a drastically
different approach, Contrastive Neural Architecture Search (CTNAS) (Chen et al., 2021b) refactors
NAS with Contrastive Learning. A Neural Architecture Comparator is designed to drive the search
process by comparing candidate architectures with a baseline architecture. Thus, in this approach,
contrary to other works, Contrastive Learning is used to enhance NAS rather than the other way
around.

In this article, we propose to go further than the previous works listed above by using differentiable
NAS to directly enhance the Siamese (i.e., MLP) architecture rather than improve the backbone
CNN (which is similar to what trending NAS frameworks such as DARTS (Liu et al., 2019) or
FBNet (Dai et al., 2021) do). In Section 4, we show that our NASiam approach is able to discover
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novel Siamese architectures reaching higher performance than standard Contrastive SSL frameworks
such as SimCLR (Chen et al., 2020a) or MoCo (Chen et al., 2020b).

3 PROPOSED APPROACH

This section highlights the key ideas behind our proposed approach: searching for the Multilayer
Perceptron components of the encoder/predictor pair, and crafting an original search space specific
to Contrastive Learning with Siamese Neural Networks.

3.1 SEARCHING FOR AN ENCODER/PREDICTOR PAIR

First, we focused on SimSiam (Chen & He, 2021) as a simple baseline upon which to build our
approach. SimSiam uses a Siamese Neural Network architecture consisting of an encoder f and a
predictor h. The encoder f is composed of a baseline CNN (e.g., ResNet50 (He et al., 2016)) and of
a projector head (i.e., a three-layer MLP) that is duplicated on twin branches that take variations of
the same image as input. A two-layer MLP h is then added on top of one of the branches to act as a
predictor head. The discrepancy between the output feature vectors of the two branches is computed
using a contrastive loss as follows:

L =
1

2
(D(p1,stopgrad(z2)) +D(p2,stopgrad(z1)) (2)

where z1 = f(x1), z2 = f(x2), p1 = h(z1), p2 = h(z2) for input images x1 and x2, stopgrad is
a mechanism that stops gradient backpropagation, and D is the negative cosine similarity defined as
follows:

D(p, z) = − p

||p||2
.

z

||z||2
(3)

where ||.||2 is the l2 norm.

In our proposed approach, we kept most of the global structure of the underlying Siamese frame-
work. However, we used used a DARTS-like (Liu et al., 2019) NAS method to search for an encoder
projector head architecture up to n layers and a predictor architecture up to m layers. More specif-
ically, we consider a set O = {o1, ..., oK} of candidate operations. We search for two cells (see
Section 2.1) Ce and Cp in which each layer is a mix of |O| = K operations weighted by sets of
parameters denoted respectively αe and αp. Similarly to Eq. 1, operation values in each layer are
discretized as follows:

oi(x) =
K∑

k=1

σSM (αk
i )ok(x) (4)

where oi is the mixed operation of layer i, αk
i is the architectural weight assigned to ok ∈ O for

layer i, and σSM denotes the softmax operation. The supernet encompassing f and h is trained on
a portion of a dataset while Ce and Cp are simultaneously searched on another portion of the same
dataset. Hence, we solve a bi-level optimization problem. Once the search phase is complete, for
each layer i of each cell, we select the top operation according to the discretized weights αe and αp

to form the encoder/predictor architecture genotype G. This operation parsing process is detailed in
Algorithm 1.

Our approach, dubbed NASiam (Neural Architecture Search for Siamese Networks), is summarized
in Fig. 1. In addition to SimSiam, we also experimented NASiam on other Siamese frameworks
such as SimCLR(Chen et al., 2020a), MoCo V2 (Chen et al., 2020b), and BYOL (Grill et al., 2020).
However, some frameworks (SimCLR and MoCo V2) do not rely on a predictor. Hence, in that case,
we only performed NAS for the MLP head of the encoder (i.e., only searching for cell Ce).

In Section 4, we show that NASiam can consistently improve the performance of popular Siamese
frameworks (SimSiam, SimCLR, MoCo, and BYOL) in both small-scale (CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009)) and large-scale (ImageNet (Russakovsky et al., 2015)) image classi-
fication datasets.
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Algorithm 1 Algorithm describing the operation parsing process of NASiam
Require: List: C, list of layers containing weights
Require: Boolean: edge, whether to select 2 operations instead of a single one
Require: List: O, list of operations

Cf ← empty list()
n← |C|
for i in [0, n] do

g ← empty list()
ops← sort(C[i])
append(ops[−1], g)
if edge then

append(ops[−2], g)
end if
append(g, Cf )

end for
return Cf

Gradient

Encoder

Baseline CNN

Cell Ce

Baseline FC

Predictor

Cell Cp

-

Meta-Learner

(Differentiable

NAS)


Contrastive
Loss

Data
AugmentationsDataset

Figure 1: Layout of the NASiam architecture. Siamese networks encoder/predictor (projection
MLPs) architectures are searched using differentiable NAS wrapped around a Siamese framework
such as SimSiam (Chen et al., 2020a) which is the baseline used in the present figure.

3.2 CRAFTING A CONSTRASTIVE LEARNING-SPECIFIC SEARCH SPACE

To accompany our novel NASiam approach (see Section 3.1), we crafted an original search space
S specifically designed for MLPs. S comprises the following 4 operation blocks: linear +
batch norm + ReLU, max pool 3x3 (1-dimensional) + batch norm, avg pool 3x3 (1-
dimensional) + batch norm, identity.

While unconventional, including pooling layers in the search space is helpful, as we show in Section
4 that they can help prevent collapsing. Moreover, the authors of SimSiam (Chen & He, 2021)
indicated that insufficient or too many Batch Normalization (BN) layers could cause the model to
underperform severely or become unstable. They empirically demonstrate that the optimal setting
for SimSiam is to place BNs after every layer except for the predictor’s output layer. Hence, we
follow this assertion by adding BNs after every linear and pooling operation except for the
predictor’s final layer. In addition, we also included the standard ReLU (Dahl et al., 2013) activation
function after BN for linear operations. Finally, we also included the identity operation so
that the search algorithm can modulate the number of layers in the architecture. This way, we can
indicate a maximum number of layers n, and the search algorithm can craft an architecture of size
m < n by “skipping” layers.

4 EXPERIMENTS

This section presents the results of our image classification experiments on small-scale (CIFAR-10,
CIFAR-100), and large-scale (ImageNet) datasets.
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4.1 EXPERIMENTAL SETTINGS

We used RTX 3090 and Tesla V100 Nvidia GPUs to conduct our experiments. We searched for
predictor/encoder pairs for 100 epochs on CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009)
using the SGD optimizer with lr = 0.03 and wd = 5e − 4. We set a maximum of 6 layers for the
encoder. If the baseline Siamese framework relies on a predictor, we search for a 4-layer predictor
architecture. The whole search process on these settings takes around 1 GPU day on a single GPU.
We did not search directly on ImageNet (Russakovsky et al., 2015) as it is prohibitively expensive
(i.e., it takes around 12 GPU days on a single GPU). For the pre-training and linear classification
phases, we kept the same settings as Chen & He (2021). Our code is based on PyTorch 1.12.

4.2 ABLATION STUDY ON THE IMPORTANCE OF POOLING LAYERS

We conducted an ablation study on the importance of including pooling layers in our novel space
search S (see Section 3.2). To this end, we simply removed max pool 3x3 and avg pool 3x3
from S to form S′. When comparing the results in Table 1, we can observe that, when searching
on S′ rather than S, the validation top-1 accuracy of NASiam drops significantly (by around 3
%). Moreover, when analyzing the genotypes searched on CIFAR-10 and CIFAR-100 using S, it
appears that the predictor architectures always contain pooling layers (making up to 40 % of the total
architecture). In addition, Fig. 2 shows that the model (see Eq. 2) achieved better similarity and
faster convergence when searched on S rather than S′. Thus, these findings highlight the critical role
pooling layers play in ensuring high performance and preventing collapse, especially concerning the
encoder architecture.

Table 1: Results on CIFAR-10 linear classification of two NASiam models using search space S and
S′ respectively. Both models were pre-trained for 100 epochs. The baseline framework is SimSiam
with a ResNet18 backbone.

Search
Space

Search
Epochs

Pre-Train
Epochs

Validation
Top-1 (%)

Validation
Top-5

S 50 100 66.6 91.3
S′ 50 100 63.7 86.1

0 20 40 60 80 100
Epochs

0.8

0.6

0.4

0.2

0.0

Lo
ss

With pooling
Without pooling

Figure 2: Plot of the negative cosine contrastive loss while pretraining two NASiam models on
CIFAR-10. The baseline framework is SimSiam with a ResNet18 backbone. The two models are
searched on search spaces S (blue line) and S′ (red line) respectively. The model searched on S
achieves better similarity thus making the relevance of pooling layers clear.

6



Under review as a conference paper at ICLR 2023

4.3 PRELIMINARY RESULTS ON CIFAR

To quickly assess the behavior of our novel approach NASiam, we first conducted preliminary exper-
iments on small-scale CIFAR datasets (Krizhevsky et al., 2009). We searched NASiam architectures
for 50 epochs on CIFAR-10 and CIFAR-100 using the CIFAR version of ResNet18 (He et al., 2016)
as the encoder backbone. Then, we performed unsupervised pretraining for 800 epochs with a co-
sine annealing schedule before training a linear classifier using frozen features for 100 epochs. In
these settings, NASiam overperforms SimSiam by 1.5 % and 0.3 % on CIFAR-10 and CIFAR-100
respectively (see Table 2 and Table 3). In addition, Fig. 3 shows us that NASiam can achieve better
similarity than SimSiam without saturating the contrastive loss to −1 (i.e., a “collapsing” behavior).
Furthermore, results were also positive when using alternative Siamese frameworks with NASiam
overperforming both MoCo V2 (Chen et al., 2020b) and SimCLR (Chen et al., 2020a).

Table 2: Results of pre-training for 800 epochs on CIFAR-10 linear classification with SGD. The
backbone is the CIFAR version of ResNet18. †: Result obtained by running the official implemen-
tation with the hyperparameters suggested by the authors for CIFAR-10.

Model Batch
Size

Pre-Train
Epochs

Train
Epochs

Validation
Top-1 (%)

MoCo V2 (Chen et al., 2020b)† 256 800 100 89.8
SimCLR (Chen et al., 2020a)† 256 800 100 91.1
SimSiam (Chen & He, 2021)† 256 800 100 89.5

Ours
NASiam (SimSiam) 256 800 100 91.0
NASiam (MoCo V2) 256 800 100 90.4
NASiam (SimCLR) 256 800 100 91.8

Table 3: Results of training for 800 epochs on CIFAR-100 linear classification with SGD. The back-
bone is the CIFAR version of ResNet18. †: Result obtained by running the official implementation
with the hyperparameters suggested by the authors for CIFAR-10.

Model Batch
Size

Pre-Train
Epochs

Train
Epochs

Validation
Top-1 (%)

MoCo V2 (Chen et al., 2020b)† 256 800 100 62.9
SimCLR (Chen et al., 2020a)† 256 800 100 63.6
SimSiam (Chen & He, 2021)† 256 800 100 63.7

Ours
NASiam (SimSiam) 256 800 100 64.1
NASiam (MoCo V2) 256 800 100 64.3
NASiam (SimCLR) 256 800 100 68.2

4.4 RESULTS ON IMAGENET

We conducted image classification experiments on ImageNet (Russakovsky et al., 2015) as a stan-
dard practice to evaluate the performance of our novel approach on large-scale datasets. As stated
in Section 4.1, it is prohibitively expensive to search directly on ImageNet. Hence, we searched for
an encoder/predictor pair for 100 epochs on CIFAR-100 using ResNet50 as the encoder backbone.
Then, we performed unsupervised pretraining on ImageNet for 100 epochs before training a linear
classifier with frozen features for 100 epochs. The results are presented in detail in Table 4.

4.5 DISCUSSION ON THE COMPOSITION OF THE ARCHITECTURES

Some facts are noteworthy when comparing encoder/predictor architectures discovered by our novel
approach (see Section 3.1) with those of SimSiam (Chen & He, 2021). First, in Fig. 4, we can
see that the ResNet50 CIFAR-100 (Krizhevsky et al., 2009) NASiam architectures retained the sim-
plicity of SimSiam by having selected only a single Linear-BN-ReLU block to form the encoder
architecture (instead of two). The predictor architecture is also similar to the one in SimSiam but
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Figure 3: Plot of the negative cosine constrastive loss when pretraining SimSiam and NASiam
for 800 epochs on CIFAR-10. NASiam converges faster without collapsing and achieves better
similarity than SimSiam.

Table 4: Results of training for 100 epochs on ImageNet linear classification with SGD. The back-
bone is ResNet50. Models were pre-trained for 100 epochs on ImageNet. †: Score obtained by the
authors of SimSiam by using an improved version of the model.

Model Batch
Size

Pre-Train
Epochs

Train
Epochs

Validation
Top-1 (%)

MoCo V2 (Chen et al., 2020b)† 256 100 100 67.4
BYOL (Grill et al., 2020)† 4096 100 100 66.5
SimCLR (Chen et al., 2020a)† 4096 100 100 66.5
SimSiam (Chen & He, 2021) 256 100 100 67.1

Ours
NASiam (SimSiam) 256 100 100 67.4
NASiam (SimCLR) 4096 100 100 67.2

features an additional AvgPool3x3-BN block. However, the architecture discovered for ResNet18
(CIFAR version, see Section 4.1) is much deeper with 6 Linear-BN-ReLU blocks for the encoder
architecture and 2 AvgPool3x3-BN blocks intertwined between 2 Linear-BN-ReLU blocks
for the predictor architecture. One hypothesis to explain this discrepancy in architectural sparsity is
that ResNet18, being a shallower model than ResNet50, has a less powerful innate ability to learn
robust representations. Thus, the encoder/predictor pair play a more decisive role in representation
learning.

Interestingly, this assumption could also explain why the authors of SimSiam succeeded with such
a simple approach: the intrinsic representation learning ability of ResNet50 is sufficient to learn
robust representations without the help of additional tricks such as negative pairs or momentum
encoders. To confirm this hypothesis, we tried to fit a ResNet50 model on CIFAR-10 with the
deeper encoder/predictor pair discovered for ResNet18. Fig. 5 clearly shows that this architectural
setting quickly led to a collapsing behavior (with the contrastive loss rapidly saturating to -1 as soon
as epoch 3) with a higher variance than for the ResNet50-searched architecture.

5 CONCLUSION

In this article, we presented NASiam, a novel approach for Contrastive Learning with Siamese
Networks that searches for efficient encoder/predictor pairs using differentiable Neural Architec-
ture Search (see Section 3.1). This universal method can enhance many existing Siamese frame-
works while preserving their underlying structure. Section 4 showed that NASiam discovers en-
coder/predictor architectures that efficiently learn robust representations and overperform previous
baselines in small-scale and large-scale image classification datasets. Hence, we demonstrated the
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Figure 4: Composition of encoder/predictor pair architectures. (Top) SimSiam model. (Bottom
left) NASiam model searched for 50 epochs on CIFAR-10 using SimSiam as baseline framework
with ResNet18 as backbone. (Bottom right) NASiam model searched for 50 epochs on CIFAR-
100 using SimSiam as baseline framework with ResNet50 as backbone. ResNet18-searched and
ResNet50-searched architectures are clearly different with ResNet18 needing both a deeper encoder
and a deeper predictor.
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Figure 5: Plot of the negative cosine similarity loss while pretraining NASiam with a ResNet50
using encoder/pedictor pair architectures searched either with ResNet18 or ResNet50 as backbone.
The ResNet18-searched architecture quickly collapses and has higher variance than the ResNet50-
searched one, hence confirming the better intrinsic representation learning ability of ResNet50.

relevance of applying NAS to MLP-headed Siamese Networks and hope this work will pave the way
to further improvements in Contrastive Learning.
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cation using a” siamese” time delay neural network. Advances in neural information processing

9



Under review as a conference paper at ICLR 2023

systems, 6, 1993.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020a.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive darts: Bridging the optimization gap for
nas in the wild. International Journal of Computer Vision, 129(3):638–655, 2021a.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758, 2021.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020b.

Yaofo Chen, Yong Guo, Qi Chen, Minli Li, Wei Zeng, Yaowei Wang, and Mingkui Tan. Contrastive
neural architecture search with neural architecture comparators. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9502–9511, 2021b.

Yukang Chen, Gaofeng Meng, Qian Zhang, Shiming Xiang, Chang Huang, Lisen Mu, and Xing-
gang Wang. Renas: Reinforced evolutionary neural architecture search. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4787–4796, 2019.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair darts: Eliminating unfair advantages
in differentiable architecture search. In European conference on computer vision, pp. 465–480.
Springer, 2020.

Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xiaolin Wei, and Junchi Yan. Darts-: Ro-
bustly stepping out of performance collapse without indicators. In International Conference on
Learning Representations, 2021.

George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving deep neural networks for lvcsr
using rectified linear units and dropout. In 2013 IEEE international conference on acoustics,
speech and signal processing, pp. 8609–8613. IEEE, 2013.

Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei, Kan Chen, Yuandong
Tian, Matthew Yu, Peter Vajda, et al. Fbnetv3: Joint architecture-recipe search using predic-
tor pretraining. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16276–16285, 2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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A APPENDIX

A.1 OBJECT DETECTION AND INSTANCE SEGMENTATION RESULTS ON COCO

Table 5 displays the results of transferring Siamese models pretrained on ImageNet (Russakovsky
et al., 2015) to Microsoft COCO (Lin et al., 2014) object detection and instance segmentation tasks.
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Table 5: Comparison of backbone models for MaskRCNN (He et al., 2017) on COCO (Lin et al.,
2014) using a 1x schedule and ResNet50 (He et al., 2016) as the baseline CNN. All models are
pretrained for 200 epochs on ImageNet, finetuned for 12 epochs on COCO 2017 train, and evaluated
on COCO 2017 val.

Models AP50 (%) AP (%) AP75 (%) APmask
50 (%) APmask (%) APmask

75 (%)

ImageNet supervised 58.2 38.2 41.2 54.7 33.3 35.2
SimCLR 57.7 37.9 40.9 54.6 33.3 35.3
SimSiam 57.5 37.9 40.9 54.2 33.2 35.2
MoCo V2 58.8 39.2 42.5 55.5 34.3 36.6
BYOL 57.8 37.9 40.9 54.3 33.2 35.0
NaSiam (SimSiam) 58.6 39.0 42.1 55.2 34.1 36.3
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