

000 001 002 003 004 005 006 007 008 009 010 CE-NAV: FLOW-GUIDED REINFORCEMENT REFINE- MENT FOR CROSS-EMBODIMENT LOCAL NAVIGATION

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Generalizing local navigation policies across diverse robot morphologies is a critical challenge. Progress is often hindered by the need for costly and embodiment-specific data, the tight coupling of planning and control, and the "disastrous averaging" problem where deterministic models fail to capture multi-modal decisions (e.g., turning left or right). We introduce CE-Nav, a novel two-stage (IL-then-RL) framework that systematically decouples universal geometric reasoning from embodiment-specific dynamic adaptation. First, we train an embodiment-agnostic General Expert offline using imitation learning. This expert, a conditional normalizing flow model named VelFlow, learns the full distribution of kinematically-sound actions from a large-scale dataset generated by a classical planner, completely avoiding real robot data and resolving the multi-modality issue. Second, for a new robot, we freeze the expert and use it as a guiding prior to train a lightweight, Dynamics-Aware Refiner via online reinforcement learning. This refiner rapidly learns to compensate for the target robot's specific dynamics and controller imperfections with minimal environmental interaction. Extensive experiments on quadrupeds, bipeds, and quadrotors show that CE-Nav achieves state-of-the-art performance while drastically reducing adaptation cost. Successful real-world deployments further validate our approach as an efficient and scalable solution for building generalizable navigation systems.

1 INTRODUCTION

The recent surge in mobile robotics has led to a wide array of platforms with diverse morphologies, creating a fundamental challenge in developing navigation policies that can be seamlessly deployed across multiple embodiments. Current learning-based strategies diverge broadly in their architectural choices. On one end, **end-to-end (E2E) policies** (Wang et al., 2025) attempt to map observations directly to low-level joint commands. This approach, while powerful, deeply entangles high-level planning with the robot's specific dynamics, making the policies brittle on new platforms. On the other end, **hierarchical methods** first plan a path as a **sequence of waypoints** (Cai et al., 2025; Doshi et al., 2025; Yang et al., 2023; Shah et al., 2023a; Yang et al., 2024). This decouples planning from control, but introduces a critical gap: the high-level planner operates on a simplified or idealized model of the controller, making it difficult to compensate for unmodeled dynamic effects or imperfect tracking performance.

Hierarchical **velocity planning** emerges as a more robust "middle ground" (Xu et al., 2025b; Liu et al., 2025a; Hirose et al., 2023; Liu et al., 2025b; Truong et al., 2021). It decouples high-level geometric reasoning from low-level motor control, yet provides a reactive command interface that can be trained to compensate for the underlying system's dynamics. However, this promising approach faces two fundamental bottlenecks. **First, the reliance on expert data with embodiment-specific bias.** Sourcing data from costly, embodiment-specific real-world trajectories or physics-based simulations introduces a strong bias that limits generalization and scalability. **Second, the deterministic learning paradigm.** Framing navigation as a deterministic regression task fundamentally fails to capture its inherent multi-modality (e.g., turning left or right at a T-junction), leading to "disastrous averaging" behaviors.

To overcome these specific limitations, we introduce **CE-Nav**, a novel framework for Cross-Embodiment Local Navigation that achieves both low-cost transferability and high performance.

Our approach is founded on hierarchical decoupling, separating the navigation task into a high-level velocity planning policy (π_{high}) and a low-level locomotion controller (π_{low}). The high-level policy operates in a universal action space of body velocity commands (v_x, v_y, v_{yaw}), a standard interface for many mobile robots, including quadrupeds and bipeds. This abstraction enables the learning of a transferable navigation core, which operates atop any embodiment-specific low-level controller. Our framework does not assume this controller is an ideal velocity tracker; rather, our Stage 2 refiner is explicitly trained to compensate for its specific dynamic characteristics and execution imperfections.

The training of π_{high} follows a two-stage paradigm that disentangles embodiment-agnostic geometric reasoning from embodiment-specific dynamic adaptation.

1. **Stage 1 (Offline IL):** We train a general navigation expert (π_{expert}) that understands universal planning principles (e.g., obstacle avoidance) purely from a kinematic perspective, **without relying on any real robot data**. Critically, we use a conditional normalizing flow model, **VelFlow**, to learn the full distribution of expert actions, effectively **resolving the multi-modality issue**.
2. **Stage 2 (Online RL):** For a new robot, we freeze the general expert and train a lightweight, **Dynamics-aware Refiner**. Guided by the expert’s proposals, this refiner quickly learns to translate the general plan into dynamically feasible and optimal commands for the specific robot through minimal interaction with the environment.

This modular, plug-and-play design allows CE-Nav to endow new robotic platforms with sophisticated navigation capabilities through a brief and stable training process. Our contributions are:

- We propose a novel IL-then-RL framework that decouples universal geometric reasoning from embodiment-specific dynamics. The framework uses a multi-modal kinematic expert, trained offline on classical planner data, to guide a lightweight, dynamics-aware refiner via rapid online adaptation.
- We introduce VelFlow, a conditional normalizing flow policy that learns the multi-modal distribution of kinematically-sound actions. This approach effectively overcomes the “disastrous averaging” problem inherent in deterministic imitation learning.
- A training strategy that achieves state-of-the-art navigation performance without any costly robot-specific data. Our key innovation is a guided RL phase with curriculum-based annealing of the expert guidance, enabling both stable and rapid adaptation to new embodiments.

2 RELATED WORK

2.1 CROSS-EMBODIMENT NAVIGATION

Classical local planning methods, such as the Dynamic Window Approach (DWA) (Fox et al., 2002) and Timed Elastic Band (TEB) (Rösmann et al., 2012), have proven robust for local obstacle avoidance. However, their performance is highly sensitive to manual parameter tuning and they are prone to failure in complex, cluttered environments, limiting their generalization. Critically, their core logic provides a strong source of kinematically-aware decisions, a characteristic we leverage for our expert data generation.

Deep learning approaches have diverged. End-to-end (E2E) methods (Wang et al., 2025) map observations directly to joint commands, but deeply entangle planning with dynamics, requiring massive embodiment randomization. Hierarchical methods decouple planning and control. The high-level planner often generates waypoints (Cai et al., 2025; Yang et al., 2023; Shah et al., 2023a; Yang et al., 2024) or velocity commands (Xu et al., 2025b; Liu et al., 2025a; Hirose et al., 2023; Truong et al., 2021) as targets. However, these approaches frequently neglect the embodiment-specific dynamics or tracking errors of the underlying controller, which can result in suboptimal navigation behaviors.

2.2 MODELING MULTI-MODALITY IN ROBOTIC LEARNING

Most deep learning methods for navigation treat the task as a deterministic regression problem (Xu et al., 2025b; Liu et al., 2025b;c). This formulation is ill-suited for scenarios with inherent decision ambiguity (e.g., a T-junction), leading to the well-known “disastrous averaging” issue.

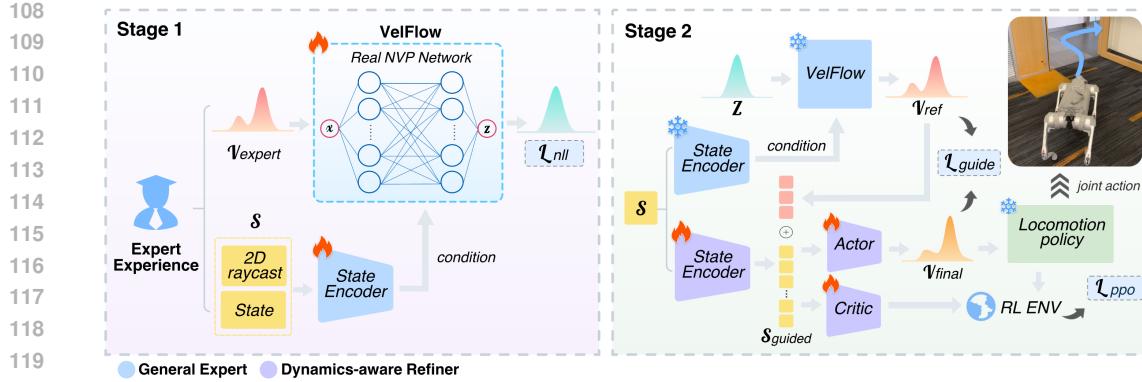


Figure 1: Overview of the CE-Nav two-stage framework. Stage 1 (Left): A multi-modal, embodiment-agnostic General Expert is trained offline via imitation learning on expert data. Stage 2 (Right): The frozen expert is used as a guiding prior to train a Dynamics-Aware Refiner via online reinforcement learning, allowing it to adapt to a specific robot’s dynamics.

Recognizing this, recent works have explored generative models. Diffusion policies (Chi et al., 2023) and flow models (Papamakarios et al., 2021; Lipman et al., 2022) have shown promise in capturing the full distribution of expert actions, and are utilized in Sridhar et al. (2024); Shah et al. (2023b). However, their application has been largely confined to pure imitation learning contexts.

Adapting these methods to reinforcement learning presents significant challenges. Directly fine-tuning generative policies via RL (Yang et al., 2025; Pfrommer et al., 2025) risks *catastrophic interference*, where aggressive dynamic adaptation gradients override geometric priors. Similarly, conventional demonstration-guided RL (Rajeswaran et al., 2018; Xu et al., 2025a; Smith et al., 2023) often coerce multi-modal demonstrations into a deterministic policy, leading to averaging behaviors in ambiguous scenarios. Meanwhile, curriculum-based methods (Zhao et al., 2022; Nakamoto et al., 2023) typically treat the prior as a “ground truth” to be strictly preserved. Furthermore, standard Residual RL (Ankile et al., 2024) relies on additive architectures which implicitly assume local optimality. This formulation struggles to implement substantial corrections when the required dynamic actions deviate significantly from the reference policy.

Our work differs fundamentally by integrating a flow-based generative model (VelFlow) into a de-coupled IL-then-RL framework. Instead of end-to-end fine-tuning or additive residuals, we adopt a “frozen prior” strategy where VelFlow serves as a stable geometric anchor. This unique architecture enables the policy to preserve multi-modal “common sense” while the refiner, via a *conditional refinement* framework, explicitly learns to *deviate* from idealized plans to translate them into feasible controls for specific, unseen robot dynamics.

3 METHODOLOGY

3.1 OVERVIEW AND PROBLEM FORMULATION

The Cross-Embodiment navigation task requires a mobile robot to navigate from a starting position to a goal in an unknown, cluttered environment. The policy is guided by three types of information: 1) environmental observations, such as a 2D LiDAR scan derived from an onboard depth camera or laser sensor; 2) the robot’s proprioceptive state; and 3) the goal position relative to the robot. At each timestep t , the policy executes an action a_t . The objective is to find a policy π that minimizes travel time to the goal while ensuring safety (collision avoidance). Our work investigates a framework for training such policies that can be transferred across a wide range of robotic platforms with varying dynamics and morphologies.

Our system is built upon a hierarchical control architecture that decouples high-level planning (π_{high}) from low-level control (π_{low}). Given a new robot with its specific locomotion policy π_{low} , including all its inherent response characteristics and tracking errors, our goal is to learn a safe and efficient high-level navigation policy π_{high} with minimal training overhead.

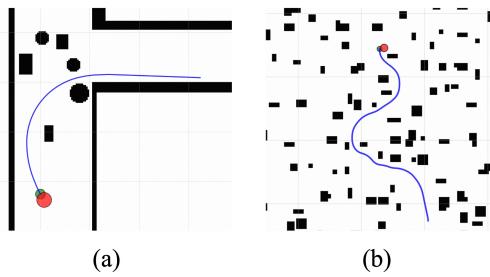
162 3.2 TWO-STAGE TRAINING PARADIGM: GENERAL KNOWLEDGE AND FAST ADAPTATION
163164 We propose a two-stage paradigm for training the high-level policy π_{high} (as illustrated in Fig. 1),
165 which elegantly serves our Cross-Embodiment objective:166 **Stage 1: Offline Imitation Learning of an Embodiment-Agnostic General Expert.** The goal
167 of this stage is to learn a universal kinematic expert policy, π_{expert} . This policy reasons purely at
168 a geometric and logical level, independent of any specific robot’s dynamics. It learns the general
169 principles of navigation—how to perceive pathways and avoid obstacles—making its knowledge in-
170 herently embodiment-agnostic. We employ a conditional normalizing flow-based network, VelFlow,
171 to model a continuous distribution of velocities, effectively resolving the “disastrous averaging”
172 problem in multi-modal scenarios.173 **Stage 2: Online Reinforcement Learning of a Dynamics-Aware Refiner.** In this stage, guided
174 by the pre-trained General Expert, we use a small amount of interaction between the target robot
175 and its environment to quickly learn its specific dynamic characteristics. The refiner module adapts
176 the general velocity commands from the expert into commands that are dynamically feasible and
177 optimal for the current robot. When transferring to a new robot, we simply freeze the General
178 Expert and train only this lightweight refiner, resulting in a highly efficient and stable adaptation
179 process.180
181 3.3 STAGE 1: OFFLINE IMITATION LEARNING OF THE GENERAL EXPERT
182183 The core objective of this stage is to build an embodiment-agnostic navigation brain that masters the
184 universal, high-level principles of planning and obstacle avoidance in complex geometric environ-
185 ments.186
187 3.3.1 EXPERT EXPERIENCE CONSTRUCTION
188189 To eliminate the high cost and embodiment bias
190 of real-world or physics-based data collection,
191 we generate our expert dataset within a 2D sim-
192 ulation environment. In this simulation, the
193 agent is modeled as a circular rigid body, re-
194 ducing the planning problem to 2D geometric
195 reasoning, independent of any specific robot’s
196 morphology or dynamics.197 We synthesize the dataset using the Dynamic
198 Window Approach (DWA) (Fox et al., 2002),
199 a classical local planning algorithm. Cru-
200 cially, instead of using a robot-specific dynamic
201 model, we configure DWA to operate with a set
202 of **general dynamic constraints**. This config-
203 uration ensures the expert’s decisions are not biased towards any specific robot’s morphology. The
204 specific parameters are detailed in Table 5.205 While classical planners may fail in complex, long-horizon tasks, DWA’s core logic provides a robust
206 source of geometrically-sound local decisions. This simplified model ensures the expert focuses
207 purely on geometric collision avoidance, leaving the complex, embodiment-specific dynamics to be
208 learned by the Dynamics-Aware Refiner in Stage 2.209 To generate the data, we deployed our DWA planner in tens of thousands of procedurally gener-
210 ated simulation environments with random and complex obstacle layouts (see Fig. 2). To capture
211 navigation’s inherent ambiguity and provide rich data for our flow model (VelFlow), we explicitly
212 saved multiple distinct high-scoring actions. Specifically, we collected all candidate actions whose
213 objective function scores $Score$ were within a δ threshold of the optimal score $Score_{max}$ (i.e.,
214 $Score \geq (1 - \delta) \cdot Score_{max}$, where we set $\delta = 0.1$). Finally, after filtering out trajectories that
215 failed to reach their goal, we compiled a final dataset of 10 million state-action pairs, ensuring our
expert data contains only successful and geometrically-sound demonstrations.

Figure 2: Examples of geometry simulation environments used for expert data generation. (a) Corridor environment. (b) Obstacle forest environment.

216 3.3.2 NETWORK ARCHITECTURE
217

218 **State Encoder.** The observation s is composed of a 2D LiDAR scan and a robot state vector. The
219 LiDAR scan represents the distances to surrounding obstacles from the robot’s current position. It
220 contains a 360-degree 2D raycast (a LiDAR scan with a maximum range of 4 meters) that samples
221 $N_{\text{ray}} = 144$ rays at equal angular intervals on the horizontal plane. The robot state is a 7-dimensional
222 tensor. It comprises vectors expressed in the body frame: the normalized goal direction (3D), current
223 linear velocity (2D), and the current angular velocity (1D). This is augmented by the scalar Euclidean
224 distance to the goal (1D). The state encoder processes the 2D LiDAR scan with a three-layer CNN
225 and concatenates the resulting feature map with the robot state vector. This combined representation
226 is then passed through a two-layer MLP to produce a final 256-dimensional state embedding, which
227 serves as the conditional input to the VelFlow network.

228 **VelFlow Design.** To fundamentally address the disastrous averaging problem, our goal is to learn
229 the complete conditional probability distribution of the expert’s actions, $p(x|s)$, rather than a single
230 deterministic mapping. While Diffusion Policy (Chi et al., 2023) and Flow Matching (Lipman et al.,
231 2022) excel in sample diversity, their reliance on multi-step sampling renders them computationally
232 infeasible for our real-time control application. Conditional Normalizing Flow Models (CNFMs) are
233 powerful deep generative models ideal for this task, as they can accurately model and sample from
234 complex, multi-modal distributions in a single propagation. They provide precise, tractable likeli-
235 hood estimations, which are crucial for interpretability and stable control. We design our VelFlow
236 module based on the Real-NVP architecture (Dinh et al., 2016), consisting of 12 coupling layers
237 with hidden dimensions of 512. It learns to map a simple base distribution $p_z(z)$ (e.g., a standard
238 Gaussian) to the complex expert velocity distribution $p_x(x|s)$. The training objective is to minimize
the negative log-likelihood (NLL) of the expert demonstrations.

$$\mathcal{L}_{\text{NLL}} = -\mathbb{E}_{(s,x) \sim \mathcal{D}_{\text{expert}}} [\log p(x|s)] \quad (1)$$

240 Once trained, we can generate diverse and plausible reference velocities, v_{ref} , by drawing random
241 samples z from the base distribution and transforming them through the learned VelFlow network:
242 $v_{\text{ref}} = f_{\text{VelFlow}}(z; s)$.

244 3.4 STAGE 2: ONLINE REINFORCEMENT LEARNING OF THE DYNAMICS-AWARE REFINER
245

246 We now introduce the Dynamics-aware Refiner to ground the General Expert’s abstract plans in the
247 physical reality of a specific robot. This is achieved through a guided RL process.

249 3.4.1 REINFORCEMENT LEARNING FORMULATION
250

251 We formulate the navigation task as a Markov Decision Process (MDP) defined by the tuple
252 $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$.

253 **Observation Space (\mathcal{S}):** The initial state representation s is consistent with the imitation learning
254 phase, containing a 360-degree raycast and the 7D robot state. This raycast representation is robust
255 to the sim-to-real gap. For policy learning, the state embedding from the State Encoder is concate-
256 nated with the reference velocity v_{ref} provided by the General Expert, forming a guided state s_{guided}
257 which is fed to the actor and critic networks. By conditioning the policy on a specific sampled
258 v_{ref} , the refiner’s task is thus defined not as replicating the expert’s multi-modal distribution, but as
259 learning an optimal, dynamics-aware refinement for that single guiding proposal.

260 **Action Space (\mathcal{A}):** The policy outputs a final velocity command v_{final} , which is first predicted as a
261 normalized vector v_{norm} and then scaled by predefined velocity limits V_{lim} .

$$v_{\text{final}} = V_{\text{lim}} \cdot (2 \cdot v_{\text{norm}} - 1), \quad v_{\text{norm}} \in [0, 1] \quad (2)$$

264 **Reward Function (\mathcal{R}):** Our reward function is structured to encourage efficient, smooth, and safe
265 navigation. Because the refiner policy is trained in a closed loop with the specific π_{low} , the envi-
266 ronmental rewards are generated based on the robot’s actual achieved trajectory, not its commanded
267 velocity. This mechanism inherently forces the refiner to learn a compensatory policy for any sys-
268 temic latencies or tracking errors within the π_{low} . Our reward function is composed of the following
269 components (see A.2 for details): **(1) Efficiency and Goal-Oriented Rewards:** R_{distance} (rewards
progress towards the goal), $R_{\text{checkpoint}}$ (encourages sustained progress), R_{heading} (rewards velocity

R_{\text{goal}} (a large bonus for task completion). **(2) Movement Smoothness and Stability Rewards:** Penalties for jerky movements ($P_{\text{linear,smooth}}$, $P_{\text{yaw,smooth}}$), excessive body tilt ($P_{\text{stability}}$). **(3) Safety Rewards:** A repulsive potential field based on LiDAR readings (R_{safety}) to encourage keeping a safe distance from obstacles, and a large penalty for collisions ($P_{\text{collision}}$).

3.4.2 REFINER DESIGN AND GUIDED TRAINING

During the RL phase, the state observation is processed in two parallel streams: 1) it is fed into the frozen General Expert to generate a reference velocity v_{ref} , and 2) it is passed through the refiner’s state encoder. The outputs are then concatenated to form the guided state vector s_{guided} , which serves as the complete input for the refiner’s actor and critic networks. We use Proximal Policy Optimization (PPO) (Schulman et al., 2017) to train the refiner policy.

One key innovation is a hybrid loss function that balances imitation and exploration through what we term ”Principled Deviation”:

$$\mathcal{L}_{\text{guide}} = \|\pi_{\text{refiner}}(s_{\text{guided}}) - \text{scale} \cdot v_{\text{ref}}\|^2 \quad (3)$$

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{PPO}} + \lambda \cdot \mathcal{L}_{\text{guide}} \quad (4)$$

\mathcal{L}_{PPO} is the standard PPO objective, driving the refiner to discover behaviors that maximize the cumulative environmental reward. $\mathcal{L}_{\text{guide}}$ is an auxiliary guidance loss, where v_{ref} is a single velocity command sampled from the frozen $f_{\text{VelFlow}}(z; s)$. The scale term is an auto-computed, embodiment-specific hyperparameter for proportionally scaling v_{ref} into an acceptable range (see A.3 for details). This mean-squared error term acts as an inductive bias, anchoring the refiner’s behavior around the expert’s sensible proposals, which ensures learning stability and direction.

The guidance strength, λ , is not static. We employ a curriculum learning strategy by annealing its value over the course of training: **Initial Phase** (e.g., steps 0-1k, $\lambda = 0.5$): Strong guidance forces the refiner to quickly adopt the expert’s fundamental navigation logic. **Mid-Phase** (e.g., steps 1k-5k, $\lambda : 0.5 \rightarrow 0.05$): The guidance weight decays exponentially, granting the refiner more autonomy to explore and fine-tune its actions based on the coupled system dynamics and the reward signal. **Final Phase** (e.g., steps >5k, $\lambda = 0.05$): A weak guidance signal remains, primarily serving as a regularizer to prevent catastrophic forgetting or policy drift. This dynamic balance ensures that any deviation the refiner learns from the expert’s command is a principled, data-driven optimization for achieving better performance in the real physical world.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Simulation Environment. All experiments are conducted within the Isaac Sim physics simulator (NVIDIA). We construct a challenging navigation environment, termed the ”obstacle forest,” an $l \times l$ area populated with N_o cuboid obstacles of random sizes and positions (see Fig. 3 (a)). For training, we set $N_o = 500$, $l = 40m$ and leverage 1024 parallel environments for efficient data collection and policy updates. During an episode, each robot is spawned at a random location with a distant random goal. An episode terminates if the robot collides with an obstacle, reaches the goal, or exceeds the maximum episode length. For evaluation, we create four distinct test environments with varying obstacle densities, where $N_o \in \{100, 300, 500, 700\}$ and $l = 20m$. For each difficulty level, we pre-sample and fix 100 start-goal pairs to ensure a consistent and fair comparison across all methods.

Robot Embodiments. To assess the Cross-Embodiment generalization capability of our framework, we employ five distinct robot models with radically different dynamics and morphologies:

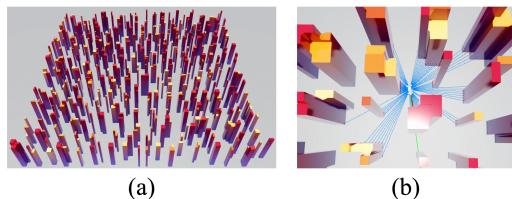


Figure 3: (a) The ”obstacle forest” with $N_o = 500$, $l = 40m$. (b) Visualization of the 2D ray-cast input, where blue lines indicate rays (up to a 4m range) that have detected an obstacle.

Table 1: Ablation study results across four levels of obstacle density.

Method	Obstacles ($N_o = 100$)		Obstacles ($N_o = 300$)		Obstacles ($N_o = 500$)		Obstacles ($N_o = 700$)		ETT(h) ↓
	SR ↑	SPL ↑							
CE-Nav (Ours)	1.00	0.9796	0.84	0.8001	0.83	0.7796	0.76	0.7167	6
CE-Nav _{pure-rl}	0.99	0.9452	0.64	0.6006	0.56	0.5106	0.57	0.5179	52
CE-Nav _{regr-rl}	0.46	0.4215	0.38	0.3628	0.28	0.2666	0.35	0.3320	7
CE-Nav _{dpr-rl}	1.00	0.9622	0.79	0.7499	0.77	0.7231	0.71	0.6664	52
GE-Only _{veflow}	0.40	0.3675	0.01	0.0093	0.00	0.0000	0.00	0.0000	N/A
GE-Only _{regr}	0.10	0.0909	0.00	0.0000	0.00	0.0000	0.00	0.0000	N/A
CE-Nav _{$\lambda = 0.5$}	1.00	0.9772	0.77	0.7409	0.73	0.7019	0.72	0.6871	6

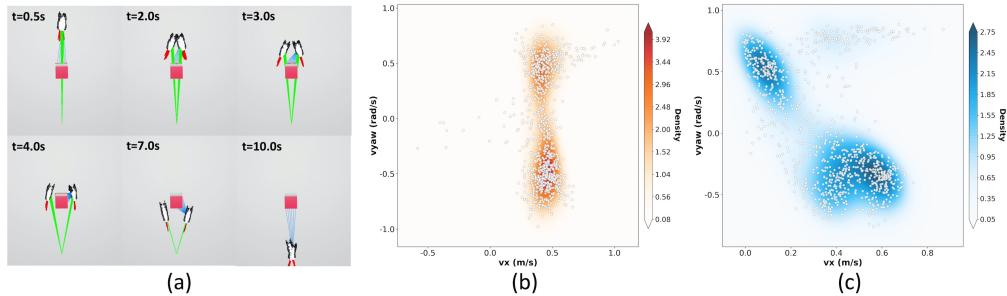


Figure 4: Multi-modal Decision-Making in CE-Nav. (a) 100 robots navigate past an obstacle by splitting into two groups. At the decision point: (b) The expert’s reference velocity (v_{ref}) proposals form two distinct clusters, representing the choice to turn left or right. (c) The refiner’s final velocity commands (v_{final}) maintain this bimodal structure while adjusting for dynamics.

three quadrupeds (Unitree Go2, MagicDog, Spot), one biped (Unitree H1), and one quadrotor (Hummingbird). For quadrotor, we simplify the task to 2.5D navigation by assuming a fixed-altitude controller, allowing them to be commanded using the same 2D velocity interface. The low-level locomotion controllers are sourced from various implementations to represent typical, non-ideal systems with realistic tracking imperfections (see Appendix A.4 for details). This allows us to test our refiner’s ability to adapt to controller-specific characteristics.

Implementation Details. Our framework consists of two main stages. In the Imitation Learning (IL) stage, the General Expert (GE) is trained offline on the expert dataset using a learning rate of 5×10^{-4} . After training, its weights are frozen. In the Reinforcement Learning (RL) stage, the learning rates for the actor, critic, and shared feature extractor are set to 5×10^{-4} , 1×10^{-3} , and 1×10^{-3} , respectively. All models are trained and evaluated on a single desktop machine equipped with an NVIDIA RTX 4090 GPU.

Evaluation Metrics. We adopt four key quantitative metrics to evaluate performance comprehensively: **Success Rate (SR)**, the percentage of trials where the robot’s center of mass reaches within a 0.3-meter radius of the goal without any collisions throughout the episode; **SPL**, the success weighted by the normalized inverse path length for measuring the trajectory efficiency (Anderson et al., 2018); and **Extra Training Time (ETT)**, the wall-clock time required for the additional RL training phase to adapt the policy to a new robot embodiment.

4.2 ABLATION STUDIES

We first conduct a series of ablation studies to dissect our framework and validate the necessity and design of its key components. This process establishes the justification for our final proposed model. All ablations are performed on the Unitree Go2.

The Role of VelFlow and Expert Guidance. We investigate the impact of our guidance mechanism by comparing our full model against five critical variants: (1) **CE-Nav**_{pure-rl}, a pure RL agent trained from scratch without any expert guidance; (2) **CE-Nav**_{regress-rl}, where the VelFlow guidance module is replaced by an MLP regression network with an equivalent number of parameters; (3)

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Comparisons with other methods on Unitree Go2. The average across all four test environments is reported.

Method	mSR \uparrow	mSPL \uparrow	ETT(h) \downarrow
DWA	0.6400	0.6022	N/A
BC	0.0275	0.0253	N/A
DP	0.0725	0.0644	N/A
NavRL	0.6925	0.6460	50
Ours	0.8575	0.8190	6

Table 3: Cross-Embodiment generalization. The average performance across all four test environments is reported.

Robot Platform	mSR \uparrow	mSPL \uparrow
Unitree Go2	0.8575	0.8190
Spot	0.8325	0.7123
MagicDog	0.8600	0.8231
Unitree H1	0.7450	0.7223
Hummingbird	0.8025	0.7491

CE-Nav_{dp-rl}, where the VelFlow module is replaced by a diffusion policy model (with an equivalent parameter count) trained on the same expert data; (4) **GE-Only_{velflow}**, the General Expert (VelFlow) policy evaluated directly without RL refinement; and (5) **GE-Only_{regr}**, the MLP regression-based General Expert policy evaluated directly without RL refinement.

As shown in Table 1, the **GE-Only_{velflow}** policy yields a dismal SR, and the **GE-Only_{regr}** policy performs even worse. This exposes the classic covariate shift problem in pure IL, and validates that our online refiner is essential for learning a robust recovery policy. The **CE-Nav_{pure-rl}** agent confirms the challenge of pure exploration. It requires nearly **9x** the training time of our final model (only 6 hours), and also reaches a significantly lower SR compared to the full model. Most critically, the **CE-Nav_{regr-rl}** variant reveals a crucial insight: a suboptimal teacher is more detrimental than no teacher at all. Its SRs are markedly worse than even the pure RL baseline. This is because the regression-based MLP provides an “averaged” and unimodal action prior that fails to capture the multi-modal nature of expert decisions, actively misleading the RL agent. While the **CE-Nav_{dp-rl}** variant offers a improvement over **CE-Nav_{regr-rl}** and **CE-Nav_{pure-rl}**, it presents an undesirable trade-off, as it still falls short of our VelFlow’s guide performance and is 8 times more computationally expensive during inference. Visualization in Fig. 4 further illustrates that a high-quality, multi-modal guidance model like VelFlow is the cornerstone of CE-Nav’s success.

Effect of Curriculum-based Guidance Loss. We validate our curriculum annealing strategy by comparing it against two static weighting schemes: static $\lambda = 0$ (which is **CE-Nav_{pure-rl}**) and static $\lambda = 0.5$ (constant strong guidance). Table 1 shows that the **CE-Nav _{$\lambda = 0.5$}** variant is superior to learning without guidance but significantly worse than our curriculum-based approach. While the expert provides a critical starting point, perpetual adherence to its policy stifles exploration. This prevents the agent from discovering more robust or efficient policies that may surpass the expert’s own short-sighted behaviors. Our curriculum strategy effectively balances this fundamental imitation-exploration trade-off, leveraging the expert for rapid bootstrapping while gradually empowering the agent to find a superior policy.

4.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

We now compare our finalized model against a diverse set of baselines on the Unitree Go2 platform. These include: the **DWA**, a classic local planner for which we carefully tuned dynamics parameters to match the Go2 robot; two IL baselines, **Behavioral Cloning** (BC) (Torabi et al., 2018) and the state-of-the-art **Diffusion Policy (DP)** (Chi et al., 2023); and **NavRL** (Xu et al., 2025b), a state-of-the-art end-to-end RL method for agile navigation using raycast-based observations. Both IL methods were trained on a new complete dataset of 10 million state-action pairs generated from Go2’s successful DWA trajectories in the Isaac platform. For a fair comparison, all learning-based baselines were trained in our environment using identical observation and action spaces. Furthermore, NavRL was adapted to train with the same URDF and locomotion policy as our method.

As shown in Table 2, CE-Nav outperforms all baselines. Myopic planners like DWA are ineffective in long-horizon tasks, and IL methods exhibit poor generalization to novel environments. While the strong end-to-end RL baseline, NavRL, performs reasonably, our CE-Nav model surpasses it in performance while requiring 8x less training time. This substantial gain in both performance and efficiency underscores the effectiveness of our guided, two-stage methodology.

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
Figure 5: CE-Nav deployment on Unitree Go2 and MagicDog robots. See supp. videos for more cases.

4.4 CROSS-EMBODIMENT GENERALIZATION

A key advantage of our proposed method is its ability to transfer to new robot embodiments without requiring any real-world trajectories. We evaluate this by deploying the same pre-trained General Expert across all five robot platforms and running only the brief RL stage.

As shown in Table 3, CE-Nav consistently achieves excellent navigation performance across all five platforms. This demonstrates strong generalization not only across vastly different morphologies and dynamics (e.g., legged vs. aerial), but also across their underlying low-level controllers, which feature a wide range of tracking fidelities (see Appendix A.4). The strong results on the Unitree H1 biped and the Hummingbird quadrotor underscore the powerful adaptation capability of our framework.

4.5 REAL-WORLD DEPLOYMENT

It is important to note that our simulated "obstacle forest" is deliberately constructed to be adversarially dense, designed to stress-test the algorithm's robustness in scenarios far exceeding the complexity of typical real-world deployments. We deploy CE-Nav to a Unitree Go2 and a MagicDog to validate its sim-to-real transferability (see Appendix A.5 for details). Running on a Jetson Orin NX, our pipeline achieved an inference rate exceeding 10 Hz.

We conducted 40 trials for each of the three challenging scenarios: the indoor obstacle maze, the indoor office corridor, and the outdoor walking path (see Fig. 5). We compared CE-Nav against two baselines: a carefully tuned DWA planner, and the official open-source implementation of NavRL. As shown in Table 4, CE-Nav significantly outperformed both baselines in SR and SPL. DWA frequently failed by becoming permanently trapped in indoor concave regions and corners. While NavRL is designed for generalization (with its original authors claiming direct applicability to quadrupeds), its direct deployment on our hardware led to frequent collisions and unstable gaits. This performance gap highlights the critical role of our dynamics-aware refiner, which effectively adapts the general policy to the specific embodiment's physical characteristics, something a purely generalized policy fails to achieve.

Limitations and Future Work. CE-Nav's few failures stemmed primarily from sensor limitations rather than planning or control errors. These included collisions with transparent glass walls invisible to LiDAR and detours caused by the absence of RGB perception (see red cases in Fig. 5). This performance underscores the robustness of our core navigation framework and suggests a promising direction for future work: integrating it with advanced perception modules, such as Vision Language Models (VLMs). A prototype of this fast-and-slow system has already been implemented to achieve complex, long-horizon tasks like fetching coffee from Starbucks (see supp. video), demonstrating CE-Nav's potential as a pluggable fast system for complex visual navigation tasks.

5 CONCLUSION

In this paper, we introduced CE-Nav, a novel framework for Cross-Embodiment local navigation that achieves high performance with remarkable transfer efficiency. By leveraging a hierarchical

Table 4: Real-world navigation performance comparisons.

Method	SR \uparrow	SPL \uparrow
DWA	0.7500	0.6832
NavRL	0.5083	0.4612
CE-Nav (Ours)	0.9167	0.8913

486 architecture that decouples high-level planning from low-level control, we successfully isolate the
487 learning of a universal, embodiment-agnostic navigation policy. Our two-stage training paradigm,
488 which combines offline imitation learning of a multi-modal expert with online guided reinforce-
489 ment learning, proves to be a powerful approach. The VelFlow module effectively addresses the
490 challenge of multi-modal decision-making in navigation, while the dynamics-aware refiner with its
491 curriculum-guided training enables fast and stable adaptation to new robot platforms, by learning
492 a coupled policy that compensates for both the robot’s physical dynamics and the execution im-
493 perfections of its specific low-level controller. Crucially, our entire framework eliminates the need
494 for collecting expensive and biased real-world robot data. We believe CE-Nav represents a signifi-
495 cant step towards truly generalizable and scalable local navigation solutions for the ever-expanding
496 ecosystem of diverse robotic platforms. Furthermore, it provides a robust fast system that can be
497 integrated with high-level planners (such as VLMs), paving the way for next-generation hierarchical
498 navigation systems.

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540
541 REPRODUCIBILITY STATEMENT542
543 To ensure the reproducibility of our work, we provide a detailed account of the code, data, exper-
544 imental setup, and computational requirements. We commit to releasing all code and instructions
545 necessary to replicate our findings upon the acceptance of this paper.546
547 **Code.** Upon acceptance, all code will be made publicly available in a GitHub repository under an
548 MIT license. The repository will include:549
550 • Source code for the **VelFlow** (General Expert) and the **Dynamics-Aware Refiner** models,
551 implemented in PyTorch.
552 • Scripts for training both Stage 1 (offline IL) and Stage 2 (online RL).
553 • Code for the procedural generation of simulation environments (“obstacle forest”).
554 • Evaluation scripts to reproduce the results presented in our tables.555
556 **Datasets.** Our framework does not rely on any pre-existing, private datasets. The expert experi-
557 ence for Stage 1 is synthetically generated. The released code will include the complete pipeline for
558 generating this dataset, which consists of 10 million state-action pairs. The expert data is generated
559 using the Dynamic Window Approach (DWA) in a 2D kinematic simulation. All parameters for the
560 DWA planner and the data collection process (as detailed in Section 3.3.1 and Appendix A.1) will
561 be included in the code release, allowing for the exact reconstruction of our dataset.562
563 **Models and Hyperparameters.** The architectures of our models are described in Section 3.3.2.
564 Key hyperparameters for training are provided in Section 4.1. Specifically:565
566 • **VelFlow:** A Real-NVP architecture with 12 coupling layers and hidden dimensions of 512,
567 trained with a learning rate of 5×10^{-4} .
568 • **Dynamics-Aware Refiner:** Trained using PPO. The learning rates for the actor, critic, and
569 shared feature extractor are 5×10^{-4} , 1×10^{-3} , and 1×10^{-3} , respectively.
570 • **Guided Training:** The curriculum for annealing the guidance loss weight λ is described in
571 Section 3.4.2 (from 0.5 to 0.05).572
573 All hyperparameters, including the full reward function specification (Appendix A.2, Table 6), will
574 be provided in configuration files within the released code repository to ensure full transparency and
575 ease of replication.576
577 **Experimental Setup.** All simulation experiments were conducted within the Isaac Sim physics
578 simulator. The simulation environments were procedurally generated as described in Section 4.1.
579 For evaluation, we used four fixed test environments with 100 pre-sampled start-goal pairs each to
580 ensure fair and consistent comparisons. The robot embodiments (Unitree Go2, Spot, MagicDog,
581 Unitree H1, Hummingbird) and their respective low-level controllers are detailed in Appendix A.4.
582 The real-world deployment setup is described in Section 4.5 and Appendix A.5.583
584 **Computational Requirements.** The experiments were performed on a single desktop machine
585 equipped with an NVIDIA RTX 4090 GPU. The key computational times are as follows:586
587 • **Stage 1 (Offline IL):** Training the General Expert on the 10M-pair dataset takes approx-
588 imately **4 hours**. This is a one-time offline cost, the resulting model is frozen and reused
589 for all embodiments.
590 • **Stage 2 (Online RL):** The adaptation of the Dynamics-Aware Refiner for a new robot
591 embodiment takes approximately **6 hours**.

594 REFERENCES
595

596 Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta,
597 Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, et al. On
598 evaluation of embodied navigation agents. *arXiv preprint arXiv:1807.06757*, 2018.

599 Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation
600 to refinement – residual rl for precise assembly, 2024. URL <https://arxiv.org/abs/2407.16677>.

602 Wenzhe Cai, Jiaqi Peng, Yuqiang Yang, Yujian Zhang, Meng Wei, Hanqing Wang, Yilun Chen,
603 Tai Wang, and Jiangmiao Pang. Navdp: Learning sim-to-real navigation diffusion policy with
604 privileged information guidance. *arXiv preprint arXiv:2505.08712*, 2025.

606 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
607 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The Interna-*
608 *tional Journal of Robotics Research*, pp. 02783649241273668, 2023.

609 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. *arXiv*
610 *preprint arXiv:1605.08803*, 2016.

612 Ria Doshi, Homer Rich Walke, Oier Mees, Sudeep Dasari, and Sergey Levine. Scaling cross-
613 embodied learning: One policy for manipulation, navigation, locomotion and aviation. In *Con-*
614 *ference on Robot Learning*, pp. 496–512. PMLR, 2025.

615 Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window approach to collision
616 avoidance. *IEEE robotics & automation magazine*, 4(1):23–33, 2002.

618 Noriaki Hirose, Dhruv Shah, Ajay Sridhar, and Sergey Levine. Exaug: Robot-conditioned naviga-
619 tion policies via geometric experience augmentation. In *2023 IEEE International Conference on*
620 *Robotics and Automation (ICRA)*, pp. 4077–4084. IEEE, 2023.

621 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
622 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

624 Wei Liu, Huihua Zhao, Chenran Li, Joydeep Biswas, Billy Okal, Pulkit Goyal, Yan Chang, and
625 Soha Pouya. X-mobility: End-to-end generalizable navigation via world modeling. In *2025 IEEE*
626 *International Conference on Robotics and Automation (ICRA)*, pp. 7569–7576. IEEE, 2025a.

627 Wei Liu, Huihua Zhao, Chenran Li, Joydeep Biswas, Soha Pouya, and Yan Chang. Compass: Cross-
628 embodiment mobility policy via residual rl and skill synthesis. *arXiv preprint arXiv:2502.16372*,
629 2025b.

631 Xinhao Liu, Jintong Li, Yicheng Jiang, Niranjan Sujay, Zhicheng Yang, Juexiao Zhang, John
632 Abanes, Jing Zhang, and Chen Feng. Citywalker: Learning embodied urban navigation from
633 web-scale videos. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
634 pp. 6875–6885, 2025c.

635 Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
636 Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State,
637 Marco Hutter, and Animesh Garg. Orbit - A Unified Simulation Framework for Interactive Robot
638 Learning Environments. *IEEE Robotics and Automation Letters*, 8(6), 2023. doi: 10.1109/LRA.
639 2023.3270034.

640 Mitsuhiko Nakamoto, Yuexiang Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
641 Kumar, and Sergey Levine. Cal-QL: Calibrated offline RL pre-training for efficient online fine-
642 tuning. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL
643 <https://openreview.net/forum?id=GcEIvidYSw>.

644 NVIDIA. Isaac Sim. URL <https://github.com/isaac-sim/IsaacSim>.

646 George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
647 shminarayanan. Normalizing flows for probabilistic modeling and inference. *Journal of Machine*
Learning Research, 22(57):1–64, 2021.

648 Samuel Pfrommer, Yixiao Huang, and Somayeh Sojoudi. Reinforcement learning for flow-matching
 649 policies, 2025. URL <https://arxiv.org/abs/2507.15073>.

650

651 Ilija Radosavovic, Bike Zhang, Baifeng Shi, Jathushan Rajasegaran, Sarthak Kamat, Trevor Darrell,
 652 Koushil Sreenath, and Jitendra Malik. Humanoid locomotion as next token prediction. *Advances
 653 in neural information processing systems*, 37:79307–79324, 2024.

654

655 Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
 656 Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
 657 learning and demonstrations, 2018. URL <https://arxiv.org/abs/1709.10087>.

658

659 Christoph Rösmann, Wendelin Feiten, Thomas Wösch, Frank Hoffmann, and Torsten Bertram. Tra-
 660 jectory modification considering dynamic constraints of autonomous robots. In *ROBOTIK 2012;
 661 7th German Conference on Robotics*, pp. 1–6. VDE, 2012.

662

663 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 664 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

665

666 Dhruv Shah, Ajay Sridhar, Arjun Bhorkar, Noriaki Hirose, and Sergey Levine. Gnm: A general
 667 navigation model to drive any robot. In *2023 IEEE International Conference on Robotics and
 668 Automation (ICRA)*, pp. 7226–7233. IEEE, 2023a.

669

670 Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Stachowicz, Kevin Black, Noriaki Hirose, and
 671 Sergey Levine. Vint: A foundation model for visual navigation. *arXiv preprint arXiv:2306.14846*,
 672 2023b.

673

674 Laura Smith, J. Chase Kew, Tianyu Li, Linda Luu, Xue Bin Peng, Sehoon Ha, Jie Tan, and Sergey
 675 Levine. Learning and adapting agile locomotion skills by transferring experience, 2023. URL
 676 <https://arxiv.org/abs/2304.09834>.

677

678 Ajay Sridhar, Dhruv Shah, Catherine Glossop, and Sergey Levine. Nomad: Goal masked diffusion
 679 policies for navigation and exploration. In *2024 IEEE International Conference on Robotics and
 680 Automation (ICRA)*, pp. 63–70. IEEE, 2024.

681

682 Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. *arXiv preprint
 683 arXiv:1805.01954*, 2018.

684

685 Joanne Truong, Denis Yarats, Tianyu Li, Franziska Meier, Sonia Chernova, Dhruv Batra, and Ak-
 686 shara Rai. Learning navigation skills for legged robots with learned robot embeddings. In
 687 *2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 484–
 688 491. IEEE, 2021.

689

690 Haitong Wang, Aaron Hao Tan, Angus Fung, and Goldie Nejat. X-nav: Learning end-to-end cross-
 691 embodiment navigation for mobile robots. *arXiv preprint arXiv:2507.14731*, 2025.

692

693 Botian Xu, Feng Gao, Chao Yu, Ruize Zhang, Yi Wu, and Yu Wang. Omnidrones: An efficient and
 694 flexible platform for reinforcement learning in drone control, 2023.

695

696 Sirui Xu, Hung Yu Ling, Yu-Xiong Wang, and Liang-Yan Gui. Intermimic: Towards univer-
 697 sal whole-body control for physics-based human-object interactions, 2025a. URL <https://arxiv.org/abs/2502.20390>.

698

699 Zhefan Xu, Ximeng Han, Haoyu Shen, Hanyu Jin, and Kenji Shimada. Navrl: Learning safe flight
 700 in dynamic environments. *IEEE Robotics and Automation Letters*, 2025b.

701

702 Fan Yang, Chen Wang, Cesar Cadena, and Marco Hutter. iplanner: Imperative path planning. *arXiv
 703 preprint arXiv:2302.11434*, 2023.

704

705 Jonathan Yang, Catherine Glossop, Arjun Bhorkar, Dhruv Shah, Quan Vuong, Chelsea Finn, Dorsa
 706 Sadigh, and Sergey Levine. Pushing the limits of cross-embodiment learning for manipulation
 707 and navigation. *arXiv preprint arXiv:2402.19432*, 2024.

708

709 Ningyuan Yang, Jiaxuan Gao, Feng Gao, Yi Wu, and Chao Yu. Fine-tuning diffusion policies
 710 with backpropagation through diffusion timesteps, 2025. URL <https://arxiv.org/abs/2505.10482>.

702 Yi Zhao, Rinu Boney, Alexander Ilin, Juho Kannala, and Joni Pajarinen. Adaptive behavior
703 cloning regularization for stable offline-to-online reinforcement learning, 2022. URL <https://arxiv.org/abs/2210.13846>.
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A APPENDIX**
757758 **A.1 EXPERT EXPERIENCE CONSTRUCTION PARAMETERS**
759760 **Table 5: DWA (Dynamic Window Approach) parameters used for generating the embodiment-
761 agnostic expert dataset (Section 3.3.1). These parameters define a set of general dynamic and kine-
762 matic constraints for a circular rigid body agent.**
763

764 Parameter	765 Value	766 Description (Unit)
<i>Kinematic Constraints</i>		
767 max_speed	1.5	Max linear velocity (m/s)
768 min_speed	-1.5	Min linear velocity (m/s)
769 max_yaw_rate	1.57	Max yaw rate (rad/s)
770 min_yaw_rate	-1.57	Min yaw rate (rad/s)
<i>Dynamic Constraints</i>		
771 max_accel	1.5	Max linear acceleration (m/s^2)
772 min_accel	-5.0	Min linear acceleration (max deceleration) (m/s^2)
773 max_delta_yaw_rate	5.23	Max yaw angular acceleration (rad/s^2)
774 min_delta_yaw_rate	-5.23	Min yaw angular acceleration (rad/s^2)
<i>Planner & Simulation Parameters</i>		
776 v_resolution	0.1	Velocity sampling resolution (m/s)
777 yaw_rate_resolution	0.17	Yaw rate sampling resolution (rad/s)
778 dt	0.1	Simulation time step (s)
779 predict_time	1.0	Trajectory prediction horizon (s)
<i>Robot & Task Parameters</i>		
781 robot_radius	0.2	Agent's circular radius (m)
782 goal_tolerance	0.4	Goal tolerance radius (for success) (m)
<i>Objective Function Gains (Weights)</i>		
785 to_goal_cost_gain	1.0	Weight for heading towards the goal
786 speed_cost_gain	15.0	Weight for maximizing forward speed
787 obstacle_cost_gain	0.5	Weight for distance to obstacles

788
789 **A.2 DETAILED REWARD FUNCTION DESIGN**
790791 The function is designed to be dense, consisting of multiple components that guide the agent towards
792 efficient, safe, and stable navigation behaviors (see Table 6). The symbol definitions are:
793

- 794 • d_t : The 2D Euclidean distance from the robot to the goal at timestep t .
- 795 • Δt : The duration of a single simulation step.
- 796 • v_{\max} : The maximum configured linear velocity of the robot.
- 797 • Δd_{check} : The reduction in distance to the goal since the last checkpoint.
- 798 • \hat{h} : The robot's current 2D heading unit vector.
- 799 • \hat{g} : The 2D unit vector pointing from the robot's current position to the goal.
- 800 • $w_{\text{clearance}}$: A safety clearance weight based on forward LiDAR distance, ranging from $[0, 1]$.
- 801 • $v_{xy,t}$: The 2D linear velocity vector at timestep t .
- 802 • $v_{\text{yaw},t}$: The yaw angular velocity at timestep t .
- 803 • $d_{\text{lidar},i}$: The distance to an obstacle measured by the i -th LiDAR ray.
- 804 • ϕ, θ : The robot's roll and pitch angles.
- 805 • $\phi_{\text{th}}, \theta_{\text{th}}$: The safety thresholds for roll and pitch angles.
- 806 • d_0 : The initial 2D distance to the goal at the start of an episode.

Table 6: Reward Function for the online RL stage.

Reward/Penalty Term	Mathematical Expression	Weight/Description
<i>Efficiency & Goal-Orientation</i>		
R_{distance}	$\frac{d_{t-1} - d_t}{\Delta t \cdot v_{\max}}$	+1.0
$R_{\text{checkpoint}}$	Δd_{check}	+10.0 (calculated every 500 steps)
R_{heading}	$(\hat{\mathbf{h}} \cdot \hat{\mathbf{g}}) \cdot w_{\text{clearance}}$	+1.0
R_{goal}	$50.0 \cdot d_0$	+1.0 (Sparse reward upon episode termination)
<i>Movement Smoothness & Stability</i>		
$P_{\text{linear_smooth}}$	$\ v_{xy,t} - v_{xy,t-1}\ ^2$	-0.5
$P_{\text{yaw_smooth}}$	$\ v_{yaw,t} - v_{yaw,t-1}\ ^2$	-0.01
$P_{\text{stability}}$	$\max(\phi - \phi_{\text{th}}, 0)^2 + \max(\theta - \theta_{\text{th}}, 0)^2$	-1.0
<i>Safety</i>		
R_{safety}	$\mathbb{E}_i[\log(d_{\text{lidar},i})]$	+1.0
$P_{\text{collision}}$	50.0	-1.0 (Sparse penalty upon episode termination)

A.3 DEFINITION OF GUIDANCE LOSS SCALE

The *scale* parameter used in the guidance loss $\mathcal{L}_{\text{guide}}$ (Equation 3) is automatically computed to safely map the velocity range of the embodiment-agnostic General Expert (v_{ref}) to the specific command range of the target robot. This ensures that the guidance signal $\text{scale} \cdot v_{\text{ref}}$ remains within the physical capabilities of the specific hardware.

The calculation is based on two sets of velocity limits:

1. **Expert Limits (L_{dwa}):** These are the maximum absolute velocities defined during the DWA expert data generation (see Table 5). The expert's output v_{ref} is drawn from a distribution learned from this data.
 - $v_{\text{max,dwa}}^x = \text{max_speed} = 1.5 \text{ m/s}$
 - $v_{\text{max,dwa}}^y = \text{max_speed} = 1.5 \text{ m/s}$
 - $v_{\text{max,dwa}}^{\text{yaw}} = \text{max_yaw_rate} = 1.57 \text{ rad/s}$
2. **Embodiment Limits (L_{emb}):** These are the specific maximum absolute velocities for the target robot platform (e.g., Go2, A1, etc.). These are defined as part of the robot's hardware configuration and low-level controller π_{low} .
 - $v_{\text{max,emb}}^x$ (Max forward/backward velocity for the specific robot)
 - $v_{\text{max,emb}}^y$ (Max strafing velocity for the specific robot)
 - $v_{\text{max,emb}}^{\text{yaw}}$ (Max turning velocity for the specific robot)

To find a single, safe scaling factor, we first compute the scaling ratio *scale* for each axis independently by dividing the embodiment's limit by the expert's limit:

$$\text{scale}_x = \frac{v_{\text{max,emb}}^x}{v_{\text{max,dwa}}^x} \quad (5)$$

$$\text{scale}_y = \frac{v_{\text{max,emb}}^y}{v_{\text{max,dwa}}^y} \quad (6)$$

$$\text{scale}_{\text{yaw}} = \frac{v_{\text{max,emb}}^{\text{yaw}}}{v_{\text{max,dwa}}^{\text{yaw}}} \quad (7)$$

The final *scale* is then set to the minimum (the most conservative or "safest") of these three ratios. This guarantees that even if the expert proposes a command at its own maximum limit (e.g., $v_{\text{ref}} = (1.5, 0, 0)$), the scaled guidance command ($\text{scale} \cdot v_{\text{ref}}$) will not exceed the target robot's maximum velocity on *any* axis.

$$\text{scale} = \min(\text{scale}_x, \text{scale}_y, \text{scale}_{\text{yaw}}) \quad (8)$$

864 A.4 LOCOMOTION CONTROLLER DETAILS
865

866 The low-level locomotion controller (π_{low}) for each robot platform is sourced from various im-
867 plementations to represent realistic, non-ideal systems. We train the Unitree Go2 controller using
868 the Isaac Lab framework (Mittal et al., 2023). The Spot quadruped utilizes a publicly available
869 locomotion policy checkpoint¹. The MagicDog employs a proprietary controller provided by the
870 manufacturer. For the Unitree H1, we use the pre-trained locomotion policy provided in the offi-
871 cial Isaac Lab documentation². The Hummingbird quadrotor’s controller is from the open-source
872 Omnidrones framework (Xu et al., 2023).

873 We followed the evaluation method presented by Radosavovic et al. (2024) to quantify the perfor-
874 mance and inherent imperfections of these controllers. The results are summarized in Table 7.

875 876 Table 7: Details of the low-level locomotion controllers used for each robot platform.

877 Robot Platform	878 Controller Source	879 Tracking Error (m) ↓
879 Unitree Go2	880 In-house (Isaac Lab)	881 0.52
880 Spot	881 Open-source CKPT ¹	882 0.97
881 MagicDog	882 Manufacturer-provided CKPT	883 0.28
882 Unitree H1	883 Open-source CKPT ²	1.56
883 Hummingbird	Open-source (Omnidrones)	0.20

884 885 A.5 REAL WORLD DEPLOYMENT DETAILS
886

887 We deployed the policy on two robots: a Unitree Go2 and a MagicDog. The observation pipeline
888 was adapted to their respective sensors to produce the 2D raycast scan required by our model. For
889 the Go2, the onboard 4D LiDAR’s point cloud was first used to generate a 2.5D height map, which
890 was then compressed in Bird’s Eye View (BEV) space into a 2D occupancy map. For the MagicDog,
891 the point cloud from its 1D LiDAR (scanning a fixed horizontal plane) was directly converted into a
892 2D occupancy map. Both of these intermediate occupancy maps were then processed into the final
893 2D raycast scan input.

894 895 A.6 COMPARISON WITH BARN CHALLENGE SOTA
896

897 We compared our method against LiCS-KI, the top-performing learning-based algorithm from the
898 BARN Challenge. Both methods were evaluated on the Jackal robot within our Isaac Sim envi-
899 ronment across varying obstacle densities. As shown in Table 8, CE-Nav consistently outperforms
900 LiCS-KI, particularly in dense scenarios ($N_o = 700$), achieving a 23% improvement in success rate.
901 This demonstrates that decoupling kinematic planning from dynamic adaptation yields superior ro-
902 bustness compared to single-stage baselines.

903 904 905 Table 8: Comparison with BARN Challenge SOTA (LiCS-KI) on the Jackal robot.

906 Method	907 $N_o = 100$	908 $N_o = 300$	909 $N_o = 500$	910 $N_o = 700$
909 CE-Nav (Ours)	1.00	0.99	0.91	0.81
910 LiCS-KI	1.00	0.97	0.71	0.58
911 <i>Gain</i>	+0%	+2%	+20%	+23%

912 913 914 915 ¹<https://huggingface.co/Kyu3224/quadruped-locomotion-policy>

916 ²[https://docs.isaacsim.omniverse.nvidia.com/latest/robot_simulation/
917 ext_isaacsim_robot_policy_example.html](https://docs.isaacsim.omniverse.nvidia.com/latest/robot_simulation/ext_isaacsim_robot_policy_example.html)

918 **A.7 ABLATION STUDY ON GENERATIVE MODELS**
919920 We investigated the choice of the generative model for the General Expert by comparing our
921 Conditional Normalizing Flow (VelFlow) against Rectified Flow (RF) variants. We evaluated a standard
922 RF (10 sampling steps) and a distilled Reflowed RF (1 sampling step).923 Table 9 presents the trade-off between inference latency and performance. While Standard RF offers
924 competitive performance, it is approximately $7\times$ slower than our method. Conversely, Reflowed RF
925 achieves extremely low latency but suffers a significant drop in success rate (0.8150 mSR), likely
926 due to distillation errors in capturing the complex multimodal velocity distribution. Our CNF-based
927 approach achieves the highest success rate (0.8575) while maintaining negligible inference latency
928 (0.01 ms), proving to be the optimal choice for real-time control.931 Table 9: Ablation study of Generative Models: Normalizing Flow vs. Rectified Flow variants.
932

Method	Sampling Steps	Inference Time (ms)	mSR \uparrow
Ours (VelFlow)	1	0.01	0.8575
Rectified Flow	10	0.07	0.8300
Reflowed RF	1	0.007	0.8150

938 **A.8 SENSITIVITY TO PLANNER BIAS**
939940 To verify whether VelFlow overfits the specific sampling patterns of the DWA planner, we
941 constructed a mixed dataset containing an equal order of magnitude of DWA trajectories and trajectories
942 generated by the TEB (Timed Elastic Band) planner. We then trained a “Mixed-Expert” based
943 model for comparison.944 Table 10 compares the Success Rate (SR) of both models across four test environments. The average
945 success rate of the Mixed-Expert based model is almost identical to that of the pure DWA based
946 model (0.8550 vs. 0.8575). This result strongly demonstrates that VelFlow learns the underlying
947 **Universal Geometric Reasoning**—specifically, the ability to identify “traversable space”—rather
948 than overfitting to the algorithmic preferences of a specific planner. Therefore, we retained DWA
949 as the data source in our final design primarily due to its efficiency advantage in large-scale data
950 generation, without sacrificing generalization capabilities.955 Table 10: Comparison of VelFlow trained on pure DWA data vs. Mixed (DWA+TEB) data.
956

Method	$N_o = 100$	$N_o = 300$	$N_o = 500$	$N_o = 700$	mSR
CE-Nav (Ours)	1.00	0.84	0.83	0.76	0.8575
Mix-Expert (DWA+TEB)	1.00	0.85	0.82	0.75	0.8550

963 **A.9 REAL-TIME CONSTRAINTS AND COMPUTATIONAL ROBUSTNESS**
964965 Addressing concerns about the sufficiency of the 10Hz control frequency and potential compute
966 contention, we conducted frequency ablation studies and simulated latency tests. We tested system
967 performance under different control frequencies and with injected random computational delays
968 (simulating compute jitter).969 The results are summarized in Table 11. Even when the control frequency is halved to **5Hz**, the
970 average success rate drops only slightly (< 5%). This provides strong evidence that the 10Hz

972 baseline provides ample safety redundancy. Furthermore, under injected random delays of **50ms-100ms**.
 973 (simulating severe compute contention), the model maintains a high success rate of **0.7625**.
 974 This validates that the Stage 2 RL Refiner is robust to system latencies through closed-loop training,
 975 eliminating reliance on perfect real-time execution.

978 Table 11: System performance under different control frequencies and simulated latencies.
 979

980 Setting	981 mSR	982 Description
982 10Hz (Baseline)	983 0.8025	984 Original Setting
983 5Hz	984 0.7650	985 Frequency Halved (Simulating Heavy Throttling)
984 10Hz + Random Delay	985 0.7625	986 Injected 50ms-100ms Random Delay

987
 988
 989 **A.10 SENSITIVITY TO DWA HYPERPARAMETERS**
 990

991 To quantify the sensitivity of our method to DWA hyperparameters, we conducted an ablation study
 992 focusing on the most critical parameter: **agent radius**. Our original expert data was generated with
 993 a radius of 0.2m. We generated two additional expert datasets with significantly different radius
 994 settings: a smaller radius (0.1m), simulating an expert that is “overly optimistic” about clearance,
 995 and a larger radius (0.3m), simulating an “overly conservative” expert.

996 We evaluated these models on the Unitree Go2 robot. The results are shown in Table 12. The exper-
 997 imental data demonstrates that our method is **highly insensitive** to DWA hyperparameter settings.
 998 Even with substantial variations in the radius parameter ($\pm 50\%$), the fluctuation in final navigation
 999 performance is negligible (the difference in mean Success Rate is $< 1\%$). This robustness con-
 1000 firms that the **Stage 2 RL Refiner** can effectively adapt the general guidance to the actual physical
 1001 constraints of the robot, correcting for potentially inaccurate geometric priors.

1002
 1003 Table 12: Sensitivity analysis of the DWA agent radius parameter on Unitree Go2.
 1004

1006 DWA Radius Setting	1007 SR ($N_o = 100$)	1008 SR ($N_o = 300$)	1009 SR ($N_o = 500$)	1010 SR ($N_o = 700$)	1011 Mean SR
1007 0.2m (Ours)	1.00	0.84	0.83	0.76	0.8575
1008 0.1m (Small)	1.00	0.83	0.82	0.75	0.8500
1009 0.3m (Large)	1.00	0.84	0.81	0.76	0.8525

1012
 1013
 1014 **A.11 GENERALIZATION TO LARGE-SCALE ROBOTS (STRESS TEST)**
 1015

1016 To validate CE-Nav’s generalization capability to “large-scale” robots, we designed a controlled
 1017 variable experiment. In simulation, we artificially modified the physical collision threshold of the
 1018 Unitree Go2 to a radius of $R = 1.0\text{m}$ while keeping its dynamics parameters unchanged. We tested
 1019 this “giant” robot in the medium density environment ($N_o = 300$).

1020 As shown in Table 13, although the Stage 1 expert was trained based on $R = 0.2\text{m}$ (and might sug-
 1021 gest passing through narrow gaps of only 0.5m), the Stage 2 Refiner achieved a robust success rate
 1022 of **0.78** under the 1m-radius setting. Compared to the standard robot (0.84), the performance drop is
 1023 minimal considering the **5x increase** in collision radius relative to the expert’s training assumption.
 1024 This demonstrates that the Refiner successfully learned to adapt to the current dimensional char-
 1025 acteristics, effectively overriding the expert’s geometrically optimistic suggestions to ensure safety.

1026 Table 13: Performance comparison between Standard Go2 and a modified “Giant” Go2 ($R = 1.0\text{m}$).
1027

1028	Obstacle Count (N_o)	300 (Medium)
1029	Standard Go2	0.84
1030	Giant Go2 ($R = 1.0\text{m}$)	0.78

1032
1033
1034
1035
1036 **A.12 FAILURE CASE ANALYSIS: AGILE VS. DYNAMICS-LIMITED ROBOTS**
1037

1038 To investigate the specific failure modes across different robots, we decomposed the failures into
1039 **Timeouts** (indicating safe but slow navigation) and **Collisions** (indicating unsafe navigation). We
1040 analyzed two representative platforms: the agile **Unitree Go2** and the dynamics-limited **Unitree H1**
1041 (biped).

1042 As shown in Table 14, for the agile Go2, the 0% timeout rate implies high maneuverability; the
1043 14.25% collision rate stems primarily from the extreme geometric complexity of our adversarial
1044 evaluation scenarios (high density, dead-ends) rather than control defects. Conversely, for the Uni-
1045 tree H1, despite having a massive tracking error of 1.56m (approximately $3\times$ that of Go2), the
1046 collision rate (16.50%) is only marginally higher. The drop in success rate is largely driven by a
1047 9.0% timeout rate. This indicates that the Refiner learned a **conservative strategy**—slowing down
1048 or pausing to negotiate complex terrain safely—effectively trading speed for safety to compensate
1049 for dynamic limitations.

1050
1051 Table 14: Failure mode decomposition comparing the agile Unitree Go2 and the dynamics-limited
1052 Unitree H1.
1053

1054	Robot Model	Tracking Error	Success Rate	Timeout Rate	Collision Rate
1055	Unitree Go2	0.52m	85.75%	0%	14.25%
1056	Unitree H1	1.56m	74.50%	9.0%	16.50%

1058
1059
1060 **A.13 THE USE OF LARGE LANGUAGE MODELS**
1061

1062 In the preparation of this manuscript, we utilized the Large Language Model (LLM) Gemini 2.5.
1063 The primary application of this tool was for grammar correction and language polishing to improve
1064 the clarity and readability of the text. The core scientific contributions, methodologies, and conclu-
1065 sions presented in this paper are our own. We take full responsibility for all content, including any
1066 potential errors or inaccuracies.