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ABSTRACT

Generalizing local navigation policies across diverse robot morphologies is a crit-
ical challenge. Progress is often hindered by the need for costly and embodiment-
specific data, the tight coupling of planning and control, and the ”disastrous av-
eraging” problem where deterministic models fail to capture multi-modal deci-
sions (e.g., turning left or right). We introduce CE-Nav, a novel two-stage (IL-
then-RL) framework that systematically decouples universal geometric reasoning
from embodiment-specific dynamic adaptation. First, we train an embodiment-
agnostic General Expert offline using imitation learning. This expert, a con-
ditional normalizing flow model named VelFlow, learns the full distribution of
kinematically-sound actions from a large-scale dataset generated by a classical
planner, completely avoiding real robot data and resolving the multi-modality is-
sue. Second, for a new robot, we freeze the expert and use it as a guiding prior to
train a lightweight, Dynamics-Aware Refiner via online reinforcement learning.
This refiner rapidly learns to compensate for the target robot’s specific dynamics
and controller imperfections with minimal environmental interaction. Extensive
experiments on quadrupeds, bipeds, and quadrotors show that CE-Nav achieves
state-of-the-art performance while drastically reducing adaptation cost. Success-
ful real-world deployments further validate our approach as an efficient and scal-
able solution for building generalizable navigation systems.

1 INTRODUCTION

The recent surge in mobile robotics has led to a wide array of platforms with diverse morpholo-
gies, creating a fundamental challenge in developing navigation policies that can be seamlessly
deployed across multiple embodiments. Current learning-based strategies diverge broadly in their
architectural choices. On one end, end-to-end (E2E) policies (Wang et al., 2025) attempt to map
observations directly to low-level joint commands. This approach, while powerful, deeply entangles
high-level planning with the robot’s specific dynamics, making the policies brittle on new platforms.
On the other end, hierarchical methods first plan a path as a sequence of waypoints (Cai et al.,
2025; Doshi et al., 2025; Yang et al., 2023; Shah et al., 2023a; Yang et al., 2024). This decouples
planning from control, but introduces a critical gap: the high-level planner operates on a simpli-
fied or idealized model of the controller, making it difficult to compensate for unmodeled dynamic
effects or imperfect tracking performance.

Hierarchical velocity planning emerges as a more robust ”middle ground” (Xu et al., 2025b; Liu
et al., 2025a; Hirose et al., 2023; Liu et al., 2025b; Truong et al., 2021). It decouples high-level ge-
ometric reasoning from low-level motor control, yet provides a reactive command interface that can
be trained to compensate for the underlying system’s dynamics. However, this promising approach
faces two fundamental bottlenecks. First, the reliance on expert data with embodiment-specific
bias. Sourcing data from costly, embodiment-specific real-world trajectories or physics-based simu-
lations introduces a strong bias that limits generalization and scalability. Second, the deterministic
learning paradigm. Framing navigation as a deterministic regression task fundamentally fails to
capture its inherent multi-modality (e.g., turning left or right at a T-junction), leading to ”disastrous
averaging” behaviors.

To overcome these specific limitations, we introduce CE-Nav, a novel framework for Cross-
Embodiment Local Navigation that achieves both low-cost transferability and high performance.
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Our approach is founded on hierarchical decoupling, separating the navigation task into a high-level
velocity planning policy (πhigh) and a low-level locomotion controller (πlow). The high-level policy
operates in a universal action space of body velocity commands (vx, vy, vyaw), a standard interface
for many mobile robots, including quadrupeds and bipeds. This abstraction enables the learning of a
transferable navigation core, which operates atop any embodiment-specific low-level controller. Our
framework does not assume this controller is an ideal velocity tracker; rather, our Stage 2 refiner is
explicitly trained to compensate for its specific dynamic characteristics and execution imperfections.

The training of πhigh follows a two-stage paradigm that disentangles embodiment-agnostic geometric
reasoning from embodiment-specific dynamic adaptation.

1. Stage 1 (Offline IL): We train a general navigation expert (πexpert) that understands uni-
versal planning principles (e.g., obstacle avoidance) purely from a kinematic perspective,
without relying on any real robot data. Critically, we use a conditional normalizing flow
model, VelFlow, to learn the full distribution of expert actions, effectively resolving the
multi-modality issue.

2. Stage 2 (Online RL): For a new robot, we freeze the general expert and train a lightweight,
Dynamics-aware Refiner. Guided by the expert’s proposals, this refiner quickly learns to
translate the general plan into dynamically feasible and optimal commands for the specific
robot through minimal interaction with the environment.

This modular, plug-and-play design allows CE-Nav to endow new robotic platforms with sophisti-
cated navigation capabilities through a brief and stable training process. Our contributions are:

• We propose a novel IL-then-RL framework that decouples universal geometric reasoning
from embodiment-specific dynamics. The framework uses a multi-modal kinematic expert,
trained offline on classical planner data, to guide a lightweight, dynamics-aware refiner via
rapid online adaptation.

• We introduce VelFlow, a conditional normalizing flow policy that learns the multi-modal
distribution of kinematically-sound actions. This approach effectively overcomes the ”dis-
astrous averaging” problem inherent in deterministic imitation learning.

• A training strategy that achieves state-of-the-art navigation performance without any costly
robot-specific data. Our key innovation is a guided RL phase with curriculum-based anneal-
ing of the expert guidance, enabling both stable and rapid adaptation to new embodiments.

2 RELATED WORK

2.1 CROSS-EMBODIMENT NAVIGATION

Classical local planning methods, such as the Dynamic Window Approach (DWA) (Fox et al., 2002)
and Timed Elastic Band (TEB) (Rösmann et al., 2012), have proven robust for local obstacle avoid-
ance. However, their performance is highly sensitive to manual parameter tuning and they are prone
to failure in complex, cluttered environments, limiting their generalization. Critically, their core
logic provides a strong source of kinematically-aware decisions, a characteristic we leverage for our
expert data generation.

Deep learning approaches have diverged. End-to-end (E2E) methods (Wang et al., 2025) map obser-
vations directly to joint commands, but deeply entangle planning with dynamics, requiring massive
embodiment randomization. Hierarchical methods decouple planning and control. The high-level
planner often generates waypoints (Cai et al., 2025; Yang et al., 2023; Shah et al., 2023a; Yang et al.,
2024) or velocity commands (Xu et al., 2025b; Liu et al., 2025a; Hirose et al., 2023; Truong et al.,
2021) as targets. However, these approaches frequently neglect the embodiment-specific dynamics
or tracking errors of the underlying controller, which can result in suboptimal navigation behaviors.

2.2 MODELING MULTI-MODALITY IN ROBOTIC LEARNING

Most deep learning methods for navigation treat the task as a deterministic regression problem (Xu
et al., 2025b; Liu et al., 2025b;c). This formulation is ill-suited for scenarios with inherent decision
ambiguity (e.g., a T-junction), leading to the well-known ”disastrous averaging” issue.
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Figure 1: Overview of the CE-Nav two-stage framework. Stage 1 (Left): A multi-modal,
embodiment-agnostic General Expert is trained offline via imitation learning on expert data. Stage
2 (Right): The frozen expert is used as a guiding prior to train a Dynamics-Aware Refiner via online
reinforcement learning, allowing it to adapt to a specific robot’s dynamics.

Recognizing this, recent works have explored generative models. Diffusion policies (Chi et al.,
2023) and flow models (Papamakarios et al., 2021; Lipman et al., 2022) have shown promise in
capturing the full distribution of expert actions, and are utilized in Sridhar et al. (2024); Shah et al.
(2023b). However, their application has been largely confined to pure imitation learning contexts.

Adapting these methods to reinforcement learning presents significant challenges. Directly fine-
tuning generative policies via RL (Yang et al., 2025; Pfrommer et al., 2025) risks catastrophic inter-
ference, where aggressive dynamic adaptation gradients override geometric priors. Similarly, con-
ventional demonstration-guided RL (Rajeswaran et al., 2018; Xu et al., 2025a; Smith et al., 2023)
often coerce multi-modal demonstrations into a deterministic policy, leading to averaging behaviors
in ambiguous scenarios. Meanwhile, curriculum-based methods (Zhao et al., 2022; Nakamoto et al.,
2023) typically treat the prior as a “ground truth” to be strictly preserved. Furthermore, standard
Residual RL (Ankile et al., 2024) relies on additive architectures which implicitly assume local op-
timality. This formulation struggles to implement substantial corrections when the required dynamic
actions deviate significantly from the reference policy.

Our work differs fundamentally by integrating a flow-based generative model (VelFlow) into a de-
coupled IL-then-RL framework. Instead of end-to-end fine-tuning or additive residuals, we adopt a
“frozen prior” strategy where VelFlow serves as a stable geometric anchor. This unique architecture
enables the policy to preserve multi-modal “common sense” while the refiner, via a conditional re-
finement framework, explicitly learns to deviate from idealized plans to translate them into feasible
controls for specific, unseen robot dynamics.

3 METHODOLOGY

3.1 OVERVIEW AND PROBLEM FORMULATION

The Cross-Embodiment navigation task requires a mobile robot to navigate from a starting position
to a goal in an unknown, cluttered environment. The policy is guided by three types of information:
1) environmental observations, such as a 2D LiDAR scan derived from an onboard depth camera or
laser sensor; 2) the robot’s proprioceptive state; and 3) the goal position relative to the robot. At each
timestep t, the policy executes an action at. The objective is to find a policy π that minimizes travel
time to the goal while ensuring safety (collision avoidance). Our work investigates a framework for
training such policies that can be transferred across a wide range of robotic platforms with varying
dynamics and morphologies.

Our system is built upon a hierarchical control architecture that decouples high-level planning (πhigh)
from low-level control (πlow). Given a new robot with its specific locomotion policy πlow, including
all its inherent response characteristics and tracking errors, our goal is to learn a safe and efficient
high-level navigation policy πhigh with minimal training overhead.
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3.2 TWO-STAGE TRAINING PARADIGM: GENERAL KNOWLEDGE AND FAST ADAPTATION

We propose a two-stage paradigm for training the high-level policy πhigh (as illustrated in Fig. 1),
which elegantly serves our Cross-Embodiment objective:

Stage 1: Offline Imitation Learning of an Embodiment-Agnostic General Expert. The goal
of this stage is to learn a universal kinematic expert policy, πexpert. This policy reasons purely at
a geometric and logical level, independent of any specific robot’s dynamics. It learns the general
principles of navigation—how to perceive pathways and avoid obstacles—making its knowledge in-
herently embodiment-agnostic. We employ a conditional normalizing flow-based network, VelFlow,
to model a continuous distribution of velocities, effectively resolving the ”disastrous averaging”
problem in multi-modal scenarios.

Stage 2: Online Reinforcement Learning of a Dynamics-Aware Refiner. In this stage, guided
by the pre-trained General Expert, we use a small amount of interaction between the target robot
and its environment to quickly learn its specific dynamic characteristics. The refiner module adapts
the general velocity commands from the expert into commands that are dynamically feasible and
optimal for the current robot. When transferring to a new robot, we simply freeze the General
Expert and train only this lightweight refiner, resulting in a highly efficient and stable adaptation
process.

3.3 STAGE 1: OFFLINE IMITATION LEARNING OF THE GENERAL EXPERT

The core objective of this stage is to build an embodiment-agnostic navigation brain that masters the
universal, high-level principles of planning and obstacle avoidance in complex geometric environ-
ments.

3.3.1 EXPERT EXPERIENCE CONSTRUCTION

Figure 2: Examples of geometry simulation en-
vironments used for expert data generation. (a)
Corridor environment. (b) Obstacle forest envi-
ronment.

To eliminate the high cost and embodiment bias
of real-world or physics-based data collection,
we generate our expert dataset within a 2D sim-
ulation environment. In this simulation, the
agent is modeled as a circular rigid body, re-
ducing the planning problem to 2D geometric
reasoning, independent of any specific robot’s
morphology or dynamics.

We synthesize the dataset using the Dynamic
Window Approach (DWA) (Fox et al., 2002),
a classical local planning algorithm. Cru-
cially, instead of using a robot-specific dynamic
model, we configure DWA to operate with a set
of general dynamic constraints. This config-
uration ensures the expert’s decisions are not biased towards any specific robot’s morphology. The
specific parameters are detailed in Table 5.

While classical planners may fail in complex, long-horizon tasks, DWA’s core logic provides a robust
source of geometrically-sound local decisions. This simplified model ensures the expert focuses
purely on geometric collision avoidance, leaving the complex, embodiment-specific dynamics to be
learned by the Dynamics-Aware Refiner in Stage 2.

To generate the data, we deployed our DWA planner in tens of thousands of procedurally gener-
ated simulation environments with random and complex obstacle layouts (see Fig. 2). To capture
navigation’s inherent ambiguity and provide rich data for our flow model (VelFlow), we explicitly
saved multiple distinct high-scoring actions. Specifically, we collected all candidate actions whose
objective function scores Score were within a δ threshold of the optimal score Scoremax (i.e.,
Score ≥ (1 − δ) · Scoremax, where we set δ = 0.1). Finally, after filtering out trajectories that
failed to reach their goal, we compiled a final dataset of 10 million state-action pairs, ensuring our
expert data contains only successful and geometrically-sound demonstrations.
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3.3.2 NETWORK ARCHITECTURE

State Encoder. The observation s is composed of a 2D LiDAR scan and a robot state vector. The
LiDAR scan represents the distances to surrounding obstacles from the robot’s current position. It
contains a 360-degree 2D raycast (a LiDAR scan with a maximum range of 4 meters) that samples
Nray = 144 rays at equal angular intervals on the horizontal plane. The robot state is a 7-dimensional
tensor. It comprises vectors expressed in the body frame: the normalized goal direction (3D), current
linear velocity (2D), and the current angular velocity (1D). This is augmented by the scalar Euclidean
distance to the goal (1D). The state encoder processes the 2D LiDAR scan with a three-layer CNN
and concatenates the resulting feature map with the robot state vector. This combined representation
is then passed through a two-layer MLP to produce a final 256-dimensional state embedding, which
serves as the conditional input to the VelFlow network.

VelFlow Design. To fundamentally address the disastrous averaging problem, our goal is to learn
the complete conditional probability distribution of the expert’s actions, p(x|s), rather than a single
deterministic mapping. While Diffusion Policy (Chi et al., 2023) and Flow Matching (Lipman et al.,
2022) excel in sample diversity, their reliance on multi-step sampling renders them computationally
infeasible for our real-time control application. Conditional Normalizing Flow Models (CNFMs) are
powerful deep generative models ideal for this task, as they can accurately model and sample from
complex, multi-modal distributions in a single propagation. They provides precise, tractable likeli-
hood estimations, which are crucial for interpretability and stable control. We design our VelFlow
module based on the Real-NVP architecture (Dinh et al., 2016), consisting of 12 coupling layers
with hidden dimensions of 512. It learns to map a simple base distribution pz(z) (e.g., a standard
Gaussian) to the complex expert velocity distribution px(x|s). The training objective is to minimize
the negative log-likelihood (NLL) of the expert demonstrations.

LNLL = −E(s,x)∼Dexpert [log p(x|s)] (1)

Once trained, we can generate diverse and plausible reference velocities, vref, by drawing random
samples z from the base distribution and transforming them through the learned VelFlow network:
vref = fVelFlow(z; s).

3.4 STAGE 2: ONLINE REINFORCEMENT LEARNING OF THE DYNAMICS-AWARE REFINER

We now introduce the Dynamics-aware Refiner to ground the General Expert’s abstract plans in the
physical reality of a specific robot. This is achieved through a guided RL process.

3.4.1 REINFORCEMENT LEARNING FORMULATION

We formulate the navigation task as a Markov Decision Process (MDP) defined by the tuple
(S,A,P,R, γ).

Observation Space (S): The initial state representation s is consistent with the imitation learning
phase, containing a 360-degree raycast and the 7D robot state. This raycast representation is robust
to the sim-to-real gap. For policy learning, the state embedding from the State Encoder is concate-
nated with the reference velocity vref provided by the General Expert, forming a guided state sguided
which is fed to the actor and critic networks. By conditioning the policy on a specific sampled
vref, the refiner’s task is thus defined not as replicating the expert’s multi-modal distribution, but as
learning an optimal, dynamics-aware refinement for that single guiding proposal.

Action Space (A): The policy outputs a final velocity command vfinal, which is first predicted as a
normalized vector vnorm and then scaled by predefined velocity limits Vlim.

vfinal = Vlim · (2 · vnorm − 1), vnorm ∈ [0, 1] (2)

Reward Function (R): Our reward function is structured to encourage efficient, smooth, and safe
navigation. Because the refiner policy is trained in a closed loop with the specific πlow, the envi-
ronmental rewards are generated based on the robot’s actual achieved trajectory, not its commanded
velocity. This mechanism inherently forces the refiner to learn a compensatory policy for any sys-
temic latencies or tracking errors within the πlow. Our reward function is composed of the following
components (see A.2 for details): (1) Efficiency and Goal-Oriented Rewards: Rdistance (rewards
progress towards the goal), Rcheckpoint (encourages sustained progress), Rheading (rewards velocity

5
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aligning with the goal direction), and Rgoal (a large bonus for task completion). (2) Movement
Smoothness and Stability Rewards: Penalties for jerky movements (Plinear smooth, Pyaw smooth), ex-
cessive body tilt (Pstability). (3) Safety Rewards: A repulsive potential field based on LiDAR read-
ings (Rsafety) to encourage keeping a safe distance from obstacles, and a large penalty for collisions
(Pcollision).

3.4.2 REFINER DESIGN AND GUIDED TRAINING

During the RL phase, the state observation is processed in two parallel streams: 1) it is fed into the
frozen General Expert to generate a reference velocity vref, and 2) it is passed through the refiner’s
state encoder. The outputs are then concatenated to form the guided state vector sguided, which
serves as the complete input for the refiner’s actor and critic networks. We use Proximal Policy
Optimization (PPO) (Schulman et al., 2017) to train the refiner policy.

One key innovation is a hybrid loss function that balances imitation and exploration through what
we term ”Principled Deviation”:

Lguide = ||πrefiner(sguided)− scale · vref||2 (3)

Ltotal = LPPO + λ · Lguide (4)
LPPO is the standard PPO objective, driving the refiner to discover behaviors that maximize the
cumulative environmental reward. Lguide is an auxiliary guidance loss, where vref is a single velocity
command sampled from the frozen fVelFlow(z; s). The scale term is an auto-computed, embodiment-
specific hyperparameter for proportionally scaling vref into an acceptable range (see A.3 for details).
This mean-squared error term acts as an inductive bias, anchoring the refiner’s behavior around the
expert’s sensible proposals, which ensures learning stability and direction.

The guidance strength, λ, is not static. We employ a curriculum learning strategy by annealing its
value over the course of training: Initial Phase (e.g., steps 0-1k, λ = 0.5): Strong guidance forces
the refiner to quickly adopt the expert’s fundamental navigation logic. Mid-Phase (e.g., steps 1k-5k,
λ : 0.5 → 0.05): The guidance weight decays exponentially, granting the refiner more autonomy
to explore and fine-tune its actions based on the coupled system dynamics and the reward signal.
Final Phase (e.g., steps >5k, λ = 0.05): A weak guidance signal remains, primarily serving as a
regularizer to prevent catastrophic forgetting or policy drift. This dynamic balance ensures that any
deviation the refiner learns from the expert’s command is a principled, data-driven optimization for
achieving better performance in the real physical world.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Figure 3: (a) The ”obstacle forest” with No =
500, l = 40m. (b) Visualization of the 2D ray-
cast input, where blue lines indicate rays (up to a
4m range) that have detected an obstacle.

Simulation Environment. All experiments
are conducted within the Isaac Sim physics
simulator (NVIDIA). We construct a challeng-
ing navigation environment, termed the ”ob-
stacle forest,” an l × l area populated with
No cuboid obstacles of random sizes and po-
sitions (see Fig. 3 (a)). For training, we set
No = 500, l = 40m and leverage 1024 par-
allel environments for efficient data collection
and policy updates. During an episode, each
robot is spawned at a random location with a
distant random goal. An episode terminates if
the robot collides with an obstacle, reaches the goal, or exceeds the maximum episode length.
For evaluation, we create four distinct test environments with varying obstacle densities, where
No ∈ {100, 300, 500, 700} and l = 20m. For each difficulty level, we pre-sample and fix 100
start-goal pairs to ensure a consistent and fair comparison across all methods.

Robot Embodiments. To assess the Cross-Embodiment generalization capability of our frame-
work, we employ five distinct robot models with radically different dynamics and morphologies:

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Ablation study results across four levels of obstacle density.

Method Obstacles (No = 100) Obstacles (No = 300) Obstacles (No = 500) Obstacles (No = 700) ETT(h) ↓
SR ↑ SPL ↑ SR ↑ SPL ↑ SR ↑ SPL ↑ SR ↑ SPL ↑

CE-Nav (Ours) 1.00 0.9796 0.84 0.8001 0.83 0.7796 0.76 0.7167 6
CE-Navpure-rl 0.99 0.9452 0.64 0.6006 0.56 0.5106 0.57 0.5179 52
CE-Navregr-rl 0.46 0.4215 0.38 0.3628 0.28 0.2666 0.35 0.3320 7
CE-Navdp-rl 1.00 0.9622 0.79 0.7499 0.77 0.7231 0.71 0.6664 52
GE-Onlyvelflow 0.40 0.3675 0.01 0.0093 0.00 0.0000 0.00 0.0000 N/A
GE-Onlyregr 0.10 0.0909 0.00 0.0000 0.00 0.0000 0.00 0.0000 N/A
CE-Navλ = 0.5 1.00 0.9772 0.77 0.7409 0.73 0.7019 0.72 0.6871 6

Figure 4: Multi-modal Decision-Making in CE-Nav. (a) 100 robots navigate past an obstacle by
splitting into two groups. At the decision point: (b) The expert’s reference velocity (vref) proposals
form two distinct clusters, representing the choice to turn left or right. (c) The refiner’s final velocity
commands (vfinal) maintain this bimodal structure while adjusting for dynamics.

three quadrupeds (Unitree Go2, MagicDog, Spot), one biped (Unitree H1), and one quadrotor (Hum-
mingbird). For quadrotor, we simplify the task to 2.5D navigation by assuming a fixed-altitude
controller, allowing them to be commanded using the same 2D velocity interface. The low-level
locomotion controllers are sourced from various implementations to represent typical, non-ideal
systems with realistic tracking imperfections (see Appendix A.4 for details). This allows us to test
our refiner’s ability to adapt to controller-specific characteristics.

Implementation Details. Our framework consists of two main stages. In the Imitation Learning
(IL) stage, the General Expert (GE) is trained offline on the expert dataset using a learning rate of
5 × 10−4. After training, its weights are frozen. In the Reinforcement Learning (RL) stage, the
learning rates for the actor, critic, and shared feature extractor are set to 5 × 10−4, 1 × 10−3, and
1× 10−3, respectively. All models are trained and evaluated on a single desktop machine equipped
with an NVIDIA RTX 4090 GPU.

Evaluation Metrics. We adopt four key quantitative metrics to evaluate performance comprehen-
sively: Success Rate (SR), the percentage of trials where the robot’s center of mass reaches within
a 0.3-meter radius of the goal without any collisions throughout the episode; SPL, the success
weighted by the normalized inverse path length for measuring the trajectory efficiency (Anderson
et al., 2018); and Extra Training Time (ETT), the wall-clock time required for the additional RL
training phase to adapt the policy to a new robot embodiment.

4.2 ABLATION STUDIES

We first conduct a series of ablation studies to dissect our framework and validate the necessity and
design of its key components. This process establishes the justification for our final proposed model.
All ablations are performed on the Unitree Go2.

The Role of VelFlow and Expert Guidance. We investigate the impact of our guidance mecha-
nism by comparing our full model against five critical variants: (1) CE-Navpure-rl, a pure RL agent
trained from scratch without any expert guidance; (2) CE-Navregr-rl, where the VelFlow guidance
module is replaced by an MLP regression network with an equivalent number of parameters; (3)

7
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Table 2: Comparisons with other methods on
Unitree Go2. The average across all four test
environments is reported.

Method mSR ↑ mSPL ↑ ETT(h) ↓
DWA 0.6400 0.6022 N/A
BC 0.0275 0.0253 N/A
DP 0.0725 0.0644 N/A
NavRL 0.6925 0.6460 50
Ours 0.8575 0.8190 6

Table 3: Cross-Embodiment generalization.
The average performance across all four test en-
vironments is reported.

Robot Platform mSR ↑ mSPL ↑
Unitree Go2 0.8575 0.8190
Spot 0.8325 0.7123
MagicDog 0.8600 0.8231
Unitree H1 0.7450 0.7223
Hummingbird 0.8025 0.7491

CE-Navdp-rl, where the VelFlow module is replaced by a diffusion policy model (with an equivalent
parameter count) trained on the same expert data; (4) GE-Onlyvelflow, the General Expert (VelFlow)
policy evaluated directly without RL refinement; and (5) GE-Onlyregr, the MLP regression-based
General Expert policy evaluated directly without RL refinement.

As shown in Table 1, the GE-Onlyvelflow policy yields a dismal SR, and the GE-Onlyregr policy
performs even worse. This exposes the classic covariate shift problem in pure IL, and validates
that our online refiner is essential for learning a robust recovery policy. The CE-Navpure-rl agent
confirms the challenge of pure exploration. It requires nearly 9x the training time of our final model
(only 6 hours), and also reaches a significantly lower SR compared to the full model. Most critically,
the CE-Navregr-rl variant reveals a crucial insight: a suboptimal teacher is more detrimental than no
teacher at all. Its SRs are markedly worse than even the pure RL baseline. This is because the
regression-based MLP provides an ”averaged” and unimodal action prior that fails to capture the
multi-modal nature of expert decisions, actively misleading the RL agent. While the CE-Navdp-rl
variant offers a improvement over CE-Navregr-RL and CE-Navpure-RL, it presents an undesirable trade-
off, as it still falls short of our VelFlow’s guide performance and is 8 times more computationally
expensive during inference. Visualization in Fig. 4 further illustrates that a high-quality, multi-modal
guidance model like VelFlow is the cornerstone of CE-Nav’s success.

Effect of Curriculum-based Guidance Loss. We validate our curriculum annealing strategy by
comparing it against two static weighting schemes: static λ = 0 (which is CE-Navpure-rl) and static
λ = 0.5 (constant strong guidance). Table 1 shows that the CE-Navλ = 0.5 variant is superior to
learning without guidance but significantly worse than our curriculum-based approach. While the
expert provides a critical starting point, perpetual adherence to its policy stifles exploration. This pre-
vents the agent from discovering more robust or efficient policies that may surpass the expert’s own
short-sighted behaviors. Our curriculum strategy effectively balances this fundamental imitation-
exploration trade-off, leveraging the expert for rapid bootstrapping while gradually empowering the
agent to find a superior policy.

4.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

We now compare our finalized model against a diverse set of baselines on the Unitree Go2 platform.
These include: the DWA, a classic local planner for which we carefully tuned dynamics param-
eters to match the Go2 robot; two IL baselines, Behavioral Cloning (BC) (Torabi et al., 2018)
and the state-of-the-art Diffusion Policy (DP) (Chi et al., 2023); and NavRL (Xu et al., 2025b), a
state-of-the-art end-to-end RL method for agile navigation using raycast-based observations. Both
IL methods were trained on a new complete dataset of 10 million state-action pairs generated from
Go2’s successful DWA trajectories in the Isaac platform. For a fair comparison, all learning-based
baselines were trained in our environment using identical observation and action spaces. Further-
more, NavRL was adapted to train with the same URDF and locomotion policy as our method.

As shown in Table 2, CE-Nav outperforms all baselines. Myopic planners like DWA are ineffective
in long-horizon tasks, and IL methods exhibit poor generalization to novel environments. While
the strong end-to-end RL baseline, NavRL, performs reasonably, our CE-Nav model surpasses it in
performance while requiring 8x less training time. This substantial gain in both performance and
efficiency underscores the effectiveness of our guided, two-stage methodology.
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Figure 5: CE-Nav deployment on Unitree Go2 and MagicDog robots. See supp. videos for more
cases.

4.4 CROSS-EMBODIMENT GENERALIZATION

A key advantage of our proposed method is its ability to transfer to new robot embodiments without
requiring any real-world trajectories. We evaluate this by deploying the same pre-trained General
Expert across all five robot platforms and running only the brief RL stage.

As shown in Table 3, CE-Nav consistently achieves excellent navigation performance across all five
platforms. This demonstrates strong generalization not only across vastly different morphologies
and dynamics (e.g., legged vs. aerial), but also across their underlying low-level controllers, which
feature a wide range of tracking fidelities (see Appendix A.4). The strong results on the Unitree
H1 biped and the Hummingbird quadrotor underscore the powerful adaptation capability of our
framework.

4.5 REAL-WORLD DEPLOYMENT

It is important to note that our simulated ”obstacle forest” is deliberately constructed to be ad-
versarially dense, designed to stress-test the algorithm’s robustness in scenarios far exceeding the
complexity of typical real-world deployments. We deploy CE-Nav to a Unitree Go2 and a Magic-
Dog to validate its sim-to-real transferability (see Appendix A.5 for details). Running on a Jetson
Orin NX, our pipeline achieved an inference rate exceeding 10 Hz.

Table 4: Real-world navigation perfor-
mance comparisons.

Method SR ↑ SPL ↑
DWA 0.7500 0.6832
NavRL 0.5083 0.4612
CE-Nav (Ours) 0.9167 0.8913

We conducted 40 trials for each of the three challenging
scenarios: the indoor obstacle maze, the indoor office cor-
ridor, and the outdoor walking path (see Fig. 5). We com-
pared CE-Nav against two baselines: a carefully tuned
DWA planner, and the official open-source implementa-
tion of NavRL. As shown in Table 4, CE-Nav signifi-
cantly outperformed both baselines in SR and SPL. DWA
frequently failed by becoming permanently trapped in in-
door concave regions and corners. While NavRL is de-
signed for generalization (with its original authors claim-
ing direct applicability to quadrupeds), its direct deployment on our hardware led to frequent col-
lisions and unstable gaits. This performance gap highlights the critical role of our dynamics-aware
refiner, which effectively adapts the general policy to the specific embodiment’s physical character-
istics, something a purely generalized policy fails to achieve.

Limitations and Future Work. CE-Nav’s few failures stemmed primarily from sensor limitations
rather than planning or control errors. These included collisions with transparent glass walls invisi-
ble to LiDAR and detours caused by the absence of RGB perception (see red cases in Fig. 5). This
performance underscores the robustness of our core navigation framework and suggests a promising
direction for future work: integrating it with advanced perception modules, such as Vision Language
Models (VLMs). A prototype of this fast-and-slow system has already been implemented to achieve
complex, long-horizon tasks like fetching coffee from Starbucks (see supp. video), demonstrating
CE-Nav’s potential as a pluggable fast system for complex visual navigation tasks.

5 CONCLUSION

In this paper, we introduced CE-Nav, a novel framework for Cross-Embodiment local navigation
that achieves high performance with remarkable transfer efficiency. By leveraging a hierarchical
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architecture that decouples high-level planning from low-level control, we successfully isolate the
learning of a universal, embodiment-agnostic navigation policy. Our two-stage training paradigm,
which combines offline imitation learning of a multi-modal expert with online guided reinforce-
ment learning, proves to be a powerful approach. The VelFlow module effectively addresses the
challenge of multi-modal decision-making in navigation, while the dynamics-aware refiner with its
curriculum-guided training enables fast and stable adaptation to new robot platforms, by learning
a coupled policy that compensates for both the robot’s physical dynamics and the execution im-
perfections of its specific low-level controller. Crucially, our entire framework eliminates the need
for collecting expensive and biased real-world robot data. We believe CE-Nav represents a signifi-
cant step towards truly generalizable and scalable local navigation solutions for the ever-expanding
ecosystem of diverse robotic platforms. Furthermore, it provides a robust fast system that can be
integrated with high-level planners (such as VLMs), paving the way for next-generation hierarchical
navigation systems.

10
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a detailed account of the code, data, exper-
imental setup, and computational requirements. We commit to releasing all code and instructions
necessary to replicate our findings upon the acceptance of this paper.

Code. Upon acceptance, all code will be made publicly available in a GitHub repository under an
MIT license. The repository will include:

• Source code for the VelFlow (General Expert) and the Dynamics-Aware Refiner models,
implemented in PyTorch.

• Scripts for training both Stage 1 (offline IL) and Stage 2 (online RL).
• Code for the procedural generation of simulation environments (“obstacle forest”).
• Evaluation scripts to reproduce the results presented in our tables.

Datasets. Our framework does not rely on any pre-existing, private datasets. The expert experi-
ence for Stage 1 is synthetically generated. The released code will include the complete pipeline for
generating this dataset, which consists of 10 million state-action pairs. The expert data is generated
using the Dynamic Window Approach (DWA) in a 2D kinematic simulation. All parameters for the
DWA planner and the data collection process (as detailed in Section 3.3.1 and Appendix A.1) will
be included in the code release, allowing for the exact reconstruction of our dataset.

Models and Hyperparameters. The architectures of our models are described in Section 3.3.2.
Key hyperparameters for training are provided in Section 4.1. Specifically:

• VelFlow: A Real-NVP architecture with 12 coupling layers and hidden dimensions of 512,
trained with a learning rate of 5× 10−4.

• Dynamics-Aware Refiner: Trained using PPO. The learning rates for the actor, critic, and
shared feature extractor are 5× 10−4, 1× 10−3, and 1× 10−3, respectively.

• Guided Training: The curriculum for annealing the guidance loss weight λ is described in
Section 3.4.2 (from 0.5 to 0.05).

All hyperparameters, including the full reward function specification (Appendix A.2, Table 6), will
be provided in configuration files within the released code repository to ensure full transparency and
ease of replication.

Experimental Setup. All simulation experiments were conducted within the Isaac Sim physics
simulator. The simulation environments were procedurally generated as described in Section 4.1.
For evaluation, we used four fixed test environments with 100 pre-sampled start-goal pairs each to
ensure fair and consistent comparisons. The robot embodiments (Unitree Go2, Spot, MagicDog,
Unitree H1, Hummingbird) and their respective low-level controllers are detailed in Appendix A.4.
The real-world deployment setup is described in Section 4.5 and Appendix A.5.

Computational Requirements. The experiments were performed on a single desktop machine
equipped with an NVIDIA RTX 4090 GPU. The key computational times are as follows:

• Stage 1 (Offline IL): Training the General Expert on the 10M-pair dataset takes approx-
imately 4 hours. This is a one-time offline cost, the resulting model is frozen and reused
for all embodiments.

• Stage 2 (Online RL): The adaptation of the Dynamics-Aware Refiner for a new robot
embodiment takes approximately 6 hours.

11
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A APPENDIX

A.1 EXPERT EXPERIENCE CONSTRUCTION PARAMETERS

Table 5: DWA (Dynamic Window Approach) parameters used for generating the embodiment-
agnostic expert dataset (Section 3.3.1). These parameters define a set of general dynamic and kine-
matic constraints for a circular rigid body agent.

Parameter Value Description (Unit)
Kinematic Constraints
max speed 1.5 Max linear velocity (m/s)
min speed -1.5 Min linear velocity (m/s)
max yaw rate 1.57 Max yaw rate (rad/s)
min yaw rate -1.57 Min yaw rate (rad/s)

Dynamic Constraints
max accel 1.5 Max linear acceleration (m/s2)
min accel -5.0 Min linear acceleration (max deceleration) (m/s2)
max delta yaw rate 5.23 Max yaw angular acceleration (rad/s2)
min delta yaw rate -5.23 Min yaw angular acceleration (rad/s2)

Planner & Simulation Parameters
v resolution 0.1 Velocity sampling resolution (m/s)
yaw rate resolution 0.17 Yaw rate sampling resolution (rad/s)
dt 0.1 Simulation time step (s)
predict time 1.0 Trajectory prediction horizon (s)

Robot & Task Parameters
robot radius 0.2 Agent’s circular radius (m)
goal tolerance 0.4 Goal tolerance radius (for success) (m)

Objective Function Gains (Weights)
to goal cost gain 1.0 Weight for heading towards the goal
speed cost gain 15.0 Weight for maximizing forward speed
obstacle cost gain 0.5 Weight for distance to obstacles

A.2 DETAILED REWARD FUNCTION DESIGN

The function is designed to be dense, consisting of multiple components that guide the agent towards
efficient, safe, and stable navigation behaviors (see Table 6). The symbol definitions are:

• dt: The 2D Euclidean distance from the robot to the goal at timestep t.
• ∆t: The duration of a single simulation step.
• vmax: The maximum configured linear velocity of the robot.
• ∆dcheck: The reduction in distance to the goal since the last checkpoint.

• ĥ: The robot’s current 2D heading unit vector.
• ĝ: The 2D unit vector pointing from the robot’s current position to the goal.
• wclearance: A safety clearance weight based on forward LiDAR distance, ranging from [0, 1].
• vxy,t: The 2D linear velocity vector at timestep t.
• vyaw,t: The yaw angular velocity at timestep t.
• dlidar,i: The distance to an obstacle measured by the i-th LiDAR ray.
• ϕ, θ: The robot’s roll and pitch angles.
• ϕth, θth: The safety thresholds for roll and pitch angles.
• d0: The initial 2D distance to the goal at the start of an episode.
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Table 6: Reward Function for the online RL stage.

Reward/Penalty Term Mathematical Expression Weight/Description
Efficiency & Goal-Orientation
Rdistance

dt−1−dt

∆t·vmax
+1.0

Rcheckpoint ∆dcheck +10.0 (calculated every 500 steps)
Rheading (ĥ · ĝ) · wclearance +1.0
Rgoal 50.0 · d0 +1.0 (Sparse reward upon episode termination)

Movement Smoothness & Stability
Plinear smooth ||vxy,t − vxy,t−1||2 -0.5
Pyaw smooth ||vyaw,t − vyaw,t−1||2 -0.01
Pstability max(|ϕ| − ϕth, 0)

2 +max(|θ| − θth, 0)
2 -1.0

Safety
Rsafety Ei[log(dlidar,i)] +1.0
Pcollision 50.0 -1.0 (Sparse penalty upon episode termination)

A.3 DEFINITION OF GUIDANCE LOSS SCALE

The scale parameter used in the guidance loss Lguide (Equation 3) is automatically computed to
safely map the velocity range of the embodiment-agnostic General Expert (vref) to the specific com-
mand range of the target robot. This ensures that the guidance signal scale · vref remains within the
physical capabilities of the specific hardware.

The calculation is based on two sets of velocity limits:

1. Expert Limits (Ldwa): These are the maximum absolute velocities defined during the
DWA expert data generation (see Table 5). The expert’s output vref is drawn from a distri-
bution learned from this data.

• vxmax,dwa = max speed = 1.5m/s

• vymax,dwa = max speed = 1.5m/s

• vyawmax,dwa = max yaw rate = 1.57 rad/s

2. Embodiment Limits (Lemb): These are the specific maximum absolute velocities for the
target robot platform (e.g., Go2, A1, etc.). These are defined as part of the robot’s hardware
configuration and low-level controller πlow.

• vxmax,emb (Max forward/backward velocity for the specific robot)
• vymax,emb (Max strafing velocity for the specific robot)
• vyawmax,emb (Max turning velocity for the specific robot)

To find a single, safe scaling factor, we first compute the scaling ratio scale for each axis indepen-
dently by dividing the embodiment’s limit by the expert’s limit:

scalex =
vxmax,emb

vxmax,dwa

(5)

scaley =
vymax,emb

vymax,dwa

(6)

scaleyaw =
vyawmax,emb

vyawmax,dwa

(7)

The final scale is then set to the minimum (the most conservative or ”safest”) of these three ratios.
This guarantees that even if the expert proposes a command at its own maximum limit (e.g., vref =
(1.5, 0, 0)), the scaled guidance command (scale · vref) will not exceed the target robot’s maximum
velocity on any axis.

scale = min(scalex, scaley, scaleyaw) (8)
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A.4 LOCOMOTION CONTROLLER DETAILS

The low-level locomotion controller (πlow) for each robot platform is sourced from various im-
plementations to represent realistic, non-ideal systems. We train the Unitree Go2 controller using
the Isaac Lab framework (Mittal et al., 2023). The Spot quadruped utilizes a publicly available
locomotion policy checkpoint1. The MagicDog employs a proprietary controller provided by the
manufacturer. For the Unitree H1, we use the pre-trained locomotion policy provided in the offi-
cial Isaac Lab documentation2. The Hummingbird quadrotor’s controller is from the open-source
OmniDrones framework (Xu et al., 2023).

We followed the evaluation method presented by Radosavovic et al. (2024) to quantify the perfor-
mance and inherent imperfections of these controllers. The results are summarized in Table 7.

Table 7: Details of the low-level locomotion controllers used for each robot platform.

Robot Platform Controller Source Tracking Error (m) ↓
Unitree Go2 In-house (Isaac Lab) 0.52
Spot Open-source CKPT1 0.97
MagicDog Manufacturer-provided CKPT 0.28
Unitree H1 Open-source CKPT2 1.56
Hummingbird Open-source (Omnidrones) 0.20

A.5 REAL WORLD DEPLOYMENT DETAILS

We deployed the policy on two robots: a Unitree Go2 and a MagicDog. The observation pipeline
was adapted to their respective sensors to produce the 2D raycast scan required by our model. For
the Go2, the onboard 4D LiDAR’s point cloud was first used to generate a 2.5D height map, which
was then compressed in Bird’s Eye View (BEV) space into a 2D occupancy map. For the MagicDog,
the point cloud from its 1D LiDAR (scanning a fixed horizontal plane) was directly converted into a
2D occupancy map. Both of these intermediate occupancy maps were then processed into the final
2D raycast scan input.

A.6 COMPARISON WITH BARN CHALLENGE SOTA

We compared our method against LiCS-KI, the top-performing learning-based algorithm from the
BARN Challenge. Both methods were evaluated on the Jackal robot within our Isaac Sim envi-
ronment across varying obstacle densities. As shown in Table 8, CE-Nav consistently outperforms
LiCS-KI, particularly in dense scenarios (No = 700), achieving a 23% improvement in success rate.
This demonstrates that decoupling kinematic planning from dynamic adaptation yields superior ro-
bustness compared to single-stage baselines.

Table 8: Comparison with BARN Challenge SOTA (LiCS-KI) on the Jackal robot.

Method No = 100 No = 300 No = 500 No = 700

CE-Nav (Ours) 1.00 0.99 0.91 0.81
LiCS-KI 1.00 0.97 0.71 0.58

Gain +0% +2% +20% +23%

1https://huggingface.co/Kyu3224/quadruped-locomotion-policy
2https://docs.isaacsim.omniverse.nvidia.com/latest/robot_simulation/

ext_isaacsim_robot_policy_example.html
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A.7 ABLATION STUDY ON GENERATIVE MODELS

We investigated the choice of the generative model for the General Expert by comparing our Con-
ditional Normalizing Flow (VelFlow) against Rectified Flow (RF) variants. We evaluated a standard
RF (10 sampling steps) and a distilled Reflowed RF (1 sampling step).

Table 9 presents the trade-off between inference latency and performance. While Standard RF offers
competitive performance, it is approximately 7× slower than our method. Conversely, Reflowed RF
achieves extremely low latency but suffers a significant drop in success rate (0.8150 mSR), likely
due to distillation errors in capturing the complex multimodal velocity distribution. Our CNF-based
approach achieves the highest success rate (0.8575) while maintaining negligible inference latency
(0.01 ms), proving to be the optimal choice for real-time control.

Table 9: Ablation study of Generative Models: Normalizing Flow vs. Rectified Flow variants.

Method Sampling Steps Inference Time (ms) mSR ↑
Ours (VelFlow) 1 0.01 0.8575
Rectified Flow 10 0.07 0.8300
Reflowed RF 1 0.007 0.8150

A.8 SENSITIVITY TO PLANNER BIAS

To verify whether VelFlow overfits the specific sampling patterns of the DWA planner, we con-
structed a mixed dataset containing an equal order of magnitude of DWA trajectories and trajecto-
ries generated by the TEB (Timed Elastic Band) planner. We then trained a “Mixed-Expert” based
model for comparison.

Table 10 compares the Success Rate (SR) of both models across four test environments. The average
success rate of the Mixed-Expert based model is almost identical to that of the pure DWA based
model (0.8550 vs. 0.8575). This result strongly demonstrates that VelFlow learns the underlying
Universal Geometric Reasoning—specifically, the ability to identify “traversable space”—rather
than overfitting to the algorithmic preferences of a specific planner. Therefore, we retained DWA
as the data source in our final design primarily due to its efficiency advantage in large-scale data
generation, without sacrificing generalization capabilities.

Table 10: Comparison of VelFlow trained on pure DWA data vs. Mixed (DWA+TEB) data.

Method No = 100 No = 300 No = 500 No = 700 mSR
CE-Nav (Ours) 1.00 0.84 0.83 0.76 0.8575
Mix-Expert (DWA+TEB) 1.00 0.85 0.82 0.75 0.8550

A.9 REAL-TIME CONSTRAINTS AND COMPUTATIONAL ROBUSTNESS

Addressing concerns about the sufficiency of the 10Hz control frequency and potential compute
contention, we conducted frequency ablation studies and simulated latency tests. We tested system
performance under different control frequencies and with injected random computational delays
(simulating compute jitter).

The results are summarized in Table 11. Even when the control frequency is halved to 5Hz, the
average success rate drops only slightly (< 5%). This provides strong evidence that the 10Hz
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baseline provides ample safety redundancy. Furthermore, under injected random delays of 50ms–
100ms (simulating severe compute contention), the model maintains a high success rate of 0.7625.
This validates that the Stage 2 RL Refiner is robust to system latencies through closed-loop training,
eliminating reliance on perfect real-time execution.

Table 11: System performance under different control frequencies and simulated latencies.

Setting mSR Description
10Hz (Baseline) 0.8025 Original Setting
5Hz 0.7650 Frequency Halved (Simulating Heavy Throttling)
10Hz + Random Delay 0.7625 Injected 50ms-100ms Random Delay

A.10 SENSITIVITY TO DWA HYPERPARAMETERS

To quantify the sensitivity of our method to DWA hyperparameters, we conducted an ablation study
focusing on the most critical parameter: agent radius. Our original expert data was generated with
a radius of 0.2m. We generated two additional expert datasets with significantly different radius
settings: a smaller radius (0.1m), simulating an expert that is “overly optimistic” about clearance,
and a larger radius (0.3m), simulating an “overly conservative” expert.

We evaluated these models on the Unitree Go2 robot. The results are shown in Table 12. The exper-
imental data demonstrates that our method is highly insensitive to DWA hyperparameter settings.
Even with substantial variations in the radius parameter (±50%), the fluctuation in final navigation
performance is negligible (the difference in mean Success Rate is < 1%). This robustness con-
firms that the Stage 2 RL Refiner can effectively adapt the general guidance to the actual physical
constraints of the robot, correcting for potentially inaccurate geometric priors.

Table 12: Sensitivity analysis of the DWA agent radius parameter on Unitree Go2.

DWA Radius Setting SR (No = 100) SR (No = 300) SR (No = 500) SR (No = 700) Mean SR
0.2m (Ours) 1.00 0.84 0.83 0.76 0.8575
0.1m (Small) 1.00 0.83 0.82 0.75 0.8500
0.3m (Large) 1.00 0.84 0.81 0.76 0.8525

A.11 GENERALIZATION TO LARGE-SCALE ROBOTS (STRESS TEST)

To validate CE-Nav’s generalization capability to “large-scale” robots, we designed a controlled
variable experiment. In simulation, we artificially modified the physical collision threshold of the
Unitree Go2 to a radius of R = 1.0m while keeping its dynamics parameters unchanged. We tested
this “giant” robot in the medium density environment (No = 300).

As shown in Table 13, although the Stage 1 expert was trained based on R = 0.2m (and might sug-
gest passing through narrow gaps of only 0.5m), the Stage 2 Refiner achieved a robust success rate
of 0.78 under the 1m-radius setting. Compared to the standard robot (0.84), the performance drop is
minimal considering the 5x increase in collision radius relative to the expert’s training assumption.
This demonstrates that the Refiner successfully learned to adapt to the current dimensional char-
acteristics, effectively overriding the expert’s geometrically optimistic suggestions to ensure safety.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 13: Performance comparison between Standard Go2 and a modified “Giant” Go2 (R = 1.0m).

Obstacle Count (No) 300 (Medium)
Standard Go2 0.84
Giant Go2 (R = 1.0m) 0.78

A.12 FAILURE CASE ANALYSIS: AGILE VS. DYNAMICS-LIMITED ROBOTS

To investigate the specific failure modes across different robots, we decomposed the failures into
Timeouts (indicating safe but slow navigation) and Collisions (indicating unsafe navigation). We
analyzed two representative platforms: the agile Unitree Go2 and the dynamics-limited Unitree H1
(biped).

As shown in Table 14, for the agile Go2, the 0% timeout rate implies high maneuverability; the
14.25% collision rate stems primarily from the extreme geometric complexity of our adversarial
evaluation scenarios (high density, dead-ends) rather than control defects. Conversely, for the Uni-
tree H1, despite having a massive tracking error of 1.56m (approximately 3× that of Go2), the
collision rate (16.50%) is only marginally higher. The drop in success rate is largely driven by a
9.0% timeout rate. This indicates that the Refiner learned a conservative strategy—slowing down
or pausing to negotiate complex terrain safely—effectively trading speed for safety to compensate
for dynamic limitations.

Table 14: Failure mode decomposition comparing the agile Unitree Go2 and the dynamics-limited
Unitree H1.

Robot Model Tracking Error Success Rate Timeout Rate Collision Rate
Unitree Go2 0.52m 85.75% 0% 14.25%
Unitree H1 1.56m 74.50% 9.0% 16.50%

A.13 THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we utilized the Large Language Model (LLM) Gemini 2.5.
The primary application of this tool was for grammar correction and language polishing to improve
the clarity and readability of the text. The core scientific contributions, methodologies, and conclu-
sions presented in this paper are our own. We take full responsibility for all content, including any
potential errors or inaccuracies.
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