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Abstract

Knowledge-enhanced language models001
(KELMs) have emerged as promising tools to002
bridge the gap between large-scale language003
models and domain-specific knowledge.004
KELMs can achieve higher factual accuracy005
and mitigate hallucinations by leveraging006
knowledge graphs (KGs). They are frequently007
combined with adapter modules to reduce the008
computational load and risk of catastrophic009
forgetting. In this paper, we conduct a010
systematic literature review (SLR) on adapter-011
based approaches to KELMs. We provide an012
overview of approaches in the field and explore013
the strengths and potential shortcomings of the014
multitude of discovered methods. We show that015
both general-knowledge and domain-specific016
approaches have been frequently explored017
along with various downstream tasks. Fur-018
thermore, we discovered that the biomedical019
domain is the most popular domain-specific020
field and that the Pfeiffer adapter is the most021
commonly used adapter type. We outline the022
main trends and propose promising future023
directions.024

1 Introduction025

The field of natural language processing (NLP) has,026

in recent years, been dominated by the rise of large027

language models (LLMs). These models are pre-028

trained on large amounts of unstructured textual029

data, which enables them to solve complex rea-030

soning tasks and generate new text. Still, LLMs031

can lack awareness of structured knowledge hier-032

archies, such as relations between concepts. This033

drawback can lead to inaccurate predictions for034

downstream tasks relying on structured predictions035

and so-called "hallucinations" within text genera-036

tion. This can make LLMs less reliable in practice,037

which is an especially precarious issue in high-risk038

domains like healthcare or law.039

A potential solution to counteract mispredictions040

and hallucinations and improve the reliability of041

LLMs is knowledge enhancement: By leveraging 042

expert knowledge from manually curated knowl- 043

edge graphs (KGs), structured knowledge can be 044

injected into LLMs. Such knowledge-enhanced lan- 045

guage models (KELMs) are a promising approach 046

for higher structured knowledge awareness, better 047

factual accuracy, and less hallucinations (Colon- 048

Hernandez et al., 2021; Wei et al., 2021). 049

Unfortunately, knowledge enhancement in the 050

form of supervised fine-tuning (SFT) of the whole 051

LLM can be highly computationally expensive, es- 052

pecially for models with billions of parameters. A 053

promising research avenue to overcome this lim- 054

itation is using lightweight and efficient adapter 055

modules to inject structured knowledge into LLMs. 056

Using adapters for knowledge enhancement helps 057

enhance the task performance of LLMs and is, at 058

the same time, a very computationally efficient 059

solution. Despite the rising popularity of this ap- 060

proach, to the best of our knowledge, a compre- 061

hensive overview of adapter-based KELMs is still 062

missing in the NLP research landscape. 063

To bridge this research gap, we conduct a sys- 064

tematic literature review (SLR) on adapter-based 065

knowledge enhancement of LLMs. Our contri- 066

butions are: (1) a novel review on adapter-based 067

knowledge enhancement, (2) a quantitative and 068

qualitative analysis of different methods in the field, 069

and (3) detailed categorization of literature and 070

identification of most promising trends. 071

2 Background and Related Work 072

In this section, we give an overview of related work 073

and existing surveys on knowledge enhancement. 074

Knowledge graphs are the most common external 075

knowledge source, so we start with their overview. 076

2.1 Knowledge Graphs 077

Knowledge graphs (KGs) are a structured repre- 078

sentation of the world knowledge and have seen 079

a rising prominence in NLP research over the 080
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past decade (Schneider et al., 2022). Hogan et al.081

(2020) define a KG as "a graph of data intended082

to accumulate and convey knowledge of the real083

world, whose nodes represent entities of interest084

and whose edges represent relations between these085

entities". Similarly, Ji et al. (2020) published a086

comprehensive survey on KGs and, following ex-087

isting literature, defined the concept of a KG as088

"G = {E ,R,F}, where E ,R and F are sets of089

entities, relations and facts, respectively; a fact is090

denoted as a triple (h, r, t) ∈ F". Depending on091

the source and purpose of a KG, entities and rela-092

tions can take on various shapes. For example, in093

the biomedical knowledge graph UMLS (Bodenrei-094

der, 2004), a relation can take the shape of a single095

word like "inhibits", a short phrase like "relates096

to", or a compound term including, for example,097

chemical or medical categories such as "[protein]098

relates to [disease]" or "[substance] induces [phys-099

iology]". A textual connection is vital because it100

serves as a link between the graph structure and101

natural language, simplifying the integration of in-102

formation from KGs into language models and the103

associated learning processes. Other than UMLS,104

other examples of popular KGs are DBpedia (Auer105

et al., 2007) and ConceptNet (Speer et al., 2017).106

2.2 Approaches to Knowledge Enhancement107

At the time of writing, some reviews had al-108

ready been published that gave an overview of109

KELMs and classified different approaches. Colon-110

Hernandez et al. (2021) review the existing liter-111

ature and split the approaches to integrate struc-112

ture knowledge with LMs into three categories: (1)113

input-centered strategies, centering around altering114

the structure of the input or selected data, which115

is fed into the base LLM; (2) architecture-focused116

approaches, which involve either adding additional117

layers that integrate knowledge with the contextual118

representations or modifying existing layers to alter119

parts like attention mechanisms; (3) output-focused120

approaches, which work by changing either the out-121

put structure or the losses used in the base model.122

Our study focuses on the second category (2), by123

examining the adapter-based mechanisms for in-124

jecting information into the model, which were125

shown to be the most promising by the authors.126

The second survey by Wei et al. (2021) reviews127

a large number of studies on KELMs and clas-128

sifies them using three taxonomies: (1) knowl-129

edge sources, (2) knowledge granularity, and (3)130

application areas. Within (1), the knowledge 131

sources include linguistic knowledge, encyclopedic 132

knowledge, and commonsense and domain-specific 133

knowledge. The second taxonomy (2) acknowl- 134

edges the common approach of using KGs as a 135

source of knowledge. Levels of granularity men- 136

tioned are text-based knowledge, entity knowledge, 137

relation triples, and KG sub-graphs. Lastly, with 138

the third taxonomy (3), the authors discuss how 139

knowledge enhancement can improve natural lan- 140

guage generation and understanding. They also 141

review popular benchmarks that can be used for 142

task evaluation of KELMs (Wei et al., 2021). 143

These two field studies by Colon-Hernandez 144

et al. (2021) and Wei et al. (2021) on the classi- 145

fication of KELM approaches were our starting 146

point for exploring KELMs and initially proved to 147

be very valuable. However, although they address 148

some adapter-based studies like K-Adapter (Wang 149

et al., 2020), most other adapter-based KELMs are 150

missing. This lack of coverage led to our decision 151

to conduct a novel systematic literature search fo- 152

cusing specifically on the adapter-based KELMs, 153

considering their rising popularity and importance. 154

3 Adapters 155

In the following, an overview of adapters for LLMs 156

and their individual functionalities and applications 157

will be given to establish a conceptual understand- 158

ing of adapter-based approaches to LLMs. 159

3.1 Overview 160

Broadly speaking, adapters are small bottleneck 161

feed-forward layers inserted within each layer of 162

an LLM (Houlsby et al., 2019). The small amount 163

of additional parameters allows injecting new data 164

or knowledge without fine-tuning the whole model. 165

This feat is usually accomplished by freezing the 166

layers of the base model with its millions or bil- 167

lions of parameters while only updating the adapter 168

weights (e.g., through entity prediction tuning). 169

Due to the lightweight nature of adapters, this ap- 170

proach leads to short training times with relatively 171

low computing resource requirements. Adapters 172

used to be utilized mostly for quick and cheap 173

downstream-task fine-tuning but are now increas- 174

ingly used for knowledge enhancement. Because it 175

is possible to train adapters individually, they can 176

also be used for multi-task training by specializing 177

one adapter for each task or multi-domain knowl- 178

edge injection by specializing adapters to different 179
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Figure 1: Illustration of a standard fine-tuning versus a knowledge enhancement process. In the example, knowledge
from a KG is injected into the model via adapters.

domains (Pfeiffer et al., 2020a).180

Leveraging adapters in LLMs also has positive181

"side effects": Adapters can avoid catastrophic for-182

getting (the issue when an LLM suddenly dete-183

riorates in performance after fine-tuning) by in-184

troducing new task-specific parameters (Houlsby185

et al., 2019; Pfeiffer et al., 2020a) and, in trans-186

fer learning, adapters have even been shown to187

improve stability and adversarial robustness for188

various downstream tasks (Han et al., 2021). The189

specifics of how and where adapters are added to190

an LLM depend on the adapter type.191

3.2 Adapter Types192

Houlsby Adapter. The Houlsby Adapter193

(Houlsby et al., 2019) was the first adapter to be194

used for transfer learning in NLP. The idea was195

based on adapter modules initially introduced by196

Rebuffi et al. (2017) in the computer vision domain.197

The two main principles stayed the same: Adapters198

require a relatively small number of parameters199

compared to the base model and a near-identity200

initialization. These principles ensure that the201

total model size grows relatively slowly when202

more transfer tasks are added, while a near-identity203

initialization is required for stable training of204

the adapted model (Houlsby et al., 2019). The205

optimal architecture of the Houlsby Adapter was206

determined by meticulous experimenting and207

tuning; the result can be seen in figure 2. In a208

classical transformer structure (Vaswani et al.,209

2017), the adapter module is added once after210

the multi-headed attention and once after the two211

feed-forward layers. The modules project the212

d-dimensional layer features of the base model into213

a smaller dimension, m, then apply a non-linearity 214

(like ReLU) and project back to d dimensions. 215

The configuration also hosts a skip-connection, 216

and the output of each sub-layer is forwarded to 217

a layer normalization (Ba et al., 2016). Including 218

biases, 2md + d + m parameters are added per 219

layer, accounting for only 0.5 to 8 percent of the 220

parameters of the original BERT model used by 221

the authors when setting m << d. 222

Bapna and Firat Adapter. In contrast to the 223

Houlsby Adapter, Bapna and Firat (2019) only in- 224

troduce one adapter module in each transformer 225

layer: they keep the adapters after the multi-headed 226

attention (so-called "top" adapters) while dropping 227

the adapters after the feed-forward layers (so-called 228

"bottom" adapters) of the transformer (refer to Fig- 229

ure 2 for better understanding of the component 230

positions). Moreover, while Houlsby et al. (2019) 231

re-train layer normalization parameters for every 232

domain, Bapna and Firat (2019) "simplify this for- 233

mulation by leaving the parameters frozen, and 234

introducing new layer normalization parameters 235

for every task, essentially mimicking the structure 236

of the transformer feed-forward layer". 237

Pfeiffer Adapter and AdapterFusion. The ap- 238

proaches of Bapna and Firat (2019); Houlsby et al. 239

(2019) did not allow information sharing between 240

tasks. Pfeiffer et al. (2020a) introduce Adapter 241

Fusion, a two-stage algorithm that addresses the 242

sharing of information encapsulated in adapters 243

trained on different tasks. In the first stage, they 244

train the adapters in single-task or multi-task se- 245

tups for a total of N tasks similar to the Houlsby 246

Adapter, but only keeping the top adapters, sim- 247
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Figure 2: Location of the adapter module in a transformer layer (left) and architecture of the Houlsby Adapter (right).
All green layers are trained on fine-tuning data, including the adapter itself, the layer normalization parameters, and
the final classification layer (not shown). Image with permission from Houlsby et al. (2019).

ilar to the Bapna and Firat Adapter. As a sec-248

ond step, they combine the set of N adapters249

with AdapterFusion: They fix the parameters Θ250

and all adapters Φ, and finally introduce parame-251

ters Ψ that learn to combine the N task adapters252

for the given target task (Pfeiffer et al., 2020a):253

Ψm ← argmin
Ψ

Lm (Dm; Θ,Φ1, . . . ,ΦN ,Ψ)254

Here, Ψm are the learned AdapterFusion param-255

eters for task m. In the process, the training dataset256

of m is used twice: once for training the adapters257

Φm and again for training Fusion parameters Ψm,258

which learn to compose the information stored in259

the N task adapters (Pfeiffer et al., 2020a). With260

their approach of separating knowledge extraction261

and knowledge composition, they further improve262

the ability of adapters to avoid catastrophic forget-263

ting and interference between tasks and training264

instabilities. The authors also find that their ap-265

proach of using only a single adapter after the feed-266

forward layer performs on par with the Houlsby267

adapter while requiring only half of the newly in-268

troduced adapters (Pfeiffer et al., 2020a). This269

makes the Pfeiffer adapter an attractive choice for270

many applications, further proven by its popularity271

among the papers in our review.272

K-Adapter Wang et al. (2020) follow a substan-273

tially different approach where the adapters work as274

"outside plug-ins". In their work, an adapter model275

consists of K adapter layers (hence the name) that276

contain N transformer layers and two projection277

layers. Similar to the approaches above, a skip con-278

nection is added but instead applied across the two279

projection layers. The adapter layers are plugged in280

among varying transformer layers of the pre-trained 281

model. The authors explain that they concatenate 282

the output hidden feature of the transformer layer 283

in the pre-trained model and the output feature of 284

the former adapter layer as the input feature of the 285

current adapter layer. 286

Adapter architectures for knowledge enhance- 287

ment exist that differ from the four adapter types 288

mentioned here. For example, the "Parallel 289

Adapter" (He et al., 2021a) or the adapter archi- 290

tecture by Stickland and Murray (2019)). However, 291

as the upcoming comprehensive literature survey 292

will show, these architectures are either unique to 293

specific papers or have not found broader appli- 294

cations in the field of KELMs. Either way, these 295

approaches are out of the scope of this paper and 296

will not be discussed here. 297

Another popular type of efficient adaptation is 298

the low-rank adaptation LoRA (Hu et al., 2022), 299

and its quantized version QLoRA (Dettmers et al., 300

2023). Despite the name, these approaches do not 301

actually add new adapter layers as the previously 302

described ones but enforce a low-rank constraint on 303

the weight updates of the base model’s layers. This 304

enables efficient fine-tuning of LLMs but does not 305

properly allow for knowledge enhancement from 306

external sources, which is the focus of our review. 307

4 Methodology 308

This chapter details the methodology we employed 309

for the systematic literature review. We largely fol- 310

lowed the procedure of Kitchenham et al. (2009) 311

for systematic literature reviews in software engi- 312

neering. The search strategy for the systematic 313
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literature review of this thesis included literature314

that fulfilled the following inclusion criteria:315

• Peer-reviewed articles from ACM1, ACL2,316

and IEEE Xplore3317

• Article abstracts that match the search string318

("adapter" OR "adapter-based") AND ("lan-319

guage model" OR "nlp" OR "natural language320

processing") AND ("injection" OR "knowl-321

edge")322

• Articles published after February 2, 2019323

(publication of the Houlsby Adapter, the first324

LLM adapter)325

• Articles that address the topic of adapter-326

based knowledge-enhanced language models327

We also included a limited number of articles328

not found on the mentioned databases because they329

were fundamental works on the topic of the SLR330

and frequently referenced. The SLR was concluded331

in January 2024 and represents the state of research332

literature up to this point.333

5 Results334

This section will present the results of the system-335

atic literature review on adapter-based knowledge336

enhancement.337

5.1 Overview338

Source Initial Abstract Full Text
IEEE 28 6 6
ACM 10 6 5
ACL 36 16 13
Others 2 2 2
Total 76 30 26

Table 1: Quantitative overview of the literature sources
and the selection process

Table 1 shows the source distribution for all in-339

cluded papers. Fifty-nine papers were found by340

applying the search string as a command on the341

ACL, ACM, and IEEE search engines. Due to their342

importance for the field, we included three addi-343

tional papers from other sources. These papers344

were found through online search and paper ref-345

erences during the general research process. In346

summary, after the abstract screening, 31 articles347

1https://dl.acm.org/
2https://aclanthology.org/
3https://ieeexplore.ieee.org/Xplore/

home.jsp

met all inclusion criteria (and no exclusion criteria). 348

After the full paper screening, 26 papers remained 349

to form the final paper pool of the survey. 350

Table 2 gives an overview of all papers included 351

in the survey. It includes the information on the 352

adapter type used in the paper, the domain and 353

scope of the paper, and for which downstream NLP 354

tasks it was developed. 355

5.2 Data Analysis 356

This section starts with a quantitative analysis 357

showcasing and interpreting quantitative distribu- 358

tions. Afterward, we report significant qualitative 359

insights from the papers. 360

5.2.1 Quantitative Analysis 361

Yearly Distribution To begin with, we assess 362

how many papers were published each year to get 363

a sense of the trend and growth in the area (Fig. 364

3). There has been a noticeable increase in publica- 365

tions on adapter-based approaches to knowledge- 366

enhanced language models in recent years, espe- 367

cially from 2022 onward. This trend suggests grow- 368

ing interest and research activity in the domain. 369

Figure 3: Yearly distribution of publications

Adapter Type Distribution. Next, we evaluate 370

the popularity and variety of adapter types used 371

across the papers (Fig. 4). The “Pfeiffer” and 372

"Houlsby" adapter types stand out as the most com- 373

mon, which suggests that the closely related under- 374

lying architecture is the most popular methodology 375

in the field. This popularity is likely not only an 376

achievement of the adapter’s performance but also 377

due to the well-established Adapter-Hub platform 378

(Pfeiffer et al., 2020b), which, although offering 379

other options, uses adapters with the Pfeiffer config- 380

uration by default. This finding showcases a need 381

and trend to build custom adapters well-suited to 382

individual tasks. In the upcoming years, we will 383

likely see many novel adapter architectures. The 384
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paper & nickname adapter type scope task
K-MBAN (Zou et al., 2022) K-Adapter open RC
/ (Moon et al., 2021) Houlsby open MT
CSBERT (Yu and Yang, 2023) Unique open SL
/ (Qian et al., 2022) Unique open SR
/ (Li et al., 2023) Houlsby closed (multi-domain) SF
CPK (Liu et al., 2023) K-Adapter closed (biomedical) RC, ET, QA
CKGA (Lu et al., 2023) Unique open SC
/ (Nguyen-The et al., 2023) Pfeiffer open SA
KEBLM (Lai et al., 2023) Pfeiffer closed (biomedical) QA, NLI, EL
/ (Guo and Guo, 2022) Unique open NER
/ (Tiwari et al., 2023) Unique closed (biomedical) TS
AdapterSoup (Chronopoulou et al., 2023) Bapna and Firat closed (multi-domain) LM
/ (Wold, 2022) Houlsby open LAMA
/ (Chronopoulou et al., 2022) Unique closed (multi-domain) LM
DS-TOD (Hung et al., 2022) Pfeiffer closed (multi-domain) TOD
/ (Emelin et al., 2022) Houlsby closed (multi-domain) TOD
KnowBERT (Xu et al., 2022) Bapna and Firat open KGD
mDAPT (Kær Jørgensen et al., 2021) Pfeiffer closed (multi-domain) NER, STC
DAKI (Lu et al., 2021) K-Adapter closed (biomedical) NLI
/ (Majewska et al., 2021) Pfeiffer open EE
/ (Lauscher et al., 2020) Houlsby open GLUE
TADA (Hung et al., 2023) Unique open TOD, NER, NLI
LeakDistill (Vasylenko et al., 2023) StructAdapt open SMATCH
MixDA (Diao et al., 2023) Houlsby, Pfeiffer closed (multi-domain) GLUE, TXM
MoP (Meng et al., 2021) Pfeiffer closed (biomedical) BLURB
K-Adapter (Wang et al., 2020) K-Adapter open RCL, ET, QA

Table 2: Overview of the results for the literature survey, including all papers and their references. The task
acronyms are explained in the glossary at the end of the thesis. The dotted lines separate the database sources: First
come the IEEE papers, then ACM, ACL, and finally, the papers from other sources. For the definition of all task
acronyms, see Appendix A.4

“K-Adapter” and “Bapna and Firat” adapters are the385

less frequently mentioned architectures, suggest-386

ing that these approaches are less well-established.387

Overall, various adapter types are present, indi-388

cating a diverse range of methodologies being ex-389

plored.390

Figure 4: Distribution of adapter types being used in the
articles

Domain Analysis Third, we analyze the distribu-391

tion of papers across the domain scope and cover-392

age to understand domain-specific preferences in393

the literature (figures given in the appendix). The394

first plot in Figure 5 shows that the open-domain395

scope is the most popular, with many papers ex- 396

ploring adapter-based approaches within the open 397

domain. The popularity is likely caused by the 398

interest in creating LLMs with a common-sense 399

understanding or world knowledge. 400

As illustrated by the second plot in Figure 5, 401

the single- and multi-domain approaches are split 402

evenly within the closed-domain papers. 403

Finally, the third plot addresses the coverage 404

of the biomedical domain. In absolute numbers, 405

only six papers focus on the biomedical domain, 406

but relative to other parts, the biomedical field is 407

by far the most prominent of all domain-specific 408

approaches. The popularity likely comes down 409

to the availability of large biomedical KGs, and 410

medicine historically being one of the most active 411

research fields in general science (Cimini et al., 412

2014). 413

Task Distribution A highly diverse range of 414

tasks is being explored throughout the papers, 415

which signifies the versatility and potential of 416

adapter-based approaches across different natural 417

language processing tasks. However, combined 418

with the limited number of papers in the survey, the 419

approach-versatility prevents further meaningful 420
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quantitative analysis. Still, tasks such as Reading421

Comprehension (RC), Named Entity Recognition422

(NER), and Question Answering (QA) appear to423

be popular areas of focus in the literature. This424

could be because these tasks are the most demand-425

ing regarding structural knowledge requirements.426

In the appendix, Figure 6 provides a word cloud of427

all keywords in the downstream tasks as a visual-428

ization, showing that there is also a focus on tasks429

with a dialogue or sentiment component.430

5.2.2 Qualitative Analysis431

This section of the analysis highlights recurring432

themes and individual insights from the papers.433

Fully summarizing all articles was outside the434

scope of this survey. However, we still provide435

an overview of the most common patterns.436

General Knowledge. The quantitative analysis437

showed that open-domain approaches are more pop-438

ular than their close-domain counterparts. Subse-439

quently, there is also a large variety in the used440

frameworks, knowledge sources, and overall goals441

of the papers. Two commonly used KGs for gen-442

eral knowledge are ConceptNet (Speer et al., 2017)443

for common-sense knowledge, and DBpedia (Auer444

et al., 2007) for encyclopedic world knowledge.445

Two example works that use these KGs are Wold446

(2022) and the CKGA ("knowledge graph-based447

adapter") by Lu et al. (2023). Wold (2022) train448

adapter modules on sub-graphs of ConceptNet to449

inject factual knowledge into LLMs. They evalu-450

ate their framework on the Concept-Net Split of451

the LAMA Probe (Petroni et al., 2019) and see in-452

creasing performance while only adding 2.1% of453

new parameters to the original models. CKGA (Lu454

et al., 2023), on the other hand, tackle aspect-level455

sentiment classification by leveraging knowledge456

from DBpedia. They link aspects to DBpedia end457

extract an aspect-related sub-graph. Then, a pre-458

trained language model and the knowledge graph459

embedding are utilized to encode the common-460

sense knowledge of entities, where the correspond-461

ing knowledge is extracted with graph convolu-462

tional networks (Lu et al., 2023).463

Linguistic Knowledge Instead of only includ-464

ing factual knowledge, some works also inject lin-465

guistic knowledge into adapters (Majewska et al.,466

2021; Zou et al., 2022; Yu and Yang, 2023; Wang467

et al., 2020). While LLMs already encode a range468

of syntactic and semantic properties of language,469

Majewska et al. (2021) explain that they "are still470

prone to fall back on superficial cues and simple 471

heuristics to solve downstream tasks, rather than 472

leverage deeper linguistic information". Their pa- 473

per explores the interplay between verb meaning 474

and argument structure. They use the gained knowl- 475

edge to enhance LLMs with Pfeiffer Adapters to im- 476

prove English event extraction and machine trans- 477

lation in other languages. Another example is the 478

work of Zou et al. (2022) on machine reading com- 479

prehension (MRC). They proposed the K-MBAN 480

model to integrate linguistic and factual external 481

knowledge into LLMs through K-Adapters. 482

Domain-specific Knowledge Chronopoulou 483

et al. (2022) propose a parameter-efficient ap- 484

proach to domain adaptation using adapters. They 485

represent domains as a hierarchical tree structure 486

where each node in the tree is associated with a 487

set of adapter weights. Their work focused on 488

specializing adapters in website domains like 489

booking.com and yelp.com. In another instance, 490

Chronopoulou et al. (2023) propose "Adapter- 491

Soup". In this framework, they also use adapters 492

for domain-specific tasks but use "an approach 493

that performs weight-space averaging of adapters 494

trained on different domains". AdapterSoup can 495

be helpful in various domain-specific approaches 496

in low-resource settings, especially when only 497

a small amount of data on a specific subdomain 498

is obtainable and closely related adapters are 499

available instead. Earlier, we saw that the 500

biomedical domain is the most prevalent among 501

the closed-domain approaches to adapter-based 502

KELMs. We will briefly examine the relevant 503

works in the following. 504

Biomedical Knowledge We have found the 505

works of DAKI (Lu et al., 2021), MoP (Meng 506

et al., 2021), and KEBLM (Lai et al., 2023) to 507

be the most impactful. According to the results of 508

our literature survey, DAKI ("Diverse Adapters for 509

Knowledge Integration") was the first work to use 510

adapters specifically for knowledge enhancement 511

in the biomedical domain. Lu et al. (2021) leverage 512

data from the UMLS meta-thesaurus and UMLS 513

Semantic Network groups concepts, but also from 514

Wikipedia articles for diseases as proposed by He 515

et al. (2020). Meng et al. (2021) recognize that 516

KGs like UMLS, which can be several gigabytes 517

large, are very expensive to train on in their en- 518

tirety. They propose to use a "Mixture of Parti- 519

tions" (MoP), which splits the KG into sub-graphs 520
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and combines later with AdapterFusion (Pfeiffer521

et al., 2020a). Finally, the KEBLM framework’s522

trademark is that it allows the inclusion of a vari-523

ety of knowledge types from multiple sources into524

biomedical LLMs. In contrast to DAKI, which also525

utilizes more than one source, KEBLM includes526

a knowledge consolidation phase after the knowl-527

edge injection, where they teach the fusion layers528

to effectively combine knowledge from both the529

original PLM and newly acquired external knowl-530

edge by using a large collection of unannotated531

texts (Lai et al., 2023). For completeness, we refer532

to Kær Jørgensen et al. (2021) for information on533

the m-DAPT framework, which addresses multi-534

lingual domain adaptation for biomedical LLMs535

and KeBioSum (Xie et al., 2022), who state their536

work is the first study exploring knowledge injec-537

tion for biomedical extractive summarization.538

Performance Insights He et al. (2021b) criticize539

that "existing work only focuses on the parameter-540

efficient aspect of adapter-based tuning while lack-541

ing further investigation on its effectiveness". They542

address this issue with their work and show that543

adapter-based tuning better mitigates forgetting is-544

sues than regular fine-tuning since it yields repre-545

sentations with less deviation from those generated546

by the initial pre-trained language model. They547

found that adapter-based approaches outperform548

fine-tuning in low-resource and cross-lingual set-549

tings and are "more robust to overfitting and less550

sensitive to changes in learning rates" (He et al.,551

2021b). This is further proven by all the papers552

from our survey that compare the performance on553

classification benchmarks between adapter-based554

knowledge-enhanced models and vanilla-base mod-555

els, always showing improvements over the vanilla556

version of the models. Notable examples are the557

work of Meng et al. (2021) or Lai et al. (2023),558

which evaluate biomedical language understanding559

tasks and reach up to +8% increase in accuracy560

with adapter-based enhancement.561

6 Current and Future Trends562

In this section, we outline the most important find-563

ings and trends of the review and point out the564

promising future directions:565

• Adapter-based KELMs are a recent develop-566

ment in NLP, but there has been fast-growing567

interest in them recently, with a linear yearly568

increase of published papers. We predict the569

growing trend to continue. 570

• Various adapter architectures exist and have 571

been iteratively advanced yearly to be more 572

efficient while preserving task performance. 573

This peaked with the Pfeiffer adapter, which is 574

the most popular type. We expect future work 575

to focus their updates on adapter architecture 576

by overcoming the latency of sequential data 577

processing in adapters and enabling hardware 578

parallelism. 579

• Research focuses on the open domain – in- 580

jecting general world knowledge into models. 581

Within the closed domain, the biomedical do- 582

main is the most popular, owing to the exis- 583

tence of large biomedical KGs. We foresee 584

the potential to apply adapter-based KELMs 585

to other highly structured domains, such as 586

the legal or financial domain (documents with 587

rigid structure). 588

• A wide array of downstream tasks is being 589

explored. The biggest improvement in task 590

performance is seen in knowledge-intensive 591

tasks like question answering and text classi- 592

fication, with a smaller improvement for rea- 593

soning tasks like entailment recognition. Gen- 594

erative tasks, other than dialogue modeling, 595

are rather unexplored. We envision a future 596

popular use case that could use knowledge 597

enhancement to improve the factuality and 598

informativeness of generated text. 599

7 Conclusion 600

In this paper, we conducted a systematic literature 601

review on approaches to enhancing language mod- 602

els with external knowledge using adapter modules. 603

We portrayed which adapter-based approaches ex- 604

ist and how they compare to each other. We showed 605

there is a steady growth of interest in this domain 606

with each new year and highlighted the most popu- 607

lar adapter architectures (with "Pfeiffer" as the pre- 608

dominant one). We discovered there is a balance in 609

popularity between open-domain approaches, fo- 610

cusing on integrating general world knowledge into 611

models, and closed-domain focusing on specialized 612

fields, with biomedical as the most popular domain. 613

With our review, we contribute a novel and exten- 614

sive resource for this nascent yet fast-growing field 615

and we hope it will be a useful entry point for other 616

researchers in the future. 617
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Limitations618

The methodology of a systematic literature review619

follows a strict search string and exclusion criteria.620

Therefore, it is possible that we excluded some rel-621

evant work on adapter-based KELMs. Moreover,622

while we tried to report on our survey as compre-623

hensively as possible, there are several aspects we624

could not include in this work. Also, some of the625

reviewed articles were not given an adequate quali-626

tative analysis in this work due to space constraints,627

leading to potentially missing insights and a non-628

complete representation of the state of research on629

adapter-based knowledge enhancement. Addition-630

ally, due to the variety of applications and domains,631

we were not able to give precise guidelines on what632

methods to use under which circumstances. Still,633

we aimed to report on the most common patterns634

and trends discovered in the literature, which can635

serve as a basis for future research.636
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A Supplementary Survey Data949

A.1 Domain Distribution950

See Figure 5.951

A.2 Keywords in Task Distribution952

See Figure 6.953

A.3 Methodology954

Articles on the following topics were excluded:955

• Articles published before February 2, 2019956

• Duplicate versions of the same article (when957

multiple versions of an article were found in958

different journals, only the most recent ver-959

sion was included)960

• Articles where Adapters were used for NLP,961

but for use-cases other than knowledge-962

enhancement (such as few-shot learning or963

model debiasing)964

• Articles written in a language other than En-965

glish966

The data extracted from each included document967

were:968

• Source (journal or publication platform)969

• Full reference970

• Main topic area971

• Facts of interest such as adapter architecture,972

domain, and downstream tasks within the pa-973

pers974

• A short summary of the study, including the975

main research questions and the answers976

The collected data was tabulated to show:977

• Source and publication dates of the studies978

• Adapter architectures used in the papers979

• Distribution of papers across domains (high-980

lighting the biomedical domain)981

• Distribution of papers across downstream982

tasks983

• Results on biomedical NLP benchmarks (if984

relevant)985

A.4 Acronyms 986

• BioNLP: Biomedical Natural Language Pro- 987

cessing 988

• BLURB: Biomedical Language Understand- 989

ing and Reasoning Benchmark (Gu et al., 990

2020) 991

• EE: Event Extraction 992

• EL: Entity Linking 993

• ES: Extractive Summarization 994

• ET: Entity Typing 995

• GLUE: General Language Understanding 996

Evaluation (Wang et al., 2019) 997

• IE: Information Extraction 998

• KELM: Knowledge-Enhanced Language 999

Model 1000

• KGD: Knowledge-grounded Dialogue 1001

• LAMA: Concept-Net Split of LAMA Probe 1002

(Petroni et al., 2019) 1003

• LM: Language Modeling 1004

• LLM: Large Language Model 1005

• MT: Machine Translation 1006

• NER: Named Entity Recognition 1007

• NLI: Natural Language Inference 1008

• NLP: Natural Language Processing 1009

• OOD: Out-of-domain Detection 1010

• QA: Question Answering 1011

• RC: Reading Comprehension 1012

• RE: Relation Extraction 1013

• RCL: Relation Classification 1014

• SA: Sentiment Analysis 1015

• SC: Sentiment Classification 1016

• SF: Speech Foundation 1017

• SL: Sequence Labelling 1018

• SMATCH: Semantic Match Score (Cai and 1019

Knight, 2013) 1020
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Figure 5: Distribution of domain scope, coverage, and the biomedical domain

Figure 6: Wordcloud of keywords in the task distribution

• SOTA: State-of-the-art1021

• SR: Speech Recognition1022

• STC: Sentence Classification1023

• TC: Text Classification1024

• TOD: Task-Oriented dialogue1025

• UMLS: Unified Medical Language System1026
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