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Abstract

Interpreting the decisions of deep learning models has been actively studied since
the explosion of deep neural networks. One of the most convincing interpretation
approaches is salience-based visual interpretation, such as Grad-CAM, where the
generation of attention maps depends merely on categorical labels. Although
existing interpretation methods can provide explainable decision clues, they often
yield partial correspondence between image and saliency maps due to the limited
discriminative information from one-hot labels. This paper develops a Language-
Image COnsistency model for explainable image classification, termed LICO, by
correlating learnable linguistic prompts with corresponding visual features in a
coarse-to-fine manner. Specifically, we first establish a coarse global manifold
structure alignment by minimizing the distance between the distributions of image
and language features. We then achieve fine-grained saliency maps by applying
optimal transport (OT) theory to assign local feature maps with class-specific
prompts. Extensive experimental results on eight benchmark datasets demonstrate
that the proposed LICO achieves a significant improvement in generating more
explainable attention maps in conjunction with existing interpretation methods
such as Grad-CAM. Remarkably, LICO improves the classification performance of
existing models without introducing any computational overhead during inference.
Source code is made available at https://github.com/ymLeiFDU/LICO.

1 Introduction

Although deep neural networks (DNNs) have shown excellent performance in many fields, the lack
of interpretability is still a barrier to landing in some high-stakes scenarios such as medical diagnosis,
autonomous driving, etc. Therefore, the literature proposes various interpretation methods for DNNs
and reveals the decision clues of DNNs to some extent.

Popular interpretation methods can be roughly categorized into two types: 1) gradient back-
propagation-based, and 2) class activation mapping (CAM)-based. Both of them mainly take image
classification as the pretext task and then generate explainable noisy gradients and saliency maps,
respectively. As illustrated in Fig. 1(a), CAM-based methods often explore a better weighting scheme
for integrating feature maps of a given input image. The gradient-based methods, in Fig. 1(b), also
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Figure 1: Motivation of LICO. (a) Existing post-hoc CAM-based methods focus on generating better
weighting schemes to obtain weighted-sum attention maps. (b) Gradient-based methods tend to
back-propagate gradients from logits to input space. (c) Proposed LICO incorporates learnable
prompts to enable image features to approximate semantic information in latent space.

start from the output logits while back-propagating gradients to the input space. However, they are
all post-hoc approaches that investigate a DNN pre-trained on a specific dataset [1, 2, 3, 4, 5, 6, 7],
and yield biased interpretations due to the limited semantic information that a set of one-hot labels
can offer. In addition, one-hot labels often trigger overfitting of the pre-trained model so that the
effectiveness of existing interpretation methods could be compromised. On the other hand, the latent
feature space of such pre-trained models is unable to sense real semantic space reflecting crucial
parts in images. Therefore, it may be futile to explore complex post-hoc techniques for interpreting a
pre-trained model.

Inspired by advanced large vision-language models (VLMs) such as CLIP [8], which developed
generalized image and text encoders through training on huge amounts of image-text pairs, in this
paper, we assume that the large VLMs can encode real-world semantic knowledge through contrastive
vision-language alignments, whereas the traditional models pre-trained on relatively small datasets,
such as ImageNet-1k, are inferior in capturing the true semantic information.

Motivation. The DNN-based image classification framework generally consists of a convolutional
neural network (CNN) for feature extraction and a linear layer acting as a classifier. Since feature
representations are used as the input to the classifier, if the DNN is truncated from feature representa-
tions, it becomes a linear classifier that aims to classify feature representations linearly into discrete
one-hot label space. More specifically, the feature representation lies in the learned manifolds of
high-dimensional semantic space [9]. Unfortunately, training using cross-entropy loss with one-hot
labels cannot guarantee that the manifolds of image features can reflect the distribution of real-world
semantic knowledge, which hinders performance improvement of existing interpretation methods.

In this paper, we leverage language information from large VLMs to enhance current interpretation
methods for achieving more explainable saliency maps while enabling promising classification
performance improvements; see Fig. 1(c). First, we propose Language-Image-COnsistent (LICO)
learning to facilitate the alignment between the manifolds of visual features and class-aware language
information. To address the discrete nature of categorical classes, we construct a learnable prompt
for each class and map all prompts into a continuous space using the CLIP text encoder, which
is feasible to align manifolds of both image and text. Second, we impose each prompt token to
correlate with certain feature maps. Considering that the feature maps are redundant to the final
classification decision, we propose to encourage the context tokens to guide certain feature maps
through distribution alignment using optimal transport (OT) theory.

Contributions. We summarize the main contributions of this paper as follows. (i) We propose a
novel framework to enhance current interpretation methods by introducing language guidance from
large VLMs. (ii) We model the discrete categorical class to a continuous space by constructing
class-aware learnable prompts, hence, enabling consistent manifold matching between image features
and text features. (iii) To ensure consistent local feature alignment, we utilize OT theory to reduce
the distance between distributions of image and text. (iv) Extensive experimental results on eight
classification datasets demonstrate the superiority of the proposed LICO against current interpretation
methods in terms of quantitative and qualitative results. For practical applications, LICO does not
introduce any computational overhead during inference while maintaining improved performance.
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Figure 2: Framework of the proposed LICO. (a) Conventional classification pipeline of DNNs. (b)
Language feature extraction with pre-trained text encoder. (c) Manifold matching among samples
and optimal transport alignment between feature maps and prompt tokens within each sample.

2 Related Work

Interpretation methods. Class activation mapping (CAM) is a simple approach to generating
class-aware saliency maps for CNNs [1]. Inspired by CAM’s effectiveness, its variants including
Grad-CAM [2], Grad-CAM++ [3], Score-CAM [4], RISE [10], and Group-CAM [5], were proposed
to enhance the precision and interpretability of CNNs. Gradient-based methods such as Guided
Back-propatation [11], SmoothGrad [7], and Integrated Gradient (IG) [6] compute the gradients
from output logits back to input space. However, they are prone to yielding attribution noise that
is inconsistent with human intuition. Some advanced techniques have been developed to reduce
attribution noise by utilizing improved path integration theory, such as adaptive path method [12]
and important direction method [13]. Distinct from existing interpretation methods that focused on
the post-processing of feature map weighting scheme and accurate gradients calculation based on a
pre-trained model, our LICO aims to incorporate class-aware learnable prompts that reflect real-world
semantic knowledge to guide latent image features. It is worth noting that LICO is compatible with
current methods and can consistently improve their performance.

Prompt learning. Prompt learning stems from natural language processing (NLP), enabling large
language models to directly model the prediction probability of raw text [14, 15, 16]. Following
the proliferation of large VLMs, prompt learning began to surface in the realm of computer vision,
significantly enhancing multi-modal tasks and text-guided image generation. To overcome the
limitations of learning with fixed prompts used in CLIP, learnable prompts have been explored to
provide more generalized performance on downstream tasks. CoOp firstly proposed a framework
that constructs learnable prompts to align image and text in latent space [17]. Furthermore, to enable
CoOp with a stronger capability to perceive the knowledge of new classes, the authors proposed
CoCoOp in which the prompts are learned conditioned on image features [18]. PLOT correlated one
given image with multiple prompts of its class by optimal transport, leading different prompts to
reflect features with respect to different regions within this image [19]. In our LICO, we propose that
learnable prompt tokens in one sentence should be registered to certain parts of an image, as shown
in Fig. 1(c).

Optimal transport. Optimal transport (OT) is a typical metric for measuring discrepancy be-
tween two distributions, requiring solving a linear programming problem [20, 21]. Thanks to
some fast alternatives, OT has been widely utilized in deep learning, including graph cross-domain
alignment [22, 23], domain adaptation [24, 25, 26], optimal graph matching for vessel image registra-
tion [27], and multi-modal distribution alignment [28, 29]. Although KL-divergence can effectively
measure the cost of which the predicted distribution approximates ground-truth distribution, given
the normalized image and text distributions, it is intractable to guarantee they share a common metric
space. Therefore, we propose to utilize OT to tackle fine-grained cross-modal alignment.
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3 Methodology

3.1 Overview of LICO

Fig. 2 presents the overview of LICO framework. Given a mini-batch of B training samples
{(xi, yi, ti)}Bi=1, the input image xi is of size H ×W × C, where C is the number of channels,
H and W are height and width, respectively. yi ∈ C denotes the class label, and ti represents the
text of corresponding label yi. We denote the pre-trained CLIP text encoder as gϕ while we fixed
its parameters ϕ during training. The image encoder is denoted as fθ that is to be optimized. The
image encoder takes xi as input and outputs feature maps Fi with N channels. Note that Fi is
a tensor, which is then flattened to one-dimension for each channel; i.e., Fi ∈ RN×d′ . For the
language modeling branch, the text encoder gϕ takes as input the constructed learnable prompt:
ti = [X1, X2, . . . , XM−1, ti], where [. . .] denotes the concatenation, ti is the text corresponding to
label of the i-th sample, Xm are learnable context tokens, and M − 1 is the number of context tokens.
Through the pre-trained text encoder, the prompt vector ti is mapped into a continuous d-dimension
space; i.e., d = 512 in CLIP.

In order to measure the distances between image and language features in latent space, we append a
mapping net hψ , a multilayer perceptron (MLP) with only one hidden layer, to map the d-dimension
language features ti ∈ RM×d to the space of d′-dimension, i.e.,Gi ∈ RM×d′ , which is the same as
that of image features Fi. The structure of hψ varies along different image encoders. We use hψ[a, b]
to describe its structure, i.e., numbers of hidden units and output units are a and b, respectively. Note
that in this paper, we do not intend to modify the structure of the existing image and text encoders so
that we can obtain the feature maps and corresponding attention maps that are comparable to existing
methods. Consequently, we utilize Fi andGi to preserve the language-image-consistent structure in
latent space using manifold matching (Section 3.2) and fine-grained feature-language alignment by
optimal transport (Section 3.3).

3.2 Language-Image Manifold Matching

To preserve the global manifold structure in latent space, we first measure the relationships, i.e. the
distances or similarities, among training images and corresponding class-aware prompts.

Although the class categories are discretely distributed that it is infeasible to capture their manifold,
we can map them into a continuous space by constructing a prompt vector for each class, then
mapping it to a latent space using a pre-trained text encoder. Therefore, we can enforce the image
manifold [30] to approximate the language manifold.

In practice, we align the adjacent matrices of language and image features. Specifically, the language
adjacent matrix is denoted asAG

B×B , and that of image isAF
B×B :

AF
i,j =

exp(−D(Fi,Fj)/τ)∑B
s=1 exp(−D(Fi,Fs)/τ)

, AG
i,j =

exp(−D(Gi,Gj)/τ)∑B
s=1 exp(−D(Gi,Gs)/τ)

, (1)

where D(·, ·) calculates the distance between two images or two prompts, such as Euclidean distance,
τ is the temperature to be learned during training. Then, each image is formulated as a distribution
AF
i,: where each dimension denotes the distance from the i-th sample to others within a mini-batch.

Similar to the class-wise prompts,AG
i,: implies the relationships between the class prompt of the i-th

sample and those of others.

Recall our assumption that the large amounts of image-text pairs used in large VLMs, such as CLIP,
can lead to a generalized text encoder that well establishes a real-world semantic space. Therefore, for
certain downstream tasks and datasets, we aim to introduce the knowledge of this semantic space to
the latent space of the target image domain. Then, we propose a manifold matching loss LMM, which
enables the manifold of image features to approach that of prompt features using KL-divergence:

LMM =
1

B

∑B

i=1
KL[AG

i,:∥AF
i,:]. (2)

We note that we do not consider the inverse version KL[AF
i,:∥AG

i,:] since LICO focuses on enabling
image manifold to approach the manifold of language prompts.
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3.3 Feature Distribution Alignment by Optimal Transport

While we strive for a coarse alignment of the global manifold structure, it is crucial to establish a
correlation between prompt tokens and specific feature maps for each sample, which aids in mitigating
the influence of redundant features on the generation of attention maps. Most importantly, the critical
feature maps that are most related to the target class should possess the highest similarity with respect
to the class token.

Unfortunately, it is challenging to determine or assign which of the N feature maps are correlated with
certain prompt tokens. In this paper, we propose to alignGi = [g1, g2, . . . , gM−1, gti ]

⊤ ∈ RM×d′

and Fi = [f1,f2, . . . ,fN ]⊤ ∈ RN×d′ for achieving consistency between feature maps and specific
prompt tokens. In other words, different words in a sentence should correspond to parts of an image,
and in contrast, partial regions in an image reflect the semantic information delivered by certain
tokens. Therefore, it is intractable to measure this distance using KL-divergence since it is not a strict
metric, i.e., it does not satisfy the property of triangle inequality. In LICO, we use optimal transport,
which is widely used in measuring distances of two distributions, to align distributions of normalized
visual features and prompt features.

For the given image feature maps Fi ∈ RN×d′ and a prompt tokensGi ∈ RM×d′ , we construct two
discrete distributions:

µ =
∑N

n=1
unδfn , v =

∑M

m=1
vmδgm , (3)

where δfn is a Dirac function centered at fn, so as to δgm , and the weights u = {un}Nn=1 ∈ ∆N and
v = {vm}Mm=1 ∈ ∆M , ∆ denotes the N - and M -dimensional probability simplex, i.e.,

∑N
n=1 un =

1,
∑M
m=1 vm = 1. Finally, the discrete OT distance for one sample is defined as follows:

DOT(µ,v) = inf
π∈Π(µ,v)

E(µ,v)∼π[C(f , g)] = min
T∈Π(µ,v)

N∑
n=1

M∑
m=1

Tn,m · c(fn, gm), (4)

s.t. T1m = µ, T1n = v,

whereC ∈ RN×M represents the cost matrix in which each element c(fn, gm) denotes transportation
cost between fn and gm. T ∈ RN×M is the transport plan that is to be optimized and Π(µ,v)
denotes the transportation polytope that contains all joint probabilities of µ and v. In practice,
solving the optimization problem in Eq. (4) often equips with a high computation cost. Thus we use
the Sinkhorn algorithm, which is more computationally amenable, to solve an entropy-constrained
problem [31]:

DOT(µ,v) = min
T∈Π(µ,v)

N∑
n=1

M∑
m=1

Tn,m · c(fn, gm)− λH(T ), s.t. T1m = µ, T1n = v, (5)

where λ is Lagrange multiplier and H(T ) =
∑
n,m Tn,mlogTn,m. Then after a few iterations, we

obtain the optimal solutions:
T ∗ = diag(µt)exp(−C/λ)diag(vt), (6)

where t is the iteration step. µt and vt are updated according to following rules:

µt = µ/(exp(−C/λ)vt−1), vt = v/(exp(−C/λ)⊤µt). (7)

Dynamic context (DC). To endow each image with diverse prompt tokens, we shuffle the learnable
context tokens in each training iteration referring to the training procedure in Algorithm 1.

3.4 Final Objective Function

The final training loss function is as follows:
L = LCE + αLMM + βLOT, (8)

where LCE is the cross-entropy loss, LOT = 1
B

∑B
i=1 DOT, α and β are hyperparameters for adjusting

different terms. During the inference phase, we apply the trained image encoder and classifier to
conduct conventional classification that yields the predicted probability of a given input image. Note
that the text encoder and the MLP mapping do not affect the inference procedure. The detailed
algorithm can be found in Algorithm 1.
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Algorithm 1 Training Algorithm of LICO.
Require: Training set S, total epochs U , image encoder fθ, text encoder gϕ, MLP hψ, learnable

prompts ti = [X1, X2, . . . , . . . , XM−1, ti].
Return: Image encoder with optimal parameter θ∗.

1: for u = 1 to U do
2: Sample a mini-batch of ({xi, ti, yi}Bi=1) from S.
3: Randomly shuffling Xm and ti. ▷ Dynamic context
4: Fi = fθ(xi),Gi = hψ(gϕ(ti)). ▷ Image and text features
5: CalculateAG

B×B ,AF
B×B ▷ Adjacient matrices

6: Calculate LMM according to Eq. (2). ▷ Coarse alignment by manifold
7: Optimal transport plan T ∗ by Eq. (6), then calculate LOT. ▷ Fine-grained alignment by OT
8: Classifier←− Fi
9: Total loss: L = LCE + αLMM + βLOT, update θ, ψ, and Xm by gradients: ∂L∂θ , ∂L∂ψ , ∂L

∂X .
10: end for

4 Experiments

4.1 Datasets

This paper focuses on image classification task and evaluates the proposed LICO on well-known
datasets, including ImageNet-1k [32], CIFAR-10/100 [33], and SVHN [34]. We conduct the classifi-
cation experiments under the setting of limited training data in which the splits of labeled data follow
the previous works for fair comparison [35, 36]. Furthermore, we conduct fine-grained classification
on typical benchmarks, including CUB-200 [37], FGVC-Aircraft [38], Stanford Cars-196 [39], VGG
Flowers [40]. The evaluation is carried out on both the full dataset and few-shot settings, following
the procedure of CGC [41].

4.2 Implementation Details

We employ the ViT-B/32 trained by CLIP [8] as the text encoder and its parameters are fixed during
training. The output dimension of this text encoder is 512 for each token. The image encoders in
our experiments vary along different datasets and training settings. Specifically, for the ImageNet
experiments, we utilize ResNet-50 as the image classifier [42]. In doing so, the convolutional layers
preceding the final linear layer constitute the image encoder of LICO. For the CIFAR-10/100 and
SVHN, we follow the experimental settings in [35, 36], the classification network is Wide ResNet
(WRN) [43]. We further conduct the same experiments using another network, the PreAct-ResNet-18
(PARN-18) [44]. For fine-grained classifications on CUB-200, Standford-Cars, Aircraft, and VGG
Flowers datasets, we applied the same settings used in CGC for fair comparison [41], where the
image encoder is also the ResNet-50 that has been pre-trained on ImageNet-1k with CE loss. Note
that for all the experiments of LICO, we only use the trained image encoder and the classifier during
the inference phase. The text encoder, learnable prompt contexts, and MLP mapping net are dropped,
thus, will not compromise the computational efficiency. Hyperparameters α and β are set as 10 and
1, respectively.

All the experiments are implemented by PyTorch [45]. The learning rates for ImageNet, CIFAR-
10/100, and SVHN are of 0.03 with a consine rate decay schedule, i.e., η = η0 cos(

7πk
16K ), where η0

denotes the initial learning rate and k is the index of training step [46]. We use a standard stochastic
gradient descent (SGD) optimizer with a momentum of 0.9 [47, 48], and the weight decay is 0.0001.
The training batch sizes are 128 and 64 for ImageNet and other datasets, respectively. Specifically,
the mapping net for ResNet-50 is hψ[512, 49], hψ[512, 64] for WRN, and hψ[512, 49] for PARN-18.
The total training epoch is 90 for ImageNet and 200 for others. The experiments were trained on four
NVIDIA A100 GPUs for ImageNet-1k and one GPU for other datasets.

4.3 Comparison of Interpretation Capability

In this experiment, we compare interpretation results of popular methods, including Grad-CAM [2],
Grad-CAM++ [3], RISE [10], Score-CAM [4], Group-CAM [5], and CGC [41]. Note that LICO is
compatible with these post-hoc interpretation methods so that in our experiments, we compare the
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Figure 3: Saliency maps (Left) and Insertion/Deletion curves (Right) on ImageNet-1k validation set.

saliency maps obtained by these interpretation methods using baseline ImageNet pre-trained model
and LICO trained counterparts of the same architectures.

Qualitative results. Qualitatively, we compare the saliency maps obtained by different interpreta-
tion methods in Fig. 3 (Left). We can see that for single object images, LICO can effectively help
baseline methods cover more comprehensive and discriminative regions, e.g., the head and fur of a
bird. However, the baseline methods are inferior in capturing all the objects in the multi-object image.
Please refer to Appendix A for more results of multi-class and multi-object cases.

Table 1: Quantitative comparisons of different interpretation methods on ImageNet in terms of
Insertion and Deletion. We report the results: “Baseline/+LICO”. Overall = Insertion−Deletion.

Method Grad-CAM++ Grad-CAM RISE Score-CAM Group-CAM CGC

Insertion↑ 50.0/51.2 53.5/57.1 54.0/54.9 55.1/55.6 56.8/55.2 52.2/55.4
Deletion↓ 14.8/11.7 13.3/15.1 11.7/10.8 11.5/11.2 12.3/10.5 -/15.8
Overall↑ 35.2/39.5 40.2/42.0 43.6/44.1 42.3/44.4 44.5/44.7 -/39.6

Quantitative results. To achieve quantitative evaluation, we follow [10, 4, 5] to conduct Insertion
and Deletion tests. Insertion gradually introduces class-related regions (3.6% pixels) of an original
image to a blurred image according to the values of the saliency map. This process is repeated until
the blurred image is fully recovered. In contrast, Deletion aims to replace related pixels (3.6%) in a
blurred image with those of the corresponding original image. In Table 1, we provide the AUC of
the classification score after Softmax. For most of the interpretation methods, LICO consistently
improves the Insertion and Deletion values. Although the insertion value of Group-CAM and deletion
value of Grad-CAM is better than LICO, the LICO still achieves the best overall values. We also
report the quantitative results of corresponding cases with different interpretation methods in Fig. 3
(Right). Please refer to Appendix B for the experiment of Pointing Game [5].

Sanity checks. Sanity check for saliency maps was first proposed in [49], which is a qualitative test
aiming at evaluating whether the saliency maps are sensitive to model parameters. We conducted two
types of test: cascading randomization from top to bottom layers and independent randomizing of
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Figure 4: Sanity checks evaluated using ImageNet pre-trained VGG-19 and LICO trained version.
Each column represents saliency maps after randomizing corresponding layers following two ran-
domization schemes: (a) cascading randomization from top to bottom layers, and (b) independent
randomization of different layers.

different layers. In this experiment, Score-CAM is selected as the baseline method, and the backbone
network is VGG-19. In Fig. 4, we can see that Score-CAM is sensitive to the model parameters,
and the saliency maps obtained by LICO-trained model also pass these two tests. From Fig. 4(a)
we can see that the saliency maps of LICO are more sensitive to model parameters along cascaded
randomization, e.g., from Logit to Conv34, then to Conv32.

4.4 Classification Performance

In addition to interpretation comparison, we compare the classification performance on various
datasets since LICO can act as a regularization for enhancing image classifier. According to previous
studies [1, 41, 50], a good interpretation method often sacrifices the discriminative ability, i.e., lower
classification accuracy than baselines. As shown in Table 2, we compare non-post-hoc methods
GCC [50] and CGC [41] with our LICO. Despite their emphasis on interpretation ability, both
GCC and CGC experience performance degradation compared to the CE loss pre-trained model.

Table 2: Classification accuracy (%)
on ImageNet using ResNet.

Method Top-1 Top-5

ResNet-50 76.13 92.91
+GCC [50] 74.40 92.12
+CGC [41] 74.60 92.24
+LICO 76.27 92.99

ResNet-18 69.76 89.08
+GCC [50] 67.74 88.52
+CGC [41] 66.37 88.27
+LICO 69.83 89.21

In contrast, LICO surpasses the baseline model and achieves
the highest Top-1 and Top-5 accuracy values, a notable advan-
tage not shared by previous interpretation methods. Although
LICO introduces relatively few amounts of training parameters,
i.e., MLP hψ and prompt tokens Xm, which is trivial to the
enhancement of both interpretation and classification perfor-
mance. Furthermore, it does not affect model architectures and
introduces any computational overhead at the inference phase.
Please refer to Appendices C and D for further evaluation of
LICO using ViTs and the potential in regularizing semantic
space obtained by t-SNE, respectively.

Training with limited data. In Table 3, we evaluate the
performance of LICO with limited training data. Following [36, 35], we conduct experiments on
CIFAR-10/100 and SVHN with different label amounts. Note that we only use limited labeled data
for training and do not focus on whether LICO is useful under a semi-supervised setting. Across all
the limited training settings, LICO consistently improves both PARN18 and WRN baselines. Notably,
in the full training setting, LICO exhibits the largest improvement on CIFAR-100, which is attributed
to the effectiveness of prompt guidance introduced by manifold of larger amounts of classes.

Table 3: Classification accuracies (%) on CIFAR-10/100 and SVHN datasets using different amounts
of labels. “Full” means training with all labeled data.

Dataset CIFAR-10 CIFAR-100 SVHN
Labels 40 250 4000 400 2500 10000 40 1000
PARN18 22.9±0.23 32.9±0.42 77.5±0.63 5.2±0.07 23.7±0.17 54.9±0.14 14.7±0.27 56.2±0.21

+LICO 23.7±0.12 36.1±0.61 80.1±0.05 5.8±0.14 21.4±0.48 56.5±0.67 16.0±0.19 59.5±0.41

WRN 23.4±0.92 36.9±1.08 80.8±0.07 8.6±0.17 32.3±0.66 60.7±0.24 15.9±0.23 58.9±0.22
+LICO 24.9±0.42 41.7±0.91 81.5±0.43 10.7±0.51 35.5±0.40 62.0±0.48 17.4±0.34 63.7±0.34

WRNFull 95.6±0.12 80.9±0.18 97.9±0.02
+LICO 95.8±0.08 82.2±0.02 98.3±0.06
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Table 4: Fine-grained classification accuracy under full and few-shot settings.

Method 1-shot 5-shot 10-shot Full 1-shot 5-shot 10-shot Full
CUB-200 Standford-Cars

Baseline 13.7±0.3 51.7±0.3 66.4±0.2 80.1±0.9 6.1±0.2 34.3±0.4 61.1±0.4 89.7±0.1
+CGC [41] 15.8±0.3 55.2±0.3 68.4±0.3 81.5±0.1 6.5±0.2 36.5±0.4 63.0±0.4 90.3±0.1
+LICO 16.9±0.2 55.8±0.4 68.4±0.2 82.7±0.3 7.1±0.3 37.2±0.5 64.4±0.4 91.5±0.2

Aircraft VGG Flowers
Baseline 7.7±0.3 25.7±0.4 41.4±0.3 83.7±0.2 52.1±0.5 85.6±0.4 93.2±0.2 96.1±0.2

+CGC [41] 8.0±0.3 26.9±0.4 42.9±0.3 85.7±0.2 53.3±0.5 85.8±0.4 93.4±0.2 96.2±0.2
+LICO 8.4±0.4 27.5±0.2 43.1±0.4 85.6±0.2 55.6±0.4 86.2±0.3 93.4±0.4 96.8±0.3

Fine-Grained classification. Furthermore, we evaluate LICO on a fine-grained classification prob-
lem that requires the model to capture fine-grained features. In Table 4, except for the Aircraft, LICO
enhances classification performance under all settings compared with CGC. This observation high-
lights that contrastive learning among attention maps used in CGC primarily emphasizes similarities
between target images and other random/augmented images, while disregarding the measurement
of semantic distinctions. For the Aircraft dataset, it is difficult for LICO to achieve significant
improvements due to the categorical labels are types of aircraft, e.g., the numerical symbols such
as 727-200 which are challenging for CLIP text encoder to achieve meaningful embedding, and
CLIP has demonstrated relatively lower accuracy on some out of distribution data like aircraft
and satellite [8]. To address the challenges, we incorporate prior text knowledge by constructing
initial prompts as “a type of aircraft”, which allows LICO to improve performance in the few-shot
settings while achieving comparable results to CGC under the full setting. This strategy has also been
verified in CoCoOp [18].

4.5 Ablation Study Table 5: Ablation on LMM and LOT.
LCE LMM LOT Top-1 Top-5 Insert. Delet.

" 76.13 92.91 53.5 13.3
" " 75.98 92.92 56.6 16.0
" " 76.18 92.90 56.9 15.5
" " " 76.27 92.99 57.1 15.1

Ablation on manifold matching and
OT alignment. In Table 5, we inves-
tigate the effectiveness of LMM and LOT.
We can see that only using LOT obtains
more performance drop than that of LMM.
This indicates that the global consistency of manifolds guarantees the basic performance, and OT
only focuses on local feature alignments so that it cannot be sensitive to relationships between intra-
and inter-class samples.

Ablation on number of context tokens. In Table 6, we evaluate the performances influenced by
different numbers of learnable tokens. We find that 12 is the best choice in our experiments, and the
settings of 16 and 20 are relatively better than those of 4 and 8.

Ablation on distance function D in Eq. (1). In Table 7, we compare the similarity functions used
in manifold matching, which measures distances among samples within a mini-batch. We can see
that the Euclidean distance is more suitable to our LICO.

Table 6: Ablation on no. of context tokens.

no. Top-1 Top-5 Insertion Deletion

0 75.64 91.92 54.1 17.8
4 76.03 92.74 55.2 17.5
8 76.09 92.89 56.3 16.0

12 76.27 92.99 57.1 15.1
16 76.21 92.87 57.0 15.8
20 76.14 92.93 56.9 15.5

Table 7: Ablation on distance function.

Dataset Euclidean Cosine

CIFAR-10 95.78±0.08 95.46±0.12
CIFAR-100 82.22±0.02 81.85±0.05
SVHN 98.25±0.06 98.21±0.06
CUB-200 82.70±0.30 82.10±0.30
Flowers 96.80±0.30 96.20±0.40

Please refer to Appendices E, F, and G for more ablation studies on DC, effects of different type of
text encoders, and frozen parameters of prompts, respectively.
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5 Conclusion

In this paper, we proposed LICO to enhance existing visual interpretation methods by incorporating
language information, which is compatible with these methods. The LICO aligns image and prompt
embeddings globally using manifold matching, simultaneously aligns feature maps with correspond-
ing learnable context tokens by applying optimal transport alignment. Extensive experiments on
evaluating interpretation capability and classification performance exhibit both quantitative and quali-
tative enhancement introduced by LICO. A key limitation of LICO is that it depends on a trainable
MLP to project language embeddings into a metric space of same dimension with that of image
features, where the output dimension of such MLPs varies according to different image encoders.

Broader Impacts LICO explores effective visual interpretations of DNNs by introducing language
knowledge, which is orthogonal to existing post-hoc interpretation methods. An important merit
of LICO is to enhance interpretability while achieving competitive or even better classification
performance, applicable to various kinds of tasks and models effectively.
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Appendix

A More Results of Saliency Maps

LICO localizes more discriminative local features. Fig. 5 provides more saliency maps, showing
that LICO is able to localize fine local features of target objects, e.g., the foot and head in Fig. 5(c).
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Figure 5: More samples on ImageNet-1k. For each image, we provide saliency maps of different
methods and Insertion/Deletion curves. LICO helps localize fine local features.

More comprehensive locations yield lower metrics. Here, we provide some failure cases obtained
by our LICO, where the saliency maps of LICO exhibit more comprehensive locations on target
objects while resulting in lower AUC values of Insertion and higher AUC values of Deletion compared
with baseline methods.

For the cases with multiple target objects in Fig. 6, LICO localizes different objects separately
and comprehensively, which demonstrates the consistency between language knowledge and visual
features established by our LICO. However, LICO obtains inferior Insertion/Deletion evaluations,
which is paradoxical to human cognition. We conjecture that the main reason is attributed to the fixed
text encoder, which is not specifically optimized for target tasks, i.e., the images with a single object
occupy a higher percentage of the dataset such as ImageNet-1k. Therefore, the located multiple
objects may be harmful to saliency maps-guide pixel-level insertion and deletion strategies.

In Fig. 7, we provide some examples that contain multi-class objects in one image, and for the target
classes, LICO obtains more accurate localizations. In Fig. 8, we verified the effectiveness of LICO
on capturing more objects of sinlge class within one image, and we can see that LICO captures more
comprehensive objects than those without LICO.

B Pointing Game

To verify the localization ability of LICO, we conducted the pointing game on MS COCO 2017
validation set for localization evaluation. Following settings in Score-CAM and Group-CAM, we
quantified localization by calculating Hits

Hits+Misses , assessing if salient pixels fall within the annotated
bounding boxes. Table 8 shows that LICO consistently improves all the baseline interpretation
methods, indicating the effectiveness of regularization by the proposed manifold OT losses.
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Figure 6: Saliency maps of failure cases with multiple target objects on ImageNet-1k. For each
image, we provide saliency maps of different methods and Insertion/Deletion curves.
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Figure 7: Saliency maps of multi-class cases.

C Evaluation on ViT

We further trained a ViT-Base-16 network on ImageNet-1k dataset and presented the corresponding
accuracy, insertion, and deletion in Table 9. We calculated the LMM and LOT between language tokens
and representations of patch tokens and class tokens. For attention maps, we applied Grad-CAM in
LICO-trained ViT-Base-16 by calculating gradients from outputs to the last attention layer of the
class token. Table 9 further confirms that the transformer model with LICO not only performs better
in classification but also gains better interpretability than the one without LICO, which is in line with
the finding for the CNN-based backbone.

D t-SNE Visualization of Latent Features

We further explore how LICO can regularize the latent space. In Fig. 9, we provide the t-SNE
visualization of learned visual features on CIFAR-10 and SVHN. In Fig. 9(a), our LICO enables
different classes with similar distribution shapes. Interestingly, if we roughly categorize the ten
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Table 8: Pointing game evaluation on MS COCO 2017 val set.

LICO Grad-CAM Grad-CAM++ RISE XRAI Score-CAM Group-CAM

% 56.7±0.225 57.2±0.227 54.3±0.205 55.1±0.232 51.0±0.211 57.5±0.202

" 56.9±0.221 58.1±0.215 55.2±0.201 56.7±0.229 52.5±0.205 58.2±0.197

classes of CIFAR-10 into two classes, i.e., “animal” and “vehicle”, our LICO can almost linearly
classify these two classes, whereas the baseline obtains non-linear classification boundary (dashed
lines). In Fig. 9(b), LICO makes the latent space exhibit an manifold structure with respect to
semantically ordinal classes such as from “1” to “4”, and some semantically closer classes are also
closer in latent space such as “9” and “‘10”. However, the baseline method is unable to capture the
underlying manifold structure and we can see obviously that “7” is far away from “5”, “6”, and “8”,
so as to “9” and “10”, which should be closer in nature. In Figs. 9(c) and (d), LICO also shows more
discriminant results under limited training data.
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Figure 9: t-SNE results obtained by the models with and without our LICO. (a) and (b) are results of
full setting on CIFAR-10 and SVHN, respectively. (c) and (d) show the results under the setting of
limited training data.
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Table 9: Evaluation on ImageNet-1k using ViT-Base-16.

Model Accuracy Insertion Deletion

ViT-Base-16 w/o LICO 77.9 55.2 14.4
ViT-Base-16 w/ LICO 78.2 56.0 13.8

Table 10: Ablation on DC.

DC ImageNet CIFAR-10 CIFAR-100 SVHN

% 76.22 95.45±0.09 81.3±0.05 98.1±0.10

" 76.27 95.80±0.08 82.2±0.02 98.3±0.06

E Ablation Studies

Ablation on dynamic context (DC). In the training algorithm of LICO, we designed a dynamic
context (DC) for learnable context. We provide some results on ablation of DC in Tables 10 and 11.
We can see that, for most of datasets we evaluated, DC consistently improves the classification
performance. For few-shot settings in Table 11, DC obtains slight performance improvements, which
is attributed to few samples of each class. That is to say, there are insufficient visual feature variety to
endow context vectors with various information.

Table 11: Ablation on DC on four fine-grained datasets.

CUB-200 Standford-Cars
DC 1-shot 5-shot 10-shot Full 1-shot 5-shot 10-shot Full

% 16.9±0.2 55.8±0.4 68.2±0.2 82.5±0.3 7.0±0.3 37.1±0.5 64.1±0.4 90.3±0.2

" 16.9±0.2 55.8±0.4 68.4±0.2 82.7±0.3 7.1±0.3 37.2±0.5 64.4±0.4 91.5±0.2

Aircraft VGG Flowers
DC 1-shot 5-shot 10-shot Full 1-shot 5-shot 10-shot Full

% 8.0±0.3 27.4±0.3 42.8±0.2 85.6±0.3 55.3±0.4 85.7±0.4 92.7±0.2 96.2±0.4

" 8.4±0.4 27.5±0.2 43.1±0.4 85.6±0.2 55.6±0.4 86.2±0.3 93.4±0.4 96.8±0.3

Variation of KL-divergence values between prompts and visual features f(θ). Here, we provide
curves of KL-divergence with and without LICO. The KL values obtained by baseline w/o LICO are
calculated between CE-trained visual features and fixed CLIP pre-trained vectors, and those obtained
by w/ LICO are calculated between visual features and prompts learned by LICO. In Fig. 10, we can
see that LICO enables stable descent of KL values, and this indicates that the LICO learned visual
features indeed approach the learned language prompts. However, the values obtained by baseline
without LICO fluctuate to some extent and cannot decrease further, which is attributed to the domain
gap between CLIP pre-trained data and target CIFAR-10. In other words, without manifold matching,
it is difficult to enable downstream visual features to be aligned with CLIP pre-trained language
knowledge.

F Different Text Encoders

Both Word2Vec (W2V) and BERT can replace the CLIP text encoder in our LICO framework.
However, they may be inferior in acting as language guidance in LICO: (1) CLIP text encoder was
trained with huge amounts of image-text pairs, and the advanced architecture ViT-B/32 has stronger
representation ability than W2V; (2) Even though BERT excels at representing language data, latent
representation of BERT may not align with target image representations well; (3) Recent studies on
prompt learning like CoCoOp has demonstrated the effectiveness of CLIP pre-trained text encoders
for downstream tasks.

In Table 12, we conducted the experiments using W2V as a text encoder, mapping texts into 512-D.
W2V: using fixed word embeddings and no context tokens for OT loss. W2V-P: replacing class
tokens in the prompts, the context tokens are randomly initialized as Gaussian. We can see that W2V
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Figure 10: Variation of KL-divergence value w/ and w/o LICO on CIFAR-10 test set.

performed comparably to the None encoder baseline. W2V-P also fails, where the fixed random
context tokens mislead the image features. In contrast, the CLIP outperforms both of them. The fixed
W2V embedding vectors struggled to correlate well with target image features. Moreover, BERT
surpassed W2V and W2V-P due to the generalizability of a stronger pre-trained model. However,
BERT still cannot achieve better performances than CLIP. Furthermore, BERT-ALIGN performs
competitively and even better than CLIP, which is attributed to its larger training set with more noisy
image-text pairs. Consequently, from the results in Table 12 and this paper, we conclude that LICO
works better with those vision-language pre-trained text encoders. Pure text encoders like W2V, even
the pre-trained BERT with frozen parameters, are inferior in image-text alignment in LICO because
the pre-trained parameters are not sensitive to visual features. This deficiency may be addressed by
utilizing some transfer learning and domain adaptation tricks.

Table 12: Comparison of different text encoders on CIFAR-10.

Encoder CLIP W2V W2V-P BERT BERT-ALIGN None

Full 95.8 95.6 94.9 95.7 95.8 95.6
4000 81.5 81.0 80.2 81.3 81.7 80.9

G Frozen Parameters of Prompts

To evaluate the model performance with frozen parameters, we then conducted experiments on
CIFAR-10 and ImageNet under two settings of frozen parameters: (1) frozen random initialization
(Random) and (2) fixed form of ‘a photo of a [CLS]’ (Fixed). The insertion and deletion values are
obtained by Grad-CAM + LICO.

In Table 13, we can see that the frozen random parameters cannot enable the models to achieve
higher performances of accuracy, insertion, and deletion; the reason is that the well-trained CLIP text
encoder is capable of sensing the human-understandable phrases and sentences while the random
prompts lead to the difficulty in image-text alignment and yield inaccurate semantic representations.
However, the form of ‘a photo of a [CLS]’ performs better than frozen random parameters because
this meaningful prompt is more consistent with the input of the original CLIP so that the generated
representations can be easily aligned with image representations.

Table 13: Evaluations on frozen parameters of prompts. “Acc.” is short for “Accuracy”.

ImageNet Top-1↑ Insertion↑ Deletion↓ CIFAR-10 Full, Acc. 4000, Acc.

Random 75.88 53.3 17.8 Random 94.9 79.5
Fixed 76.20 55.2 17.4 Fixed 95.4 80.7
Learnable (ours) 76.27 57.1 15.1 Learnable (ours) 95.8 81.5
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