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ABSTRACT

A negative sampling (NS) loss function is widely used in various tasks because
we can choose an appropriate noise distribution considering properties for a tar-
geting task. In particular, since the NS loss function does not have a normalization
term, it is useful for classification problems with a large number of labels to be
considered, such as knowledge graph embedding in terms of computational effi-
ciency. On the other hand, properties of the NS loss function that are considered
important for learning, such as the relationship between the noise distribution and
the number of negative samples, have not been investigated theoretically. By an-
alyzing the gradient of the NS loss function, we show that the NS loss function
is non-convex and has a partial convex domain. We investigated the conditions of
noise distribution and the number of samples required for efficient learning under
this property. As a result, we found that the NS loss function behaves as a con-
vex loss function when our induced conditions are satisfied and combined with
a scoring method that handles only non-negative values, which enables efficient
learning. Experimental results in FB15k-237, WN18RR, and YAGO3-10 showed
that NS loss satisfying the conditions we proposed can improve the performance
of KG completion by utilizing TransE and RotatE, which are non-negative scoring
methods.

1 INTRODUCTION

A negative sampling (NS) loss function (Mikolov et al., 2013) has been used in various tasks due to
its computational efficiency. Typical cases are learning of word vectors (Mikolov et al., 2013; Bo-
janowski et al., 2017) and pretrained language models (Clark et al., 2020b;a) in the natural language
processing field, but in recent years, it has been used especially in knowledge graph embedding
(Trouillon et al., 2016). A Knowledge Graph (KG) is a graph that describes the relationships be-
tween entities by using the entities as nodes and the edges linking the nodes as relations between
entities. Since KGs explicitly represent knowledge, they are widely used to solve tasks requiring
prior knowledge, especially in natural language processing. Knowledge graph embedding (KGE)
(Bordes et al., 2011) is a method to complement this knowledge graph by predicting the edges that
are missing between entities. Learning scoring for a knowledge graph describing entities and their
relations is equivalent to solving a multiclass classification problem over all possible edges. This
means that to learn the combination of entities and relations in the knowledge graph, we need a
loss function that can handle a large number of labels. Unlike the softmax cross-entropy (SCE)
loss function, the NS loss function does not have a normalization term. The difference makes NS
loss an efficient learning method for embedding knowledge graphs considering a large number of
combinations of entities and relations in them.

On the other hand, the current evaluation in KGE is a simplified problem where, given an entity
and a relation, the model just predicts the corresponding entity. In this setting, the loss function can
train the model sufficiently if it can only handle entities as classes. For this reason, not only the
NS loss but also the SCE loss function is widely used in the current KGE as well. Thus, there is a
situation where we can select from multiple loss functions in the current KGE. In such a situation, it
is very important to know which loss function contributes to performance improvement. However,
the effectiveness of the loss function has not been studied for a long time in KGE. This is because
the performance of the trained model depends not only on the loss function but also on the scoring
method.
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In recent years, several studies, mainly in KGE, have investigated how the NS loss and SCE loss
work well with different scoring methods. Ruffinelli et al. (2020); Ali et al. (2020) present a combi-
nation of the loss function and score function that improves performance by performing large-scale
hyperparameter tuning against the combination of the scoring method, loss function, and other fac-
tors. The combinations they searched empirically show that choosing an appropriate loss function
depends on the selected score function. Kamigaito & Hayashi (2021) investigate the relationship
between the NS loss and SCE loss functions from a theoretical aspect. They showed that excluding
the case of scoring methods that handle only non-negative values such as TransE (Wang et al., 2014)
and RotatE (Sun et al., 2019), the SCE loss performs better than the NS loss.

Given the results obtained by the above studies, the current conclusion seems to be that the SCE
loss may not be suitable for some scoring methods, and in such cases, we should use the NS loss.
Therefore, even if the SCE loss is available for a task, the NS loss is still substantial. On the other
hand, even though the NS loss function is important, it has not been theoretically analyzed how its
basic hyper-parameters that are noise distribution and the number of samples affect the model during
training.

To solve this problem, we focused on the derivatives of the NS loss function and analyzed its gra-
dient. As a result of this theoretical analysis, we showed that the NS loss function is non-convex
and also showed that the NS loss function has a convex region. Moreover, we also show that the
inflection point that separates the convex region from the non-convex region is determined by the
noise distribution and the number of samples. These results indicate that NS loss requires appropri-
ate settings of the noise distribution, the number of samples, the initial value, and the learning rate
in order to train the model in convex regions. As a result, we found that the condition is satisfied by
using only non-negative values in the scoring method. We also showed that even if this condition is
satisfied, there may be cases of NS loss where the model cannot be fitted to the training data. These
theoretical results are not limited to KGE, but are applicable to general tasks.

In addition, we verified conditions for eliminating the existence of training cases that are difficult
to fit, limited to the use in KGE. As a result, we clarified how to handle the noise distribution
and the number of samples to satisfy this condition. Then, we derived a new variant of NS loss
function that satisfies the verified conditions. We named the newly derived NS loss function Self-
Smoothing Negative Sampling (SSNS) because it performs smoothing using the model’s predictions
under training. We also theoretically compared SSNS with Self-Adversarial Negative Sampling
(SANS) (Sun et al., 2019), one of the variants of NS loss, to confirm the effectiveness of SSNS on
datasets with a variety of relations other than 1-to-1 relations.

Experimental results using TransE and RotatE, which are scoring methods that output only non-
negative values, showed that our proposed SSNS can improve the performance of KG completion
against SANS in FB15k-237 (Toutanova & Chen, 2015), WN18RR (Dettmers et al., 2018c), and
YAGO3-10 (Dettmers et al., 2018b). In addition, we observed a significant performance improve-
ment of SSNS on YAGO3-10, which is a dataset that contains a variety of relations other than 1-to-1
relations. This result indicates that our theoretical explanation is also observed when training with
the actual models and datasets.

Our contributions in this paper are as follows:

• After showing that the NS loss function is non-convex, we derive the conditions for the NS
loss function to behave as a convex function.

• We show that the noise distribution, the number of samples, the initial value, and the learn-
ing rate must be set appropriately in order to train a model on a convex region in the NS
loss function.

• We show that the NS loss function behaves as a convex function when we use a scoring
method that outputs only non-negative values.

• We show that the existence of training examples that cannot be fit by the NS loss when
using a scoring method that outputs only non-negative values.

• In the case of KGE, we show the conditions to deal with the unfit training examples in the
NS loss.

• We derive a new variant of the NS loss, self-smoothing negative-sampling (SSNS), which
can deal with the unfit training examples in KGE.
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• Through experiments, we have confirmed that we can actually observe the theoretical ad-
vantages of SSNS in training on real datasets and models.

We organized this paper as follows: Sec. 2 briefly explains the NS loss function through derivation
from Bregman divergence; Sec. 3 shows the gradient of the NS loss function to investigate its
convexity; Sec. 4 derives the conditions for the NS loss function to behave as a convex function and
derives a new NS loss function, SSNS, that satisfies these conditions; Sec. 5 examines whether we
can observe the theoretical properties of the SSNS in the real datasets and models; Sec. 6 introduces
related studies; Sec. 7 summarizes our conclusions on the convexity of NS loss obtained through
this work.

2 UNDERSTANDING NEGATIVE SAMPLING THROUGH BREGMAN
DIVERGENCE

In this paper, in order to clarify the characteristics of the NS loss function, we follow the previous
study (Kamigaito & Hayashi, 2021) and understand the NS loss function from the viewpoint of
Bregman divergence. Through this understanding, we can clarify the problems that exist in the
current NS loss function.

First, we explain the definition of Bregman divergence (Bregman, 1967). Let Ψ(z) be a differentiable
strictly convex function in its domain1. Bregman divergence between points f and g is defined as
follows2:

dΨ(z)( f ,g) = Ψ( f )−Ψ(g)−∇gΨ(g)T ( f −g). (1)

By changing Ψ(z), Bregman divergence can represent various distances. In the previous study
(Kamigaito & Hayashi, 2021), they used the study on Noise Contrastive Estimation (NCE) (Gut-
mann & Hirayama, 2011) to derive each loss function. We denote a pair of an input x and its label y
as (x,y). In order to minimize the distance across the entire observed data D= {(x1,y1), · · · ,(xn,yn)}
which follows a distribution Pd(x,y), we fix f as the point followed by the training data and elimi-
nate the terms that do not contain g used for representing an output value of a model, and then, we
can define the expectation of Eq. (1) as follows:

BΨ(z)( f ,g) = ∑
(x,y)∈D

[
−Ψ(g)+∇gΨ(g)T g−∇gΨ(g)T f

]
pd(x,y). (2)

The reason for eliminating terms that do not contain g is that the eliminated terms do not affect the
loss function during training. In Eq. (2), f = g is satisfied when BΨ(z)( f ,g) = 0. In the following
explanations, we explain the relationship between the loss functions through the derivation of each
loss function using Eq. (2).

The next step is to derive the NS loss function from Eq. (2) similar to the previous study (Kamigaito
& Hayashi, 2021). The NS loss function updates the model parameter θ of a scoring function
sθ (x,y) to make sθ (x,y) return a higher score for (x,y) ∈ D than that of (x,y) 6∈ D. Letting ν be a
number of negative samples, pn(y|x) be a noise distribution, f = ν pn(y|x)

pd(y|x)
, g = 1

exp(sθ (x,y))
, Ψ(z) =

z log(z)− (1+ z) log(1+ z), σ be a sigmoid function, we can induce the NS loss function as follows:

BΨ(z)(
ν pn(y|x)
pd(y|x)

,
1

exp(sθ (x,y))
) =− 1

|D| ∑
(x,y)∈D

[
log(σ(sθ (x,y)))+ν E

yi∼pn
log(σ(−sθ (x,y))

]
. (3)

For a detailed derivation of this equation, see Appendix A.1. The right-hand side of Eq. (3) is
similar to the orginal NS loss function proposed by Mikolov et al. (2013). From Eq. (3), we can
understand that ν pn(y|x)

pd(y|x)
= 1

exp(sθ (x,y))
is satisfied when BΨ(z)(

ν pn(y|x)
pd(y|x)

, 1
exp(sθ (x,y))

) becomes 0, and

thus, exp(sθ (x,y)) =
pd(y|x)

ν pn(y|x) is also satisfied.

The above derivations allow us to understand the relationship between pd(y|x)
ν pn(y|x) , to which 1

exp(sθ (x,y))
converges in training, the number of samples, noise distribution, and gradient in the NS loss function.
We focus on these relationships in the following discussion.

1In this paper, we only use Ψ(z) that satisfies the condition.
2Since we only considers the NS loss function, f and g are scalar values in this paper.
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Figure 1: Divergence of the NS loss function of a given (x,y). This figure indicates the divergence
between f = 1.0 and g = 1

exp(sθ (x,y))
in dΨ(z)( f ,g) when Ψ(z) = z log(z)− (1+ z) log(1+ z).

3 NON CONVEXITY OF NEGATIVE SAMPLING

In this Section, we theoretically investigate how the NS loss affects the model and reveal its problem.
BΨ(z)( f ,g) is the expected value when all (x,y) are considered in Eq. (2). Thus, for simplicity, we
first investigate the influence of the NS loss on the model given each label pair (x,y). Therefore, in
order to account for the NS loss in (x,y), we focus our on dΨ(z)( f ,g) in Eq. (1). Figure 1 shows
the change in divergence of dΨ(z)(1.0,g) when Ψ(z) = z log(z)− (1+ z) log(1+ z) and g is varied.
This figure shows that dΨ(z)(1.0,g) reaches its minimum at g = 1.0 and is convex near that point, but
after that, the gradient decreases as g increases. Based on this observation, we derive the following
proposition:

Proposition 1.

(i) When Ψ(z) = z log(z)− (1+ z) log(1+ z), dΨ(z)( f ,g) is a non-convex function which has
an inflection point f +

√
f +1.

(ii) When Ψ(z) = z log(z)− (1+ z) log(1+ z), the gradient of dΨ(z)( f ,g) monotonically de-
creases in the region where g > f +

√
f +1.

(iii) When Ψ(z) = z log(z)− (1+ z) log(1+ z) and f = 0, the inflection point f +
√

f +1 of
dΨ(z)( f ,g) satisfies f +

√
f +1 = 1.

(iv) When Ψ(z) = z log(z)− (1+ z) log(1+ z) and f = 0, dΨ(z)( f ,g) is convex in the region
0 5 g 5 1.

(v) When sθ (x,y)= 0 is always satisfied, the NS loss behaves as a convex function.

We describe the proof of Prop. 1 in Appendix B.1. From Prop. 1, we can understand that the NS loss
function is non-convex, but has a partially convex region. The gradient of the divergence decreases
when exp(−sθ (x,y)) is larger than the inflection point in the NS loss function. Therefore, in this
case, it is desirable to use a larger learning rate as exp(−sθ (x,y)) moves away from the region.
On the other hand, when exp(−sθ (x,y)) is smaller than the inflection point, the NS loss function is
convex in this region, and the gradient of the divergence increases monotonically, so a small learning
rate is desirable. Thus, the NS loss function has two regions with different properties in terms of
the gradient. These characteristics show that it is difficult to set the learning rate appropriately when
fitting a model to each (x,y) in training data using the NS loss.

Having two regions with different properties in the NS loss also causes a problem that the training
is greatly affected by the initial value of exp(−sθ (x,y)). If exp(−sθ (x,y)) is placed in a region
larger than the inflection point at the beginning of training, it requires a large number of updates to
fit the model to the training data because the gradient is small in this region. On the other hand, if
exp(−sθ (x,y)) is initially placed in a region smaller than the inflection point, it can be fitted to the
training data with fewer updates according to the convexity. As a result, depending on the initial
value, an unbalanced model is learned in which the degree of fit of the model to each (x,y) differs
greatly. In this case, the performance of the learned model may be degraded.

From Eq. (3) and Prop. 1 (i), the inflection point of the NS loss function is f +
√

f +1 with
f = ν pn(y|x)

pd(y|x)
. Since the inflection point is affected by the noise distribution pn(y|x) and the number
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(a) FB15k-237 (b) WN18RR

Figure 2: The box charts of the validation MRR for each model in FB15k-237 and WN18RR.

of samples ν in the NS loss, we can conclude that we should adjust the noise distribution, the
number of samples, the initial value, and the learning rate appropriately to train the model in the
convex region of the NS loss. Assuming a model consisting of a monotonically increasing activation
function passing through the vicinity of the origin, initializing the model weights near zero and using
a small learning rate may solve the problem since the model’s output value may be in the convex
region located near zero. However, since the output value of the model is affected by various factors,
hyper-parameter tuning is still necessary.

To investigate whether careful hyper-parameter tuning is actually required in practical settings, we
used publicly available large-scale hyper-parameter tuning results (Ruffinelli et al., 2020)3. This
dataset contains the result of RESCAL (Bordes et al., 2011), DistMult (Yang et al., 2015), Com-
plEx (Trouillon et al., 2016), and ConvE (Dettmers et al., 2018a) trained by the NS and softmax
cross-entropy (SCE) losses with different hyper-parameter settings in FB15k-237 and WN18RR.
We divided the included 860 results for each dataset into two groups, learned by the SCE loss or
the NS loss, and compared their Mean Reciprocal Rank (MRR). Figure 2 shows the results. The
box charts show that the highest scores of the NS loss and SCE loss are close, but the NS loss only
achieves the score close to the highest scores in fewer hyper-parameter settings than the SCE loss.
Thus, achieving good performance in the NS loss function is difficult compared to a convex loss
function such as the SCE loss function due to difficulty setting appropriate hyper-parameters.

Through the analysis in this section, we have found some problems in NS loss due to its non-
convexity. In the next section, we discuss how to solve this problem.

4 SELF-SMOOTHING NEGATIVE SAMPLING

In this section, we derive the condition to solve the problem of non-convexity in the NS loss shown
in the previous section and derive a variant of the NS loss that satisfies the conditions. We also
examine the difference between the NS loss derived by us and an existing variant of the NS loss.

4.1 CONDITIONS FOR CONVEXITY

From Prop. 1. (v), we can understand that the NS loss behaves as a convex function when we use
a score function that can only output non-negative values. This theoretical fact is along with the
observation of Kamigaito & Hayashi (2021) that the NS loss can outperform the SCE loss only in
the case of RotatE and TransE, which are non-negative scoring methods.

However, there is one problem in learning with the NS loss that satisfies the condition of the Prop.
1. (v). That is, under this condition, ν pn(y|x)

pd(y|x)
= 0 in Eq. (3), while 0 5 1

exp(sθ (x,y))
5 1. Therefore, the

problem is that there are cases where it is difficult to fit a model to a training data where ν pn(y|x)
pd(y|x)

> 1.
To deal with this problem, it is necessary to select ν and pn(y|x) appropriately. However, since
pd(y|x) changes depending on the target training data, it is difficult to derive a general condition.
Therefore, in this paper, we only discuss the appropriate ν and pn(y|x) for the case of KGE.

3https://github.com/uma-pi1/kge-iclr20
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To explain knowledge graph embedding, we define a tuple consisting of a relation rk between entities
ei and e j as (ei,e j,rk). In KGE, a model predicts such a tuple. Specifically, for queries of the form
(ei,e j,?) or (?,e j,rk), the model predicts the entity at the position ?. In the following explanations,
all such queries are denoted by x, and entities to be predicted are denoted by y. In a knowledge
graph, the frequency of each tuple is at most one. Therefore, we can assume that pd(x,y) in the
knowledge graph is uniformly distributed. In this case, we can derive the following relations.

Proposition 2. In a knowledge graph, when pd(x,y) and pn(y|x) are uniformly distributed,
pd(y|x)= pn(y|x) is satisfied.

We describe the proof of Prop. 2 in Appendix B.2. From Prop. 2, we can induce that the condition
for satisfying ν pn(y|x)

pd(y|x)
5 1 is setting pn(y|x) to be uniformly distributed and ν = 1. In this condition,

there are no unfitting cases in KGE when we use a score function that can only output non-negative
values in the NS loss. However, it is not realistic to set the number of samples to 1, because it would
make learning unstable. Therefore, in the next Section, we derive a variant of the NS loss that can
satisfy our induced conditions without setting ν as 1.

4.2 DERIVATION

In this Section, we derive a variant of the NS loss that satisfies the conditions shown in the previous
Section for eliminating unfit cases when using a score function that outputs only non-negative values.
For this purpose, there are two problems to be solved as follows:

1. Although setting an appropriate number of samples is important for efficient learning as
explained in Section3, we have to set the number of samples ν = 1.

2. Even though Kamigaito & Hayashi (2021) show that appropriate noise distribution is im-
portant in smoothing the learning results, we cannot choose a noise distribution other than
the uniform distribution.

About the first problem, since the link prediction of KGE only focuses on the rank of predicted
values, we can cancel the constant value ν from ν pn(y|x)

pd(y|x)
with keeping proportional relationships

of the predicted values for each (x,y) in terms of the optimal solution (Kamigaito & Hayashi,
2021). Canceling ν from ν pn(y|x)

pd(y|x)
makes an additional advantage that the inflection point is no

longer affected by ν in training. The second problem can be dealt with by performing smooth-
ing in a way other than changing the noise distribution pn(y|x). Instead, we directly impose a
smoothing value α to pd(y|x) as pd(y|x)α . Based on the above solution, we derive a variant of
the NS loss from BΨ(z)(

pn(y|x)
pd(y|x)α ,

1
exp(sθ (x,y))

). Letting G(y|x;θ) = 1
exp(sθ (x,y))

, pn(y|x) is uniform,

u = (x,y), f (u) = pn(y|x)
pd(y|x)α , g(u) = G(y|x;θ), Ψ(g(u)) = g(u) log(g(u))− (1+ g(u)) log(1+ g(u)),

and ∇gΨ(g(u)) = log(g(u))− log(1+g(u)), we derive the variant of NS loss function as follows:

BΨ(z)(
pn(y|x)

pd(y|x)α
,

1
exp(sθ (x,y))

) = ∑
x,y

[
−Ψ(g(u))+∇gΨ(g(u))g(u)−∇gΨ(g(u)) f (u)

]
pd(x,y)

=∑
x,y

[
−g(u) log(1+g(u))+(1+g(u)) log(1+g(u))

+ log(g(u))g(u)+ log(1+g(u))g(u)− log(g(u)) f (u)+ log(1+g(u)) f (u)
]

pd(x,y)

=∑
x,y

[
log(1+g(u))− log(g(u)) f (u)+ log(1+g(u)) f (u)

]
pd(x,y)

=∑
x,y

[
log(1+g(u))+ log(1+

1
g(u)

) f (u)
]

pd(x,y)
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=∑
x,y

pd(y|x) log(1+g(u))
1

pd(y|x)
pd(x,y)+∑

x,y
pn(y|x) log(1+

1
g(u)

)
1

pd(y|x)α
pd(x,y)

=∑
x,y

pd(y|x) log(1+G(y|x;θ))pd(x)+∑
x,y

pn(y|x) log(1+
1

G(y|x;θ)
)pd(y|x)1−α pd(x)

=
1
|D| ∑

(x,y)∈D
log(1+G(y|x;θ))+

1
ν |D| ∑

(x,y)∈D
pd(y|x)1−α

ν

∑
i=1,yi∼pn

log(1+
1

G(yi|x;θ)
)

=− 1
|D| ∑

(x,y)∈D
log(

1
1+G(y|x;θ)

)− 1
ν |D| ∑

(x,y)∈D
pd(y|x)1−α

ν

∑
i=1,yi∼pn

log(
G(yi|x;θ)

1+G(yi|x;θ)
)

=− 1
|D| ∑

(x,y)∈D
log(σ(sθ (x,y)))−

1
ν |D| ∑

(x,y)∈D
pd(y|x)1−α

ν

∑
i=1,yi∼pn

log(σ(−sθ (x,y)))

=− 1
|D| ∑

(x,y)∈D

(
log(σ(sθ (x,y)))+

pd(y|x)1−α

ν

ν

∑
i=1,yi∼uni f orm

log(σ(−sθ (x,y)))

)
(4)

Our new variant of the NS loss is represented by Eq. (4). This expression contains pd(y|x) on
the right-hand side. However, since pd(y|x) is considered to be the true distribution behind the all
training examples, we cannot use pd(y|x) directly. Therefore, based on the idea of Sun et al. (2019),
we use the output of the model under training. Specifically, we approximate pd(y|x) as follows:

pd(y|x)≈ p̃d(y|x) =
exp(sθ (x,y))

∑y′∈Y ′ exp(sθ (x,y′)),
(5)

Y ′ is the set of the positive examples and the negative examples obtained by sampling during train-
ing. Note that p̃d(y|x) is close to pd(y|x) through training when pn(y|x) is a uniform distribution
(Kamigaito & Hayashi, 2021). We name the method derived in Eq. (4) self-smoothing negative-
sampling (SSNS) because it uses the predictions of the training model for the smoothing.

4.3 DIFFERENCES FROM SELF-ADVERSARIAL NEGATIVE SAMPLING

In this Section, we explain the difference between our derived SSNS explained in the previous
Section and Self-Adversarial Negative Sampling (SANS), which also uses the prediction results of
the model under training. Letting |Y | be the number of labels and psans(y|x) = ν

|Y | p̃d(y|x), we can
derive SANS in the form of Eq. (3) as follows:

BΨ(z)(
psans(y|x)
pd(y|x)

,
1

exp(sθ (x,y))
)=− 1
|D| ∑

(x,y)∈D

[
log(σ(sθ (x,y)))+

ν

∑
i=1,yi∼uni f orm

p̃d(y|x) log(σ(−sθ (x,y)))
]
. (6)

We describe the detailed derivation of Eq. (6) in Appendix A.1. From this derivation, we can see that
in the SANS loss, when the loss is zero, 1

exp(sθ (x,y))
= psans(y|x)

pd(y|x)
is satisfied. Different from the SSNS

loss function, the SANS loss functions is influenced by the number of negative sampling ν . Unlike
the NS loss, the SANS loss is not directly affected by ν , since it is divided by |Y |. This division is
effective to maintain ν pn(y|x)

pd(y|x)
5 1 for decreasing the hard-to-fit training examples. Through training,

p̃d(y|x) gets closer to pd(y|x). However, if (x,y) is an uncertain example (Chang et al., 2017) that
increases the variance of p̃d(y|x), there is a possibility that p̃d(y|x) becomes large and psans(y|x)

pd(y|x)
> 1,

which leads to the existence of hard-to-fit cases and it causes under-fitting. In KGE, relations other
than 1-to-1, such as 1-to-N, M-to-1, and M-to-N relations are the uncertain examples. Therefore,
SANS may not work well on datasets including such the relations, while SSNS may work well.
However, since these properties are affected by various factors during training, it is difficult to
verify this only from the theoretical aspect. Therefore, we need to verify the existence of such a
relationship through actual experiments.

5 ANALYSIS

This Section compares the SANS and SSNS loss functions on various datasets to verify whether
SSNS is robust to datasets that contain a variety of relations other than 1-to-1 relations. We use
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Table 1: The numbers of each instance for each dataset.

Dataset Entities Relations Tuples

Train Valid Test

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,182 37 1,079,040 4978 4982

Table 2: Results for each loss function and model in each dataset. The bold value indicates the best
score. † indicates the score is significantly different from the second best score4.

Dataset Loss RotatE TransE

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

FB15k-237
NS 29.9 19.9 33.1 50.5 28.2 17.8 31.5 49.8
SANS 33.4 23.8 37.1 52.5 32.8 23.1 36.6 52.5
SSNS 33.6 24.5 37.1 51.7 32.6 23.5 36.2 50.9

WN18RR
NS 46.8 42.6 48.4 54.8 21.8 1.3 39.5 51.0
SANS 47.2 43.1 48.6 55.2 22.3 1.5 39.9 52.2
SSNS 47.5 43.4 48.9 55.3 22.5 2.6† 39.0 52.1

YAGO3-10
NS 47.7 38.1 53.2 66.2 47.7 37.7 53.7 66.2
SANS 49.0 39.7 54.6 66.2 49.0 39.2 55.0 66.6
SSNS 50.8† 41.9† 56.3† 67.0 49.9† 40.5† 55.7 66.8

three datasets for validation: WN18RR (Dettmers et al., 2018c); FB15k-237 (Toutanova & Chen,
2015); YAGO3-10 (Dettmers et al., 2018b). Table 1 shows the statistics for each dataset. As we can
see from these statistics, WN18RR and YAGO3-10 are datasets that consist of a small number of
relations for many entities. In particular, since YAGO3-10 is a dataset designed to contain at least
ten relations for one entity, it is suitable for verifying our assumption. We used the MRR, Hits@1,
Hits@3, and Hits@10 as evaluation metrics.

We used two typical non-negative scoring functions, TransE (Wang et al., 2014) and RotatE (Sun
et al., 2019), as the models. We used LibKGE as our implementation. For the hyperparameters
for each dataset, we used the values used in the previous study Sun et al. (2019). We chose the
uniform distribution for training the NS loss. For the SANS loss, we used the weights learned by
the NS loss with the same configuration to our baseline as initial values only for the training of
RotatE in YAGO3-10 because the learning did not progress well with random initialization. Since
the SSNS loss requires the output of a model close to the true distribution for training, we used
the weights of the model trained by SANS with the same configuration to our baselines as initial
weights. For a fair comparison with the SANS loss, we also performed fine-tuning for the SANS
loss using the weights trained with the SANS loss, and we selected the model with the highest MRR
in the developed data. For selecting the training results, we trained up to 800 epochs, evaluated the
training results every five epochs, and selected the model with the highest MRR. On the other hand,
we found that the convergence time of SSNS loss was faster for FB15k-237 and YAGO3-10 than the
other losses, so we trained up to five epochs in the SSNS loss, evaluated the training results every
epoch, and selected the model with the maximum MRR in the development dataset. We also tuned
the α with the development dataset since it has different properties from the temperature parameter
of the SANS loss. Please refer to the Appendix for the detailed description of the tuning.

Table 2 shows the experimental results. We can see from the experimental results that both TransE
and RotatE perform better when using the SANS loss than when using the NS loss. As we explained
in Section 4.3, the SANS loss is less sensitive to the large number of samples commonly used in
KGE. This result is along with our theoretical expectation explained in subsection 4.3.

Next, we discuss the performance of the SANS loss and the SSNS loss. From the results of FB15k-
237 and WN18RR, we can observe the similar performance of the SSNS loss in RotatE. This is

4We use the student’s t-test with a confidence interval of 95%. We describe the details in Appendix C.2.
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along with our theoretical expectation that the two losses are robust to the large number of samples
commonly used in KGE. On the other hand, in YAGO3-10, the SSNS loss achieves a significant
performance improvement over the SANS loss in both RotatE and TransE. Since YAGO3-10 is a
dataset designed to contain at least ten relations per entity, this result is consistent with our expecta-
tion that the SSNS loss is more effective against the SANS loss on a dataset containing a variety of
relations other than the 1-to-1 relations as we explained in subsection 4.3.

6 RELATED WORK

Mikolov et al. (2013) proposed the NS loss function to approximate the softmax cross-entropy loss
function to reduce the computational cost for training a word representation model word2vec. Ini-
tially, due to its similarity to noise contrastive estimation (NCE) (Gutmann & Hyvärinen, 2010),
a theoretical analysis of the differences between the NS loss and the NCE loss was conducted by
(Dyer, 2014), but this study did not reveal the clear properties of the NS loss. In particular, the work
of Levy & Goldberg (2014) attracted attention because it showed that the result using the NS loss in
word2vec is equivalent to the decomposition of the PMI matrix. However, this equivalence is only
valid when the unigram distribution is used as the noise distribution, and thus it is not valid for other
than the word representation task.

Since then, due to its usefulness, the NS loss has been used in various tasks such as word rep-
resentation (Mikolov et al., 2013; Bojanowski et al., 2017), language modeling (Melamud et al.,
2017), pretrained language model (Clark et al., 2020b;a), and knowledge graph embedding (KGE)
(Trouillon et al., 2016). In particular, NS loss has recently been widely used in KGE. However, since
various scoring methods and loss functions are used in combination in knowledge graph embedding,
the properties of the loss function are not clear. Ruffinelli et al. (2020); Ali et al. (2020) explored
these combinations in a large-scale experiment and empirically derived which combination is better.
On the other hand, Kamigaito & Hayashi (2021) clarified the properties of the SCE loss function and
the NS loss function by theoretically identifying the differences between them. They also pointed
out that the score function that outputs only non-negative values is unsuitable for the SCE loss. Our
paper is novel in focusing on the non-convexity and the existence of inflection points in the NS loss
function and clarifying the problems of the NS loss function. Furthermore, our paper is useful not
only for clarifying the problem but also for proposing a method to solve the problem in KGE.

7 CONCLUSION

In this paper, we focused on the non-convexity of the NS loss function and theoretically investigated
why learning does not work well when using the NS loss. As a result, we found that we should adjust
the noise distribution, the number of samples, the initial value, and the learning rate appropriately to
learn a model on a convex region in the NS loss function.

We also showed conditions for training a model on the convex region in the NS loss and showed
that the NS loss is suitable for a score function that outputs only non-negative values. On the
other hand, we also indicated that there are cases where the NS loss cannot properly fit the model
to the training examples under these conditions. Furthermore, we proposed a new variant of the
NS loss function, the self-smoothing negative sampling (SSNS) loss function, which can solve the
problem by focusing on KGE. Since we theoretically expected the proposed SSNS loss function to
improve the performance of a dataset containing a variety of relations other than 1-to-1 relations, we
performed experiments using the actual models and datasets.

Experimental results using the non-negative scoring methods TransE and RotatE showed that the
proposed SSNS could improve the performance of SANS on the FB15k-237, WN18RR, and
YAGO3-10 datasets. In particular, we observed a significant performance improvement on YAGO3-
10, a dataset that contains a variety of relations other than the 1-to-1 relations. This observation is
consistent with our expectation in terms of the theoretical aspect.

This paper dealt with the NS loss’s inability to properly fit the model to the training examples by
focusing on KGE. Thus, we would like to explore ways to solve a similar task outside of KGE, such
as item recommendation, by using a non-negative scoring method in the future.
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A DERIVATIONS

This section describes the detailed derivations of the loss functions discussed in this paper.

A.1 DERIVATION FOR THE NS LOSS FUNCTION

In this subsection, we describe the details of the derivation for the NS loss function in Eq. ((3).
Letting θ be the model parameter, sθ (x,y) be a scoring function to make sθ (x,y), ν be a number
of negative samples, pn(y|x) be a noise distribution, σ be a sigmoid function, Ψ(z) = z log(z)−
(1+ z) log(1+ z), G(y|x;θ) = 1

exp(sθ (x,y))
, u = (x,y), f (u) = pn(y|x)

pd(y|x)
, g(u) = G(y|x;θ), Ψ(g(u)) =

g(u) log(g(u))−(1+g(u)) log(1+g(u)), and ∇gΨ(g(u))= log(g(u))− log(1+g(u)), we can derive
the NS loss function as follows:

BΨ(z)(
ν pn(y|x)
pd(y|x)

,
1

exp(sθ (x,y))
)

=∑
x,y

[
−Ψ(g(u))+∇gΨ(g(u))g(u)−∇gΨ(g(u)) f (u)

]
pd(x,y)

=∑
x,y

[
−g(u) log(1+g(u))+(1+g(u)) log(1+g(u))

+ log(g(u))g(u)+ log(1+g(u))g(u)− log(g(u)) f (u)+ log(1+g(u)) f (u)
]

pd(x,y)

=∑
x,y

[
log(1+g(u))− log(g(u)) f (u)+ log(1+g(u)) f (u)

]
pd(x,y)

=∑
x,y

[
log(1+g(u))+ log(1+

1
g(u)

) f (u)
]

pd(x,y)

=∑
x,y

pd(y|x) log(1+g(u))
1

pd(y|x)
pd(x,y)+∑

x,y
pn(y|x) log(1+

1
g(u)

)
1

pd(y|x)
pd(x,y)

=∑
x,y

pd(y|x) log(1+G(y|x;θ))pd(x)+∑
x,y

pn(y|x) log(1+
1

G(y|x;θ)
)pd(x)

=
1
|D| ∑

(x,y)∈D
log(1+G(y|x;θ))+

1
|D| ∑

(x,y)∈D

ν

∑
i=1,yi∼pn

log(1+
1

G(yi|x;θ)
)

=− 1
|D| ∑

(x,y)∈D
log(

1
1+G(y|x;θ)

)− 1
|D| ∑

(x,y)∈D

ν

∑
i=1,yi∼pn

log(
G(yi|x;θ)

1+G(yi|x;θ)
)

=− 1
|D| ∑

(x,y)∈D
log(σ(sθ (x,y)))−

1
|D| ∑

(x,y)∈D

ν

∑
i=1,yi∼pn

log(σ(−sθ (x,y)))

=− 1
|D| ∑

(x,y)∈D

[
log(σ(sθ (x,y)))+

ν

∑
i=1,yi∼pn

log(σ(−sθ (x,y))
]

=− 1
|D| ∑

(x,y)∈D

[
log(σ(sθ (x,y)))+ν E

yi∼pn
log(σ(−sθ (x,y))

]
. (7)
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A.2 DERIVATION FOR THE SANS LOSS FUNCTION

In this subsection, we describe the details of the derivation for the SANS loss function in Eq.
((6). Letting θ be the model parameter, sθ (x,y) be a scoring function to make sθ (x,y), ν be
a number of negative samples, |Y | be the number of labels, Y ′ be sampled examples, p̃d(y|x) =

exp(sθ (x,y))
∑y′∈Y ′ exp(sθ (x,y′))

, psans(y|x) = ν

|Y | p̃d(y|x), σ be a sigmoid function, Ψ(z) = z log(z)− (1+ z) log(1+

z), G(y|x;θ) = 1
exp(sθ (x,y))

, u = (x,y), f (u) = pn(y|x)
pd(y|x)

, g(u) = G(y|x;θ), Ψ(g(u)) = g(u) log(g(u))−
(1+ g(u)) log(1+ g(u)), and ∇gΨ(g(u)) = log(g(u))− log(1+ g(u)), we can derive the NS loss
function as follows:

BΨ(z)(
psans(y|x)
pd(y|x)

,
1

exp(sθ (x,y))
)

=∑
x,y

[
−Ψ(g(u))+∇gΨ(g(u))g(u)−∇gΨ(g(u)) f (u)

]
pd(x,y)

=∑
x,y

[
−g(u) log(1+g(u))+(1+g(u)) log(1+g(u))

+ log(g(u))g(u)+ log(1+g(u))g(u)− log(g(u)) f (u)+ log(1+g(u)) f (u)
]

pd(x,y)

=∑
x,y

[
log(1+g(u))− log(g(u)) f (u)+ log(1+g(u)) f (u)

]
pd(x,y)

=∑
x,y

[
log(1+g(u))+ log(1+

1
g(u)

) f (u)
]

pd(x,y)

=∑
x,y

pd(y|x) log(1+g(u))
1

pd(y|x)
pd(x,y)+∑

x,y
psans(y|x) log(1+

1
g(u)

)
1

pd(y|x)
pd(x,y)

=∑
x,y

pd(y|x) log(1+G(y|x;θ))pd(x)+∑
x,y

psans(y|x) log(1+
1

G(y|x;θ)
)pd(x)

=
1
|D| ∑

(x,y)∈D
log(1+G(y|x;θ))+

1
|D| ∑

(x,y)∈D

ν

∑
i=1,yi∼uni f orm

p̃d(y|x) log(1+
1

G(yi|x;θ)
)

=− 1
|D| ∑

(x,y)∈D
log(

1
1+G(y|x;θ)

)− 1
|D| ∑

(x,y)∈D

ν

∑
i=1,yi∼uni f orm

p̃d(y|x) log(
G(yi|x;θ)

1+G(yi|x;θ)
)

=− 1
|D| ∑

(x,y)∈D
log(σ(sθ (x,y)))−

1
|D| ∑

(x,y)∈D

ν

∑
i=1,yi∼uni f orm

p̃d(y|x) log(σ(−sθ (x,y)))

=− 1
|D| ∑

(x,y)∈D

[
log(σ(sθ (x,y)))+

ν

∑
i=1,yi∼uni f orm

p̃d(y|x) log(σ(−sθ (x,y))
]

=− 1
|D| ∑

(x,y)∈D

[
log(σ(sθ (x,y)))+ν E

yi∼uni f orm
p̃d(y|x) log(σ(−sθ (x,y))

]
. (8)

Note that Kamigaito & Hayashi (2021) used p̃d(y|x) as a noise distribution for inducing Eq. (8),
different from 1

|Y | p̃d(y|x), we used. This is because 1
|Y | is constant and it is canceled in the softmax

function.
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B PROOFS

B.1 PROPOSITION. 1

Table 3: A derivative sign chart of dΨ(z)( f ,g) when Ψ(z) = z log(z)− (1+ z) log(1+ z).

g 0 f f +
√

f +1 ∞

dΨ(z)( f ,g) + + 0 + + + +
∇gdΨ(z)( f ,g) − − 0 + + + 0
∇2

gdΨ(z)( f ,g) + + + + 0 − −

Proof. Calculating ∇gdΨ(z)( f ,g) and ∇2
gdΨ(z)( f ,g) under Ψ(z) = z log(z)− (1+ z) log(1+ z) leads

to the derivative sign chart shown in Table 3. From this derivative sign chart, we can confirm that
the Prop. 1. (i) and 1. (ii) are true.

Since f +
√

f +1 is a monotonically increasing function and this function is 1 when f = 0, we can
conclude that the Prop. 1. (iii) is true.

From the Prop. 1. (iii) and the Table 3, we can confirm that the Prop. 1. (iv) is satisfied since the
second-order derivative is always positive in the domain 0 5 g 5 1.

From Eq. (3) and Prop. 1. (iv), the NS loss behaves as a convex function if 0 5 1
exp(sθ (x,y))

5 1 is

always satisfied. Then, since 1
exp(x) is a monotonically decreasing function for x, 1

exp(sθ (x,y))
satisfies

0 5 1
exp(sθ (x,y))

5 1 when sθ (x,y)5 0. Therefore, we can derive Prop. 1. (v).

B.2 PROPOSITION. 2

Proof. We define the number of differences in x as |X |, the number of differences in y as |Y |, and the
frequency of occurrence of x as #x. In this case, pd(y|x) = pd(x,y)

pd(x)
= 1

#x is satisfied. Here, #x 5 |Y | is
also satisfied, because (x,y) that indicates a tuple in a knowledge graph can appear only once in the
knowledge graph. Therefore, since 1

#x = 1
|Y | is satisfied, pd(y|x)= pn(y|x) is also satisfied.

C EXPERIMENTAL DETAILS
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C.1 SETTINGS

Table 4 and 5 show the hyparparameters of each model for each dataset.

Table 4: Hyparparameters of RotatE for each dataset.

RotatE in FB15k-237
Batch size 1024
Dimension 1000

Number of samples 256
α NS: None, SANS: 1.0, SSNS: 1.25

Initialize NS: Xavier uniform w/ gain=1.0, SANS: Pretrained by SANS,
SSNS: Pretrained by SANS

Regularize None
Dropout None

Optimizer Adam
Learning rate 0.00005

Decay 0.95
Patience of learning rate NS: 5 epochs, SANS: 5 epochs, SSNS: 1 epoch

Max epoch NS: 800 epochs, SANS: 800 epochs, SSNS: 5 epochs
Validation NS: Every 5 epoch, SANS: Every 5 epoch, SSNS: Every 1 epoch

Patience of learning NS: 10 epochs, SANS: 10 epochs, SSNS: 5 epoch

RotatE in WN18RR
Batch size 512
Dimension 500

Number of samples 1024
α NS: None, SANS: 0.5, SSNS: 1.5

Initialize NS: Xavier uniform w/ gain=1.0, SANS: Pretrained by SANS,
SSNS: Pretrained by SANS

Regularize None
Dropout None

Optimizer Adam
Learning rate 0.00005

Decay 0.95
Patience of learning rate NS: 5 epochs, SANS: 5 epochs, SSNS: 5 epoch

Max epoch NS: 800 epochs, SANS: 800 epochs, SSNS: 800 epochs
Validation NS: Every 5 epoch, SANS: Every 5 epoch, SSNS: Every 5 epoch

Patience of learning NS: 10 epochs, SANS: 10 epochs, SSNS: 10 epoch

RotatE in YAGO3-10
Batch size 1024
Dimension 500

Number of samples 400
α NS: None, SANS: 0.5, SSNS: 0.75

Initialize NS: Xavier uniform w/ gain=1.0, SANS: Pretrained by NS,
SSNS: Pretrained by SANS

Regularize None
Dropout None

Optimizer Adam
Learning rate 0.0002

Decay 0.95
Patience of learning rate NS: 5 epochs, SANS: 5 epochs, SSNS: 1 epoch

Max epoch NS: 800 epochs, SANS: 800 epochs, SSNS: 5 epochs
Validation NS: Every 5 epoch, SANS: Every 5 epoch, SSNS: Every 1 epoch

Patience of learning NS: 10 epochs, SANS: 10 epochs, SSNS: 5 epoch

15
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Table 5: Hyparparameters of TransE for each dataset.

TransE in FB15k-237
Batch size 1024
Dimension 1000

Number of samples 256
α NS: None, SANS: 1.0, SSNS: 0.75

Initialize NS: Xavier uniform w/ gain=1.0, SANS: Pretrained by SANS,
SSNS: Pretrained by SANS

Regularize None
Dropout None

Optimizer Adam
Learning rate 0.00005

Decay 0.95
Patience of learning rate NS: 5 epochs, SANS: 5 epochs, SSNS: 1 epoch

Max epoch NS: 800 epochs, SANS: 800 epochs, SSNS: 5 epochs
Validation NS: Every 5 epoch, SANS: Every 5 epoch, SSNS: Every 1 epoch

Patience of learning NS: 10 epochs, SANS: 10 epochs, SSNS: 5 epoch

TransE in WN18RR
Batch size 512
Dimension 500

Number of samples 1024
α NS: None, SANS: 0.5, SSNS: 0.5

Initialize NS: Xavier uniform w/ gain=1.0, SANS: Pretrained by SANS,
SSNS: Pretrained by SANS

Regularize None
Dropout None

Optimizer Adam
Learning rate 0.00005

Decay 0.95
Patience of learning rate NS: 5 epochs, SANS: 5 epochs, SSNS: 5 epoch

Max epoch NS: 800 epochs, SANS: 800 epochs, SSNS: 800 epochs
Validation NS: Every 5 epoch, SANS: Every 5 epoch, SSNS: Every 5 epoch

Patience of learning NS: 10 epochs, SANS: 10 epochs, SSNS: 10 epoch

TransE in YAGO3-10
Batch size 1024
Dimension 500

Number of samples 400
α NS: None, SANS: 0.5, SSNS: -64.0

Initialize NS and SANS: Xavier uniform w/ gain=1.0,
SSNS: Pretrained by SANS

Regularize None
Dropout None

Optimizer Adam
Learning rate 0.0002

Decay 0.95
Patience of learning rate NS: 5 epochs, SANS: 5 epochs, SSNS: 1 epoch

Max epoch NS: 800 epochs, SANS: 800 epochs, SSNS: 5 epochs
Validation NS: Every 5 epoch, SANS: Every 5 epoch, SSNS: Every 1 epoch

Patience of learning NS: 10 epochs, SANS: 10 epochs, SSNS: 5 epoch

When tuning α in SSNS, we chose α from [0.5,0.75,1.0,1.25,1.5] excluding the case of TransE
in YAGO3-10. In this excluded case, due to the flat output of TransE, we needed to consider
minus values for α in SSNS. Therefore, we chose α in SSNS for TransE in YAGO3-10 from
[0.0,−1.0,−4.0,−16.0,−64.0].

16
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C.2 RESULTS

Table 6 shows the scores and their confidence intervals for each setting. Figure 3, 4, and 5 show the
scores and their confidence intervals in Table 6 as bars and error bars, respectively.

Table 6: The scores and their confidence intervals of each model in each dataset.

RotatE in FB15k-237
MRR Hits@1 Hits@3 Hits@10
Conf. Interval Conf. Interval Conf. Interval Conf. IntervalValue From To Value From To Value From To Value From To

NS 0.299 0.295 0.302 0.199 0.195 0.203 0.331 0.327 0.336 0.505 0.501 0.510
SANS 0.334 0.330 0.337 0.238 0.234 0.242 0.371 0.367 0.376 0.525 0.520 0.530
SSNS 0.336 0.332 0.340 0.245 0.241 0.249 0.371 0.367 0.376 0.517 0.512 0.522

TransE in FB15k-237
MRR Hits@1 Hits@3 Hits@10
Conf. Interval Conf. Interval Conf. Interval Conf. IntervalValue From To Value From To Value From To Value From To

NS 0.282 0.278 0.285 0.178 0.175 0.182 0.315 0.311 0.320 0.498 0.493 0.503
SANS 0.328 0.324 0.332 0.231 0.227 0.235 0.366 0.361 0.370 0.525 0.520 0.530
SSNS 0.326 0.323 0.330 0.235 0.231 0.239 0.362 0.358 0.367 0.509 0.505 0.514

RotatE in WN18RR
MRR Hits@1 Hits@3 Hits@10
Conf. Interval Conf. Interval Conf. Interval Conf. IntervalValue From To Value From To Value From To Value From To

NS 0.468 0.456 0.479 0.426 0.414 0.438 0.484 0.472 0.496 0.548 0.536 0.561
SANS 0.472 0.460 0.483 0.431 0.418 0.443 0.486 0.474 0.499 0.552 0.540 0.564
SSNS 0.475 0.463 0.487 0.434 0.422 0.447 0.489 0.476 0.501 0.553 0.540 0.565

TransE in WN18RR
MRR Hits@1 Hits@3 Hits@10
Conf. Interval Conf. Interval Conf. Interval Conf. IntervalValue From To Value From To Value From To Value From To

NS 0.218 0.212 0.224 0.013 0.010 0.016 0.395 0.383 0.407 0.510 0.498 0.522
SANS 0.223 0.217 0.229 0.015 0.012 0.018 0.399 0.386 0.411 0.522 0.509 0.534
SSNS 0.225 0.219 0.231 0.026 0.022 0.030 0.390 0.378 0.402 0.521 0.508 0.533

RotatE in YAGO3-10
MRR Hits@1 Hits@3 Hits@10
Conf. Interval Conf. Interval Conf. Interval Conf. IntervalValue From To Value From To Value From To Value From To

NS 0.477 0.469 0.486 0.381 0.371 0.390 0.532 0.522 0.542 0.662 0.652 0.671
SANS 0.490 0.482 0.499 0.397 0.387 0.407 0.546 0.536 0.555 0.662 0.652 0.671
SSNS 0.508 0.499 0.516 0.419 0.409 0.429 0.563 0.553 0.572 0.670 0.661 0.679

TransE in YAGO3-10
MRR Hits@1 Hits@3 Hits@10
Conf. Interval Conf. Interval Conf. Interval Conf. IntervalValue From To Value From To Value From To Value From To

NS 0.477 0.469 0.486 0.377 0.367 0.386 0.537 0.528 0.547 0.662 0.653 0.671
SANS 0.490 0.481 0.498 0.392 0.383 0.402 0.550 0.540 0.560 0.666 0.656 0.675
SSNS 0.499 0.491 0.508 0.405 0.395 0.414 0.557 0.547 0.567 0.668 0.659 0.677
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Figure 3: The results of RotatE and TransE in FB15k-237. The error bar indicates the 95% confi-
dence interval.
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Figure 4: The results of RotatE and TransE in WN18RR. The notations are the same as Fig. 3.
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Figure 5: The results of TransE in YAGO3-10. The notations are the same as Fig. 3.
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