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Abstract

Large Language Models (LLMs), such as001
GPT3.5, have exhibited remarkable proficiency002
in comprehending and generating natural lan-003
guage. On the other hand, medical assistants004
hold the potential to offer substantial benefits005
for individuals. However, the exploration of006
LLM-based personalized medical assistant re-007
mains relatively scarce. Typically, patients con-008
verse differently based on their background and009
preferences which necessitates the task of en-010
hancing user-oriented medical assistant. While011
one can fully train an LLM for this objective,012
the resource consumption is unaffordable. Prior013
research has explored memory-based methods014
to enhance the response with aware of previous015
mistakes for new queries during a dialogue ses-016
sion. We contend that a mere memory module017
is inadequate and fully training an LLM can be018
excessively costly. In this study, we propose019
a novel computational bionic memory mecha-020
nism, equipped with a parameter-efficient fine-021
tuning (PEFT) schema, to personalize medical022
assistants. To encourage further research into023
this area, we are releasing a new conversation024
dataset generated based on an open-source med-025
ical corpus and our implementation code1.026

1 Introduction027

The potential of large language models to under-028

stand and generate natural language is undeniable029

(Brown et al., 2020; Chowdhery et al., 2022; Tou-030

vron et al., 2023), while there is an untapped oppor-031

tunity to explore how LLMs could be customised032

to provide personalized medical advice with pa-033

tients, allowing them to receive tailored responses034

that best suit their individual needs (Bender et al.,035

2021). For example, as depicted in Figure 1, med-036

ical practitioners can discern vital patient infor-037

mation through ongoing diagnostic conversations.038

Consequently, responses to identical queries may039

1Github link will be placed here(a copy is attached with
this submission)

Figure 1: Personalized responses for different users in
terms of the same query.

differ based on individual patient nuances, high- 040

lighting the imperative need for personalized med- 041

ical assistants leveraging LLM. Efforts have been 042

made to obtain proper prompts for steering LLMs 043

to enhance outputs. For example, by memoriz- 044

ing previous mistakes and user feedback, given 045

a new query, a similarity-based retriever can be 046

leveraged to preemptively recognize and rectify 047

LLM errors(Dalvi et al., 2022; Madaan et al., 2022; 048

Lewis et al., 2020). However, this paradigm poses 049

us two challenges: Firstly, most existing memory 050

designs are dictionary-based (Madaan et al., 2022; 051

Lewis et al., 2020) (i.e. key-value form where key 052

is the previous mistake, value is the correspond- 053

ing user-feedback) which can be inflexible and rely 054

heavily on the power of retriever. Secondly, such 055

paradigm, without retraining, can barely provide 056

users with personalized and engaging experience. 057

For instance, a diabetes patient who prefers concise 058

and straightforward medical advice won’t expect 059

detailed glucose test explanations from a doctor 060

while others who prefer fully elaborated responses 061

may want to know as much as possible about the 062

disease (e.g., causes etc.). To this end, how to 063

process patient-relevant information properly and 064
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being aware of their preference can be crucial for065

enhancing patients’ experience and remains under-066

studied. In this paper, we propose a novel memory067

mechanism along with a PEFT schema to enhance068

LLM-based medical assistant personalization.069

Dictionary-based memory is not pliable due070

to its intricate structure and thus efforts can071

only be made in strengthening retrievers. De-072

spite the improvements made by retrievers like073

semantic-similarity based and distance-closest074

based(Madaan et al., 2022), we argue that the mem-075

ory structure should be ameliorated to accommo-076

date diverse information. Unfortunately, rare ef-077

forts have been made to address this challenge.078

Neuroscientists have revealed that real-world mem-079

ory mechanism works in two processes, one can be080

characterized as automatic and unconscious while081

the other one is effortful and analytical(Kahneman,082

2011). For example, acquiring a new skill initially083

can be active and analytical, but as one’s profi-084

ciency increases, it becomes more intuitive. This085

is referred as Dual-process theory and correspond-086

ingly, memory can be defined as three types: work-087

ing memory, short-term memory (STM) and long-088

term memory (LTM). Working memory is respon-089

sible for filtering and buffering information, STM090

holds knowledge for a short period, while LTM091

stores knowledge for a longer duration (Roediger092

and McDermott, 1995). Drawing inspirations from093

this, we propose a novel Dual-Process enhanced094

Memory (DPeM) mechanism of which three types095

of memory cooperate smoothly under the guidance096

of dual-process schema and thus can provide LLM097

more useful knowledge from both user-specific and098

common-sense aspects.099

Furthermore, existing works in personalized100

LLMs primarily focus on designing comprehensive101

prompts that enable LLMs to generate contextu-102

ally relevant responses aligned with user-specific103

dialogue preferences (e.g., preferring concise re-104

sponses) (Wang et al., 2023; Wu et al., 2023;105

Wang et al., 2019). However, these methods of-106

ten yield inferior performance compared to fine-107

tuning approaches and are susceptible to the ex-108

act formatting of the prompts (e.g., wording and109

ordering) (Liu et al., 2022a). Another approach110

proposed by Salemi et al. (2023) involves incorpo-111

rating user profiles during the pretraining stage,112

enabling LLMs to possess user-specific knowl-113

edge for downstream tasks. Nevertheless, train-114

ing fully personalized LLMs for individuals can be115

economically unviable. To this end, we embrace 116

the utilization of PEFT which focuses on updat- 117

ing a small subset of parameters, ensuring that the 118

trained LLM achieves promising performance on 119

new tasks while minimizing computational costs, 120

to develop user-oriented LLMs with reduced time 121

and resource consumption. 122

In tandem, we propose a novel memory mech- 123

anism inspired by neuroscience, and along with 124

a PEFT training strategy to achieve LLM-based 125

medical assistant personalization. The key contri- 126

butions of our work are as follows: 127

• We propose a novel DPeM mechanism that 128

closely resembles real-world memory processes 129

which lead to a relatively 7% improvement against 130

existing memory structure. 131

• We propose MaLP, a unified frame based on 132

DPeM and PEFT which promotes the response’s 133

quality by catering to user-specific needs. 134

• We introduce a new medical dialogue dataset 135

that incorporates user preferences and historical 136

records. This dataset offers a unique perspective to 137

explore personalized medical assistants. 138

2 Methodology 139

2.1 Preliminary Definition 140

Before going further, we would like to give our 141

preliminary definitions first. Given multi-round 142

dialogues between two characters (e.g., patient 143

and doctor) which is denoted as D = {d0, ..., dn} 144

where n is the number of rounds, our task here is 145

to learn and memorize the knowledge from D to 146

form a memory M and fine-tune a large language 147

model (LLM) Φ to produce personalized response 148

y in terms of a new query x from the same user 149

with respect to (w.r.t) D and M. 150

2.2 Medical Knowledge Injection 151

To help the LLM provide better responses, we pro- 152

pose to first inject medical knowledge via a domain 153

adapter(Zhang et al., 2023). The adapter archi- 154

tecture consists of a down-projection layer, a non- 155

linearity function (e.g., ReLU(Agarap, 2018)), and 156

an up-projection (e.g., a fully connected network). 157

Note that all parameters, except those pertaining 158

to the domain adapter, remain frozen. However, 159

directly using such domain adapter will lead to 160

the catastrophic forgetting problem(Gururangan 161

et al., 2020). This phenomenon entails the risk 162

that the LLM may lose its inherent capabilities 163

after training on domain-specific knowledge us- 164
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ing an adapter. To slove this, we propose incor-165

porating a sample loss, which gauges the output166

disparity before and after the knowledge injection167

process for the same query. Given a medical text168

with K masked tokens, the knowledge loss can169

be LK = − 1
K

∑M
i=1 log p(mi) where p(mi) is170

the probability of generating mi, and the sample171

loss can be defined as LS = ||Vo, Vk||22, where the172

Vo is the vector representation of tokens from the173

original layer and Vk is the vector representation174

of tokens from the layer that installed the adapter.175

The overall knowledge injection can be trained by176

simply adding those two losses. We use the trained177

LLM with medical knowledge as the base LLM in178

the following steps.179

2.3 DPeM Mechanism180

The key novelty that differentiates our work with181

previous efforts is that we turns into excavating182

the improvements regarding the intricate memory183

structure instead of studying solely on retriever.184

Drawing inspirations from Kahneman (2011), we185

aim to design a memory mechanism that closely re-186

sembles real-world memory processes. To achieve187

this, we propose a dual-process (Rehearsal Process,188

Executive Process) enhanced procedure which con-189

sists of three steps - Learning, Summarizing and190

Memorizing. The Rehearsal Process involves learn-191

ing information from D, which is then stored in192

working memory. The working memory is re-193

freshed iteratively based on the dialogue’s content194

of current iteration—this is the summarizing step.195

The two-step rehearsal process is facilitated by a196

coordinator with powerful natural language under-197

standing abilities. Next, the information stored in198

working memory is evaluated to determine whether199

it needs to be stored in Short-Term Memory (STM)200

or Long-Term Memory (LTM) based on the fre-201

quency of access by the Executive Process. This202

dual-process is illustrated in Figure 2 by the green-203

box and the three-colored lines. The detailed mem-204

ory structure and working flows of DPeM are de-205

picted in the following sections.206

2.3.1 Memory M:207

As prescribed, M does not consist of a single type208

of memory. Instead, it comprises different types209

of memory that store and access information in210

their own way, while working together for better211

knowledge management through dual-process. In-212

tuitively, there will be a vast amount of information213

that needs to be registered when learning some-214

Figure 2: Overview of MaLP: the user’s historical di-
alogues will firstly be passed to a coordinator C and a
trainable LLM equipped with PEFT iteratively for mem-
ory generation and causal language modeling, respec-
tively. Then the memory generation module will form a
memory using DPeM mechanism where dual-process is
denoted in green box along with three steps denoted in
colored lines separately. After iterations completed, a
new query by the user will be passed to a retriever for
corresponding memory lookup and then the fine-tuned
LLM will produce the personalized response in terms
of the retrieved knowledge and historical dialogues.

thing new and not all those information will be 215

stored directly and entirely into memory. Instead, 216

a working memory acts as a buffer memory to reg- 217

ister and filter information so that only the relevant 218

information enters STM, while the rest is dropped. 219

Short-term memory refers to a limited space that 220

holds a small amount of knowledge in an active, 221

quickly accessible state. Long-term memory stores 222

knowledge transited from STM for a longer period. 223

Being aware of the differences in information stor- 224

age and access, our memory mechanism enhances 225

LLM by incorporating knowledge from both user- 226

specific and common-sense perspectives. All the 227

three types of memory are in the form of a growing 228

table which support different operations but work 229

collaboratively as shown in Table 1. 230
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Type Refresh Storage Sup. Lookup?
Mworking Each Iteration Limited %

MSTM Certain Rounds Limited !

MLTM Never Unlimited !

Table 1: Comparison among three types of memory.

2.3.2 Rehearsal Process231

Rehearsal refers to the process of obtaining and232

refreshing information so that the relevant informa-233

tion can be filtered and stored as knowledge into234

memory. Learning aims at gathering information235

from the dialogue’s content of the current iteration.236

Inspired by how humans take notes when learn-237

ing something new, we leverage C, which takes all238

the necessary notes for each iteration’s dialogue.239

Formally, by passing di ∈ D to C iteratively, we240

obtain some notes denoted as nts = C(di) which241

will be recorded into working memory. Typically,242

not all the notes will be practical which makes the243

summarizing step indispensable within the DPeM244

mechanism. Summarizing steps further by purify-245

ing the relevant notes from nts and pass them into246

STM. Specifically, the coordinator will determine247

if the nt ∈ nts is relevant or not and store the use-248

ful nt+ as knowledge item by item and the stored249

knowledge is delivered to STM and is denoted as250

K = [k0, ..., km] where ki = nt+i .251

2.3.3 Executive Process252

Executive Process mainly focuses on and memo-253

rizing the knowledge produced from rehearsal pro-254

cess. The main objective of DPeM is to process and255

store information based on its importance level and256

user-specific needs, an aspect that previous works257

have paid little attention to. Specifically, the fil-258

tered knowledge k will firstly be categorized as two259

types: Common-sense Knowledge, User-Specific260

Knowledge and then be converted into the STM in261

the form of key (type) - value (ki) pair. As the learn-262

ing iteration progresses, a flag table ft is used to263

keep track of the frequency of appearance for each264

ki. When the frequency reaches a predetermined265

threshold θ, the ki is transferred to LTM. Notably,266

STM is refreshed periodically after certain rounds267

(working memory is refreshed after each iteration)268

while LTM typically only accepts new ki entries.269

The final memory structure consists of three parts:270

Working Memory, STM, and LTM. Working Mem-271

ory serves as a buffer for storing newly detected272

information, STM stores relevant and recent knowl-273

edge, and LTM provides longer-term access to fre-274

quently visited knowledge from STM. Through the 275

collaboration of these three types of memory, along 276

with the dual-process approach, DPeM provides a 277

more powerful memory system to further support 278

personalized LLM. 279

2.4 MaLP Frame 280

2.4.1 Memory Generation 281

Memory can provide latent knowledge from per- 282

sonal historical stream which can further be ne- 283

glected as prompts to assist LLM for producing de- 284

sired responses regarding new queries. Attributed 285

to our proposed DPeM mechanism, the memory 286

generation module can produce a well-organized 287

memory which can support different storage and 288

lookup operations in terms of information features 289

as can be seen in Fig. 2. Given dialogues D, the 290

memory formation can be described as follows: 291

Mworking = {nt0, ..., nti, ...},
MSTM = {..., k_type : kj , ...},
MLTM = {..., k_type : kf , ...},

M = [Mworking,MSTM ,MLTM ]

(1) 292

where nti = C(di), kj = nt+i , kf denotes fre- 293

quently visited kj from MSTM . The comparison 294

among these three types of memory can be seen in 295

the Table 1. 296

2.4.2 Memory Utilization 297

However, relying solely on memory for achieving 298

personalized LLMs still poses challenges, as the 299

quality of generated responses ultimately depends 300

on the understanding and generation ability of the 301

LLM, even with memory-augmented prompts and 302

pre-injected knowledge. Therefore, fine-tuning the 303

LLM to cater to user-specific needs naturally be- 304

comes an option for enhancing LLM personaliza- 305

tion. However, traditional fine-tuning approaches 306

often demand significant computational and data re- 307

sources, whereas our aim is to optimize the LLM’s 308

response generation in a user-friendly manner by 309

leveraging previous dialogues. In this regard, PEFT 310

methods (Li and Liang, 2021; Liu et al., 2022b,c) 311

offer a solution by achieving this objective with 312

low resource consumption. 313

To tune the base LLM (e.g., LLaMA) with user’s 314

previous dialogues and enable it to generate user- 315

favorable responses, we employ the Low-Rank 316

Adaption (LoRA) technique (Hu et al., 2021). With 317

LoRA, we update a given pre-trained weight ma- 318

trix WΦ ∈ Rd×k of LLM by incorporating a low- 319
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rank decomposition WΦ + ∆W = WΦ + BA.320

Here, B ∈ Rd×r, A ∈ Rr×k, and the rank321

r ≪ min(d, k). During the fine-tuning process,322

we randomly select a set number of layers to im-323

plement LoRA, where A and B are trainable while324

WΦ remains frozen. This allows us to target user325

preferences and adapt the LLM accordingly.326

Once all iterations are completed, we acquire327

a LoRA-tuned LLM along with a latent memory328

that caters to user-specific needs. Typically, when329

a new query x is received, the responding process330

is presented as:331

x → Φ → y (2)332

however, by using MaLP, the process is refined as:333

p = Retriever(x),

x, p → Φ̂ → y
(3)334

where p is the prompt retrieved from M,335

Retriever is a function that can retrieve knowl-336

edge from M in terms of query x and Φ̂ is the337

LoRA-tuned LLM. The utilization process is de-338

noted in orange lines as can be seen in Figure 2.339

2.4.3 Components340

In the MaLP framework, several key components341

actively engage in memory generation and utiliza-342

tion to ensure efficient collaborations:343

Coordinator C: C plays a pivotal role in the learn-344

ing and summarizing stage which involves deriving345

information from dialogue contexts and purifying346

knowledge from learned information (Xu et al.,347

2023). Thus we resort to a powerful tool (e.g.,348

ChatGPT) that is capable of understanding the long349

dialogue and performing summarization and judge-350

ment(Xu et al., 2023).351

Retriever R: Retrieval is the process by which352

the retriever accesses stored knowledge. However,353

since the memorized knowledge differs between354

STM and LTM, their retrieval processes also differ.355

STM is retrieved in the order in which it is stored,356

while LTM is retrieved through association(e.g.,357

recalling a past mistake by recognizing its similar-358

ity(Kahneman, 2011)). To address this, we have359

designed two retrievers: a closest-match retriever,360

Rc, for STM retrieval, and a semantic-match re-361

triever, Rs, for LTM retrieval. Rc aims to find362

the knowledge stored in STM that is closest to the363

query in terms of Levenshtein distance, which indi-364

cates the minimum number of deletions, insertions,365

or substitutions required to transform string s into366

string t (e.g., lev(′test′,′ tent′) = 1 since only one 367

step ′s′− >′ n′ is needed). However, since the re- 368

trieval process for LTM is fast and unconscious, we 369

have chosen to train an encoder to obtain semantic 370

embeddings and retrieve knowledge in LTM based 371

on cosine similarity (Madaan et al., 2022). 372

3 Data 373

3.1 Data Construction2 374

Existing dialogue datasets often lack awareness of 375

the importance of penalization, while recent works 376

like Xu et al. (2023) have explored the capability 377

of LLMs to generate high-quality chat corpora. In 378

light of this, we propose injecting user profiles into 379

the dialogue generation process using self-chat sim- 380

ulations within real-world conversational scenarios. 381

Specifically, we focus on medical scenarios as they 382

typically involve dialogues between patients and 383

doctors, encompassing a wealth of common-sense 384

information (e.g., Tylenol can alleviate fever) and 385

personal details (e.g., chronic diseases, dialogue 386

preferences). These scenarios allow us to empha- 387

size the significance of memory and personaliza- 388

tion, respectively. To obtain personalized dialogues, 389

one straightforward method is to incorporate user’s 390

profile into a language model prompt. We first 391

derive the patient’s profile including personal infor- 392

mation, symptoms and dialogue preference from 393

the publicly available medical corpus3 (Chen et al., 394

2020) and then follow Xu et al. (2023)’s work us- 395

ing self-chat to guide powerful chat models (e.g., 396

ChatGPT) simulate high-quality dialogues. The dif- 397

ference is that we endow the patient’s and doctor’s 398

profile to the chat model at the beginning of conver- 399

sation simulation. Further, we prompt the powerful 400

chat model to produce follow-up dialogues related 401

to the same symptom, new symptoms etc. to ob- 402

tain historical information. The whole construction 403

pipeline and detailed statistics can be seen in Figure 404

3 and Appendix A, respectively. 405

3.2 Safety and Evaluation 406

Safety Unlike most dialogue data generated by 407

chatting with human, our dataset does not rely 408

on human feedback to suppress unwanted content 409

(e.g., incorrect medicine suggestions) and instead 410

we resort to providing explicit prompts that can 411

steer the generation behaviors. While we have 412

2Data and the construction code will be released here
3https://github.com/UCSD-AI4H/Medical-Dialogue-

System
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Figure 3: Details of data collection process: we first de-
rive patient’s profile from public medical corpus and
then endow the patient’s profile to a powerful chat
model. Assistant role (e.g., doctor) will be simulated
independently using the same chat model and thus we
could collect the historical dialogues via self-chat be-
tween these two roles.

tested the default prompts, it can still be risky to413

have the guidance missed by changing the prompts.414

Evaluation To further assess our dataset, two mas-415

ter students with medical background are hired for416

evaluating the quality of the dataset by identifying417

any dirty content and safety issues on 100 random418

samples4. The average quality score was found to419

be 5.27, and the safety ratio, indicating the propor-420

tion of instances without safety issues, was 94%.421

4 Experiments422

4.1 Setup423

For the medical knowledge injection, we use the424

open-source datasets from HealthCareMagic-100k425

and iCliniq5 (Yunxiang et al., 2023) and set the426

learning rate as 1e-4, batch size as 20, and weight427

decay as 0.05 for training. To train our MaLP, we428

leverage the AdamW soptimizer(Loshchilov and429

Hutter, 2018) with a learning rate of 5e-5 and also430

a linear warm-up scheduler initialized with 10%431

of the total training steps as warm-up steps and432

a weight decay of 1e-4 to avoid over-fitting. The433

LoRA’s rank of update matrices is set as 8 and the434

scaling factor alpha is 32. To accommodate the435

4Quality scoring is depicted in the Appendix B
5https://github.com/Kent0n-Li/ChatDoctor

task of requirements, we set the maximum length 436

of input and output to 1024 and 2048 tokens, re- 437

spectively. All implementations are conducted with 438

Pytorch(Paszke et al., 2017), PEFT(Mangrulkar 439

et al., 2022) and Transformers(Wolf et al., 2020) 440

on a computation node configured with a 256G 441

CPU and two 32G Tesla V100 GPUs. 442

4.2 Baselines 443

Considering the contributions of our work, we opt 444

to compare our DPeM and MaLP with three dif- 445

ferent configurations: Standard, with dict-based 446

Mem(Madaan et al., 2022) and with LoRA(Hu 447

et al., 2021) in terms of three current SOTA LLMs 448

as base models6: GPT3.5, LLaMA-7B, LLaMA- 449

13B(Touvron et al., 2023). 450

4.3 Tasks and Metrics 451

We follow the evaluation methods of Salemi et al. 452

(2023) and Wang et al. (2023) to assess the perfor- 453

mance of our proposed approach on three tasks: 454

Question Answering (QA) - We evaluate the 455

effectiveness by posing user-relevant/knowledge- 456

relevant questions to the model and comparing its 457

generated answers with the truth from the user pro- 458

file and memory. The ROUGE-1 and ROUGE-L 459

metrics are used for evaluation; 460

Preference Classification - We also assess person- 461

alization by prompting the trained model to select 462

the user’s dialogue preference from a pre-defined 463

set and measure performance using Accuracy; 464

Response Generation - In addition to empirical 465

results, we evaluate the quality of responses gener- 466

ated by the trained LLM for new queries from the 467

same user in terms of the content and preference. 468

To do so, we follow the scoring method of Wang 469

et al. (2023) and calculate the Win Rate between 470

different settings and the standard generation of the 471

base LLM. Furthermore, we conduct human eval- 472

uation to validate the alignment of this automatic 473

scoring schema with human judgments. 474

4.4 Comparative Study 475

Table 2 presents the main evaluation results for Pro- 476

file/Knowledge QA, Preference Classification, and 477

Response Generation tasks. The addition of mem- 478

ory improves the performance of both GPT3.5 and 479

LLaMA LLMs compared to the standard setting, 480

6Due to the resources limitation, we are unable to test
larger scale LLMs; Finetuning GPT3.5 is a black-box, we
didn’t find a way to apply LoRA on GPT3.5 and some results
are omitted. However, the results express the power of MaLP.
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Model Type Profile QA Knowledge QA Pref. Classification Response Generation
ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L Accuracy % Win Rate %

GPT3.5
Standard 32.07 30.81 35.62 31.78 36.31 -
w Mem 34.93 34.27 40.19 38.27 41.73 80.91

w DPeM 40.81 38.78 40.87 39.51 47.72 86.60

LLaMA-7B

Standard 21.41 19.82 25.01 23.69 21.42 -
w Mem 21.90 20.44 32.90 31.17 21.15 78.41
w DPeM 22.37 20.97 35.07 33.98 33.06 84.60
w LoRA 30.89 29.66 34.90 33.60 61.05 72.01
w MaLP 35.59 33.91 36.91 36.37 69.95 91.53

LLaMA-13B

Standard 22.67 21.02 26.91 23.98 24.37 -
w Mem 23.10 21.39 34.06 32.47 23.68 78.92
w DPeM 23.57 22.01 36.90 35.09 34.96 84.81
w LoRA 31.29 29.96 36.79 34.99 62.47 71.93
w MaLP 35.97 34.63 37.88 37.07 71.05 91.27

Table 2: The main results on different tasks.

as it provides additional knowledge prompts to en-481

hance the LLM’s understanding of user queries.482

However, our novel DPeM exhibits superior per-483

formance in assisting LLMs. When combined484

with GPT3.5 as the base LLM, DPeM outper-485

forms the dict-based memory setting (Madaan et al.,486

2022) with relative improvements of 13.16% and487

3.24% in ROUGE-L scores for profile QA and488

knowledge QA tasks, respectively. Additionally,489

DPeM demonstrates better user-specific assistance490

by achieving a 14.35% increase in classification491

accuracy compared to dict-based memory and a492

7.03% higher win rate for response generation.493

Similarly, when configured with LLaMA-7b as the494

base LLM, DPeM achieves relative improvements495

of 2.59% and 9.02% in profile and knowledge QA496

tasks, respectively, along with 56.31% and 7.89%497

enhancements in classifying user preferences and498

generating personalized responses. These improve-499

ments can be attributed to the novel dual-process500

schema of DPeM, where the rehearsal process re-501

freshes and rewrites knowledge to reduce the risk502

of retrieving irrelevant information, and the execu-503

tive process memorizes knowledge in a distinguish-504

aware manner, leading to more effective retrieval.505

One interesting thing we observed is that despite506

the improvements made by DPeM, it’s still insuf-507

ficient for acquiring user-specific needs. However,508

by leveraging LoRA as can be seen in the results509

of QA tasks using LLaMA as the base, DPeM510

achieves a greater improvement on knowledge511

QA than profile QA while using LoRA achieves512

a greater improvement on profile QA. Moreover,513

LoRA helps LLM to know user preference better514

as it boosts the accuracy of classifying user prefer-515

ence by 39.63% while using DPeM solely improves516

the accuracy by 11.64% compared with standard517

Figure 4: The quality of generated response increases
with the number of historical dialogues.

setting. However, despite the user-specific need de- 518

tected by using LoRA, we notice that using LoRA 519

solely is not comparable with using memory on re- 520

sponse generation which indicates the importance 521

of memory in our whole MaLP. 522

By combining DPeM and LoRA into a unified 523

framework, our MaLP approach can effectively in- 524

corporate both user-specific needs and knowledge 525

detected from previous dialogue history, resulting 526

in the best performance across all three evaluation 527

tasks compared to other configurations. One more 528

notable thing is that the nuanced distinction in lan- 529

guage understanding and generation across various 530

base models may result in subtle differences. These 531

findings further validate the effectiveness and supe- 532

riority of our novel DPeM mechanism as well as 533

the unified MaLP frame. 534

4.5 Response Quality Study7 535

In addition to the main comparisons with standard 536

settings and previous efforts, we conducted further 537

7We further provide a Case Study and an Ablation Study
as shown in Appendix C and D, respectively.
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experiments to explore the roles of different mod-538

ules as the historical information increases. As539

shown in Figure 4, our MaLP approach consis-540

tently improves the quality of generated responses541

and outperforms other configurations. Notably, the542

quality of generated responses fluctuates in the543

first 20 rounds as depicted in Figure 4 which we544

attribute this to the accumulation of knowledge545

during the initial rounds. Moreover, as the num-546

ber of dialogue rounds increases, the oscillation547

of the dict-based memory is larger compared to548

that of DPeM. This indicates that our DPeM mech-549

anism effectively reduces the chances of incor-550

rect knowledge retrieval through its dual-process551

schema. These findings further confirm the stability552

and effectiveness of MaLP.553

4.6 Human Judgement554

To validate the alignment of our automatic scor-555

ing schema with human judgements, we follow the556

work of Wang et al. (2023) to conduct point-wise557

evaluation. Specifically, two master students are558

hired and 100 response pairs are sampled (i.e., re-559

sponses generated by standard setting and MaLP560

using LLaMA-13b). Then we ask the students to in-561

dicate which response is better by selecting 1(win),562

0(tie) and -1(lose) for each pair. Next, we calculate563

the Pearson Correlation Coefficient (P.C) and also564

the accuracy between human scores and automatic565

scores. The P.C of 0.72 and the accuracy of 84% to-566

gether indicate the feasibility and high confidence567

of our evaluation method.568

5 Conclusion & Future Work569

In summary, we proposed MaLP which integrates a570

novel dual-process enhanced memory mechanism571

and a peft approach to enhance medical assistants572

with awareness of user-specific needs. This simple573

yet effective endeavor enables personalized LLMs574

while maintaining low resource consumption. Ad-575

ditionally, our innovative data construction method576

provided the community a fresh perspective to ex-577

plore personalized medical assistant. The extensive578

experiments and human judgment tests conducted579

validate the effectiveness of our work.580

6 Related Work581

Memory-Augmented LLM refers to apply a mem-582

ory that contains user feedback from previous mis-583

takes and by prepending or postpending the new584

input query with the stored feedback, the output of585

LLM can be improved(Ouyang et al., 2022). Ef- 586

forts have been made in terms of the usage of mem- 587

ory. Tandon et al. (2021) first proposed to leverages 588

a corrector that can correct the model’s output in 589

terms of the similar mistake stored in the memory 590

previously. However, this method aims to repair the 591

wrong output while Madaan et al. (2022) argued 592

that the stored experience can be used to avoid in- 593

correct output by prepending/postpending the feed- 594

back to the new query. Another usage of memory 595

is to include the memory into a learning frame such 596

as self-learning or teacher-student paradigm so that 597

the LLM can learn by iterative refinement(Madaan 598

et al., 2023; Dalvi et al., 2022). In tandem, the 599

key for better usage of memory is to equip power- 600

ful retrievers(Guu et al., 2020; Lewis et al., 2020; 601

Yuan et al., 2022). The main difference between 602

our work and the previous work is that our work 603

refine the memory structure, instead we design a 604

close-to-real memory mechanism that can better 605

identify and retrieve information for enhancement. 606

Personalized LLM has seen increasing attentions 607

since it can provide tailored experience that aligns 608

with their user’s expectations in terms of their 609

needs(Salemi et al., 2023). Previous works fo- 610

cused on identifying user preferences by Ceteris 611

Paribus(CP)-nets(Asher et al., 2010). Unfortu- 612

nately , this kind of methods suffer from its lim- 613

ited ability of natural language understanding. As 614

LLMs emerged, prompt-based methods attempt to 615

design in-depth prompts such as chain-of-thoughts 616

prompts that can guide LLM to produce desired 617

output with aware of user status and context con- 618

tent(Wang et al., 2023; Wu et al., 2023; Aher et al., 619

2023). Another way resorts to enhancing LLMs 620

with aware of user information and fine-tuning 621

LLMs to generate responses towards user-specific 622

needs. For example, Korbak et al. (2023); Salemi 623

et al. (2023); Xu et al. (2023) tried to inject user 624

profile information in the pre-training stage and 625

fine-tune the LLM in terms of the learned prefer- 626

ences from user. Unfortunately, fully trained LLMs 627

can be too resource-consuming, thus we propose 628

to leverage parameter-efficient fine-tuning (PEFT) 629

techniques and along with our novel memory mech- 630

anism for personalization. Distinctively, our work 631

stands out from previous research as we pioneer 632

the conception of a realistic memory mechanism 633

and additionally, we employ PEFT techniques to 634

not only attain but also amplify the effectiveness of 635

personalized medical assistant. 636
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Limitations637

Despite the empirical success and the production of638

superior responses, our simple yet effective method639

remains in the prototype stage. Two notable limi-640

tations warrant attention. Firstly, our memory op-641

erates in an offline fashion, resembling a smoothly642

collaborative database. Regrettably, it is incapable643

of learning from new queries, functioning merely644

as auxiliary prompts rather than an integral part645

of the intricate knowledge possessed by the LLM646

itself. Our dedicated team is actively engaged in647

the process of incorporating all aspects of mem-648

ory into the inside of the base LLM. This involves649

leveraging multiple peft modules to emulate the650

workflow of the brain’s memory mechanism.651

Secondly, the forgetting mechanism in our cur-652

rent implementation relies on frequency counting.653

However, in scenarios such as avoidance learning654

(e.g., "fire touch can lead to fire fear"), our DPeM655

mechanism can encompass a more comprehensive656

approach. To address this, we plan to introduce657

learning schemas/losses in the subsequent phase to658

regulate and control avoidance behavior. We’re ex-659

cited about making these limitations into novelties660

in the near future.661
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A Appendix A. Data Statistics856

The statistics of our generated dataset can be seen857

in the Table 3

Attributes Value
Num of User 60
Avg. Rounds 182
Avg. Length 877

Num of Dialogue 10,920
Num of Utterance 131,040

Table 3: Statistics of dataset

858

B Appendix B. Data Quality Scoring form859

Quality was scored based on the presence of hallu-860

cinations, irrelevant content, dirty content, invalid861

symbols, offensive content and harmful sugges-862

tions. Each criterion resulted in a deduction of863

one point, with a total of 6 points. Safety evalua-864

tion focused on identifying profanity, inappropriate865

suggestions and any presence of safety issues was866

indicated by answering "yes". The scoring table867

can be seen in Table 4. We calculate the average868

quality score based on the forms from annotators.869

C Appendix C. Case Study870

We further conduct a case study to show the qual-871

ity of generated response under the assistance of872

MaLP compared with other baselines. As Figure873

5 shows, given the background and the new query,874

our MaLP receives the highest score since it takes875

both the user historical knowledge (i.e. diabetes) in-876

cluding preference (i.e. prefer concise suggestions)877

learned by peft and the common-sense knowledge878

(i.e. keeping skin moisture etc.) into consideration879

for response generation. While standard settings880

only generate response in a general manner and881

the dict-based memory method only relies on the882

knowledge stored in its memory which lacks the883

aware of user-specific needs, thus leading inferior884

scores. In tandem, our frame along with the novel885

DPeM and PEFT training enables LLMs to pro-886

vide more engaging dialogue experience towards887

user-specific needs.888

D Appendix D. Ablation Study889

We further conduct ablation study to validate the890

completeness of our proposed frame. From table891

5, we notice that with knowledge injection, the892

performance of knowledge QA improves which893

aligns our intuition to inject domain knowledge first 894

for better responses. When equipped with DPeM, 895

LoRA and fully configured MaLP, the observation 896

stays the same as discussed in the Section 4.4. 897
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Aspect Explanation Answer
Hallucinations Contains Wrong facts

Invalid symbols Contains invalid symbols
Offensive content Contains insulation / profanity

Dirty content Answers are with unwanted preferences
Harmful suggestions Contains harmful treatment for patients

Irrelevant content The answer is not relevant to the question

Table 4: Quality Scoring Form

Figure 5: A case study showing the quality of generated response in terms of different settings. Scores are evaluated
by human.

Model Type Profile QA Knowledge QA Pref. Classification Response Generation
ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L Accuracy % Win Rate %

LLaMA-7B

Standard 21.41 19.82 25.01 23.69 21.42 -
w Injection 21.39 19.82 33.98 34.11 21.07 73.67
w DPeM 22.37 20.97 35.07 33.98 33.06 84.60
w LoRA 30.89 29.66 34.90 33.60 61.05 72.01
w MaLP 35.59 33.91 36.91 36.37 69.95 91.53

Table 5: The ablation study results on different modules.
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