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Figure 1: We present CogNVS, a video diffusion model that enables novel-view synthesis of dynamic
scenes. Given an in-the-wild monocular video of a dynamic scene, we first reconstruct the scene,
render it from the target novel-view and inpaint any unobserved regions. Because CogNVS can be
pre-trained via self-supervision, it can also be test-time-finetuned on a given target video, enabling it
to zero-shot generalize to novel domains. Our simple pipeline outperforms almost all prior state-of-
the-art for dynamic novel-view synthesis. We show outputs from CogNVS from two unseen videos;
a real-world video above, and a generated video below.

Abstract

We explore novel-view synthesis for dynamic scenes from monocular videos. Prior
approaches rely on costly test-time optimization of 4D representations or do not
preserve scene geometry when trained in a feed-forward manner. Our approach is
based on three key insights: (1) covisible pixels (that are visible in both the input
and target views) can be rendered by first reconstructing the dynamic 3D scene and
rendering the reconstruction from the novel-views and (2) hidden pixels in novel
views can be “inpainted" with feed-forward 2D video diffusion models. Notably,
our video inpainting diffusion model (CogNVS) can be self-supervised from 2D
videos, allowing us to train it on a large corpus of in-the-wild videos. This in turn
allows for (3) CogNVS to be applied zero-shot to novel test videos via test-time
finetuning. We empirically verify that CogNVS outperforms almost all prior art for
novel-view synthesis of dynamic scenes from monocular videos.
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1 Introduction

Rapid advances in static 3D scene representations [50, 31] have paved the way for spacetime
understanding of the dynamic world. This has enabled photorealistic content creation and immersive
virtual reality applications. In this work, we focus on the problem of novel-view synthesis from
casually-captured monocular videos of dynamic scenes.

Why is this hard? Prior work on dynamic view synthesis addresses this task from two extremes.
The first class of methods “test-time” optimize a new 4D representation from scratch for every new
test video. While this ensures physically-plausible scene geometry, careful choices in modeling
scene motion – in the form of an independent deformation field, or learnable temporal offsets –
have to be made [74, 41, 81]. More importantly, it can take on the order of hours to optimize and
render a novel-view video. An attractive alternative is to train large feed-forward video models
directly for view synthesis [95, 25]. While inference on such models is dramatically faster (on the
order of milliseconds), the resulting renderings often are not as accurate as their test-time optimized
counterparts. From a pragmatic perspective, such models need to be trained on mega-scale multi-view
training data, which is difficult to obtain for dynamic scenes.

Our method addresses the above challenges by decomposing the problem of dynamic view-
synthesis into three distinct stages. First, we lean on the success of non-rigid structure from motion
[46, 94, 40] approaches that produce reconstructions of visible scene regions, sometimes known
as "2.5D" reconstructions (since occluded regions are not reconstructed). We point out that such
reconstructions can be trivially produced for casual mobile videos captured with depth sensors and
egomotion [20]. When such reconstructions are rendered from a target novel view, previously-hidden
regions will not not be rendered. To “inpaint” these regions, we train a 2D video-inpainter – CogNVS
– by fine-tuning a video diffusion model (CogVideoX [89]) to condition on the partially-observable
novel-view pixels. Importantly, we allow CogNVS to also update the appearance of previously-visible
pixels, allowing our pipeline to model view-dependent (dynamic) scene effects.

The key insight of our work is that CogNVS can be trained on any 2D video via self-supervision.
However, rather than training our inpainter with random 2D masks, we make use of 3D multi-view
supervision that better captures 3D scene visiblity, similar to prior art [78]. Specifically, given a
2D training video, we first reconstruct it (with an off-the-shelf method such as MegaSAM) and
then render the reconstruction from a random camera trajectory. This rendering is used to identify
co-visible pixels from the source video that remain visible in the novel views. This original source
video and its co-visible-only masked variant can now form a training pair for 3D-consistent video
inpainting. Importantly, because such a training pair does not require ground-truth 3D supervision,
CogNVS can be trained on diverse in-the-wild 2D videos. We use dynamic scenes from TAO [13],
SA-V [59], Youtube-VOS [86], and DAVIS [54]. Equally as important, we use the same paradigm
to test-time finetune CogNVS on the test video-of-interest. We show that this allows our pipeline to
“zero-shot” generalize to test videos that were never seen during training. We argue that our test-time
finetuning of 2D diffusion models can be seen as the “best-of-both-worlds”, by leveraging large-scale
training data (for data-driven robustness) and test-time optimization (for accuracy).

In summary, our contributions are as follows: (1) We decompose dynamic view synthesis into three
stages of reconstruction, inpainting and test-time finetuning, (2) we use a large corpus of only 2D
videos for training CogNVS, and (3) we do extensive zero-shot benchmarking on three evaluation
datasets against state-of-the-art methods and show improvements on dynamic view synthesis.

2 Related Work

Novel-view synthesis has seen recent advancements with the rise of implicit scene representations
like NeRFs [50] and Gaussian primitives [31, 32, 12]. We have seen widespread efforts in scaling
these representations to model larger scenes [72, 83, 68], making them faster to fit [36, 22, 15, 31,
51, 6, 14, 8], anti-aliased [42, 2, 3, 26, 4], and extend to representing dynamic scenes [64, 21, 56,
36]. The most popular paradigms have been the adoption of dynamic NeRFs [50, 56, 19, 52] and
deformable Gaussian primitives [31, 81, 88, 47] for modeling scene dynamics, apart from using
voxel grids [34, 33] or learnable tokenzation [96]. Most approaches need multi-view posed videos
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Figure 2: CogNVS overview. During training (left), given a 2D source video (in blue) of a dynamic
scene, we first reconstruct the scene using off-the-shelf monocular reconstruction algorithms like
MegaSAM [40] to obtain the 3D scene geometry, Gsrc and camera odometry, csrc. We then sam-
ple a set of arbitrary camera trajectories {c1, · · · , cN} to simulate plausible occluded geometries,
{Gcov

src,1, · · · ,Gcov
src,N} which when rendered from original camera trajectory, csrc produces a mask

of source pixels that are co-visible in the sampled trajectory (in orange). The source video and its
masked variant produce a self-supervised training pair for learning CogNVS, our video inpainting
diffusion model (visualized in Fig. 3). At inference (right), we finetune CogNVS on the given
input sequence by similarly constructing self-supervised training pairs. The final novel-view is then
generated using the finetuned CogNVS in a feed-forward manner.

as input, and only recently monocular view synthesis has gained traction [17, 37, 74, 39]. However,
each of the aforementioned approaches have to be test-time optimized separately for every new
test video, are slow to optimize and yet fail to recover highly-detailed dynamic scene content [37].
Moreover, there is no focus on predicting the unobservable scene content, which is exacerbated
by benchmarking metrics that only evaluate co-visible pixels [20] in training and inference views
and therefore encourage benchmarking on novel views that are not too far apart from the training
views. Our approach instead reformulates dynamic view synthesis as an inpainting task, which
specifically focuses on generating parts of the scene that were occluded from the training views,
thereby facilitating extreme novel view synthesis for dynamic scenes. Our large-scale pretraining for
feed-forward novel-view inpainting enables data-driven robustness.

Data-driven novel-view synthesis approaches have emerged [73, 82, 61, 92, 93, 45, 87] which
train for view synthesis in a feed-forward manner with large-scale data. One class of methods is
based on transformer architectures, more often than not trained with multi-view supervision and
rendering in the loop [25, 95, 29, 80, 85, 60]. Another class of methods reformulate novel-view
synthesis as a conditional generation task and use diffusion-based generative architectures [45, 62] for
the same. Initially, the focus was on developing data-driven pipelines for static novel-view synthesis
[45, 44, 43, 93, 95, 80, 7, 76], or exploiting data-driven priors [55, 75, 66, 9, 69, 35, 57, 90], using
multi-view posed image inputs. However, the focus is now shifting to dynamic view synthesis of
casually captured videos in an unconstrained setting [73, 61, 92, 87, 38, 28]. These approaches allow
a greater level of hallucination of unseen scene components which instills the capability of view
synthesis for camera poses that are far apart from the training views. We fit into this setting. While the
data-driven learning provides faster inference times and a broad generalization, it compromises on 3D
geometric accuracy and physical-plausibility which introduces unrealistic artifacts in the synthesized
outputs (e.g., objects suddenly exist or cease to exist) [92]. In this work, we highlight that test-time
finetuning is crucial to preserving the 3D geometry of the scene and reducing implausible artifacts.

Test-time finetuning is a long-standing paradigm to curb distribution shifts in machine learning
algorithms and improve their generalization. It’s origin lies in early-age algorithms for optical char-
acter recognition [5] and text classification [30], where the algorithm adjusts itself after observing
the test data. A decade back, it popularly resurfaced for super-resolution [63] where learning to
super-resolve an image was achieved by downsampling and super-resolving the test image. Domain
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generalization approaches for vision [67, 11, 27, 10, 18, 97] soon took inspiration from this break-
through and recently, chain-of-thought prompting [79] and general LLM reasoning [1] in natural
language processing adapted this paradigm. The most recent adoption was seen in 4D reconstruction
and tracking [16], and we similarly explore this paradigm further in our work.

3 Method

Given a monocular video of a dynamic scene, Vsrc = {Vt
src}Tt=1, we want to generate a novel

view of the observed scene, Vnvs = {Vt
nvs}Tt=1 from a target camera pose. As discussed (c.f. Fig.

2), we achieve this by decomposing the task into three distinct stages – (1) obtain an off-the-shelf
reconstruction of the observed scene over time, (2) render the scene from the novel views and inpaint
the non-co-visible regions, and (3) curb the train-test distribution shift with test-time finetuning. Note
that the first two stages of our pipeline are similar to concurrent work [92, 61] but importantly we
find that test-time finetuning is a crucial stage to allow generalization. We now describe each of the
stages in detail.

3.1 Dynamic view synthesis as structured inpainting

We use off-the-shelf SLAM frameworks, like MegaSAM [40], to obtain a reconstruction of the given
scene. Formally, let the underlying 3D structure of the world as observed by Vsrc be represented
by, Gsrc = {Xt

src}Tt=1, where Xt
src are the evolving 3D primitives (points, Gaussians, etc.) across

time, t. Any physical properties of the primitives are omitted from this discussion for simplicity. Let
the recovered camera poses from which Vsrc was observed be, csrc = {ctsrc}Tt=1, where c denotes
a camera pose and is formulated as, c = (R, t) ∈ SE(3) lie group. The source video Vsrc can be
obtained by using a rendering function R as,

Vsrc = R
(
Gsrc, csrc

)
Learning to inpaint novel views For obtaining Vnvs, we note that a subset of 3D primitives
that must be visible from csrc, are already available in the reconstructed scene geometry, Gsrc.
Therefore, a partial observation of the world in the form of co-visible pixels [20] from novel views,
cnvs = {ctnvs}Tt=1, can be rendered as follows,

Vcov
nvs = R

(
Gsrc, cnvs

)
At this point, the novel view synthesis is incomplete, and all missing regions have to be generated.
To this end, we train a conditional video diffusion model, CogNVS (denoted by ϵθ) built on top of
a recently proposed transformer-based video diffusion model [89]. CogNVS takes in the partially
observed novel view video and generates an inpainted novel-view of the scene. The overall CogNVS
pipeline first employs a 3D causal VAE to compress the conditioning Vcov

nvs and target novel-view
Vsrc into latent representations zcond = E(Vcov

nvs) and z0 = E(Vsrc) respectively, enabling efficient
training while preserving temporal coherence and photometric fidelity. Here, E is the VAE encoder.
Gaussian noise is then added to the target latent z0, and the resulting noisy latent is concatenated with
the conditional latent zcond. This joint representation is passed through a self-attention transformer
equipped with 3D rotary positional embeddings (3D-RoPE) [65] and adaptive layer normalization,
which predicts the added noise. The training objective follows a score matching formulation:

min
θ

Ez0=E(Vsrc), zcond=E(Vcov
nvs),

k∼U{1,...,K}, ϵ∼N(0,I)

∥∥ ϵθ(zk, k, zcond) − ϵ
∥∥2
2

Here, zk =
√
ᾱkz0 +

√
1− ᾱkϵ denotes the noisy latent at a uniformly sampled timestep k, where

ᾱk is the cumulative signal preserving factor. While CogVideoX was originally designed as an
image-to-video diffusion model that zero-pads conditional image patches to match the length of the
target video, we adapt it for a video-to-video setting, where the shapes of the conditional and target
inputs are inherently aligned and no padding is needed. In practice, CogNVS is trained with datasets
of 2D videos which are used to generate self-supervised training pairs. We discuss this below.

3.2 Data generation for self-supervised training

We propose to train CogNVS in a self-supervised manner. This allows us to use a large corpus of
2D videos. For each casually captured monocular video Vsrc, similar to prior work [23, 48, 92], we
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Figure 3: Self-supervised training data generation. To curate a large training set for video
inpainting, we first reconstruct an input source 2D video (in blue) with an off-the-shelf monocular
SLAM system. After reconstruction, we randomly sample N pairs of ‘start’ and ‘end’ camera poses
around a spherical region, S of the estimated camera pose in the given 2D video. S is bounded by a
predefined deviation in the spherical coordinate axes, similar to a prior work [93]. We sample a SE(3)
camera trajectory that interpolates the start and end poses while looking at the center of the scene.
We render the reconstruction from this novel trajectory (in dotted-orange), and use the rendering to
identify co-visible pixels in the original source view (in orange). The source video and its masked
variant are used to produce a self-supervised training pair for training CogNVS, our "3D-aware"
video inpainting diffusion model.

obtain its 3D reconstruction Gsrc and odometry csrc from off-the-shelf SLAM frameworks [40]. As
demonstrated in Fig. 3, we sample N arbitrary camera trajectories in order to create training pairs
from 2D videos, described as follows.

We first obtain the “center” of the scene by considering the pixel at the optical center in the first frame
of the given video, similar to a prior work [92]. We then construct a bounded region S in spherical
coordinates, around the camera center of c1src. Within this region, we uniformly sample start and
end spherical coordinates of each new camera trajectory, and then again sample two intermediate
camera locations between the start and end spherical coordinates to ensure smoothness during
interpolation. Camera poses are obtained by converting the spherical coordinates into euclidean space
to get translations, and camera rotations are obtained such that the look-at vector always points to
the center of the scene. Using the four sampled camera poses, we do bicubic interpolation on the
SE(3) manifold. This results in a set of smooth camera trajectories, {cn}Nn=1 which are then used to
construct the training pairs. With N trajectories, we can obtain “partial” novel-view renderings as,

Vcov
n = R

(
Gsrc, cn

)
Between Vcov

n and Vsrc, only a subset of primitives from Gsrc are co-visible. Let this subset be
denoted by Gcov

src,n for the nth trajectory. Then, partial renderings of the source video are given by,

Vcov
src,n = R

(
Gcov
src,n, csrc

)
s.t. D = {(Vcov

src,n,Vsrc)}∀n ∈ [1, N ]

is the set of training pairs created by one monocular video. We repeat this for all 2D videos considered.

3.3 Test-time finetuning for target domain adaptation

At test time, to reduce domain gap arising due to different scene properties (lighting, appearance,
motion) we use the source test video Vsrc to adjust the priors of CogNVS and create self-supervised
finetuning pairs, D as described above. We therefore adapt the model weights θ on-the-fly with M
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gradient steps with η step size as follows,

θ ← θ − η ∇θ

∥∥ ϵθ(zk, k, zncond)− ϵ
∥∥2
2
,

where zncond is the latent of the nth self-supervised training pair input. At the end of finetuning,
we obtain the desired novel view Vnvs from CogNVS by using the partially observed novel-view,
R(Gsrc, cnvs) as the input conditioning, and running a reverse diffusion process.

4 Empirical Analysis

4.1 Experimental setup

Datasets We train CogNVS on four in-the-wild video datasets, SA-V [59], TAO [13], Youtube-VOS
[86], and DAVIS [53]. We sample 3000, 3000, 4000 and 100 videos respectively from each of the
datasets, giving us a total training video pool of≈ 10,000 videos. For pretraining, we randomly select
a new subsequence of 49-frames in every epoch and construct its training pairs. For benchmarking,
we follow prior work [37, 73] and use a combination of Kubric-4D, ParallelDomain-4D [73] and
Dycheck [20]. These have a held-out test set of 20, 20 and 5 videos each. Note that our evaluation on
Kubric-4D, ParallelDomain-4D and Dycheck is zero-shot as the datasets are not seen during training.
Since the Kubric-4D and ParallelDomain-4D are synthetic, we use their groundtruth point clouds and
odometry for a fair comparison to baselines. For Dycheck, we use MegaSAM for reconstruction and
align the estimated point cloud with the groundtruth to solve for scale ambiguity.

Baselines For Kubric-4D, we consider GCD [73] and Gen3C [61], alongside a concurrent work,
TrajectoryCrafter [92]. For ParallelDomain-4D, we consider the same baselines except Gen3C, which
only evaluates on Kubric-4D, as there is no open-source implementation available yet. For Dycheck,
we consider recent work like Shape-of-Motion [74], MoSca [37], CAT4D [82]. Note that we do not
benchmark test-time optimization approaches on Kubric-4D and ParallelDomain-4D, because their
performance degrades catastrophically on novel views that are far apart from training views. For
more quantitative analysis of CAT4D, see appendix.

Metrics For pixel-wise photometric evaluation, we adopt the widely used PSNR, SSIM, and LPIPS
family of metrics for evaluating reconstruction quality via novel-view synthesis. We additionally
benchmark the generation quality with FID and KID. This is in line with the benchmarking proposed
in several diffusion-based view synthesis works [73, 61, 45, 71].

Implementation details During pretraining, we load the official CogVideoX-5B-I2V checkpoint
and fully finetune all 42 transformer blocks. We use the AdamW optimizer with β1 = 0.9, β2 = 0.95,
and β3 = 0.98, a learning rate of 2× 10e− 5, and a batch size of 8 for 12,000 steps. To fit within
48GB VRAM, we employ DeepSpeed ZeRO-2 [58] to partition model states across 8 A6000 Ada
GPUs in a distributed setting. Pretraining completes in approximately 3 days.

During test-time finetuning, we maintain the same optimizer and learning rate but reduce the number
of steps to 200 for shorter sequences (e.g., Kubric-4D) and 400 for longer ones (e.g., DyCheck). For
all experiments, we use an input resolution of R49×480×720, set the classifier-free guidance scale to 6,
and run 50 inference steps. A single novel-view sequence generates in ∼5 mins on an A6000 Ada.
We provide additional implementation details and evaluation protocols in appendix.

4.2 Comparison to state-of-the-art

Kubric-4D and ParallelDomain-4D We first do zero-shot benchmarking of CogNVS on two
synthetic datasets that come with high-fidelity dense depth and accurate camera odometry annotations.
For a fair comparison to all baselines, we use the depth and poses to backproject the given scene
into a canonical coordinate frame. Given this scene, we generate self-supervised pairs for test-time
finetuning. Upon inference (see Tab. 1), we find that CogNVS beats prior work on photometric
evaluation with PSNR, SSIM, LPIPS, even when baselines are not evaluated zero-shot (GCD is
trained on Kubric-4D and ParallelDomain-4D and Gen3C is trained on Kubric-4D). In Fig. 4, we
show the plausible and realistic novel-views predicted by our method on both datasets as compared
to the baselines. This is quantitatively demonstrated by better FID and KID scores. A concurrent
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Figure 4: We show a qualitative comparison with state-of-the-art approaches for dynamic novel-view
synthesis on Kubric-4D (top), ParallelDomain-4D (middle) and DyCheck (bottom). Note how
reconstruction alone, either by groundtruth depth, MegaSAM [40], Shape of Motion [74], or MoSca
[37] cannot synthesize a complete novel view. Optimization based approaches like Shape of Motion,
and MoSca, blur the dynamic regions when fitting 4D representations. CAT4D [82], whose visuals
are taken from its project page due to unavailable code, struggles to generalize. TrajectoryCrafter
[92] over-hallucinates the occluded regions and does not preserve geometry. GCD [73] performs
well because it was trained on Kubric-4D and ParallelDomain-4D. Our method can instead produce
photorealistic and 3D-consistent novel-views for the given scenes in a zero-shot manner with test-time
finetuning, even starting from point cloud renders that are incomplete and noisy (e.g., from MegaSAM
for DyCheck). It is consistently able to synthesize sharp dynamic objects, which the other baselines
struggle with. Please see the video in the appendix.

work, TrajectoryCrafter [84] performs competitively. We also evaluate the rendered visible scene
structure from groundtruth depth, for establishing a lower bound on dynamic-view synthesis.

DyCheck We evaluate the performance of our method on a real-world dataset of casually captured
iPhone videos in Tab. 8. First, note that since CogNVS can be applied on top of reconstructions
from any method, we show two variants. Better initial reconstruction (in this case, with MoSca rather
than MegaSAM) allows for better dynamic view synthesis. Second, of all approaches, our method
produces the most visually plausible novel views, as captured by drastically better FID and KID.
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Table 1: Comparison to state-of-the-art for dynamic view synthesis on Kubric-4D and ParallelDomain-
4D. We find that our method, that operates zero-shot unlike Gen3C and GCD, achieves state-of-the-art
performance across a majority of metrics. † Note that Gen3C only evaluates on Kubric-4D and there
is no open-source code that would allow us to benchmark it on ParallelDomain-4D.

Method Kubric-4D ParallelDomain-4D
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓

GT 15.12 0.671 0.328 175.01 0.063 18.79 0.499 0.409 197.99 0.129
GCD [73] 18.59 0.555 0.383 121.57 0.020 21.77 0.665 0.400 90.58 0.022
Gen3C† [61] 19.41 0.630 0.290 98.58 n/a n/a n/a n/a n/a n/a
TrajCrafter [92] 20.93 0.730 0.257 130.20 0.024 21.46 0.719 0.342 95.38 0.026

CogNVS 22.63 0.760 0.232 102.47 0.008 24.34 0.797 0.302 102.43 0.033

Table 2: Comparison to state-of-the-art for dynamic novel-view synthesis on Dycheck. First, we note
that our method can be run on top of any reconstruction approach and the better the reconstruction
(e.g., replacing MegaSAM with MoSca), the better the view synthesis. Second, we see that our
method can achieve state-of-the-art FID / KID scores because test-time optimization approaches [74,
37, 40] result in blurry dynamic regions and cannot hallucinate new scene content, and completely
feed-forward approaches [92] cannot return precise geometry. Our method instead gets the “best of
both worlds”.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓

MegaSAM [40] 12.16 0.299 0.698 239.57 0.148
Shape-of-Motion [74] 15.30 0.476 0.494 164.29 0.073
MoSca [37] 16.22 0.472 0.586 148.18 0.063
TrajCrafter [92] 12.74 0.337 0.749 140.35 0.059

CogNVS (MegaSAM) 15.19 0.382 0.622 94.48 0.030
CogNVS (MoSca) 16.94 0.449 0.598 92.83 0.031

Third, note how TrajectoryCrafter [92], also based on video diffusion which was the second-best
method on Kubric-4D, is unable to handle the distribution shift in Dycheck (shallow field-of-view,
close-up videos of moving objects) and fails to generalize. Whereas our method benefits from
test-time finetuning and is able to adjust to any new data-distribution at test-time. Other test-time
optimization approaches (Shape-of-Motion, MoSca) do better as long as evaluation views are close
to training views, because there is only one distribution they need to fit to.

Runtime analysis We conduct a runtime analysis of CogNVS against other state-of-the-art base-
lines, as shown in Tab. 3, covering both stages of test-time optimization and rendering/inference.
Specifically, we measure runtime by evaluating each method on the DyCheck evaluation set, with an
average video length of 400 frames. Under our default hardware configuration, CogNVS requires 140
min for 400 steps of test-time fine-tuning on these long videos, followed by an additional 5 minutes
for rendering. Note that this duration can be flexibly traded off with computational cost, which has
recently been referred to as “inference-time scaling” in diffusion models [49]. For example, as shown
in Fig. 8 (left) in the appendix, our method achieves 96% of its final performance with only half the
fine-tuning steps.

4.3 Ablation studies

Effect of test-time finetuning We study the effectiveness of the test-time finetuning stage of our
method. Row 2 vs. 3 in Tab. 4 show that proposed self-supervised finetuning is crucial for adaptation
of CogNVS to a target video’s distribution at test-time. Once the self-supervised test-time finetuning
stage is completed, our method yields outputs with high fidelity, showcasing improved precision, and
more contextually and geometrically consistent 3D appearances, as shown in Fig. 5.

Effect of large-scale pretraining We also study the usefulness of the large-scale pretraining stage
with 2D videos from 4 training datasets. In this case, test-time finetuning alone with a self-supervised
objective, cannot pull CogNVS out of the local minima it reaches without a good initialization. This
is a common failure mode of many test-time optimization approaches that overfit to the training views
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Table 3: Runtime analysis of test-time optimization and feed-forward approaches on DyCheck. We
report the time taken for optimization / test-time finetuning for all approaches in addition to the final
inference / rendering duration. In general, our optimization is faster than some test-time optimization
approaches with the additional benefit of being able to inpaint/hallucinate unknown regions in a
spatiotemporally consistent manner. Additionally, our inference is on par with other feed-forward
methods.

Method Optimization Rendering / Inference

MegaSAM [40] 9 min Real-time
MoSca [37] 66 min Real-time
Shape of Motion [74] 237 min Real-time
GCD [73] - 2 min
TrajCrafter [92] - 5 min
CogNVS 140 min 5 min

Table 4: We ablate our design choices of large-scale pretraining and test-time finetuning on three
randomly chosen sequences from Kubric-4D test set. We find that no pretraining is detrimental to the
performance of CogNVS, so much so that the PSNR drops by 5 points, thereby devoiding CogNVS
of data-driven robustness. Test-time finetuning is also essential as without the adaptation of CogNVS
to the test video, the performance in terms of PSNR drops by ∼ 3 points.

Pretrain Finetune PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓

✗ ✓ 18.62 0.691 0.318 201.29 0.051
✓ ✗ 20.06 0.662 0.284 185.48 0.038
✓ ✓ 23.29 0.779 0.240 158.98 0.036

but default to rendering artifacts such as blurry dynamic regions [37]. We show in Tab. 4 (Row 1 vs.
3) and Fig. 5 that pretraining is essential for data-driven robustness.

Effect of reconstruction quality Although we touch upon how the initial reconstruction affects
the quality of dynamic view synthesis, we describe in detail here. We create a pertubed version of
the Kubric-4D dataset, by obtaining reconstruction and odometry from MegaSAM and aligning the
reconstruction to groundtruth to solve for scale ambiguity. Quantitative results show a ∼ 3 points
drop on PSNR and a consistently worse performance on all metrics with sub-optimal reconstructions
and cameras. This also addresses the gap in the photometric performance (with PSNR, SSIM, LPIPS)
of MegaSAM-based CogNVS on DyCheck. For the quantitative and qualitative analysis of this
ablation, please see the appendix.

5 Discussion

In this work, we focus on the problem of dynamic novel-view synthesis from monocular videos.
Contrary to prior state-of-the-art that approaches this task from two extremes (either test-time
optimization for every new video from scratch, or large-scale feed-forward novel view synthesis) –
we propose a simple setup that is the “best-of-both-worlds". We reformulate dynamic view synthesis
as an inpainting task and lean on the success of reconstruction algorithms like MegaSAM that can
estimate the structure and geometry of in-the-wild videos. We first train a video inpainter, CogNVS,
on pairs of co-visible novel-view pixels and target novel-views via self-supervision on only 2D videos.
At test-time, we propose to finetune CogNVS, again via self-supervision, to adjust to the target video
distribution. The proposed setup provides data-driven robustness with the large-scale pretraining of a
video inpainting model, and enhances 3D accuracy of the predictions with test-time finetuning.

Limitations CogNVS does not currently take advantage of open-source 3D and 4D video datasets
and trains on a relatively small set of 2D videos. While the zero-shot evaluation can achieve better
photorealistic performance than prior state-of-the-art even with this unprivileged training data, the
model and its geometric inpainting capabilities can be enhanced by adding more training data from
all three – 2D, 3D and 4D data sources. Additionally, the performance of CogNVS is dependent
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Figure 5: We qualitatively analyze the effect of pretraining and test-time finetuning. We note that
without the data-driven robustness and generalization of pretraining (second column), CogNVS
cannot hallucinate missing regions properly (e.g., inpainted region in first row is still black in top left
corner). Finally, without test-time finetuning (third column), 3D consistency and adherence to scene
lighting and appearance properties cannot be ensured (e.g., overall darker scene in second row, and
output off by a few pixels at the bottom and right side of the image in first row, thereby inhibiting
geometric consistency).

on the quality of dynamic scene reconstruction obtained from off-the-shelf structure from motion
algorithms. When groundtruth structure and odometry is available, such as from ubiquitous depth
sensors, CogNVS’s performance can be increased. A limitation of the data generation pipeline is that
the sampled arbitrary camera trajectories are not able to mimic the diversity of camera trajectories
that are encountered in real-life, which is a bottleneck to the performance of CogNVS. A better
strategy would be to create a “data-driven” trajectory sampler that samples from a set of real-world
trajectories observed in the training set.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

16



Justification: We don’t have any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Most details are in the main paper in Sec. 3 and 4, some have been included in
the supplement.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We include a zip file of the code in supplement with some starter instructions.
More in-depth details about running all code will be publicly released on GitHub after
acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details are provided exhaustively in Sec. 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Computing error bars is computationally expensive for video diffusion models
which is what we are building upon.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Sec. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: It does.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This does not apply to our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work only generates novel views of the provided input video.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Citations are in the main paper, licenses are included in the supplement.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our asset is the code and model, which we have already said is included in
supplement with documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not do any crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not work with any human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use an LLM for this purpose.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

In this appendix, we extend our discussion of dynamic view synthesis in casual monocular videos.
First, we discuss the intricacies in the training and evaluation protocols adopted. This is followed by
an in-depth ablation study on various design decisions in the proposed pipeline. Finally, we show
more qualitative results, both on the considered benchmarks and on in-the-wild examples.

A Implementation Details

Training pair details To generate self-supervised training pairs, we randomly perturb the source
camera trajectory to create diverse camera paths. In the spherical coordinate system, we sample
random elevations from [-15◦, 15◦], azimuths from [-30◦, 30◦], and radius deviations from [-0.15,
0.15], followed by bicubic interpolation. This procedure enables flexible generation of training
pairs across arbitrary camera trajectories. For pretraining, we use N = 2 camera views per training
videos. For test-time finetuning, we set N = 5 for DyCheck and N = 9 for both Kubric-4D
and ParallelDomain-4D, due to their wider novel-view gaps. When a video sequence exceeds
CogVideoX’s default input length of 49 frames, we randomly sample a 49-frame subsequence in
each epoch. On DyCheck, we additionally apply a noise injection strategy to simulate real-world
degradation on training pairs, as analyzed in Section B.

Evaluation protocol For Kubric-4D and ParallelDomain-4D, we follow the official GCD evaluation
protocol, using the 20-sequence sub–test set and an input resolution of 576 (width) × 384 (height).
On DyCheck, we follow the official Shape-of-Motion and Mosca evaluation protocols, and we
consistently report evaluation metrics at an image resolution of 360 (width) × 480 (height) on the five
standard test sequences: apple, block, paper-windmill, spin, and teddy. We render dynamic Gaussian
representations from Mosca and Shape-of-Motion with a black background for fair comparison. Both
methods optimize camera poses using the ground-truth novel views to improve photometric metrics;
we retain this step to stay consistent with their original implementation. CAT4D, although diffusion-
based, fits a 4D-GS representation (with minor extensions) after synthesizing multi-view videos.
When evaluating CogNVS on MegaSAM renders, we append a static background extracted from
the full input video to better capture long-term context. The effectiveness of background stacking is
validated in Section B. Also note that Shape-of-Motion and MoSca optimize for evaluation camera
poses during evaluation using ground-truth novel view videos. Whether CAT4D adopts this step is
unknown. We do not do this camera pose optimization at test-time. Since the DyCheck evaluation
sequences are more than 49-frames in length, we isolate the static scene regions and stack them in 3D
across time. This accumulated background is then rendered onto each frame which helps, to a large
extent, “pre-inpaint” the static background regions using fused information from multiple 49-frame
length sequences.

Table 5: Effect of reconstruction quality on Kubric-4D. We quantitatively evaluate CogNVS’s
performance with the use of two different reconstructions for Kubric-4D. Groundtruth depth gives an
upperbound on view synthesis performance by CogNVS. Our first observation, perhaps unsurprisingly,
is that the quality of MegaSAM reconstruction is subpar to that of the groundtruth. This difference is
quality is also translated to the novel-view synthesis task with CogNVS, where CogNVS used with
groundtruth depth does 3 and 45 points better at PSNR and FID respectively as compared to CogNVS
used on top of MegaSAM.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓

MegaSAM 12.73 0.299 0.644 280.62 0.164
GT 15.12 0.671 0.328 175.01 0.063

CogNVS (MegaSAM) 19.62 0.621 0.313 147.83 0.033
CogNVS (GT) 22.63 0.760 0.232 102.47 0.008

B Ablation Study

Effect of reconstruction quality In Tab. 5, we show the effect of using different sources of
reconstructions on the entire Kubric-4D evaluation set. Specifically, we compare the structure and
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Figure 6: We show the effect of using different qualities of reconstruction. Note that the groundtruth
depth of the scene is perfect because it is derived synthetically. This re-rendered depth results in
more realistic object placements in the scene as compared to the predictions using the depth from
MegaSAM. This is because the MegaSAM depth is noisy at the object edges and therefore results in
smeared objects in the novel view predictions.

Table 6: Effect of masking strategy on Kubric-4D. We study the effect of building CogNVS as an
inpainting model using other masking strategies, specifically, random and tube masking [70]. We find
that random masking is the least optimal as it does not mimic the test-time scenario, tube masking
does better, but our structured masking strategy is the best for the proposed structured inpainting task.

Mask PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓

Random 20.62 0.755 0.310 187.79 0.059
Tube 21.75 0.778 0.236 173.55 0.041
Ours 23.29 0.779 0.240 158.98 0.036

odometry from MegaSAM [40] and the synthetic depth groundtruth from Kubric-4D [73]. We
find that both quantitatively and qualitatively (c.f. Fig. 6), our pipeline benefits more from better
reconstructions. This is because the quality of reconstruction directly affects the input to CogNVS,
and if the input point cloud is noisy (e.g., smearing at the object borders), the prediction of the novel
view also becomes inaccurate.

Ablation on masking strategy Since CogNVS is an inpainting model, we ablate different masking
strategies to train CogNVS on three sequences from Kubric-4D, instead of the proposed structured
masking. In Tab. 6 and Fig. 7, we use random and tube masking from VideoMAE [70] and apply
them with a 50% masking ratio on the input video sequences divided into 16 × 16 patches. We
find that random masking is the least optimal as it does not resemble the structured inpainting task
at test-time. Tube masking is more amenable to the test-time inpainting pattern, which reflects as
better photometric and generative metrics. Of all, our structured masking obtained by rendering scene
reconstructions into the novel views performs the best.

Ablation on test-time finetuning epochs Following the same data setup as above, we assess how
the length of test-time finetuning affects the final prediction from CogNVS. In Fig. 8 (left), as
expected we observe that the performance improvement in the first few epochs is high (both in terms
of PSNR and FID going from 0 to 50 epochs) and saturates as the number of epochs are increased
further (up to 200).

Top-K evaluation Following the same data setup as above, we compute probabilistic PSNR and
FID metrics for CogNVS’s performance on Kubric-4D in the form of Top-k metrics (where the best
of k number is reported) in Fig. 8 (right). As we sample multiple modes from CogNVS’s learnt
distribution, the Top-k metrics for PSNR and FID become better and start to saturate near k=8.

Ablation on background stacking and noise addition We conduct an ablation on the MegaSAM
reconstructions of DyCheck for the effect of static background stacking described in the previous
section. In Tab. 7 and Fig. 9, we see that stacking the background on DyCheck provides a large
in photometric performance. Secondly, we propose to add noise to dynamic object depths during
training, especially for out-of-distribution data. This is essential as our creation of self-supervised
training pairs only masks out certain pixels from the source video which leaves no room for CogNVS
to be able to see real-world noise. To simulate real noise, at say object edges, we estimate the
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Figure 7: We illustrate the different masking strategies considered, as proposed by a prior work [70].
For random masking (left), the masked out patches are different in each frame of the input video.
For tube masking (center), a random set of patches is masked but this set is constant across multiple
frames of the video. For our structured masking (right), we derive the mask by rendering visible
scene reconstruction from the novel views.

Figure 8: We conduct ablations on the number of epochs used for test-time finetuning (left) and
number of samples drawn from CogNVS for a probabilistic evaluation (right). Both experiments
suggest similar trends; performance improves with an increase in the number of finetuning epochs
and increase in the number of samples drawn from our diffusion model. Performance saturates once
a threshold is reached.

noise between (pseudo) groundtruth depth (coming from iPhone LiDARs or a state-of-the-art depth
estimator, say, MoGe) and the predicted depth (coming from a SLAM framework like MegaSAM).
This estimated noise for the source pixels, is added to the visible scene reconstruction but in the
ray direction of the pixels visible in the arbitrary cameras. This results in noisy visuals that make
CogNVS training more robust, especially to out-of-distribution cases. In Tab. 7 and Fig. 9, we
demonstrate the improvements in performance by training CogNVS to inpaint in the presence of
distracting noise artifacts.

Table 7: We quantitatively evaluate the effect of static background stacking and noise addition on
DyCheck. Note that background stacking helps DyCheck because the video sequences are longer
than 49-frames that CogNVS can handle. This gives us 3 points performance boost in PSNR. Adding
real-world noise to dynamic objects helps make CogNVS robust to noise and therefore it reduces
artifacts like smeared object edges, reflected in a much lower FID metric.

Background stacking Noise addition PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓

✗ ✗ 11.55 0.304 0.848 197.93 0.204
✓ ✗ 14.27 0.352 0.737 180.67 0.171
✓ ✓ 14.30 0.354 0.740 156.83 0.141

Evaluation with masked metrics on DyCheck In addition to the metrics reported in the main
paper, we also report masked photometric errors as proposed by a prior work [20]. While this metric
only evaluates the visible scene content and how any view-dependent changes were handled during
novel-view synthesis, it does not encourage the generation of unseen scene regions. On this metric,
CogNVS performs competitively as compared to baselines.
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Figure 9: We visualize the ‘apple’ evaluation sequence from DyCheck for analysis of the effect
of background stacking over time and noise addition strategy during training to simulate realistic
in-the-wild scenarios. First (column 1 vs. 2), we see that for longer videos, stacking the static
background from the entire input video helps accumulate multi-view cues about the static background.
Second (column 2 vs. 3), we see that due to the noise addition strategy during training, CogNVS is
more robust to real-world noise patterns like smearing across object (in this case, apple) edges.

Table 8: We report masked perceptual quality metrics as proposed by prior work [20]. This metric
only evaluates the visible regions of the scene and so does not encourage generation of unseen scene
components. Note that our method performs competitively as compared to the baselines which only
focus on modeling the visible scene content.

Method mPSNR ↑ mSSIM ↑ mLPIPS ↓

MegaSAM [40] 14.60 0.517 0.609
Shape-of-Motion [74] 16.47 0.639 0.409
MoSca [37] 17.82 0.635 0.507
CAT4D [82] 17.39 0.607 0.341
TrajCrafter [92] 13.60 0.518 0.663

CogNVS (MegaSAM) 15.35 0.549 0.557
CogNVS (MoSca) 17.33 0.607 0.530

Maximum novel view synthesis angle As demonstrated in Kubric 4D evaluation and several
in-the-wild examples, CogNVS can plausibly generate novel views with up to 90 degrees of variation
(up, down, left, or right) in general with a single forward pass. Moreover, our model can produce even
more extreme viewpoints by progressively generating new views conditioned on past generations – a
fairly straightforward and common strategy adopted by many generative models [24, 91, 77]. We
illustrate such a progressively generated panoramic view in Fig. 10. Additionally, we want to point
out that our method is not able to generate table top views of object-centric scenes (inward facing
360 degree view) beyond 90 degrees of camera deviation, likely because such training data was not
seen by the model during pretraining.

Figure 10: We create a panoramic view of the outdoor scene through progressive generation. Specifi-
cally, we divide the 360° camera trajectory into four 90° segments of 49 frames each, reconstructing
the previously generated views before reprojecting and inpainting the next 90° novel view. This
qualitative analysis suggests that CogNVS can still generate 3D plausible and temporally coherent
novel-views even in such extreme cases.
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C Qualitative comparison on evaluation datasets

Please see our webpage for videos in addition to the qualitative visuals below.

Figure 11: We show supplementary qualitative comparison on Kubric-4D. Note that TrajectoryCrafter
is able to generate a reasonable background for the unseen scene regions, but is not able to inpaint
the shadows / masks created by foreground objects. GCD is trained on Kubric-4D so performs
reasonably well but struggles to preserve the precise geometry. CogNVS achieves better performance
as compared to baselines and is the closest is geometric consistency to the groundtruth novel view.
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Figure 12: We show supplementary qualitative comparison on DyCheck with CogNVS which
surpasses the performance of all prior state-of-the-art. Note that baselines either do not hallucinate
the unseen regions in the novel-view (Shape-of-Motion, MegaSAM), show blurry dynamic regions
(MoSca, CAT4D), or are not able to preserve the underlying geometry of the scene (TrajectoryCrafter).
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D Qualitative results on in-the-wild examples

Please see our webpage for videos in addition to the qualitative visuals below.

Figure 13: Qualitative results on in-the-wild examples. Part 1 of 2.
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Figure 14: Qualitative results on in-the-wild examples (static scenes included in last two rows). Part
2 of 2.
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Figure 15: Qualitative results on synthetic videos from SORA.
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