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Abstract

Changes over time in brain anatomy can provide important insight for treatment design or
scientific analyses. We present a method that predicts how a brain MRI for an individual
will change over time. We model changes using a diffeomorphic deformation field that we
predict using function using convolutional neural networks. Given a predicted deformation
field, a baseline scan can be warped to give a prediction of the brain scan at a future
time. We demonstrate the method using the ADNI cohort, and analyze how performance
is affected by model variants and the subject-specific information provided. We show that
the model provides good predictions and that external clinical data can improve predictions.

1. Introduction

Changes in neuroanatomy, such as brain development or neurodegeneration, are important
indicators of overall health and clinical trajectory. We present a learning-based method
to predict future brain anatomy from a single baseline MRI scan. Our method can also
incorporate other clinical data; such as age, gender, and genetic information.

Longitudinal brain scan datasets have typically been used to extract correlation between
brain structures and biological markers or clinical data (Biffi et al., 2010; Potkin et al., 2009;
Risacher et al., 2010; Shen et al., 2010). However, providing an accurate prediction of the
entire brain can give a richer phenotype for use in analysis or clinical practice. Models have
been used to simulate brain evolution, taking as input one or more baseline scans. These
have generally employed simple linear predictive models and had limited success (Blanc
et al., 2012; Fleishman et al., 2015; Modat et al., 2014; Dalca et al., 2015). We focus on
predicting the evolution of brain anatomy, using one previous scan along with external data.
A recent machine learning model directly predicts future images using a black box CNN
approach, without characterizing the anatomically meaningful changes (Ravi et al., 2019).

We model changes as deformations between the baseline scan and a follow-up scan,
building on learning-based diffeomorphic registration methods (Balakrishnan et al., 2019;
Dalca et al., 2019; de Vos et al., 2017; Ashburner, 2007; Dalca et al., 2019; Hernandez et al.,
2009; Yang et al., 2017). We design a neural network that predicts such deformations and
present initial results using the ADNI II dataset (Mueller et al., 2005a).

2. Methods

Model. Let x0 be the baseline subject brain scan, and a0 be a vector of subject-specific
medical attributes, such as age, diagnosis, or genetic information. We predict the brain

scan xt, at a later time t. We assume that evolution is captured by a deformation field φ
(t)
v

via x0◦φ(t)
v where ◦ represents the spatial warp operation, and we obtain a noisy observation
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Method: Test Time
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Figure 1: Architecture. The concatenated input scan and decoded attributes are inputs to
a U-Net (Ronneberger et al., 2015), which estimates the velocity field of anatom-
ical changes. This is then used to predict a future scan, and the predictions are
compared to the true changes for longitudinal training examples to provide a loss.

xt via the likelihood: p(xt|φ(t)
v ;x0,a0) = N (xt;x0◦φ(t)

v , σ2I), whereN (·;µ,Σ) is the normal
distribution with mean µ and covariance Σ, and σ2 accounts for image noise.

We parametrize the deformations φ
(t)
v using a stationary velocity field, v. To encourage

the predicted deformation field to be anatomically plausible, we employ a smoothness prior
for the velocity field. Let uv be the displacement field such that φv = Id+uv. Also, we let

p(φv;x0,a0) ∝ exp{−γ ‖∇uv0‖
2}, (1)

where γ is a parameter that regulates the importance of the priors, ∇ is the spatial differ-
ential operator, and v0 indicates that the velocity field is a function of x0 and a0.

The complete data likelihood is then written as:

pθ(xt;x0,a0) =

∫
p(xt|φ(t)

v ;x0,a0)p(φ
(t)
v ;x0,a0)dφ

(t)
v . (2)

Learning. Because equation (2) is intractable, we use a point estimate for φ̂
(t)

v , and

maximize p(xt;x0,a0) ≈ p(xt|φ̂v
(t)

;x0,a0). To obtain this point estimate, we approximate
v using a neural network gθ(x0,a0), shown Figure 1. It takes as input a baseline scan and
optional clinical attributes, and outputs a velocity field, v. The network parameters, θ, are
learned using stochastic gradient algorithms applied to a training dataset of longitudinal
observations. Given a new pair of baseline and follow-up images x0,xt, we find optimal

parameters θ by maximizing the posterior log p(φ
(t)
v |xt;x0,a0). For each sample {xt,x0}

and predicted velocity field v, we use the loss

L(θ;φ(t)
v ,xt,x0,a0) = − log p(φ(t)

v |xt;x0,a0) =
1

2σ2

∥∥∥xt − x0 ◦ φ(t)
v

∥∥∥2 + γ ‖∇uv‖2 + cst.

Inference. To predict future scans, given learned parameters θ∗, we use the likelihood:
x∗t = arg max

xt

pθ∗(xt;x0,a0),≈ arg max
xt

pθ∗(xt|φ(t)
v ;x0,a0),

following (2) and using a point estimate. We first compute φ
(t)
v =

∫ t
0 v dt

′ for v = gθ∗(x0,a0),

and then compute x̂t = x0 ◦ φ(t)
v .

3. Experiments

Data. We use the ADNI dataset (Mueller et al., 2005b) as pre-processed in (Dalca et al.,
2018). For medical attributes, we select features often used in analysis: years of education,
sex, APOE3, APOE4, diagnosis of the patient, and results of a Mini-Mental State Exami-
nation. Segmentation maps obtained via FreeSurfer including 29 anatomical structures are
used in evaluating registration results using the Dice score and surface distance between
the ground truth follow-up maps and the propagated segmentation labels.

Comparative Methods. We consider three comparative methods. The first assumes
no anatomical change between the baseline and follow-up scan. The second one gives the
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Figure 2: Dice score evaluated for the test set. The name of the model corresponds
to the input of the network, with ext being the full set of external data.
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Figure 3: Relative change of performance for the different subjects evaluated on
ventricles. The subjects are ordered by decreasing change of ventricle volume
between the two scans.

deformation field obtained by integration of the average registration velocity field (mean)
in the training set (Ashburner, 2007). The third (oracle) is an upper bound that uses
the follow-up scan and outputs the deformation field by registering the baseline and the
follow-up scan (Balakrishnan et al., 2018).

Model Variants. We train variants of the proposed model, with results given in Figure 2
and Figure 3. We distinguish between subjects who experience large changes between the
baseline and follow-up scans and the ones that don’t. We observe that the proposed model
is able to significantly improve on the baselines in some structures, such as the ventricles,
and come close to the upper bound. Specifically, for ventricles, adding clinical information
tends to further improve the results. For other structures not affected by external data,
such as the hippocampi, we hypothesize that external information is instead captured in
the medical scan itself and extracted by our network. Surface distance gives similar results.

4. Conclusion

We propose a deformation model and neural network architecture for predicting anatomical
changes from a single baselines scan. In initial experiments, we show that the proposed
architecture can extract meaningful information and lead to promising predictions. We
limit our model to shape changes to focus on modelling neurodegeneration and atrophy.
It would further be interesting to determine whether predictions could be enhanced by
leveraging label maps during training and by incorporating intensity changes in the model.
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