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ABSTRACT

In applications involving sensitive data, such as finance and healthcare, the necessity
for preserving data privacy can be a significant barrier to machine learning model
development. Differential privacy (DP) has emerged as one canonical standard
for provable privacy. However, DP’s strong theoretical guarantees often come
at the cost of a large drop in its utility for machine learning; and DP guarantees
themselves can be difficult to interpret. As a result, standard DP has encountered
deployment challenges in practice. In this work, we propose a different privacy
notion, re-identification privacy (RIP), to address these challenges. RIP guarantees
are easily interpretable in terms of the success rate of membership inference attacks.
We give a precise characterization of the relationship between RIP and DP, and
show that RIP can be achieved using less randomness compared to the amount
required for guaranteeing DP, leading to smaller drop in utility. Our theoretical
results also give rise to a simple algorithm for guaranteeing RIP which can be used
as a wrapper around any algorithm with a continuous output, including parametric
model training.

1 INTRODUCTION

As the popularity and efficacy of machine learning (ML) have increased, the number of domains
in which ML is applied has also expanded greatly. Some of these domains, such as finance or
healthcare, are based on machine learning on sensitive data which cannot be publicly shared due to
regulatory or ethical concerns (Assefa et al., 2020; Office for Civil Rights, 2002). In these instances,
maintaining data privacy is of paramount importance and must be considered at every stage of the
machine learning process, from model development to deployment. In development, even sharing
data in-house while retaining the appropriate level of privacy can be a barrier to model development
(Assefa et al., 2020). After deployment, the trained model itself can leak information about the
training data if appropriate precautions are not taken (Shokri et al., 2017; Carlini et al., 2021a).

Differential privacy (DP) (Dwork et al., 2014) has emerged as the gold standard for provable privacy
in the academic literature. Training methods for DP use randomized algorithms applied on databases
of points, and DP stipulates that the algorithm’s random output cannot change much depending
on the presence or absence of one individual point in the database. These guarantees in turn give
information theoretic protection against the maximum amount of information that an adversary can
obtain about any particular sample in the database, regardless of that adversary’s prior knowledge
or computational power, making DP an attractive method for guaranteeing privacy. However, DP’s
strong theoretical guarantees often come at the cost of a large drop in utility for many algorithms. In
addition, DP guarantees themselves are difficult to interpret by non-experts. For instance, there is a
precise definition for what it means for an algorithm to satisfy DP with ε = 10, but it is not a priori
clear what this definition guarantees in terms of practical questions that a user could have, the most
basic of which might be to ask whether or not an attacker can determine whether or not that user’s
information was included in the algorithm’s input. These issues hinder the widespread adoption of
DP in practice.

In this paper, we propose a novel privacy notion, re-identification privacy (RIP), to address these
challenges. RIP is based on re-identification, also called membership inference. Re-identification
measures privacy via a game played between the algorithm designer and an adversary or attacker.
The adversary is presented with the algorithm’s output and a “target” sample x∗, which may or may
not have been included in the algorithm’s input set. The adversary’s goal is to determine whether
or not the target sample was included in the algorithm’s input. If the adversary can succeed with
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probability much higher than random guessing, then the algorithm must be leaking information about
its input. This measure of privacy is one of the simplest for the attacker; thus, provably protecting
against it is a strong privacy guarantee. Furthermore, RIP is easily interpretable, as it is measured
with respect to a simple quantity–namely, the maximum success rate of an attacker. In summary, our
contributions are as follows:

• We propose a novel privacy notion, which we dub re-identification privacy (RIP).
• We characterize the relationship between RIP and differential privacy (DP).
• We introduce algorithms for generating RIP synthetic data.
• We demonstrate that certifying RIP can allow for much higher utility than certifying DP,

and never results in worse utility.

2 RELATED WORK

Privacy attacks in ML The study of privacy attacks has recently gained popularity in the machine
learning community as the importance of data privacy has become more apparent. In a membership
inference or re-identification attack (Shokri et al., 2017), an attacker is presented with a particular
sample and the output of the algorithm to be attacked. The attacker’s goal is to determine whether
or not the presented sample was included in the training data or not. If the attacker can determine
the membership of the sample with a probability significantly greater than random guessing, this
indicates that the algorithm is leaking information about its training data. Obscuring whether or not a
given individual belongs to the private dataset is the core promise of private data sharing, and the
main reason that we focus on membership inference as the privacy measure. Membership inference
attacks against predictive models have been studied extensively (Shokri et al., 2017; Baluta et al.,
2022; Hu et al., 2022; Liu et al., 2022; He et al., 2022; Carlini et al., 2021a), and recent work has
also developed membership inference attacks against synthetic data (Stadler et al., 2022; Chen et al.,
2020).

In a reconstruction attack, the attacker is not presented with a real sample to classify as belonging to
the training set or not, but rather has to create samples belonging to the training set based only on the
algorithm’s output. Reconstruction attacks have been successfully conducted against large language
models (Carlini et al., 2021b). At present, these attacks require the attacker to have a great deal of
auxiliary information to succeed. For our purposes, we are interested in privacy attacks to measure
the privacy of an algorithm, and such a granular task may place too high burden on the attacker to
accurately detect “small” amounts of privacy leakage.

In an attribute inference attack (Bun et al., 2021; Stadler et al., 2022), the attacker tries to infer a
sensitive attribute from a particular sample, based on its non-sensitive attributes and the attacked
algorithm output. It has been argued that attribute inference is really the entire goal of statistical
learning, and therefore should not be considered a privacy violation (Bun et al., 2021; Jayaraman &
Evans, 2022).

Differential privacy (DP) DP (Dwork et al., 2014) and its variants (Mironov, 2017; Dwork &
Rothblum, 2016) offer strong, information-theoretic privacy guarantees. A DP (probabilistic) algo-
rithm is one in which the probability law of its output does not change much if one sample in its input
is changed. That is, if D and D′ are two datasets (collections of n bounds) which differ in exactly
one element, then the algorithm A is ε-DP if

P(A(D) ∈ S) ≤ eεP(A(D′) ∈ S)

for any subset S of the output space. DP has many desirable properties, such as the ability to compose
DP methods or post-process the output without losing guarantees. Many simple “wrapper” methods
are also available for certifying DP. Among the simplest, the Laplace mechanism, adds Laplace noise
to the algorithm output. The noise level must generally depend on the sensitivity of the base algorithm,
which measures how much a single input sample can change the algorithm’s output. The method
we propose in this work is very similar to the Laplace mechanism, but we show that the amount
of noise needed can be reduced drastically. Abadi et al. (2016) introduced DP-SGD, a powerful
tool enabling DP to be combined with deep learning methods with only a small modification to the
standard gradient descent training procedure. However, as previously mentioned, enforcing DP does
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not come without a cost. Enforcing DP with high levels of privacy (small ε) often comes with sharp
decreases in algorithm utility (Tao et al., 2021; Stadler et al., 2022). DP is also difficult to audit; it
must be proven mathematically for a given algorithm implementation. Checking it empirically is
generally computationally intractable (Gilbert & McMillan, 2018). The difficulty of checking DP
has led to widespread implementation bugs (and even errors due to finite machine precision), which
invalidate the guarantees of DP (Jagielski et al., 2020).

The independent work of Thudi et al. (2022) specifically applies DP to bound re-identification rates,
and our results in Section 3.4 complement theirs on the relationship between re-identification and DP.
However, our results show that DP is not required to prevent re-identification; it is merely one option,
and we give alternative methods for defending against membership inference.

Auditing methods and metrics Another important component of synthetic data is privacy and
utility auditing. This is especially crucial in regulated environments where users may be required to
prove compliance of their tools with privacy regulations. Recent works (Alaa et al., 2022; Meehan
et al., 2020) have proposed heuristics for measuring both synthetic data privacy and utility. Utility
metrics are often based on statistical measures of similarity between the synthesized and real data
(Yoon et al., 2020). Privacy metrics try to capture the notion of whether or not a generative model has
“memorized” its training data, typically by looking at distances of the synthetic data to training data
vs. some held out data. Most of the proposed distance-based heuristics fall victim to simple counter
examples in which the proposed synthetic data scores perfectly on the privacy metric, but clearly does
not preserve the privacy of the training data. On the other hand, RIP lends itself to useful empirical
measurement, as the success rate of any existing membership inference attack method gives a lower
bound on the best achievable privacy.

3 RE-IDENTIFICATION PRIVACY (RIP)

3.1 NOTATION

We make use of the following notation. We will always use D to refer to our entire dataset, which we
assume consists of n samples all of which must remain private. We will use x ∈ D or x∗ ∈ D to
refer to a particular sample. Dtrain ⊆ D refers to a size-k subset of our private data. We will assume
is selected randomly, so Dtrain is a random variable. The remaining data D \ Dtrain will be referred
to as the holdout data. We denote by D the set of all size-k subsets of D (i.e., all possible training
sets), and we will typically use D ∈ D to refer to a particular realization of the random variable
Dtrain. Finally, given a particular sample x∗ ∈ D, Din (resp. Dout) will refer to those sets D ∈ D for
which x∗ ∈ D (resp. x∗ 6∈ D).

3.2 THEORETICAL MOTIVATION

The implicit assumption behind the public release of any statistical algorithm–be it a generative or
predictive ML model, or even the release of simple population statistics–is that it is acceptable for
statistical information about the modelled data to be released publicly. In the context of membership
inference, this poses a potential problem: if the population we are modeling is significantly different
from the “larger” population, then if our algorithm’s output contains any useful information whatso-
ever, it should be possible for an attacker to infer whether or not a given record could have plausibly
come from our training data or not.

We illustrate this concept with an example. Suppose we wish to publish a model which predicts
a patient’s blood pressure from several biomarkers, specifically for patients who suffer from a
particular chronic disease. To do this, we collect a dataset of individuals with confirmed cases of
the disease, and use this data to train a linear regression model with coefficients θ̂. Formally, we let
x ∈ Rd denote the features (e.g. biomarker values), z ∈ R denote the patient’s blood pressure, and
y = 1{patient has the chronic disease in question}. In this case, the private dataset Dtrain contains
only the patients with y = 1. Assume that in the general populace, patient features are drawn from a
mixture model:

y ∼ Bernoulli(p), x ∼ N (0, I), z|x, y ∼ θ>y x, θ0 6= θ1.
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In the re-identification attack scenario, an adversary observes a data point (x∗, z∗) and the model
θ̂, and tries to determine whether or not (x∗, z∗) ∈ Dtrain. If θ0 and θ1 are well-separated, then an
adversary can train an effective classifier to determine the corresponding label 1{(x∗, z∗) ∈ Dtrain}
for (x∗, z∗) by checking whether or not z∗ ≈ θ̂>x∗. Since only data with y = 1 belong to Dtrain,
this provides a signal to the adversary as to whether or not x∗ could have belonged to Dtrain or not.
The point is that in this setting, this outcome is unavoidable if θ̂ is to provide any utility whatsoever.
In other words:

In order to preserve utility, re-identification privacy must be measured with respect to the distribution
from which the private data are drawn.

The example above motivates the following theoretical ideal for our synthetic data. Let D = {xi}ni=1

be the private dataset and suppose that xi
i.i.d.∼ P for some probability distribution P . (Note: Here,

x∗ corresponds to the complete datapoint (x∗, z∗) in the example above.) Let A be our (randomized)
algorithm, and denote its output by θ = A(D). We generate a test point based on:

y∗ ∼ Bernoulli (1/2) , x∗|y∗ ∼ y∗Unif(Dtrain) + (1− y∗)P,
i.e. x∗ is a fresh draw from P or a random element of the private training data with equal probability.
Let I denote any re-identification algorithm which takes as input x∗ and the algorithm’s output θ.
The notion of privacy we wish to enforce is that I cannot do much better to ascertain the membership
of x∗ than guessing randomly:

PA,Dtrain
(I(x∗,Dsynth) = y∗) ≤ 1/2 + η, η � 1/2. (1)

3.3 PRACTICAL DEFINITION

In reality, we do not have access to the underlying distribution P . Instead, we propose to use a
bootstrap sampling approach to approximate fresh draws from P .
Definition 1 (Re-Identification Privacy (RIP)). Fix k ≤ n and let Dtrain ⊆ D be a size-k subset
chosen uniformly at random from the elements in D. For x∗ ∈ D, let y∗ = 1{x∗ ∈ Dtrain}. An
algorithm A is η-RIP with respect to D if for any identification algorithm I and for every x∗ ∈ D,
we have

P(I(x∗,A(Dtrain)) = y∗) ≤ max

{
k

n
, 1− k

n

}
+ η.

Here, the probability is taken over the uniformly random size-k subset Dtrain ⊆ D, as well as any
randomness in A and I.

Definition 1 states that given the output of A, an adversary cannot determine whether a given point
was in the holdout set or training set with probability more than η better than always guessing the a
priori more likely outcome. In the remainder of the paper, we will set k = n/2, so that A is η-RIP
if an attacker cannot have average accuracy greater than (1/2 + η). This gives the largest a priori
entropy for the attacker’s classification task, which creates the highest ceiling on how much of an
advantage an attacker can possibly gain from the algorithm’s output, and consequently the most
accurate measurement of privacy leakage. The choice k = n/2 also keeps us as close as possible
to the theoretical motivation in the previous subsection. We note that analogues of all of our results
apply for general k.

The definition of RIP is phrased with respect to any classifier (whose randomness is independent of the
randomness inA; if the adversary knows our algorithm and our random seed, we are doomed). While
this definition is compelling in that it shows a bound on what any attacker can hope to accomplish,
the need to consider all possible attack algorithms makes it difficult to work with technically. The
following proposition shows that RIP is equivalent to a simpler definition which does not need to
simultaneously consider all identification algorithms I.
Proposition 2. Let A = Range(A) and let µ denote the probability law of A(Dtrain). Then A is
η-RIP if and only if∫

A
max

{
P(x∗ ∈ Dtrain | A(Dtrain) = A),P(x∗ 6∈ Dtrain | A(Dtrain) = A)

}
dµ(A) ≤ 1

2
+ η.

Furthermore, the optimal adversary is given by
I(x∗, A) = 1{P(x∗ ∈ Dtrain | A(Dtrain) = A) ≥ 1/2}.
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Proposition 2 makes precise the intuition that the optimal attacker should guess the more likely of
x∗ ∈ Dtrain or x∗ 6∈ Dtrain conditional on the output of A. The optimal attacker’s overall accuracy
is then computed by marginalizing this conditional statement.

Finally, RIP also satisfies a post-processing inequality similar to the classical result in DP (Dwork
et al., 2014). This states that any local functions of a RIP algorithm’s output cannot degrade the
privacy guarantee.

Theorem 3. Suppose that A is η-RIP, and let f be any (potentially randomized, with randomness
independent of Dtrain) function. Then f ◦ A is also η-RIP.

Proof. Let If be any re-identification algorithm for f ◦ A. Define IA(x∗,A(Dtrain)) =
If (x∗, f(A(Dtrain))). Since A is η-RIP, we have

1

2
+ η ≥ P(IA(x∗,A(Dtrain)) = y∗) = P(If (x∗, f(A(Dtrain))) = y∗).

Thus, f ◦ A is η-RIP by Definition 1.

For example, Theorem 3 is important for the application of RIP to generative model training: if we
can guarantee that our generative model is η-RIP, then any output produced by it is η-RIP as well.

3.4 RELATION TO DIFFERENTIAL PRIVACY

In this section, we make precise the relationship between RIP and the most common theoretical
formulation of privacy: differential privacy (DP). We provide proof sketches for most of our results
here; detailed proofs can be found in the Appendix. Our first theorem shows that DP is at least as
strong as RIP.

Theorem 4. Let A be ε-DP. Then A is η-RIP with η = 1
1+e−ε −

1
2 . Furthermore, this bound is tight,

i.e. for any ε > 0, there exists an ε-DP algorithm against which the optimal attacker has accuracy
1

1+e−ε .

Proof sketch. Let p = P(x∗ ∈ Dtrain | A(Dtrain)) and q = P(x∗ 6∈ Dtrain | A(Dtrain)) and suppose
WLOG that q ≥ p. We have p + q = 1 and by Proposition 6 below, q/p ≤ eε. This implies that
q ≤ 1

1+e−ε , and applying Proposition 2 gives the desired result.

For the tightness result, there is a simple construction on subsets of size 1 of D = {0, 1}. Let
p = 1

1+e−ε and q = 1− p. The algorithm A(D) which outputs D with probability p and D \D with
probability q is ε-DP, and the optimal attacker has exactly the accuracy given in the theorem.

To help interpret this result, we remark that for ε ≈ 0, we have 1
1+e−ε −

1
2 ≈ ε/4. Thus in the regime

where strong privacy guarantees are required (η ≈ 0), η ≈ ε/4.

In fact, it is the case that DP is strictly stronger than RIP, which we make precise with the following
theorem.

Theorem 5. For any η > 0, there exists an algorithm A which is η-RIP but not ε-DP for any ε <∞.

Proof sketch. The easiest example is an algorithm which publishes each sample in its input set with
extremely low probability. Since the probability that any given sample is published is low, the
probability that an attacker can do better than guess randomly is low marginally over the algorithm’s
output. However, adding a sample to the input dataset changes the probability of that sample’s being
published from 0 to a strictly positive number, so the guarantee on probability ratios required for DP
is infinite.

In order to better understand the difference between DP and RIP, let us again examine Proposition 2.
Recall that this proposition showed that marginally over the output of A, the conditional probability
that x∗ ∈ Dtrain given the synthetic should not differ too much from the unconditional probability
that x∗ ∈ Dtrain. The following proposition shows that DP requires this condition to hold for every
output of A(Dtrain).
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Proposition 6. If A is an ε-DP synthetic data generation algorithm, then for any x∗, we have
P(x∗ 6∈ Dtrain | A(Dtrain))

P(x∗ ∈ Dtrain | A(Dtrain))
≤ eεP(x∗ 6∈ Dtrain)

P(x∗ ∈ Dtrain)
.

Proposition 6 can be thought of as an extension of the Bayesian interpretation of DP explained by
Jordon et al. (2022). Namely, the definition of DP immediately implies that, for any two adjacent sets
D and D′,

P(Dtrain = D | A(Dtrain))

P(Dtrain = D′ | A(Dtrain))
≤ eε P(Dtrain = D)

P(Dtrain = D′)
.

4 GUARANTEEING RIP VIA NOISE ADDITION

There are a number of mechanisms for guaranteeing DP which operate via simple noise addition (the
Laplace mechanism) or sampling (the exponential mechanism) (Dwork et al., 2014). More recently,
Abadi et al. (2016) showed how to make a small modification to the standard deep neural network
training procedure to guarantee DP. In this section, we show that a small modification to standard
training procedures can be used to guarantee RIP as well.

Suppose thatA takes as input a data setD and produces output θ ∈ Rd. For instance,Amay compute
a simple statistical query on D, such as mean estimation, but our results apply equally well in the case
that e.g. A(D) are the weights of a neural network trained on D. If θ are the weights of a generative
model, then if we can guarantee RIP for θ, then by the data processing inequality (Theorem 3), this
guarantees privacy for any output of the generative model.

The distribution over training data (in our case, the uniform distribution over size n/2 subsets of our
complete dataset D) induces a distribution over the output θ. The idea is the following: What is the
smallest amount of noise we can add to θ which will guarantee RIP? If we add noise on the order of
maxD∼D′⊆D ‖A(D)−A(D′)‖, then we can adapt the standard proof for guaranteeing DP in terms
of algorithm sensitivity to show that a restricted version of DP (only with respect subsets of D) holds
in this case, which in turn guarantees RIP. On the other hand, it seems possible that we should be able
to reduce the amount of noise even further. Recall that by Propositions 2 and 6, RIP is only asking
for a marginal guarantee on the change in the posterior probability of D given A, whereas DP is
asking for a conditional guarantee on the posterior. So while max seems necessary for a conditional
guarantee, the moments of θ should be sufficient for a marginal guarantee. Theorem 7 shows that this
intuition is correct.
Theorem 7. Let ‖ · ‖ be any norm, and let σM ≥ E‖θ − Eθ‖M be an upper bound on the M -th
central moment of θ with respect to this norm over the randomness in Dtrain and A. Let X be a
random variable with density proportional to exp(− 1

cσ‖X‖) with c = (7.5/η)1+ 2
M . Finally, let

θ̂ = θ +X . Then θ̂ is η-RIP, i.e., for any adversary I,

P(I(x∗, θ̂) = y∗) ≤ 1/2 + η.

Proof sketch. The proof proceeds by bounding the posterior likelihood ratio P(x∗ 6∈Dtrain | θ̂)
P(x∗∈Dtrain | θ̂)

from

above and below for all θ̂ in a large ‖ · ‖-ball. This in turn yields an upper bound on the max in the
integrand in Proposition 2 with high probability over A(Dtrain). The central moment σ allows us to
apply a generalized Chebyshev inequality to establish these bounds. The full proof is computationally
intensive and the complete details can be found in the Appendix.

At first glance, Theorem 7 may appear to be adding noise of equal magnitude to all of the coordinates
of θ, regardless of how much each contributes to the central moment σ. However, by carefully
selecting the norm ‖ · ‖, we can add non-isotropic noise to θ such that the marginal noise level reflects
the variability of each specific coordinate of θ. This is the content of Corollary 8.

Corollary 8. Let σ2
i ≥ E|θi − Eθi|2, and define ‖x‖σ,2 =

(∑d
i=1

|xi|2
dσ2
i

)1/2

. Generate Yi ∼

N (0, σ2
i ), set U = Y/‖Y ‖σ,2, and draw r ∼ Laplace

((
6.16
η

)2
)

. Finally, set X = rU and return

θ̂ = θ +X . Then θ̂ is η-RIP.
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Proof sketch. Let ‖ · ‖ = ‖ · ‖σ,2. It can be shown that the density of X has the proper form.
Furthermore, by definition of the σi, we have E‖θ − Eθ‖2 ≤ 1. The corollary follows directly from
Theorem 7 with M = 2. The improvement in the numerical constant (from 7.5 to 6.16) comes from
numerically optimizing some of the bounds in Theorem 7.

Algorithm 1 RIP via noise addition
Require: Private dataset D, σ estimation budget B, RIP parameter η
Dtrain ← RANDOMSPLIT(D, 1/2)

# Estimate σ if an a priori bound is not known
i← 1
for i = 1, . . . , B do
D(i)

train ← RANDOMSPLIT(Dtrain, 1/2)

θ(i) ← A(D(i)
train)

end for
θ̄ ← 1

B

∑B
i=1 θ

(i)

σ2 ← 1
B−1

∑B
i=1 ‖θ(i) − θ̄‖2

# Add appropriate noise to the base algorithm’s output
U ← Unif({u ∈ Rd : ‖u‖ = 1})

r ← Laplace

((
7.5
η

)2

σ

)
X ← rU
return A(Dtrain) +X

When does RIP improve over DP? By Theorem 4, any DP algorithm gives rise to a RIP algorithm,
so we never need to add more noise than the amount required to guarantee DP, in order to guarantee
RIP. However, Theorem 7 shows that RIP affords an advantage over DP when the variance of our
algorithm’s output (over subsets of size n/2) is much smaller than its sensitivity ∆, which is defined
as the maximum change in the algorithm’s output when evaluated on two datasets which differ in only
one element. For instance, applying the Laplace mechanism from DP requires a noise which scales
like ∆/ε to guarantee ε-DP. It is easy to construct examples where the variance is much smaller than
the sensitivity if the output of our “algorithm” is allowed to be completely arbitrary as a function of
the input. However, it is more interesting to ask if there are any natural settings in which this occurs.
Proposition 9 answers this question in the affirmative.

Proposition 9. For any finite D ⊆ R, define A(D) = 1∑
x∈D x

. Given a dataset D of size n, define
D = {D ⊆ D : |D| = bn/2c}, and define

σ2 = Var(A(D)), ∆ = max
D∼D′∈D

|A(D)−A(D′)|.

Here the variance is taken over D ∼ Unif(D). Then for all n, there exists a dataset |D| = n such
that σ2 = O(1) but ∆ = Ω(2n/3).

Proof sketch. Assume n is even for simplicity. Let p =
(
n
n/2

)−1
and A =

√
p−

∑n
2−2
i=0 2i. Take

D = {2i : i = 0, . . . , n− 2} ∪ {A}.

When D = {20, . . . , 2
n
2−2, A}, thenA(D) = p−1/2, and this occurs with probability p. For all other

subsets D′, 0 ≤ A(D′) ≤ 1.

We remark that similar results should hold for e.g. subset precision matrix queries, perhaps even
without such a carefully constructed D if the size of the subset is comparable to the dimension of the
data.
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5 SIMULATION RESULTS

To illustrate our theoretical results, we plot the noise level needed to guarantee RIP vs. the corre-
sponding level of DP (with the correspondence given by Theorem 4) for the example in Proposition 9.

Refer to Fig. 1. Dotted lines refer to DP, while the solid line is for RIP. The x-axis gives the best
possible bound on the attacker’s improvement in accuracy over random guessing–i.e., the parameter
η for an η-RIP method–according to that method’s guarantees. For DP, the value along the x-axis is
given by the (tight) correspondence in Theorem 4, namely η = 1

1+e−ε −
1
2 . η = 0 corresponds to

perfect privacy (the attacker cannot do any better than random guessing), while η = 1
2 corresponds to

no privacy (the attacker can determine membership with perfect accuracy). The y-axis denotes the
amount of noise that must be added to the non-private algorithm’s output, as measured by the scale
parameter of the Laplace noise that must be added. For RIP, by Theorem 7, this is (6.16/η)2σ where
σ is an upper bound on the variance of the base algorithm over random subsets, and for DP this is

∆
log 1+2η

1+2η

. (This comes from solving η = 1
1+e−ε for ε, then using the fact that Laplace(∆/ε) noise

must be added to guarantee ε-DP.) For DP, the amount of noise necessary changes with the size n of
the private dataset. For RIP, the amount of noise does not change, so there is only one line.

The results show that for even small datasets (n ≥ 36) and for η ≥ 0.01, direct noise accounting
for RIP gives a large advantage over guaranteeing RIP via DP. In practice, such small datasets are
uncommon. As n increases above even this modest range, the advantage in terms of noise reduction
for RIP vs. DP quickly becomes many orders of magnitude and is not visible on the plot. (Refer to
Proposition 9. The noise required for DP grows exponentially in n, while it remains constant in n for
RIP.)

Figure 1: Noise level vs. privacy guarantee for RIP and DP. For datasets with at least n = 36 points
and for almost all values of η, RIP allows us to add much less noise than what would be required
by naively applying DP. For n > 48, the amount of noise required by DP is so large that it will not
appear on the plot.

6 CONCLUSION

In this work, we propose a novel privacy property, re-identification privacy (RIP) and explained
its properties and relationship with differential privacy (DP). The RIP property is more readily
interpretable than the guarantees offered by (DP). RIP also requires a smaller amount of noise to
guarantee as compared to DP, and therefore can retain greater utility in practice. We proposed a simple
“wrapper” method for guaranteeing RIP, which can be implemented with a minor modification both
to simple statistical queries or more complicated tasks such as the training procedure for parametric
machine learning models.

Limitations As the example used to prove Theorem 5 shows, there are cases where apparently non-
private algorithms can satisfy RIP. Thus, algorithms which satisfy RIP may require post-processing
to ensure that the output is not one of the low-probability events in which data privacy is leaked. In
addition, because RIP is determined with respect to a holdout set still drawn from D, an adversary
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may be able to determine with high probability whether or not a given sample was contained in D,
rather than just in Dtrain, if D is sufficiently different from the rest of the population.

Future work Theorem 4 suggests that DP implies RIP in general. However, Theorem 7 shows that
a finer-grained analysis of a standard DP mechanism (the Laplace mechanism) is possible, showing
that we can guarantee RIP with less noise. It seems plausible that a similar analysis can be undertaken
for other DP mechanisms. In addition to these “wrapper” type methods which can be applied on top
of existing algorithms, bespoke algorithms for guaranteeing RIP in particular applications (such as
synthetic data generation) are also of interest. Lastly, noise addition is a simple and effective way to
enforce privacy, but other classes of mechanisms may also be possible. For instance, is it possible
to directly regularize a probabilistic model using Proposition 2? Finally, the connections between
RIP and other theoretical notions of privacy (Renyi DP (Mironov, 2017), concentrated DP (Dwork &
Rothblum, 2016), etc.) are also of interest. Lastly, this paper focused on developing on the theoretical
principles and guarantees of RIP, but systematic empirical evaluation is an important direction for
future work. Practical membership inference attacks–particularly those against synthetic data and
generative models rather than predictive models–still have a gap between practical efficacy and the
theoretical upper bounds. It is likely that this gap can be closed through a combination of improved
privacy accounting, but also through improved practical attacks. For the “shadow model” approach
used by Stadler et al. (2022), improved computational efficiency is also of interest for improving
membership inference attacks. These improved attacks will in turn allow model developers to better
audit the empirical privacy limitations of their methods.
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