
Privacy-Preserving Embedding via Look-up Table Evaluation with Fully
Homomorphic Encryption

Jae-yun Kim 1 Saerom Park 2 Joohee Lee 3 Jung Hee Cheon 1

Abstract

In privacy-preserving machine learning (PPML),
homomorphic encryption (HE) has emerged as
a significant primitive, allowing the use of ma-
chine learning (ML) models while protecting the
confidentiality of input data. Although extensive
research has been conducted on implementing
PPML with HE by developing the efficient con-
struction of private counterparts to ML models,
the efficient HE implementation of embedding
layers for token inputs such as words remains in-
adequately addressed. Thus, our study proposes
an efficient algorithm for privacy-preserving em-
bedding via look-up table evaluation with HE
(HELUT) by developing an encrypted indica-
tor function (EIF) that assures high precision
with the use of the approximate HE scheme
(CKKS). Based on the proposed EIF, we pro-
pose the CodedHELUT algorithm to facilitate
an encrypted embedding layer for the first time.
CodedHELUT leverages coded inputs to improve
overall efficiency and optimize memory usage.
Our comprehensive empirical analysis encom-
passes both synthetic tables and real-world large-
scale word embedding models. CodedHELUT
algorithm achieves amortized evaluation time of
0.018-0.242s for GloVe6B50d, 0.104-01.298s for
GloVe42300d, 0.262-3.283s for GPT-2 and BERT
embedding layers while maintaining high preci-
sion (16 bits).

1Department of Mathematical Sciences, Seoul National Univer-
sity, Seoul, South Korea 2Department of Industrial Engineering,
Ulsan National Institute of Science and Technology, Ulsan, South
Korea 3Department of Convergence Security Engineering, Sung-
shin Women’s University, Seoul, South Korea. Correspondence to:
Saerom Park <srompark@unist.ac.kr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Fully Homomorphic Encryption (FHE) introduced by (Gen-
try, 2009) is a cryptographic primitive that enables compu-
tations over encrypted data without decryption. Machine
learning (ML) has permeated various domains with signifi-
cant privacy implications (Chen et al., 2017; McMahan et al.,
2023; Tanuwidjaja et al., 2020). When an outsourced com-
putation is required while maintaining data privacy, building
privacy-preserving machine learning (PPML) with FHE fa-
cilitates the utilization of sensitive data. However, most
FHE schemes only support limited operations such as mul-
tiplication, addition, and slotwise rotation with increased
memory and computations. Given these limitations, com-
bining PPML with FHE presents a significant challenge as
ML models often involve more advanced operations.

Among the diverse range of FHE schemes (Brakerski et al.,
2011; 2014; Brakerski, 2012; Fan & Vercauteren, 2012), the
CKKS scheme (Cheon et al., 2017) stands out as a promi-
nent candidate for PPML studies (Kim et al., 2018; 2020;
Boemer et al., 2019; Park et al., 2019; 2022; 2020; Byun
et al., 2023), due to its plaintext space, which is adept at
handling large-sized real (or complex) vectors and offers
slot-wise approximate computations in a Single Instruc-
tion, Multiple Data (SIMD) manners. This suitability has
encouraged the widespread adoption of CKKS in PPML,
with the development of algorithms for supporting advanced
operations such as inversion (Cheon et al., 2017), compar-
ison (Cheon et al., 2020), and statistics for various data
types (Lee et al., 2023).

While prior PPML research using FHE has focused on mak-
ing ML algorithm evaluation HE-compatible, implementing
PPML for NLP tasks poses a new challenge. Unlike other
unstructured data such as images and audio that can be
readily represented as numerical vectors, NLP models of-
ten rely on memory-intensive processes to generate word
or token vectors, heavily involving Look-up Table (LUT)
operations with large-sized inputs. Thus, although we can
make the rest of ML evaluations HE-friendly, representing
client-provided natural language as HE ciphertexts can lead
to impractical ciphertext sizes and execution times. Alter-
natively, offloading computations to the client by sharing
partial model information for numerical embedding calcu-

1

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

lations is a tempting solution, but it would not resolve the
privacy concern on the server’s word embedding model.

In this study, we aim to develop an efficient coded Look-
up Table evaluation mechanism with FHE (CodedHELUT),
which enables enhanced end-to-end encryption for the em-
bedding layer. Thus, our method enables the server to pro-
tect their proprietary embeddings as well as the clients to
protect their data privacy. Our approach comprises three key
components: (i) constructing an Encrypted Indicator Func-
tion (EIF) as a foundational element, (ii) developing LUT
evaluation using EIF for small-sized tables, and (iii) propos-
ing a coded LUT evaluation method based on compressed
coding (Shu & Nakayama, 2018) for handling large-sized ta-
bles. This algorithm can serve as an FHE module in any ML
model evaluation that necessitates the use of a substantial
number of word or token embeddings.

Our main contributions can be summarized as follows:

• We proposed a novel EIF based on the CKKS scheme,
incorporating a noise-cleansing technique. We provide
a theoretical analysis of the noise bound for the input
range and cost budget, demonstrating the effectiveness of
our algorithm compared to existing methods. Also, we
discussed further application of our novel EIF.

• We developed an efficient privacy-preserving LUT evalu-
ation mechanism utilizing EIF to address the challenge
of end-to-end encryption for the embedding layer. Our
method enables LUT evaluation for large-sized tables by
combining the basic LUT method for small-sized tables
with coded-compression techniques.

• We implemented our Coded LUT mechanism, success-
fully evaluating the embedding layer with CKKS for the
first time. To illustrate the efficiency, we implemented
Word Embedding of size 1.9M vocabularies with CKKS,
achieving 16-bit precision without bootstrapping.

2. Preliminaries
This section provides the necessary background for under-
standing our study including the CKKS HE scheme and
the coded look-up table method to compress the large LUT
computation. We provide a brief survey of related work on
EIF, LUT, and NLP with CKKS in Appendix C.

For notational convenience, we employ the same function
notation for both unencrypted and encrypted cases. For
example, consider f as a polynomial function. In this con-
text, f(x) denotes the evaluation of the polynomial in the
unencrypted message x, whereas f(ct) represents the poly-
nomial evaluation on the ciphertext ct. Likewise, for a
constant c, the expressions c± ct and c · ct denote the op-
erations of constant addition/subtraction and multiplication
with ct, respectively. In Table 3 of Appendix B.1, we pro-
vide a comprehensive summary of the notations used for

parameters in the CKKS scheme and our algorithms.

2.1. Homomorphic Encryption

Homomorphic Encryption is a cryptographic primitive al-
lowing arithmetic operations over encrypted data. In this
paper, we use CKKS scheme (Cheon et al., 2017) for HE,
which supports approximate computations over complex
numbers such as addition, and Hadamard multiplication. A
detailed description of CKKS is given in Appendix B.2, and
we briefly introduce the basic notations for further discus-
sion in this subsection.

The CKKS scheme utilizes an encoding scheme Ecd :
CN/2 → R which is an (approximate) inverse of the de-
coding scheme Dcd : R → CN/2 defined by p(X) 7→
∆−1 · σ(p(X)), where ∆ > 0 is a positive real number
called scaling factor in (Cheon et al., 2017) and σ is the
complex canonical embedding map.

• Enc(pk,pt) → ct: Using public key pk, it encrypts the
plaintext pt to a ciphertext ct.

• Dec(sk, ct) → pt: Using secret key sk, it decrypts a
ciphertext to a plaintext pt.

• Add(ct0, ct1) → ctadd, Multevk(ct0, ct1) → ctmult:
Outputs a ciphertext which is decrypted to the addi-
tion/multiplication of input ciphertexts’ messages.

• Rescaleℓ→ℓ′(ct)→ ct′ : it shortens the lower bits after
multiplication.

• Rot(rk, ct, i) → ct′ : it cyclic-shifts the slots of a plain-
text vector by i positions.

Bit consumption, also known as multiplication depth, must
be meticulously monitored during Mult and Rescale opera-
tions because reduced ciphertext bits can hinder subsequent
operations. Although bootstrapping (Cheon et al., 2018a)
can restore consumed bits, we prioritize stringent control
of bit consumption because of its significant computational
overhead.

We remark that the noise occurs after each algorithm since
CKKS is an approximate HE. To track the noise efficiently,
we use two tags v and B with a ciphertext ct, where ⟨sk, ct⟩
mod q = pt+ e, ∥pt∥can

∞ /∆ ≤ v and ∥e∥can
∞ /∆ ≤ B1, de-

note (ct, v, B) as valid ciphertext. The computation of noise
bound B after each operation is presented in Appendix B.3.
For message bound v and noise bound B, we call β = B/v
relative noise. We follow the relative noise argument in
(Cheon et al., 2017).

1For cannonical embedding map σ : R 7→ CN/2 and plain-
text polynomial p(X), ∥p(X)∥can

∞ be canonical-norm, equal to
∥σ(p(X)∥∞.

2

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

2.2. Efficient Embedding Through Coded Compression

To enhance the viability of privacy-preserving embedding
using FHE, it is significant to reduce the memory footprint.
To achieve it, we can use the coded compression technique,
as introduced in (Shu & Nakayama, 2018), which facili-
tates the decomposition of embeddings into more compact
compositional code embeddings, significantly minimizing
memory requirements.

For positive integers k and d, consider a dictionary of size
k and its index set Zk, and a lookup table T (i) : Zk → Rd

which maps the index of a token to its d-dimensional em-
bedding. Then the compression of T involves the following
components:

• Coded Input: Let p < k be a positive integer and
l := ⌈logp k⌉. Each token is represented by a input
index x ∈ Zk, which can be decomposed to coded input
(x0, . . . , xl−1) ∈ Zℓ

p where x = Σl−1
i=0p

ixi.
• Compressed Embedding: The compressed embedding
T̃ (x) is obtained by summing up Ti(xi), where Ti :
Zp → Rd.

T (x) ≈
l−1∑
i=0

Ti(xi) := T̃ ({xi}l−1
i=0) (1)

• Code and Embedding Learning: The discrete codes
x ∈ Zk and the corresponding codebooks Ti(·) (i =
0, . . . , l − 1) are jointly learned by using the Gumbel-
softmax trick with simple neural networks and a non-
symmetric encode-decode structure. Then this com-
pressed embedding is denoted as p× l coding.

On this basis, utilizing this high performance with a high
compression rate, we leverage the coded compression
method to devise a large-scale lookup table evaluation us-
ing FHE, enhancing the computational efficiency of HE
operations, as discussed in Section 4.3.

3. Encrypted Indicator Function
In this section, we introduce a novel Encrypted Indicator
Function (EIF), a fundamental component for facilitating
precise encrypted LUT evaluation with CKKS. EIF em-
powers the processing of encrypted conditional statements,
yielding outputs that seamlessly integrate into subsequent
computations. In the context of HELUT, EIF plays a critical
role in identifying the input value within the table, thereby
allowing for retrieval of the corresponding LUT outputs
and ultimately yielding the desired results. Nevertheless,
non-smooth indicator functions pose significant challenges
when combined with the inherent noise associated with
the CKKS scheme. To guarantee acceptable precision in
encrypted LUT evaluations that utilize one-hot encoded
vectors generated by the EIF, meticulous noise control is

...

p

a

Translation: (x− a)

0

...

p

1−B

B

SqMethod

1

0
2−u

1− 2−u

Cleanse

1

0

Figure 1. Illustrative Example of Encrypted Indicator Function.

imperative. Moreover, our EIF is more efficient than other
design choices based on (Cheon et al., 2020; Lee et al.,
2023), discussed in detail in Appendix D.3.1 and E.4

We consider an indicator function δa : Zp → {0, 1} map-
ping a ∈ Zp to 1 and other values to 0. Our objective is
to compute this non-smooth indicator function effectively
while managing the associated noise levels. To achieve this,
we have developed the EIF Indicatora(x), consisting of
two sub-algorithms: Cleanse and SqMethod. We devise
SqMethod algorithm that maps the input element x ∈ Zp

to the vicinity of 0 for x ̸= a and 1 for x = a with small
approximation error 2, through a series of rescaling and re-
cursive squaring operations, as elaborated in Section 3.1.
Subsequently, the sub-algorithm Cleanse applies a noise-
aware rounding mechanism to the output of SqMethod,
effectively rounding the results from SqMethod. The prop-
erties of Cleanse in approximation error reduction are dis-
cussed in Section 3.2. As a result, by establishing theoreti-
cal approximation error bounds for both sub-algorithms and
providing a method for parameter selection, we ensure that
the overall noise introduced by the EIF algorithm remains
within the targeted precision threshold. Figure 1 illustrates
the entire process of EIF.

3.1. Square Method Function

Let δa : Zp → {0, 1} denote an indicator function for
a ∈ Zp. For the case of δ0, we can construct an approximate
indicator function defined on [0, p) as follows:

δ0(x) ≈ (1− 2 · x/p)2r (2)

2The approximation error is defined as the difference between
δa and its polynomial approximation by CKKS, which is discrimi-
nated from CKKS evaluation noise discussed in Section B.3.

3

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

where x ∈ [0, p) and r ∈ Z+, and its limit becomes

lim
r→∞

(1− 2 · x/p)2r =

{
1 x = 0

0 x ∈ (0, p)
= δ0(x). (3)

However, even when we evaluate this formula using CKKS
for a large r, it does not converge to δ0, primarily due to the
noise associated with the encryption of 0. This issue arises
because 1− ct/p is not a ciphertext of exact 1 even if ct is
the encryption of 0.

To support δa for a ̸= 0, we construct a modified formula
designed to ensure the bounding of the noises. Moreover, the
remaining noise will be reduced by the Cleanse function
(as detailed in Section 3.2). The SqMethod function is
defined as follows:

SqMethoda
r,p(x) =

(
1− 2 · (x− a)2

p2

)2r

. (4)

To ensure an approximation error bounded by 2−u when
approximating the indicator function using SqMethod, we
establish a condition for selecting the parameter r in (4).

Theorem 3.1 (The approximation error bound of
SqMethod). Let (ct, p, B) be a valid ciphertext of x ∈
Zp. Then, there exists r ∈ Z+, u ∈ R+ satis-
fying ∥Dec ◦ SqMethoda

r,p(ct) − δa(x)∥ < 2−u if
max(SqMethod0

r,p(1−B), 1−SqMethod0
r,p(B)) ≤ 1−

4 ·2rB∗, where B∗ is the noise bound occurred by Mult and
Rescale.

Proof. The proof is deferred to Appendix A.1.

When we induce the approximation error bound in Theorem
3.1, for the given r the following inequalities are provided:

SqMethod0
r,p(1−B) + 4 · 2rB∗ < 2−u (5)

1− SqMethod0
r,p(B) + 4 · 2rB∗ < 2−u (6)

Based on these inequalities, we can determine the parame-
ters (r, u) that satisfy the approximation error bounds (5) and
(6), minimizing r to reduce multiplication costs and maxi-
mizing u to minimize the approximation error with directly
enhancing accuracy. Algorithm 1 searches for the optimal
parameters (r, u) while balancing between the approxima-
tion error and the computational efficiency of SqMethod.

3.2. Cleansing Function

While SqMethod enables to approximate an indicator func-
tion δa with the approximation error bounded by 2−u,
Cleanse aims to efficiently round the output of SqMethod
to 0 or 1. Cleanse can be given by Cleanse(x) = −2x3 +
3x2 for x ∈ V (u) := (−2−u, 2−u) ∪ (1 − 2−u, 1 + 2−u).

Algorithm 1 Parameter Selection of r, u for SqMethod
Parameter p ∈ Z+

Input B is the noise bound of the input, B∗ is the noise
parameter in Rescale ◦Mult
Output (r, u)
Procedure paramSq(p,B,B∗) :

1: r′ = argminr(SqMethod0
r,p(1−B) + 4 · 2rB∗)

2: r′ ← ⌈r′⌉
3: umax ← 0
4: while r′ ≥ 1 do
5: u0 = − log(SqMethod0

r′,p(1−B) + 4 · 2r′B∗)

6: u1 = − log(1− SqMethod0
r′,p(B) + 4 · 2r′B∗)

7: u′ = min(u0, u1)
8: if u′ ≥ umax then
9: umax ← u′

10: r′ ← r′ − 1
11: else
12: break
13: end if
14: end while
15: Return (r′ + 1, umax)

Note that −2x3 + 3x2 is a low-degree polynomial such that
it passes through (0, 0) and (1, 1), and fast convergence is
guaranteed by its derivative as shown in (Cheon et al., 2020).
We provide a theoretical analysis for the rounding property
and error reduction of Cleanse.

Theorem 3.2 (The Rounding Property of the Cleanse
Function). Let (ct, 1, B) be a valid ciphertext of a message
x ∈ V (n). For n > 2, the evaluation of Cleanse (ct)
can reduce the noise by mapping its message to V (2n− 2)
with the relative noise 15β + 10B∗, where B∗ is the noise
occurred by Mult and Rescale.

Proof. The proof is deferred on Appendix A.2.

Theorem 3.2 demonstrates the error reduction capability
of Cleanse when applied to a valid ciphertext of a mes-
sage x ∈ V (n) for n > 2. Notably, after a single round
of Cleanse, the difference bound |b − x| (where b is the
rounded value of x) is tightened from 2−n to 2−2n+2. This
suggests that repeated application of Cleanse, followed by
the ciphertext bounded by 2−u via the SqMethod (u > 2),
can effectively reduce both approximation and evaluation
noises, ultimately converging the message value x towards
its rounded counterpart.

3.3. Encrypted Indicator Function by Square Method

We can construct EIF by composing SqMethod and
Cleanse for the ciphertext ct of x ∈ Zp as the approxi-

4

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

Algorithm 2 Parameter Selection of r, u, s for Indicator
Parameter p ∈ Z+

Input B is the noise bound of the input, B∗ is the noise
bound parameter in Rescale ◦Mult
Output (r, u, s)
Procedure paramInd(p,B,B∗):

1: (r, u)← paramSq(p,B,B∗)

2: s←
⌈
log

(
2−log(10B∗)

u−2

)⌉
3: Return (r, u, s)

mation of δa(x):

Indicatora(ct) = Cleanse(s) ◦ SqMethoda
r,p(ct) (7)

where s is the number of compositions of Cleanse. As
a result, we can build EIF with a multiplication depth of
2 + r + 2s.

Even if Cleanse can reduce the approximation error |Dec◦
Cleanse(ct)− b| from 2−n to 2−2n+2, as in Theorem 3.2,
when considering the noise bound 15β + 10B∗, the error
reduction has its limit. Since we cannot precisely track the
real noise, we set the limit of error reduction to 10B∗. Then,
we determine the parameter s that meets this limit.

Proposition 3.3. Let the limit of error reduction in Cleanse
be 10B∗ and the error bound of SqMethod be 2−u where
u > 2, the parameter s of Indicatora(ct) = Cleanse(s) ◦
SqMethoda

r,p(ct) satisfies s ≤ log
(

2−log(10B∗)
u−2

)
.

Proof. The proof is deferred on Appendix A.3.

As a result, we can select the parameters r, u, s for Indicator
evaluation that ensure bounded noise. Further discussions
about parameter selection will be provided in Appendix D.1.

4. Look-Up Table Evaluation with
Homomorphic Encryption (HELUT)

This section proposes a LUT evaluation with encrypted data,
utilizing EIF as a building block. We first propose the LUT
evaluation using the EIF for one-hot encoding (OHE) and
OHE basis with coded input and then develop the efficient
coded LUT evaluation method for larger tables.

4.1. LUT evaluations with One-Hot Encoding

Let T : Zp → Rd be a LUT. Then, we can represent the
encrypted version of the LUT evaluation for ct that is the
encrypted input (index) in Zp as follows:

T (ct) = Σi∈Zp
Indicatori(ct) · T (i) (8)

= E ·OHEp(ct), (9)

where Indicatori(ct) is the EIF evaluation for ct, E ∈ Rp×d

is an embedding matrix with its i-th column containing the
result of T (i), and OHEp(i) ∈ {0, 1}p is the p dimensional
one-hot encoding of i. While (Badawi et al., 2020) em-
ployed (9) from Enc(OHEp(x))

3, our approach introduces
an efficient algorithm that employs coded input indices to
leverage the smaller OHE.

4.2. HELUT with Coded Input

We propose HELUT with coded input to improve the ef-
ficiency of HELUT evaluation for large tables. Consider
the input message x ∈ Zk rather than Zp where k = pl,
in order to align with the Indicator applied to Zp. For
the input message x ∈ Zk, we first decompose it into a
coded input Decomp(x) = (x0, . . . , xl−1) ∈ Zpl such that
x =

∑l−1
i=0 xi · pi. Consequently, we assume that clients

transmit the encryption of coded input {Enc(xi)}l−1
i=0. For

instance, consider the parameters p = 8 and l = 4. In
this case, the conventional approach Enc(OHEk(x)) would
consume the slot size of k = 212 for a single token index.
Our method, however, achieves a substantial reduction by
requiring a slot size of l = 4.

To obtain (9) with coded input {xi}l−1
i=0 of x, we compute

OHEp(Enc(xi)) as follows:

wi = OHEp(Enc(xi)) = (wi,0, . . . , wi,p−1) (10)
= (Indicator0(Enc(xi)), . . . , Indicatorp−1(Enc(xi))).

To improve the efficiency of (9), we devised a memory-
efficient approach in Algorithm 3.This algorithm operates
on a coded input {xi}l−1

i=0 of the input message x and yields
T̂ ({xi}l−1

i=0) that is the ciphertext of T (x). Algorithm 4
includes a simple technique that dynamically constructs the
OHE representation on the fly, leveraging the OHEbasis =
{wi,j} to effectively mitigate memory overhead.

In Algorithm 3, we demonstrate the construction of LUT
using p · l Indicator operations, a significant reduction com-
pared to the pl operations for OHEk(Enc(x)). The de-
tailed cost analysis of 9 and Algorithm 3 is included in
Appendix D.2. Even if Algorithm 3 has computational gain
for large k, it still necessitates O(k) Mult and Add with the
noise accumulation. Thus, to address this issue for a very
large table such as word embedding, we propose codedHE-
LUT by leveraging the coded compression of the given table
(embedding matrix E) (Shu & Nakayama, 2018). Even if
Algorithm 3 has still smaller computational cost than (9), it
still necessitates O(k) multiplications and O(k) additions
for table lookup. Also, even with minimal noise growth
from individual additions, the collective effect of k addi-

3For large p, clients can not encrypt OHEp(x) into a single
ciphertext. It can exacerbate the ciphertext expansion problem,
discussed in Appendix C.4.

5

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

Algorithm 3 HELUT with Coded Input(HELUT-CI)
Parameter k = pl

Input E ∈ Rk×d be an embedding matrix of LUT T ,
{Enc(xi)}l−1

i=0 be CKKS ciphertexts of Decomp(x) =
(x0, . . . , xl−1) ∈ Zl

p for x ∈ Zk

Output ct0, · · · , ctd−1; CKKS ciphertexts of T (x)
Procedure T̂ ({Enc(xi)}l−1

i=0):
1: wi ← OHEp(Enc(xi)) for i = 0, · · · , l − 1
2: Initialize ctj ← Enc(0) for j = 0, · · · , d− 1
3: for 0 ≤ y < k do
4: (y0, . . . , yl−1)← Decomp(y)
5: for 0 ≤ i < l do
6: w ← Πwi,yi

7: end for
8: for 0 ≤ j < d do
9: ctj ← Add(ctj ,Mult(w,Eyj))

//* Eyj is the (y, j) element of E *//
10: end for
11: end for
12: Return ct0, . . . , ctd−1

tions can amplify noise. If one-hot encoding ciphertext has
a noise bound of B (using EIF), then each multiplication
results in the noise B∥E∥max (Cheon et al., 2017). Due to
subsequent addition, the LUT’s noise bound could reach
kB∥E∥max, potentially compromising accuracy. in the fol-
lowing subsection by introducing the coded compression.
in this noise to B multiplied by the size of the maximum
element in the look-up table, ∥E∥max. If one-hot encoding
entails noise bounded by B, the noise bound of LUT is up
to k · B, which could entirely break the result. Note this
additional cost and accuracy is shared property with the
method in (Badawi et al., 2020), in which the embedding is
derived from the multiplication of encrypted one-hot encod-
ing and table matrix. We solve this problem in the following
subsection.

4.3. Coded Look-Up Table Evaluation

To address the challenges posed by the large LUTs inher-
ent to embedding layers, such as NLP applications with
massive vocabularies (i.e., 100K), we propose a codedHE-
LUT algorithm. This technique effectively compresses the
look-up table T (as detailed in Section 2.2) and leverages
Decomp representations of toke indices, substantially re-
ducing memory footprint and computational costs, thereby
enabling efficient LUT evaluation even for extensive tokens.

The coded LUT evaluation method is detailed in Algo-
rithm 4. Its main difference from Algorithm 3 lies in the use
of compressed embedding with the code embedding LUTs
(codebooks) Ti(xi) that collectively construct the approxi-
mate embedding as follows T̃ (x) =

∑l−1
i=0 Ti(xi) ≈ T (x).

Algorithm 4 CodedHELUT Evaluation
Parameter k = pl

Input {E(i)}l−1
i=0 be the embedding matrices of codebooks

{Ti}l−1
i=0 for T̃ , {Enc(xi)}l−1

i=0 be CKKS ciphertexts of
Decomp(x) = (x0, . . . , xl−1) ∈ Zl

p for x ∈ Zk

Output ct0, . . . , ctd−1; CKKS ciphertext of T̃ (x)
Procedure T̃ ({Enc(xi)}l−1

i=0):
1: for 0 ≤ i < l, 0 ≤ y < p do
2: wi,y ← Indicatory(Enc(xi))
3: end for
4: for 0 ≤ j < d do
5: Initialize ctj ← Enc(0)
6: for 0 ≤ i < l, 0 ≤ y < p do
7: ctj ← Add(ctj ,Mult(wi,y, E

(i)
yj))

//* E
(i)
yj is the (y, j) element of E(i) *//

8: end for
9: end for

10: Return ct0, . . . , ctd−1

We assume that our algorithm utilizes the compressed em-
bedding (i.e., code and token embedding) learned using the
method proposed in (Shu & Nakayama, 2018). Then, we
can represent T̃ ({xi}l−1

i=0) as follows:

T̃ ({xi}l−1
i=0) =

l−1∑
i=0

E(i)OHEp(xi) ≈ T (x), (11)

where E(i) is the embedding matrix of codebook Ti. As a re-
sult, Algorithm 4 enables the construction of T̃ (x) from the
OHE bases of coded inputs with EIF on Zp and codebooks
{Ti}l−1

i=0. In terms of the effectiveness of the compressed
embedding, Shu & Nakayama (2018) showed that the com-
pressed embedding achieved performance on par with the
original embedding. Our empirical experiments also val-
idate this finding, showing that CodedHELUT maintains
utility even with the compressed embeddings and approx-
imate computations, as detailed in Table 2. Note that the
following accuracy analysis does not consider the effect of
embedding compression.

Cost and Accuracy Analysis The coded LUT evaluation
in Algorithm 4 yields significant performance and noise
reduction benefits. In particular, the multiplication cost
is reduced from O(k) = O(pl) to O(p · l). In addi-
tion, the addition noise is reduced from pl · B∥E∥max to
pB

∑l−1
i=0 ∥E(i)∥max

4. For instance, when we consider the
task of evaluating GloVe (Global Vectors for Word Repre-
sentation) 6B50d (k = 400, 000), HELUT evaluations of
(9) (Badawi et al., 2020) and Algorithm 3 require k Mult
with the worst-case precision loss is log 400K = 19 bits.
In contrast, codedHELUT (Algorithm 4) with p = 64 and

4For E, the max norm is defined as ∥E∥max := maxi,j |Eij |.

6

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

l = 8 requires only 512 Mult, resulting in the maximum
precision loss of 9 bits. This highlights the advantages of
our technique in terms of both computational efficiency and
noise resilience.

The illustrative example of this operation is provided in
Figure 2. A detailed cost comparison with other methods is
provided in Appendix D.2.

Word

Cat

Encrypted Code

3
0
1
3

Basis

0
0
0
1

1
0
0
0

0
1
0
0

0
0
0
1

Result of
Table Look-Up

0 0
0 0
0 0

0.3 0.6

0.2 0.1
0 0
0 0
0 0

0 0
0.6 0.7
0 0
0 0

0 0
0 0
0 0

0.5 0.9

Encrypted Embedding

1.1 2.3
Index Look-Up

then Enc

Indicator

Table Mult
via T0

Table Mult
via T1

Table Mult
via T2

Table Mult
via T3

Add

Figure 2. Illustrative Example of Word Embedding with 4 code-
books of dimension 4, to 2-dimensional embedding by 16-slotted
ciphertext in p1

Parallelization through SIMD To accelerate HELUT, we
can leverage the power of SIMD instructions provided by
the CKKS scheme with a large slot size (e.g., n = 216).
Since SIMD is based on the parallelization of operations,
we consider three key opportunities for parallelization (p1,
p2) within our HELUT evaluation:

• Codes of Coded Input (p1): By packing codes of coded
inputs into a single ciphertext, we can drastically reduce
the cost of OHEbasis with Indicator operation to 1 with
pl slots. (Line 1 of Algorithm 4)

• multiple input indices (p2): For client requests involving
multiple input indices, we can batch n/(pl) input indices
in a ciphertext and reduce the overall computational cost.

The illustrative example of ciphertext packing is provided
in Figure 2. A detailed cost comparison with other methods
is provided in Appendix D.2.

Scalability The scalability of the CodedHELUT evaluation
relies on the coded compression parameters (p, l) rather than
the original embedding’s vocabulary size (k). Since scala-
bility issues in embedding layers primarily stem from the
number of tokens, the CodedHELUT method can efficiently
manage a large number of tokens. Moreover, while the
CodedHELUT evaluation is linearly affected by the output
dimension of the embedding vector, each part can be evalu-
ated independently. We will demonstrate the scalability of
CodedHELUT with experimental results in Section 5.2.

Scenario Specification Suppose that a server’s ML model
begins with an embedding layer. Instead of using the trained
embedding layer directly, the server locally learns a com-
pressed model specifically for this layer (Shu & Nakayama,
2018). Additionally, the server provides an API that enables
mapping tokens to the coded input indices for the obtained
compressed model. Clients can then generate a sequence of
coded inputs corresponding to their sequence of tokens. To
maintain the privacy of the client’s data, clients send cipher-
texts of these coded inputs. Subsequently, the server can
compute the results of the embedding layer using our coded
HELUT algorithm and the subsequent ML model using this
encrypted data. This process is depicted in Figure 3.

KeyGen→ pk, sk,evk

Initialization

Client

token 7→ {xi}l−1
i=0

Decsk(Encpk(Result))

Learn {E(i)}l−1
i=0

Embedding Layer Compression

Server

T̃ (x)← {Encpk(xi)}l−1
i=0

Coded HELUT

ML Inference with T̃ (x)

{Encpk(xi)}l−1
i=0

coded input mapping

evk

Encpk(Result)

Figure 3. Scenario Specification of PPML with CodedHELUT

Limitations due to compressed embeddings Our Cod-
edHELUT method significantly improves efficiency by
leveraging coded input. In particular, to integrate our al-
gorithm with conventional embedding layers, we utilized
compressed embeddings based on the method proposed
in (Shu & Nakayama, 2018) and demonstrated its effec-
tiveness through experiments in Section 5.2. However, the
reliance on the specific method (Shu & Nakayama, 2018)
for compressed embeddings can be a limitation of our study.
Thus, we discuss this limitation in detail and present future
research directions concerning it in Section D.4.

5. Experiments
In this section, we demonstrate the efficiency of HELUT
by using the synthetic table and large-scale real-world word
embeddings.

Experimental Setting We implemented HELUT with linear
transformation (HELUT-LT) method in (9), HELUT with
coded inputs (HELUT-CI) in Algorihtm 3, and codedHE-
LUT in Algorithm 4 with SIMD parallelization p1. We
also applied SIMD p2 for all HELUT methods for multiple
inputs (token indices). For comparison, we utilized synthet-
ically generated table (T : Z64 → R16) and the real-world
large-scale NLP embedding GloVe 6B50d, GloVe 42B300d
(Pennington et al., 2014a;b), BERT(Bidirectional Encoder

7

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

Representations from Transformers) (Pires et al., 2019) and
GPT-2(Generative pre-trained transformer) (Radford et al.,
2019). For encrypted embedding layers, we only used cod-
edHELUT as other methods are not practically viable. To
assess the efficiency, we repeated for 8 independent trials
and measured the average and standard deviation of running
times, where amortized running time corresponds to the
total running time divided by the number of inputs.

CKKS Parameters We used the quotient polynomial
Zq[X]/(XN + 1) with logN = 17 and the scaling fac-
tor size log∆ = 35. Thus, the slot size for SIMD becomes
n = 216, and the hamming weight of the secret key is 128.
The size of q varies by experiment and is described in each
table. These parameters satisfy 128-bit security according
to (Jung Hee et al., 2022). In Appendix E.3, we also provide
the parameters (r, u, s) for Indicator.

Implementation Details Our experiments were conducted
on the server with Intel Xeon 6426Y at 2.5GHz. Our HE
implementation was based on OpenFHE (Al Badawi et al.,
2022). For embedding compression, we used the public
code of (Shu & Nakayama, 2018; Kim, 2018) with Pytorch
1.10.0 (Python 3) for the pre-trained embeddings.

5.1. HELUT on Synthetic Table

To compare the efficiency of HELUT, we measured the
amortized running time for Indicator, Linear Transforma-
tion (LinearTrans), and the entire HELUT process (Total).
Table 1 shows the results of evaluating LUT for 212 input
indices with four HELUT implementations: HELUT-LT,
HELUT-CI, CodedHELUT, and CodedHELUT with paral-
lelization p1. For all HELUT methods, we included the
SIMD parallelization p2 for 212 inputs.

HELUT-LT, which does not use coded input, requires pa-
rameters p = 64 where k = p = 64 represents the number
of rows in the synthetic table. This configuration results in
high evaluation time due to Indicator64 operations. HELUT-
CI, on the other hand, achieves a faster evaluation time by
reducing the number of Indicator operations to pl = 16 in
addition to smaller p = 16, where the reduction in p leads to
fewer SqMethod and Cleanse rounds with decreased cost,
as detailed in Appendix E.3. This reduction overweighs the
increased LinearTrans running time because of the construc-
tion of w in Algorithm 3. Comparing them, CodedHELUT
exhibits a similar Indicator evaluation time as HELUT-
CI but benefits from a shorter LinearTrans running time.
In addition, CodedHELUT can achieve a higher precision,
surpassing HELUT-LT and HELUT-CI than HELUT-LT
and HELUT-CI. Through the SIMD parallelization with p1,
CodedHELUT significantly reduces the evaluation time and
facilitates HELUT evaluations using one packed ciphertext.

5.2. HELUT on Word Embedding

We applied CodedHELUT with parallelization p1 and p2 to
the word embedding layers of GloVe 6B50d (400K vocab-
ularies, d = 50), 42B300d (1.9M vocabularies, d = 300),
and GPT-2 (50K vocabularies, d = 768) models using the
compressed coded embedding obtained according to (Shu &
Nakayama, 2018), as detailed in Appendix E.1. The Coded-
HELUT evaluation of BERT and GPT-2 for the same (p, l)
has the same computational cost because they have the same
output dimension d = 768. Table 2 shows the amortized run-
ning times of HELUT evaluation, as well as the compressed
embedding performance in terms of MSE (mean squared
error between original and compressed embeddings). We
can pack n/pl word indices per single ciphertext (words/ct).
Additionally, we conducted an experiment to demonstrate
the effectiveness of the compressed embedding for the down-
stream sentiment analysis task on the IMDB dataset (Maas
et al., 2011). The results of this experiment are summarized
in Appendix E.2.

Our results demonstrate that smaller pl leads to lower
HELUT evaluation costs because of the increased word
packing and the reduced Rot and Add costs in LinearTrans.
However, this compression comes at the expense of in-
creased MSE and reduced sentiment classification accuracy.
In addition, for pl = 512, CodedHELUT with p = 8, l = 64
offers better performance than p = 16, l = 32 in terms of
HELUT evaluation cost and MSE with similar accuracy
since smaller p results in a more efficient Indicatorp, reduc-
ing the bit consumption in FHE operations (535 for p = 8
and 675 for p = 16). Moreover, it is noteworthy that the
worst precision was 16 bits on all settings, which was the
maximum precision we designed for our algorithm. Conse-
quently, performance metrics like MSE and accuracy remain
nearly identical to their non-encrypted counterparts.

Note on Vocabulary size The computation cost of Coded-
HELUT directly depends on the size of pl and d, not the
size of the original vocabulary. For relatively small vocabu-
laries such as BERT and GPT-2, the compressed embedding
achieves lower MSE even with a small pl. This allows for
a higher compression rate by using even smaller pl values,
leading to a more efficient and lightweight CodedHELUT
evaluation.

6. Conclusion
In this study, we introduce a novel efficient LUT evaluation
algorithm with high precision based on the CKKS scheme,
utilizing the proposed EIF with bounded noise. We provide
theoretical analysis for the precision guarantee of our EIF
construction and empirically validate the practicality of the
CodedHELUT algorithm in large-scale word embedding
evaluation for GloVe, BERT, and GPT-2, without the need

8

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

Table 1. Average amortized running time with standard deviation (ms), and precision (bits) of various LUT evaluation methods for 212

inputs. log q = 850 for each experiment.

Method p l Indicator LinearTrans Total Precision
HELUT-LT 64 1 71.05± 1.32 4.10± 0.09 81.16± 1.3 14
HELUT-CI 8 2 13.53± 0.11 9.44± 0.32 22.98± 0.35 14

CodedHELUT 8 2 13.80± 0.33 1.58± 0.12 15.39± 0.37 14.25
CodedHELUT+p1 8 2 0.76± 0.03 3.06± 0.21 3.83± 0.22 15

Table 2. Average amortized running time with standard deviation (ms) of CodedHELUT(with p1 parallelization) for Compressed Word
Embedding with GloVe 6B50d, GloVe 42B300d, GPT-2, BERT and MSE loss of their compression. log q = 535 for log p = 8,
log q = 675 for log p = 16

Setting HELUT evaluation MSE loss
p l 6B50d 42B300d BERT/GPT-2 6B50d 42B300d BERT GPT-2
8 8 0.0182± 0.00063 0.10423± 0.00838 0.2621± 0.02266 0.180 0.069 0.001 0.013
8 16 0.04028± 0.0007 0.23359± 0.01905 0.59094± 0.05402 0.103 0.065 0.001 0.012
8 32 0.09192± 0.00584 0.51627± 0.04144 1.31364± 0.1155 0.063 0.055 0.001 0.012
8 64 0.20412± 0.0108 1.14468± 0.09586 2.88359± 0.24121 0.030 0.041 0.001 0.010

16 32 0.24174± 0.01235 1.2981± 0.0884 3.28315± 0.23777 0.050 0.052 0.001 0.010

for bootstrapping. Furthermore, our framework enables
the end-to-end HE evaluation of the embedding layer with
small input ciphertexts by clients in PPML scenarios. Al-
though we demonstrate the effectiveness of our algorithm
through word embedding experiments, our algorithm is ap-
plicable to any embedding layer that requires a look-up
evaluation (multiplication with one-hot representation) for
a large embedding matrix, such as a recommendation sys-
tem (i.e., user/item embedding) and graph neural networks
(i.e., node/edge embeddings) (Gao et al., 2023; Barkan &
Koenigstein, 2016). Consequently, our study has a signifi-
cant potential to advance the development of various PPML
applications with embedding layers, particularly by combin-
ing more complex deep learning models.

Acknowledgements
We first appreciate reviewers who gave useful comments.
This work was supported by the National Research Foun-
dation of Korea (NRF) and Institute of Information &
communications Technology Planning & Evaluation(IITP)
grant funded by the Korea government(MSIT)(No. NRF-
2022R1F1A1065171, No. RS-2020-II201336, Artificial In-
telligence Graduate School Program(UNIST), No. RS-2024-
00398360, Development of a user-friendly and efficiency-
optimized real-time homomorphic statistical analysis pro-
cessing platform). This work was also supported by Korea
Institute of Information Security & Cryptology (KIISC).

Impact Statement
CodedHELUT presents significant improvement for privacy-
preserving NLP tasks utilizing HE in terms of privacy and
efficiency. Our method enables secure and efficient process-
ing of NLP workloads while protecting sensitive data, and
addressing key privacy and efficiency issues. Traditional
NLP with CKKS faces privacy challenges during text-to-
number conversion. Prior solutions expose the server’s pre-
trained model, posing privacy risks. CodedHELUT ensures
end-to-end HE evaluation, safeguarding both the server’s
model and the client’s input data. In addition, HE in PPML
struggles with ciphertext expansion, especially in models
with large embedding layers. Our method compresses em-
beddings within the encrypted domain, facilitating efficient
processing and making HE more practical for PPML. Fur-
thermore, our solution supports efficient look-ups for em-
bedding layers across various machine-learning domains.
As a result, our work enhances the privacy and efficiency
of NLP workflows in PPML, contributing to the broader
adoption and practicality of homomorphic encryption in
machine learning.

References
Al Badawi, A., Bates, J., Bergamaschi, F., Cousins,

D. B., Erabelli, S., Genise, N., Halevi, S., Hunt, H.,
Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, I.,
Polyakov, Y., R.V., S., Rohloff, K., Saylor, J., Suponit-
sky, D., Triplett, M., Vaikuntanathan, V., and Zucca,
V. Openfhe: Open-source fully homomorphic encryp-

9

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

tion library. In Proceedings of the 10th Workshop on
Encrypted Computing & Applied Homomorphic Cryp-
tography, WAHC’22, pp. 53–63, New York, NY, USA,
2022. Association for Computing Machinery. doi: 10.
1145/3560827.3563379. URL https://doi.org/
10.1145/3560827.3563379.

Badawi, A. A., Hoang, L., Mun, C. F., Laine, K., and
Aung, K. M. M. Privft: Private and fast text classification
with homomorphic encryption. IEEE Access, 8:226544–
226556, 2020. doi: 10.1109/ACCESS.2020.3045465.

Barkan, O. and Koenigstein, N. Item2vec: neural item
embedding for collaborative filtering. In 2016 IEEE 26th
International Workshop on Machine Learning for Signal
Processing (MLSP), pp. 1–6. IEEE, 2016.

Boemer, F., Lao, Y., Cammarota, R., and Wierzynski, C.
Ngraph-he: A graph compiler for deep learning on homo-
morphically encrypted data. In Proceedings of the 16th
ACM International Conference on Computing Frontiers,
CF ’19, pp. 3–13, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. ISBN 9781450366854.
doi: 10.1145/3310273.3323047. URL https://doi.
org/10.1145/3310273.3323047.

Brakerski, Z. Fully homomorphic encryption without mod-
ulus switching from classical gapsvp. In Annual Cryptol-
ogy Conference, pp. 868–886. Springer, 2012.

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. Fully
homomorphic encryption without bootstrapping. Cryp-
tology ePrint Archive, Report 2011/277, 2011. https:
//eprint.iacr.org/2011/277.

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (lev-
eled) fully homomorphic encryption without bootstrap-
ping. ACM Transactions on Computation Theory (TOCT),
6(3):1–36, 2014.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020.

Brüggemann, A., Hundt, R., Schneider, T., Suresh, A., and
Yalame, H. Flute: Fast and secure lookup table eval-
uations (full version). Cryptology ePrint Archive, Pa-
per 2023/499, 2023. URL https://eprint.iacr.
org/2023/499. https://eprint.iacr.org/
2023/499.

Byun, J., Park, S., Choi, Y., and Lee, J. Efficient homo-
morphic encryption framework for privacy-preserving
regression. Applied Intelligence, 53(9):10114–10129,
2023.

Chen, M., Hao, Y., Hwang, K., Wang, L., and Wang, L. Dis-
ease prediction by machine learning over big data from
healthcare communities. IEEE Accees, 5:8869–8879,
2017.

Chen, T., Bao, H., Huang, S., Dong, L., Jiao, B., Jiang, D.,
Zhou, H., Li, J., and Wei, F. The-x: Privacy-preserving
transformer inference with homomorphic encryption,
2022.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. Homomorphic
encryption for arithmetic of approximate numbers. In
International Conference on the Theory and Application
of Cryptology and Information Security, pp. 409–437.
Springer, 2017.

Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y.
Bootstrapping for approximate homomorphic encryption.
In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 360–384.
Springer, 2018a.

Cheon, J. H., Han, K., Kim, A., Kim, M., and Song,
Y. A full rns variant of approximate homomorphic en-
cryption. Cryptology ePrint Archive, Paper 2018/931,
2018b. URL https://eprint.iacr.org/2018/
931. https://eprint.iacr.org/2018/931.

Cheon, J. H., Kim, D., and Kim, D. Efficient homomor-
phic comparison methods with optimal complexity. In
Moriai, S. and Wang, H. (eds.), Advances in Cryptology –
ASIACRYPT 2020, pp. 221–256, Cham, 2020. Springer
International Publishing. ISBN 978-3-030-64834-3.

Chillotti, I., Gama, N., Georgieva, M., and Izabachene, M.
Faster fully homomorphic encryption: Bootstrapping in
less than 0.1 seconds. In international conference on
the theory and application of cryptology and information
security, pp. 3–33. Springer, 2016.

Chillotti, I., Gama, N., Georgieva, M., and Izabachène, M.
Tfhe: fast fully homomorphic encryption over the torus.
Journal of Cryptology, 33(1):34–91, 2020.

Fan, J. and Vercauteren, F. Somewhat practical fully ho-
momorphic encryption. Cryptology ePrint Archive, Re-
port 2012/144, 2012. URL https://eprint.iacr.
org/2012/144.

Gao, C., Zheng, Y., Li, N., Li, Y., Qin, Y., Piao, J., Quan, Y.,
Chang, J., Jin, D., He, X., and Li, Y. A survey of graph
neural networks for recommender systems: Challenges,
methods, and directions. ACM Trans. Recomm. Syst., 1

10

https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1145/3560827.3563379
https://doi.org/10.1145/3310273.3323047
https://doi.org/10.1145/3310273.3323047
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2023/499
https://eprint.iacr.org/2023/499
https://eprint.iacr.org/2023/499
https://eprint.iacr.org/2023/499
https://eprint.iacr.org/2018/931
https://eprint.iacr.org/2018/931
https://eprint.iacr.org/2018/931
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

(1), mar 2023. doi: 10.1145/3568022. URL https:
//doi.org/10.1145/3568022.

Gentry, C. Fully homomorphic encryption using ideal lat-
tices. In Proceedings of the forty-first annual ACM sym-
posium on Theory of computing, pp. 169–178, 2009.

Guimarães, A., Borin, E., and Aranha, D. F. Revisit-
ing the functional bootstrap in tfhe. IACR Transac-
tions on Cryptographic Hardware and Embedded Sys-
tems, 2021(2):229–253, Feb. 2021. doi: 10.46586/tches.
v2021.i2.229-253. URL https://tches.iacr.
org/index.php/TCHES/article/view/8793.

Jung Hee, C., Yongha, S., and Donggeon, Y. Practical
fhe parameters against lattice attacks. Journal of the
Korean Mathematical Society, 59(1):35–51, 2022. doi:
10.4134/JKMS.j200650.

Kim, A., Song, Y., Kim, M., Lee, K., and Cheon, J. H. Lo-
gistic regression model training based on the approximate
homomorphic encryption. BMC Med Genomics, 11(83),
2018.

Kim, M. Compressing word embeddings via deep
compositional code learning (pytorch implemen-
tation). https://github.com/mingu600/
compositional_code_learning, 2018.

Kim, M., Song, Y., Li, B., and Micciancio, D. Semi-
parallel logistic regression for gwas on encrypted data.
BMC Medical Genomics, 13(7):99, 2020. doi: 10.1186/
s12920-020-0724-z. URL https://doi.org/10.
1186/s12920-020-0724-z.

Launchbury, J., Diatchki, I. S., DuBuisson, T., and Adams-
Moran, A. Efficient lookup-table protocol in secure mul-
tiparty computation. In Proceedings of the 17th ACM
SIGPLAN international conference on Functional pro-
gramming, pp. 189–200, 2012.

Lee, G., Kim, M., Park, J. H., Hwang, S.-w., and Cheon,
J. H. Privacy-preserving text classification on BERT em-
beddings with homomorphic encryption. In Carpuat, M.,
de Marneffe, M.-C., and Meza Ruiz, I. V. (eds.), Pro-
ceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 3169–3175,
Seattle, United States, July 2022. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.naacl-main.
231. URL https://aclanthology.org/2022.
naacl-main.231.

Lee, Y., Seo, J., Name, Y., Chae, J., and Cheon, J. H. Heaan-
stat: a privacy-preserving statistical analysis toolkit for
large-scale numerical, ordinal, and categorical data. IEEE
Transactions on Dependable and Secure Computing, pp.
1–18, 2023. doi: 10.1109/TDSC.2023.3275649.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng,
A. Y., and Potts, C. Learning word vectors for sen-
timent analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 142–150, Port-
land, Oregon, USA, June 2011. Association for Com-
putational Linguistics. URL http://www.aclweb.
org/anthology/P11-1015.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data, 2023.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

Park, S., Kim, J., Lee, J., Byun, J., Cheon, J. H., and Lee,
J. Security-preserving support vector machine with fully
homomorphic encryption. SafeAI@ AAAI, 2301, 2019.

Park, S., Byun, J., Lee, J., Cheon, J. H., and Lee, J. He-
friendly algorithm for privacy-preserving svm training.
IEEE Access, 8:57414–57425, 2020.

Park, S., Byun, J., and Lee, J. Privacy-preserving fair learn-
ing of support vector machine with homomorphic encryp-
tion. In Proceedings of the ACM Web Conference 2022,
pp. 3572–3583, 2022.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Empirical
Methods in Natural Language Processing (EMNLP),
pp. 1532–1543, 2014a. URL http://www.aclweb.
org/anthology/D14-1162.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. https://nlp.
stanford.edu/projects/glove/, 2014b. Stan-
ford NLP Group.

Pires, T., Schlinger, E., and Garrette, D. How multilingual
is multilingual bert?, 2019.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Shu, R. and Nakayama, H. Compressing word embed-
dings via deep compositional code learning. In 6th
International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?
id=BJRZzFlRb.

11

https://doi.org/10.1145/3568022
https://doi.org/10.1145/3568022
https://tches.iacr.org/index.php/TCHES/article/view/8793
https://tches.iacr.org/index.php/TCHES/article/view/8793
https://github.com/mingu600/compositional_code_learning
https://github.com/mingu600/compositional_code_learning
https://doi.org/10.1186/s12920-020-0724-z
https://doi.org/10.1186/s12920-020-0724-z
https://aclanthology.org/2022.naacl-main.231
https://aclanthology.org/2022.naacl-main.231
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://openreview.net/forum?id=BJRZzFlRb
https://openreview.net/forum?id=BJRZzFlRb

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

Tanuwidjaja, H. C., Choi, R., Baek, S., and Kim, K. Privacy-
preserving deep learning on machine learning as a ser-
vice—a comprehensive survey. IEEE Access, 8:167425–
167447, 2020. doi: 10.1109/ACCESS.2020.3023084.

A. Theoretical Proofs
A.1. Proof of Theorem 3.1

Lemma A.1 (Noise Bound of Power of Two
Square (Cheon et al., 2017)). For power of two in-
teger deg = 2i, deg-squares and rescale of (c0, 1, β) makes
ciphertext (ci, 1, (deg · β + (deg − 1)β∗)) where β∗ is the
relative noise of B∗ = Bmult +Brescale.

Lemma A.2 (Noise Bound of SqMethod). For power of
two integer 2r, if (ct, p, pβ) is a valid ciphertext of x ∈ Zp,
evaluation of SqMethod(ct)ar,p has noise bound 4 · 2rβ +
(3 · 2r − 1)β∗

Proof. (ct/p, 1, β) is a valid ciphertext, and square
yields ((ct/p)2, 1, 2β + β∗). Then 2r-squares of (1 −
2(ct/p)2, 1, 4β + 2β∗) yields noise bound

2r(4β + 2β∗)) + (2r − 1)β∗

= 4 · 2rβ + (3 · 2r − 1)β∗

Based on the noise bound in Lemma A.2, we can obtain the
following parameter selection condition of r, u.

Theorem 3.1 (The approximation error bound of
SqMethod). Let (ct, p, B) be a valid ciphertext of x ∈
Zp. Then, there exists r ∈ Z+, u ∈ R+ satis-
fying ∥Dec ◦ SqMethoda

r,p(ct) − δa(x)∥ < 2−u if
max(SqMethod0

r,p(1−B), 1−SqMethod0
r,p(B)) ≤ 1−

4 ·2rB∗, where B∗ is the noise bound occurred by Mult and
Rescale.

Proof of Theorem 3.1. Since a in SqMethoda
r,p works as a

permutation in Zp (i.e., (x−a)2), without loss of generality,
we consider a = 0.

Note that the noise and the plaintext for the ciphertext (pt+e)
are inseparable. For simplicity, we can re-define the addition
of message x ∈ Zp noise e ≤ B as message x′ ∈ NB(x) :=
{x′ : |x− x′| ≤ B, x ∈ Zp} and small encoding noise.

For ct′ be the ciphertext of x′, we have the approximation
bound condition of r, u satisfying:

∥Dec ◦ SqMethod0
r,p(ct′)− δ0(⌊x′⌉)∥ < 2−u

Then by Lemma A.2, we get noise bound 4 · 2rβ + (3 ·
2r − 1)β∗. We rearranged message x and noise e bounded

by B to the converted message x′ = x + e′, and then the
noise is reset to encoding noise, bounded by N/∆ which
is a rounding noise of canonical embedding. The size of
this new noise bound β′ of x′ can be expressed as β′ =
N/∆ ≤ 1/4 · Bscale/∆ ≤ 1/4 · β∗, since scaling noise
bound BscaleN/3 · (3 + 8

√
h) with hamming weight of

secret key h ≥ 64. Then the noise bound of SqMethod is
rearranged to 4·2rβ∗. The input of SqMethod is normalized
by initial division by p, so we can assume β∗ = B∗.

Since SqMethod is the decreasing function, the maximum
approximation error is attained by either x′ = B ∈ NB(0)
or x′ = 1−B ∈ NB(1). Thus, if the approximation error
is bounded by 2−u, we can obtain the inequalities:

SqMethod0
r,p(1−B) + 4 · 2rB∗ < 2−u

SqMethod0
r,p(B)− 4 · 2rB∗ > 1− 2−u

The second inequality can be rearranged to

1− SqMethod0
r,p(B) + 4 · 2rB∗ < 2−u

If max(SqMethod0
r,p(1 − B), 1 − SqMethod0

r,p(B)) ≤
1− 4 · 2rB∗, there exists r ∈ Z+ and u ∈ R+ to bound the
approximation error of SqMethodr,p.

A.2. Proof of Theorem 3.2

Lemma A.3 (Noise Estimation of Polynomial Evalua-
tion (Cheon et al., 2017)). Let f(x) = Σ0≤i≤daix

i be
polynomial with nonzero coefficient ad ∈ R. Let (ct, 1, β)
be valid ciphertext, then valid encryption of the evaluation of
ct on f(x) becomes (ct′,Mf , βdMf) for Mf = Σ0≤i≤d|ai|
and βd ≤ dβ + (d− 1)β∗ where β∗ is the relative noise of
B∗ = Bmult +Brescale.

Theorem 3.2 (The Rounding Property of the Cleanse
Function). Let (ct, 1, B) be a valid ciphertext of a message
x ∈ V (n). For n > 2, the evaluation of Cleanse (ct)
can reduce the noise by mapping its message to V (2n− 2)
with the relative noise 15β + 10B∗, where B∗ is the noise
occurred by Mult and Rescale.

Proof. For simplicity, we define the tuple of variables
(b, xb) as follows:

(b, xb) =

{
(0,−x) if x ∈ (−2−n, 2−n)

(1, 1− x) if x ∈ (1− 2−n, 1 + 2−n)

where b is the rounded value (either 0 or 1), and xb = b− x
is the difference between b and x. Then, we can assure
|xb| < 2−n as x ∈ V (n).

In addition, we can obtain

|Cleanse(x)− b| ≤ 2|xb|3 + 3x2
b (12)

12

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

because Cleanse(x) = 2x3
0 + 3x2

0 for b = 0, and
Cleanse(x) = 1 − 3x2

1 + 2x3
1 for b = 1. As a result,

as |xb| < 2−n (n ≥ 1),

|Cleanse(x)− b| ≤ (21−n + 3)x2
b . (13)

For Cleanse to work as error reduction, (21−n + 3)x2
b <

|xb| must be hold to get strictly decreasing property. This
inequality can be represented as |xb| < 1/(21−n+3). Thus,
when 2−n < 1/(21−n + 3), the error can be reduced. By
solving the inequality with respect to z = 2−n, we can
obtain the following condition:

0 < z ≤ −3 +
√
17

4
. (14)

Because 1/4 < −3+
√
17

4 < 1/2, n > 2 is required. As
a result, for the approximation error bound (13) 4x2

b <
2−2n+2 holds.

In addition, the relative noise bound due to Cleanse evalu-
ation becomes 15β + 10B∗ because d = 3 and Mf = 5 via
Lemma A.3, and β∗ in the lemma corresponds to B∗ since
the bound of input is 1.

A.3. Proof of Proposition 3.3

Proposition 3.3. Let the limit of error reduction in Cleanse
be 10B∗ and the error bound of SqMethod be 2−u where
u > 2, the parameter s of Indicatora(ct) = Cleanse(s) ◦
SqMethoda

r,p(ct) satisfies s ≤ log
(

2−log(10B∗)
u−2

)
.

Proof. According to Theorem 3.2, if the message of cipher-
text ct is in V (n), then minb∈{0,1} |Dec◦Cleanse(ct)−b|
is less then 2−2n+2 with noise bound 15β + 10B∗. Even n
could be increased by a round of Cleanse, if it is dominated
by the noise, the reduction has no effect, and further appli-
cation of Cleanse can not ensure further convergence to
0, 1. Assuming conservative noise bound, the convergence
of Cleanse cannot surpass 10B∗. By this limit, we can
calculate the upper bound of the number of Cleanse rounds
(s).

Assuming a conservative noise bound, we calculate s by
iteratively updating n until it reaches the limit of 10B∗. The
updated formula for n is ni ← 2ni−1 − 2, with an initial
value of n0 = u. This leads to ni = 2iu−(2i+1−2). Setting
ns = 2su− (2s+1 − 2) ≥ − log(10B∗) and solving for s,
we obtain s ≥ log

(
2−log(10B∗)

u−2

)
, providing the maximum

value of s.

Table 3. Notation Summary of Parameters

Symbol Description

N degree of ciphertext space

q ciphertext modulus

∆ scaling factor

B noise bound of a ciphertext

v plaintext bound of a ciphertext

β relative noise, B/v

p bound of EIF domain

l number of codebooks

k size of a large LUT : pl

B. Additional Backgrounds
B.1. Notation Summary of Parameters

We provide comprehensive notations for parameters in the
CKKS scheme and our algorithms in Table 3.

B.2. Homomorphic Encryption

Homomorphic Encryption is a cryptographic primitive al-
lowing arithmetic operations over encrypted data. In this
paper, we use CKKS scheme (Cheon et al., 2017) for HE,
which supports approximate addition, and Hadamard multi-
plication over complex numbers.

For a power-of-two integer M and N = M/2, we use the
notationR = Z[X]/(ΦM (X)) andRq = R/qR, where q
is a positive integer.

The CKKS scheme utilizes an encoding scheme Ecd :
CN/2 → R which is an (approximate) inverse of the de-
coding scheme Dcd : R → CN/2 defined by p(X) 7→
∆−1 · σ(p(X)), where ∆ > 0 is a positive real number
called scaling factor in (Cheon et al., 2017) and σ is the com-
plex canonical embedding map. The leveled FHE scheme
CKKS of depth L > 0 is as follows.

• KeyGen (1λ)→ (sk,pk,evk): From security parameter
λ, returns a secret key sk = (s, 1) ∈ R2, a public key
pk = (a,−a · s+ e) ∈ R2

q and evaluation keys evk and
rk for multiplication and rotation, respectively.

• Enc(pk = (a, b),pt) → ct: Samples r⃗ ∈ R2, and
e0, e1 ← DGqL . Returns a ciphertext ct ← r⃗ · pk +
(e0,pt + e1).

• Dec(sk = (s, 1), ct = (c0, c1)) → pt: Outputs pt ←
c1 + c0 · s mod qℓ.

• Add(ct0, ct1) → ctadd : Outputs ctadd ← ct0 + ct1
mod qℓ. In its simplified notation, we express ct0 + ct1
as Add(ct0, ct1). Note we can add plaintext or a constant

13

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

to a ciphertext in a natural way.
• Mult(evk, ct0, ct1) → ctmult : Parses ct0 = (c0, c1) and

ct1 = (c′0, c
′
1). Computes (d0, d1, d2)← (c0 ·c′0, c0 ·c′1+

c′0 · c1, c1 · c′1) ∈ R3
qℓ

. Returns ctmult ← (d0, d1) + ⌊ 1P ·
(d2 · evk mod P · qℓ)⌉ ∈ R2

qℓ
.

• Rescaleℓ→ℓ′(ct)→ ct′ : For an input ct a level ℓ cipher-
text, returns ct′ ← ⌊ qℓ′qℓ

· ct⌉ ∈ R2
qℓ′

at level ℓ′.
• Rot(rk, ct, i)→ ct′ : For an input rotation key rk, rotates

the plaintext vector of ct by i positions and return ct′,
where right-shift is represented as i > 0 and left-shift is
represented as i < 0.

• Bootevk(ct) → ct′: In leveled HE, level refers to the
remaining number of further multiplication. The con-
sumption of the level is denoted as depth. After a few
multiplications, the number should be refreshed by the
bootstrapping algorithm, which allows further multiplica-
tions (Cheon et al., 2018a). Note that bootstrapping is a
very heavy operation, and our goal is the construction of
a large-sized LUT with low depth, without bootstrapping.

B.3. Precision Estimation of CKKS

Since CKKS is an approximate HE, the noise occurs after
each algorithm for the supported operations in the scheme.
For example, for ct is encryption of pt, Decsk(ct)−pt could
be nonzero. Thus, we inspect the precision loss of CKKS
basic operations from the perspective of the size bound of
the noise.

To track the noise efficiently, we will use two tags v and
B with a ciphertext ct. For ⟨sk, ct⟩ mod q = pt + e,
∥pt∥can

∞ /∆ ≤ v and ∥e∥can
∞ /∆ ≤ B 5, denote (ct, v, B)

as valid ciphertext. Note this notation is for dropping the
effect of scaling factor, so for example, if ∆ varies to ∆2

after Mult, v and B is evaluated with division by ∆2 to the
canonical norm of pt and e.

The following are noise bounds after entailed for CKKS
scheme algorithm:

• Encpk(pt) → ct: The noise bound of an encryption is
less than Bclean in overwhelming probability.

• Add(ct0, ct1)→ ct : The addition of (cti, vi, Bi) results
(Σcti,Σvi,ΣBi)

• Multevk(ct0, ct1) → ct : The multiplication of
(cti, vi, Bi) results (ct, v0v1, B0B1 + v0B1 + v1B0 +
Bmult). Bmult varies by the level of ciphertext and it
decreases linearly as ciphertext modulus decreases by
rescaling. For ease of computation, we fix Bmult of the
highest level at computation omitting the level.

• Mult(c, ct) → c · ct: The constant scalar multiplication
results in the valid ciphertext (c ·ct, cv, cB), and constant

5For cannonical embedding map σ : R 7→ CN/2 and plain-
text polynomial p(X), ∥p(X)∥can

∞ be canonical-norm, equal to
∥σ(p(X)∥∞ (Cheon et al., 2017).

vector multiplication results in the valid ciphertext (c ·
ct, ∥c∥maxv, ∥c∥maxB).

• Rescale(ct) → ct′ : For scaling factor ∆, the result of
rescaling is (ct, v, B+Brescale). Since we defined v and
B as scaling factor free notation, they varies by Brescale

only.

Rescale is usually operated after each Mult operation and
summed up noise bound of Rescale(Multevk(ct0, ct1))→
ct is derived as v0v1, B0B1 + v0B1 + v1B0 + Bmult +
Brescale. For convenience of notation, We will denote
Bmult + Brescale as B∗. Note this value is determined
by the scheme parameter, not the message and noise bound
of an involved ciphertext. So we can assume this bound B∗
as a fixed constant over noise estimation.

For the detailed derivations of the noise bounds mentioned
above, please refer to (Cheon et al., 2017). Due to accu-
mulated noise, CKKS ciphertext entails inseparable noise,
and improvement of precision meets the limit at a certain
point. When we design an algorithm based on CKKS, the
obtained precision loss of the entire algorithm implies how
accurately the algorithm works. Therefore, we will analyze
the noise bound of our proposed algorithm to demonstrate
its viability.

C. Related Works
This study proposed a novel privacy-preserving and effi-
cient LUT evaluation method using CKKS by constructing
the EIF, demonstrating its effectiveness for embeddings.
In the following subsections, we provide a comprehensive
review of the related works of EIF, LUT, and NLP with
CKKS. Also, we provide a comparison between our method
and (Lee et al., 2022) in terms of the ciphertext expansion
in Section C.4.

C.1. Encrypted Indicator Function

In the context of CKKS, a comparison function (Cheon
et al., 2020) could be a component of the equality test and
indicator function. However, this method is less efficient for
equality-only tests due to its higher computational cost to
achieve comparable precision. Another possibility involves
using a Sinc function approximation to map discrete values
to zero, with only zero mapped to 1 (Lee et al., 2023). This
mechanism is also less efficient in terms of cost. Detailed
discussion will be presented in Section D.3.1.

C.2. Look-up Table

A possible LUT construction was proposed in (Lee et al.,
2023) by using their Sinc approximation. However, this
method requires iterating over the Sinc approximation func-
tion as many times as the size of the LUT domain, as the
strawman solution in Section 4.1. Even if the construction

14

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

of LUT from EIF is essentially equivalent to our basic ver-
sion LUT method, the overall computational cost is less
efficient than ours because of the heavier EIF using Sinc.

Other FHE schemes such as TFHE (Chillotti et al., 2016;
2020) can be used to construct LUT (Guimarães et al., 2021)
utilizing their operation on boolean circuits. However, they
have a much smaller slot size than CKKS, which induces
inefficiency of solution in terms of amortized running time
to deal when requiring large messages such as NLP applica-
tions. Other privacy-preserving LUT operations based on
non-HE primitives, like Multi-Party Computation (Launch-
bury et al., 2012; Brüggemann et al., 2023), are available.
However, because our approach primarily targets minimiz-
ing communication overhead, operating with a single server
model, and offloading computationally intensive tasks to the
server, we focus on HE-based solutions.

C.3. NLP with FHE

Building ML-based language models necessitates con-
verting natural language to numerical vectors like TF-
IDF or word/token embeddings (e.g., word2vec, GloVe,
Bert) (Mikolov et al., 2013; Pennington et al., 2014a; Pires
et al., 2019). Constructing these vectors inherently involves
managing large word/token dictionaries, which can pose
significant bandwidth challenges, especially in the context
of developing PPML with FHE. Notably, recent language
models (Brown et al., 2020; Pires et al., 2019) rely on
a word/token embedding layer that can be implemented
through LUT evaluation. However, while CKKS might
offer advantages for PPML models, its inability to handle
exact discrete values makes it ill-suited to deal with LUT
operations for the embedding layer.

The existing NLP research using CKKS avoids this problem
by following two methods. The first approach is sending the
encrypted one-hot vectors (Badawi et al., 2020). Since an
embedding consists of many vocabularies, the client suffers
from the high dimensionality of one-hot embedding. A
detailed description of the ciphertext expansion by one-hot
embedding is on the section C.4. The second approach is
performing an embedding layer in plaintext on the client
side (Lee et al., 2022; Chen et al., 2022). This method
requires the assumption that the client knows the word/token
embeddings (part of the language model) (Lee et al., 2022).
However, the servers are owned by a service provider such
as a commercial company, so the embedding layer is likely
to become a private asset to the service provider. Therefore,
revealing the embedding model to the client would pose
serious privacy or security threats to the service provider.

With these reasons, the necessity of large-sized LUT evalua-
tion by CKKS arises. If word/token embedding is executed
by the server and the client sends ciphertext of words or
their indices, it can ease the bandwidth problem and the

privacy issue of the table.

C.4. Comparison with (Lee et al., 2022) on the
Ciphertext Expansion

In this section, we discuss the effectiveness of our coded
LUT algorithm with respect to the ciphertext expansion.
In (Lee et al., 2022), they consider an approach to delegate
the word embedding computations to the client and compute
the rest of the encrypted NLP task using the CKKS FHE
scheme. We show that our method provides better efficiency
compared to that in (Lee et al., 2022) in terms of ciphertext
expansion, analyzing and comparing how many message
slots a word occupies in the respective cases since it is
asymptotically proportional to the ciphertext expansion for
the HELUT process.

As analyzed in (Badawi et al., 2020), a word is firstly trans-
formed into a one-hot encoding before being processed
further. Hence, it requires a word to be transformed into
a vector size that is equal to the input size of LUT. For
example, if we use GloVe 6B50d, one word is expanded
into a vector of dimension 400K. This implies that if we
encrypt it after transforming it into one-hot encoding, one
word occupies 400K slots which is infeasible for the practi-
cal usages. If the embedding layer is delegated to the client
as in (Lee et al., 2022), a word occupies as many slots as
the number of features, e.g., 50 slots per word to use GloVe
6B50d, and 300 slots per word for GloVe 42B300d.

In our solution, a word is transformed into a code of size
l, the number of codebooks, so one word occupies l slots.
Hence, the ciphertext expansion rate depends neither on the
feature dimension of the embedding nor on the size of the
LUT. According to Table 2, if we use 16× 32 coding, i.e.,
l = 32, one word occupies 32 slots for GloVe 42B300d
which is about 9.3x reduced compared to 300 slots in case
the word/token embedding layer is delegated to the client as
in (Lee et al., 2022).

D. Discussion
D.1. Further Adjustment of Parameter Selection for EIF

We propose a parameter selection algorithm for EIF in Al-
gorithm 2. If the noise bound B of the input ciphertext and
parameter B∗ is given, we can select r, the round number of
SqMethod, and u, so that the message range of SqMethod
is obtained by Theorem 3.1. Then we can obtain s, the
round number of Cleanse by predicting the precision im-
provement of Cleanse.

Further adjustment of r, u, s : The number obtained by
s can be non-optimal since the noise calculation of Theo-
rem 3.3 gives an upper bound of s. Thus, further optimiza-
tion is required by experiment to reduce s for the given

15

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

Algorithm 5 Precision Evaluator by r, u, s for Indicator
Parameter p ∈ Z+, N : degree of CKKS ciphertext dimen-
sion.
Input EIF parameter (r, u, s)
Output precision prec
Procedure :

1: Generate random x← Z
(N/2)
p

2: prec← − log ∥Dec ◦ Indicator(Enc(x))− δ(x)∥
3: Return (r, u, s)

parameter of CKKS.

Also, focusing on the optimization of cost, maximizing u is
not always the best choice, since the error that occurs from
the evaluation of Cleanse is lower-bounded. For instance,
even if we have sufficient noise budgets to set r to achieve
u up to 12, if Cleanse can improve the precision by up to
18 bits at maximum, setting u by 10 is enough to achieve
the same precision while less computation is required.

Algorithm 6 provides further optimization of r, u, s for pa-
rameter selection, which is based on the precision evaluation
given in Algorithm 5. For enhanced accuracy in precision
evaluation, Algorithm 5 can be executed multiple times. The
CKKS parameter computation in lines 1-5 of Algorithm 6
is based on (Cheon et al., 2017). However, these computa-
tions can be adjusted if other variants such as RNS (Cheon
et al., 2018b) are used.

D.2. Cost Analysis and Comparison of the Possible
HELUT Solutions

In this section, we discuss and compare the cost of various
evaluation methods of HELUT from strawman solutions to
coded embedding. We summarize the comparison of the
costs in Table 4.

We remark that the HELUT can be evaluated using a table
with both encrypted and unencrypted entries. The Mult col-
umn in Table 4 refers to either the number of multiplications
between ciphertexts in the respective HELUT methods when
using the encrypted table or that of multiplication between
plaintext and ciphertext when using the unencrypted table.

HELUT-LT. HELUT-LT refers to the naive method to apply
Indicator for k = pl times, which is the size of LUT inputs,
and multiply the k results with the output values of the
table. Adding up this value will result in the ciphertext of
the evaluation result, as in Equation (8) and Equation (9).
This procedure costs k = pl multiplications and additions
for each entry of the embedding vector, so the total cost is
multiplied by d, the embedding dimension. Addition of pl

ciphertexts induces noise bound pl ·B∥E∥max, E denoting
embedding matrix from LUT. Note the evaluation depth is
the depth of Indicator plus one.

Algorithm 6 Optimized Parameter Selection of r, u, s for
Indicator
Parameter p ∈ Z+

Input CKKS parameter (N,∆, h, σ, P, q). N is degree of
ciphertext space, ∆ is scaling factor, h is hamming weight
of secret key, σ is standard deviation of noise sampler, P is
evaluation key parameter, q is ciphertext modulus.
Output (r, u, s)
Procedure :

1: Bclean ← 8
√
2σN + 6σ

√
N + 16σ

√
hN

2: Bks ← 8σN/
√
3

3: Bscale ← N/3 · (3 + 8
√
h)

4: Bmult ← P−1qBks +Bscale

5: B∗ ← Bmult/∆+Bscale

6: (r, u, s)← paramInd(p,B,B∗)
7: while True do
8: if Precision(r, u, s) < Precision(r, u, s+ 1) then
9: s← s+ 1

10: else
11: break
12: end if
13: end while
14: while True do
15: if Precision(r − 1, u, s) < Precision(r, u, s) then
16: r ← r − 1
17: else
18: break
19: end if
20: end while
21: Return (r, u, s)

This method is different from (Badawi et al., 2020) by In-
dicator application part, since in (Badawi et al., 2020), the
client encrypts the message in OHEk form. (Badawi et al.,
2020) requires excessive memory due to OHEk formed mes-
sage. One-hot-encoding of an index consists of k binary
numbers, which occupy k slots of certain ciphertexts. If
the number of tokens is large as in the LLM model, one
token occupies multiple ciphertexts. For instance, in the
case of GloVe 42B300d, OHE of a token occupies 1.9M
slots. If the slot size of CKKS is 65536, 29 ciphertexts
are required for a single token. However, our method does
not require that much ciphertext to transfer, so it solves
excessive bandwidth problem.

HELUT-CI. HELUT-LT requires Indicator to check ev-
ery candidate in Zk for each input, where k can exceed a
million in the LLM cases. We can reduce the number of
Indicator operations by decomposing OHEk into OHEba-
sis by formula (10). In this way, input is decomposed into
l codes and encrypted, so it requires performing l Indica-
tor evaluations on the ciphertexts with small domain Zp

and construct OHEbasis. Then we obtain each entry of

16

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

Table 4. Cost Analysis of HELUT. The second column represents slot occupation per the required number of input ciphertexts for a single
token.

Method Active slots per token Indicator Mult Add Rot Noise bound

HELUT-LT 1 slot per ciphertext pl dpl dpl 0 pl ·B∥E∥max

HELUT-CI 1 slot per l ciphertexts* pl dpl, lpl** dpl 0 pl ·B∥E∥max

CodedHELUT 1 slot per l ciphertexts* pl dpl dpl 0 pl ·B∥E∥max

CodedHELUT+p1 pl slots per 1 ciphertext 1 d d log pl d log pl pl ·B∥E∥max

* input codes of dimension l are assumed to packed in each of l independent ciphertexts, so number of input ciphertext is l
at minimum.

** This term is the cost of getting each entries of OHEk from OHEbasis, which is inevitably Mult between ciphertexts.

OHEk from OHEbasis by l ciphertext Mult, and total cost
of this construction is lpl Different from other Mult, this
Mult is inevitably multiplication between ciphertexts since
it is multiplication between OHEbasis.

This method reduces the number of Indicator operations
from pl to pl. Note that Indicator of former is on Zk and
the latter uses Indicator on Zp, so not only the number of
Indicator but also the evaluation cost and depth of each
Indicator is reduced.

CodedHELUT. Even if we use the HELUT-CI method, we
should combine basis and construct OHEk and multiply,
add k times to evaluate each of d result entries. However, as
in Algorithm 4, evaluation of codedHELUT requires evalu-
ation of small LUT of size p, then simply adding l results
outputs an approximate vector equivalent to embedding ob-
tained by large LUT of size k. So this method reduces
Mult, Add costs from dpl to dpl. Also, since the number
of addition is reduced, the noise bound is also reduced to
pl ·B∥E∥max.

Parallelization. We can amortize the overall communica-
tion and computation costs utilizing the large slot size of
CKKS. We can parallelize the computation in the following
way denoted as p1 and p2.

• p1 represents a ciphertext packing method for parallel
computation of line 1 in Algorithm 4. More precisely,
when applying Indicator on each code, we can copy the
code p times and evaluate single Indicator operation,
one Mult, log p Rot, and Add to obtain the result of
single Indicator on Zp. Packing multiple codes in
one ciphertext utilizes l slots per input, and reduces
Indicator cost by l times. Then simultaneously Mult
table, then summing up l outputs requires log l Rot and
Add operations. In total, this SIMD computation of
coded input evaluation reduces the number of Indicator
operations by pl times, then requires single table Mult
and Rot and Add log pl to sum up. Note this procedure
requires pl slots per input.

• p2 is achieved after fixing the occupation cost for one
input indices, as in slot per token column in Table 4.
Then we can parallelize the whole procedure by taking
multiple input indices in one ciphertext. If we set
CKKS ciphertext slot size as n and assuming p1, one
ciphertext can contain n/(pl) input indices and operate
Algorithm 4 in parallel.

D.3. Other Design Choices

D.3.1. CONSTRUCTION OF EIF

In this section, we discuss the alternative approaches to
constructing EIF. We will then compare the efficiency and
precision of these methods against our proposed EIF method
with experimental results in Appendix E.4

Lagrange Interpolation As a straw man solution, simple
Lagrange Interpolation can be considered as EIF for domain
Zp as follows:

Πi∈Zp\{a}
(x− i)

(a− i)
.

This method is inefficient when applied to large input do-
mains (large p) due to its multiplicative cost scaling with
p− 1.

Comparison Function There is a step function approxi-
mation that could be used as a comparison function using
CKKS (Cheon et al., 2020). The step function introduced
in the paper maps 0 to 0, and other values to ±1. We
can square the result and subtract from 1 to build an EIF.
However, it requires more computational cost and depth
to reach high precision compared to the square method in
Section 3.1. Thus, we recommend the square method over
the step function from (Cheon et al., 2020) for the equality
test.

Sinc Approximation An approximation of Sinc with cer-
tain noise cleansing functions is suggested as a candidate
for the indication function (Lee et al., 2023), since if the
domain is restricted to integer points, Sinc(πx) = δ0(x)

17

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

holds.

D.3.2. CONSTRUCTION OF LUT

In this section, we discuss the alternative solutions of
HELUT and analyze their efficiency compared to our
method.

LUT by Comparison Function We can detect the number
in ciphertext by binary search with comparison function
in (Cheon et al., 2020), operating log p times recursively.
However, this method consumes depth rapidly, since the
comparison operation should be operated on the result of
the former comparison iteration, so the depth accumulates
by using the comparison function iteratively. As a result,
this method requires bootstrapping, which leads to an ineffi-
cient computation cost than our low-depth, no bootstrapping
construction.

LUT by Lagrange Interpolation Instead of applying the
indicator multiple times and checking whether the input
value matches each input candidate, we can construct a
polynomial approximation of LUT. However, since the input
of interpolation is not the exact value in discrete input space,
the output of the interpolation might contain amplified noise
due to both input difference and FHE evaluation noise. In
this case, we can not cleanse the noise since the output and
the noise might have no consistency so we can not construct
an efficient cleansing function.

D.4. Limitations and Future Work

This section discusses the limitations of our current ap-
proach and outlines potential directions for future research
to address these challenges and further enhance the applica-
bility of our method.

Generalizability of LUT evaluation Our method proposes
a HE-friendly algorithm for evaluating look-up tables in em-
bedding layers, where the tables contain token embeddings.
This method relies on the compression learning method
(Shu & Nakayama, 2018), which utilizes the semantic re-
lationships between embeddings. Thus, this method can
be extended to other structured large dataset, such as a rec-
ommendation system (i.e., user/item embedding) and graph
neural networks (i.e., node/edge embeddings) (Gao et al.,
2023; Barkan & Koenigstein, 2016). However, this method
is difficult to generalize to the lookup tasks for arbitrary
tables.

Dependence on Compression Strategy The efficacy of
current CodedHELUT is influenced by the performance of
the compression learning method. This limitation also stems
from the assumption that our method aims to evaluate the
embedding layer of an already trained model, utilizing the
compression learning method by (Shu & Nakayama, 2018)
as an off-the-shelf method. Thus, it is required to explore

methods to improve compression learning, such as fine-
tuning compressed embedding layers or training models
with coded input tokens from the beginning of training in
order to enhance the overall efficiency of CodedHELUT.

E. Additional Experiments
E.1. Experimental Details

Coded Compression Detail: Our compression method fol-
lows the setting of (Shu & Nakayama, 2018). We trained
the model with the code embedding matrices and the dis-
crete codes that are constructed by a neural network with the
Gumbel-Softmax trick, and Adam optimizer with a learning
rate 0.001. The original implementation used the dataset
of vocabularies from the intersection of GloVe and IMDB
data set, but our compression includes the entire vocabulary
from GloVe. We conducted the training for 200K iterations
and evaluated MSE in every 1000 iterations. We selected a
parameter with the lowest MSE. This compression is con-
ducted in plaintext. Note that the model size is significantly
reduced by the compression. While the size of the origi-
nal embedding is 271.3MB for GloVe 6B50d and 5.03GB
for GloVe 42B300d, respectively, the codebooks of GloVe
6B50d and 42B300d with pl = 512 become 391KB and
2.4MB, respectively.

E.2. IMDB Sentimental Analysis with Compressed
Embeddings

To demonstrate the effectiveness of compressed embeddings
for a downstream task, we evaluated their performance on
the sentiment analysis task using the IMDB movie review
dataset (Maas et al., 2011) as in (Shu & Nakayama, 2018).
We conducted four independent trials and measured the av-
erage accuracy. The IMDB dataset contains 25,000 reviews
for both the training and validation sets. We truncated each
review to a maximum length of 400 words. Our baseline
was set using the original embeddings, against which we
compared the performance of the compressed embeddings.
The classifier was trained for up to 50 epochs using GloVe
42B300d embeddings and up to 100 epochs using GloVe
6B50d embeddings. The results are summarized in Table 5.

E.3. Implementation of Indicator with Various p and ∆

To demonstrate the efficiency of our EIF, we evaluated it
across various input domains, Zp with p = 2i, 2 ≤ i ≤ 6
for ∆ = 35 and 2 ≤ i ≤ 8 for ∆ = 506. Figure 4 and
Figures 5 illustrate the amortized times for a ciphertext with
216 slots and the total consumed depth due to the rescaling
in CKKS computation. In Figures 4 and 5, we can observe

6The evaluation results of p = 128, 256 for log∆ = 35 are
absent since Algorithm 1 outputs u < 2, and the application
condition for Cleanse is not satisfied.

18

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

Table 5. Experimental result on IMDB sentimental analysis task with compressed embedding of GloVe 6B50d, GloVe 42B300d

Setting Accuracy
p l 6B50d 42B300d
8 8 69.32±4.49 71.63±2.53
8 16 76.65±3.05 80.57±1.69
8 32 79.14±4.28 82.93±0.96
8 64 79.49±3.64 85.27±0.63

16 32 79.56±1.03 85.18±1.54
Original 79.64± 2.10 85.74± 1.04

2 3 4 5 6

6 · 10−2

7 · 10−2

8 · 10−2

log p

A
m
or
ti
ze
d
R
u
n
n
in
g
T
im

e(
m
s)

Total
SqMethod

0

5

10

15

20

25

30

C
on

su
m
ed

L
ev
el
s

Consumed Levels

1

Figure 4. Amortized time(ms) and consumed levels of EIF for
2 ≤ log p ≤ 6 with log∆ = 35, log q = 955

2 3 4 5 6 7 8

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

log p

A
m
or
ti
ze
d
R
u
n
n
in
g
T
im

e(
m
s)

Total
SqMethod

0

5

10

15

20

25

30

C
on

su
m
ed

L
ev
el
s

Consumed Levels

1

Figure 5. Amortized time(ms) and consumed levels of EIF for
2 ≤ log p ≤ 8 with log∆ = 50, log q = 955

Table 6. Suggested Parameter of EIF on Fresh Ciphertext, logN =
17, log∆ = 35 for 15 bit precision

p 4 8 16 32 64

r 6 8 10 11 13

u 11 9 7 5 4

s 1 1 2 2 3

Depth 8 10 14 15 19

Table 7. Suggested Parameter of EIF on Fresh Ciphertext, logN =
17, log∆ = 50 for 30 bit precision

p 4 8 16 32 64 128 256

r 7 9 11 12 14 16 18

u 24 23 21 11 11 11 11

s 1 1 1 2 2 2 2

Depth 9 11 13 16 18 20 22

that the amortized running time is approximately linearly
proportional to log p, as multiplication cost increases with
additional rounds of SqMethod. The difference between
total cost and SqMethod represents the cost of Cleanse,
and the difference remains stable if s is the same. For each p,
Tables 6 and 7 provide the parameter sets (r, u, s) obtained
by Algorithm 6, where the consumed level is calculated as
2 + r + 2s. We found that with a larger scaling factor ∆
(∆=50), SqMethod reaches larger values of u for similar r,
and Cleanse achieves a higher precision limit with smaller
s.

Precision As we discussed in Proposition 3.3, the precision
limit is defined by the size of B∗. In our experiment, we
obtained uniform precision regardless of the domain size p.
The worst precision limit is 15 for log∆ = 35, and 30 for
log∆ = 50.

19

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

E.4. Cost and Precision Analysis of Other Design
Choices for EIF

We compared our proposed EIF with three other methods
presented in Section D.3.1: EIF using Lagrangian interpo-
lation (Lagrange), Comprarison-based EIF (Cheon et al.,
2020), and EIF using Sinc (Lee et al., 2023). Tables 8-11
prenet the consumed depth, the number of Mult and constant
Mult operations, the precision bits, and the average amor-
tized time for 8 repetitions across different configurations
of log∆ = 35, 50 and p = 8, 64.

For p = 8, we observed that Lagrange interpolation requires
the least depth, but its multiplication cost increases linearly
with p, while the costs of the other algorithms scale logarith-
mically with p. In addition, for p > 10, the coefficients of
the interpolation polynomial grow excessively large, leading
to a collapse in the evaluation results. Consequently, La-
grange interpolation failed to evaluate EIF for p = 64. Our
proposed EIF achieved the highest precision with minimal
cost across all cases except for Lagrange. Although the EIF
using Sinc (Lee et al., 2023) requires less depth, the compu-
tational cost is inferior to ours as it involves computations
of Sinc and cosine, which are computationally intensive.

20

Privacy-Preserving Embedding via Look-up Table Evaluation with Fully Homomorphic Encryption

Table 8. Cost and precision comparison of other design choices of EIF with log∆ = 35 and log p = 8

Method Depth Mult const Mult Precision Cost

Lagrange 6 9 7 7 bits 0.0657 ms

(Cheon et al., 2020) 18 21 21 14 bits 0.1499 ms

(Lee et al., 2023) 11 22 19 11 bits 0.1462 ms

Proposed EIF 12 11 1 16 bits 0.0762 ms

Table 9. Cost and precision comparison of other design choices of EIF with log∆ = 35 and log p = 64

Method Depth Mult const Mult Precision Cost

(Cheon et al., 2020) 18 21 21 12 bits 0.1735 ms

(Lee et al., 2023) 14 28 19 5 bits 0.1867 ms

Proposed EIF 21 20 1 16 bits 0.1087 ms

Table 10. Cost and precision comparison of other design choices of EIF with log∆ = 50 and log p = 8

Method Depth Mult const Mult Precision Cost

Lagrange 6 9 7 31 bits 0.0698 ms

(Cheon et al., 2020) 18 21 21 22 bits 0.1629 ms

(Lee et al., 2023) 11 22 19 25 bits 0.1588 ms

Proposed EIF 13 12 1 31 bits 0.0832 ms

Table 11. Cost and precision comparison of other design choices of EIF with log∆ = 50 and log p = 64

Method Depth Mult const Mult Precision Cost

Comparison (Cheon et al., 2020) 18 21 21 22 bits 0.1822 ms

Sinc (Lee et al., 2023) 14 28 19 21 bits 0.1900 ms

Proposed EIF 20 19 1 31 bits 0.1113 ms

21

