
Towards Exploiting Early Termination for Multi-Fidelity
Hyperparameter Optimization

Helena Graf1 Lukas Fehring1 Alexander Tornede1 Tanja Tornede1 Marcel Wever1,2

Marius Lindauer1,2

1
Institute of Artificial Intelligence, Leibniz University Hannover, Germany

2
L3S Research Center, Hannover, Germany

Abstract Hyperparameter Optimization (HPO) is crucial to fully leverage the potential of the vast

majority of machine learning algorithms. Although Bayesian Optimization (BO) is considered

a canonical approach to HPO, determining the runtime limit for BO is challenging, for

example, we observed that a runtime on the order of days may be allocated even though

retrospectively, the best solution could be found within a few minutes. To alleviate this

situation, an early termination strategy based on approximating the statistical error and the

remaining optimization potential has been proposed recently. However, many state-of-the-

art HPO approaches are based on multi-fidelity optimization, aiming to leverage cheaper

evaluation proxies. In this work, we bridge these concepts with the first HPO framework,

generalizing automatic termination to multi-fidelity HPO approaches. This allows us to

not only prematurely stop the HPO process but also stop the evaluation of uninformative

intermediate fidelity stages. In an experimental study, we demonstrate the potential of our

framework to substantially reduce the computational footprint by stopping the optimization

40% earlier, at the expense of minor performance degradation.

1 Introduction

Selecting hyperparameter configurations has a large impact on the performance of machine learning

algorithms. HPO supports practitioners in finding optimal hyperparameter values for specific

tasks (Feurer and Hutter, 2019; Bischl et al., 2023). However, HPO often remains computationally

expensive, and termination strategies are usually built upon a pre-defined budget or performance

threshold, ignoring whether any solution better than the current incumbent configuration is likely

to be found. Makarova et al. (2022) alleviate this situation with their automatic termination strategy

for Bayesian optimization (BO) (Mockus, 1989; Frazier, 2018), suggesting termination if the statistical

error of the incumbent dominates the estimated regret of early termination. But they only consider

black-box HPO and thus are not applicable to state-of-the-art multi-fidelity HPO approaches. In

this paper, we propose the first framework to efficiently terminate state-of-the-art multi-fidelity

approaches based on Makarova et al. (2022), saving practitioners not only compute resources but

also time. In particular, we enable the application of the proposed stopping criterion for BOHB

(Falkner et al., 2018), as well as propose its utilization to disregard uninformative fidelities.

2 Related Work

Automated stopping methods are typically either rule-based or dynamic. Rule-based strategies

stop when, for example, the incumbent does not improve after a set number of trials (Ribeiro et al.,

2011), improvements fall below a threshold (Lorenz et al., 2015), or acquisition function values

drop to low (Lorenz et al., 2015; Florea and Andonie, 2022). More recently, Makarova et al. (2022)

suggest a dynamic approach that halts optimization when the potential gain no longer outweighs
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Figure 1: Visualization of cascading early stopping. The sampled configurations are evaluated. When-

ever a configuration is evaluated, the stopping criterion is checked, indicated by the magni-

fying glass. When the stopping criterion is triggered, indicated by the red circle, fidelities

are removed, and the brackets are adjusted accordingly.

the variability in performance. This automatic stopping significantly reduces runtime with mini-

mal performance loss. However, existing methods generally remain either simplistic or tailored

exclusively to black-box, rather than multi-fidelity (grey-box), optimization.

Alternatively, the fidelity schedule itself can be adapted. HyperJump (Mendes et al., 2021)

extends Hyperband (HB) (Li et al., 2017) by allowing early jumps to higher fidelities based on

expected accuracy loss. DyHPO (Wistuba et al., 2022) uses a joint surrogate model across budgets

and dynamically chooses between exploring new configurations or promoting existing ones. Moving

beyond static fidelity levels, BOCA (Kandasamy et al., 2017) drops the assumption of fixed fidelity

levels and works in a setting where the resource is assumed to be continuous. Recently, Bohdal

et al. (2023) propose PASHA, an extension of ASHA (Li et al., 2020), that automatically stops

the HPO process if an approximate, soft ranking across two following fidelity levels does not

change. Similarly, Brandt et al. (2024) propose a SHA extension that adapts the maximum budget

dynamically by adding additional fidelities while preserving theoretical guarantees. However, none

of these fidelity schedule adaptation techniques can be used to terminate HPO runs.

3 Early Termination for Multi Fidelity Hyperparameter Optimization
In this paper, we generalize the stopping criterion from Makarova et al. (2022) to multi-fidelity

optimization. In particular, we adapt BOHB (Falkner et al., 2018) to support both early stopping and

adapting a schedule of fidelity levels 𝑓1, . . . , 𝑓𝑘 . After revisiting the original criterion, we present

to variants: A basic version that stops the entire optimization process, and a more fine-grained

method that also prunes uninformative fidelities to accelerate the optimization process.

Black Box Termination Criterion. Instead of relying on a fixed evaluation budget, Makarova et al.

(2022) propose a dynamic stopping criterion that decides when to halt optimization based on the

confidence in the current best solution. The idea is to stop if further search is unlikely to lead to

substantially better results because the potential improvement is smaller than the uncertainty (or

“noise”) in the performance estimates. Formally, for a set of previously evaluated configurations

𝐺𝑡 = {𝜆1, . . . , 𝜆𝑡−1} and the configuration space Λ, optimization is stopped at configuration 𝜆𝑡 if:(
min

𝜆𝑖 ∈𝐺𝑡

ucb𝑡 (𝜆𝑖) − min

𝜆∈Λ
lcb𝑡 (𝜆)

)
︸                                 ︷︷                                 ︸

Estimated optimization gain 𝑟

≤
√︃
Var[ ˆ𝑓 (𝜆𝑡 )] with Var[ ˆ𝑓 (𝜆𝑡 )] =

(
1

𝑘
+ 𝐷𝑖

𝐷−𝑖

)
𝑠2

𝑐𝑣 (𝜆𝑡 ) . (1)
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Here, 𝑢𝑐𝑏𝑡 and 𝑙𝑐𝑏𝑡 represent upper and lower confidence bounds on performance. If the estimated

optimization gain 𝑟 is less than the noise in performance estimation, then continuing the search is

unlikely to be worthwhile; thus, the optimization process is terminated. The variance Var[ ˆ𝑓 (𝜆𝑡 )] is
typically estimated from cross-validation where 𝑠2

𝑐𝑣 (𝜆𝑡 ) is the sample variance from cross-validation,

𝑘 is the number of folds, and 𝐷𝑖/𝐷−𝑖 reflects the relative size of validation and training data splits.

Naive Multi Fidelity Stopping. A naive translation of Makarova et al.’s stopping criterion to multi-

fidelity optimization applies the stopping criterion only to the highest fidelity, because evaluation

results on lower fidelities are not necessarily indicative of the final performance. To this end, a

separate surrogate model is trained on evaluations at the highest fidelity level exclusively. Every

time a hyperparameter configuration is evaluated on the highest fidelity level, the stopping criterion

is applied, and if the criterion is met, the optimization process is terminated.

Cascading Early Termination Criterion. Given the promise of fidelity skipping (Mendes et al., 2021)

and the observation that early stopping at lower fidelities may reflect noise rather than true perfor-

mance differences, we propose using the stopping criterion to filter out low-fidelity evaluations

(Fig. 1). To disregard fidelities, the stopping criterion is checked after each evaluation, using a sur-

rogate only trained on the respective fidelity. If the criterion is met for fidelity 𝑓𝑖 , all configurations

are promoted to the next fidelity, and fidelities 𝑓1, ..., 𝑓𝑖 are removed from consideration.

4 Preliminary Empirical Evaluation

Experimental Setup. We base our experiments on SMAC’s implementation of BOHB (Falkner et al.,

2018; Lindauer et al., 2022), equipped with a random forest surrogate model and, if finished within

the budget, continuously re-initialized HB brackets, to tune the hyperparameters of both Random
Forest (Breiman, 2001) and XGBoost (Chen and Guestrin, 2016) across a selection of OpenML

tabular datasets (Bischl et al., 2021) with dataset subsets as fidelities. We compare our naive early

stopping strategy (Naive Makarova) and cascading early stopping approach (Cascading Makarova)
against the vanilla BOHB as a baseline (HB+BO). We note that all variants run multi-fidelity HPO

and evaluations are based on nested cross-validation, with 10 outer for testing and 3 inner folds for

validation. Each optimizer is allotted one hour. For more information, we refer to Appendix A.

Overall Results. Fig. 2 compares validation and test performance vs runtime. Both Naive and

Cascading Makarova reduce runtime significantly, with Naive stopping most aggressively. It is

important to note that the quality of the generated solutions differs between validation and test

set. While it seems that optimizing for a longer time would be beneficial in terms of validation

performance, the results on test performances reveal that HB+BO overfits on Random Forest and is
not adding much on XGBoost. Cascading Makarova is in fact the best method on Random Forest and
on par with full optimization on XGBoost. Additionally, uncertainty estimates differ substantially

between the validation and test sets, with the validation set showing notably less variation. Overall,

early stopping cuts runtime and may curb meta-overfitting. While Cascading Makarova preserves

or improves quality, Naive Makarova risks notable degradation.

Anytime Performance Results. As shown in the anytime performance plots in Fig. 3 in the

Appendix, Naive Makarova is consistently very aggressive, being over-confident on the highest

budget and thus using only a small portion of the allocated budget, potentially contributing to a drop

in performance. Compared to the originally considered black-box setting of Makarova et al. (2022),

this is a surprising insight on multi-fidelity approaches. We suspect that configurations surviving

the successive halving scheme to the highest budget could be fairly narrow in the configuration

space and thus the random forest surrogate model in SMAC is overconfident in its uncertainty

predictions because of poor extrapolation behavior. It would be open for future work to study this

on other models, such as GPs or BNNs.
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Figure 2: Performance Comparison of Validation and Test Performance: Exemplary results compar-

ing our cascading early stopping method (Cascade) to SMAC’s BOHB approach (HB+BO) on

the validation set (left), and test set (right). Runtime is plotted on the x-axis and regret on

the y-axis. Runtime and performance uncertainties are estimated using standard error.

In contrast to Naive Makarova, our cascading method generally terminates later, often resulting

in improved final performance. Overall, the final performance of naive stopping is inferior, while

Cascade remains largely competitive to HB+BO. Thus, the Cascade represents a reasonable trade-off

due to the negligible decrease in quality, but a major decrease in runtime compared to HB+BO.

5 Conclusion

In this paper, we present a first step toward using early termination strategies for multi-fidelity

optimization. We generalize the stopping criterion of Makarova et al. (2022) to multi-fidelity settings,

allowing not only early stopping of the entire HPO process but also pruning of uninformative

fidelity levels. However, the approach remains limited, since the stopping criterion requires inner

cross-validation, which is often infeasible in costly learning scenarios. Additionally, our evaluation

only considers two learners on tabular datasets. Possible future work consists of further evaluation,

as well as exploring other ways of estimating the learner’s variance. Example approaches include

meta-learning algorithm-specific variances, as well as utilizing the differing variance of different

approaches using hyperparameter optimization knowledge bases. Moreover, the development of

stopping criteria that do not require cross-validation, for example, using learning curve prediction,

may help a translation to state-of-the-art deep-learning models.
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A Evaluation Setup Details

A.1 Technical Setup

For our experiments, we utilize an HPC cluster. Each compute node is equipped with two Intel

Xeon Gold Skylake containing 40 cores, and a 192𝐺𝑖𝐵 of RAM. Each optimization was run in an

independent compute job equipped with 4 CPUs and 4 GB RAM. To log experiment results, we

utilize the PyExperimenter (Tornede et al., 2023) library. To consider test-performance in our final

performance plots ?? and Appendix B, we conducted an additional evaluation round, where runtime

was impacted by cluster problems - we only consider datasets where all 10 test-folds were evaluated

successfully. Our anytime performance plots in Fig. 3 portray the validation performance evaluated

preceding these cluster issues.

B Further Experimental Results
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Figure 3: Anytime Validation Performance Plots: Exemplary results on different datasets (ID in

brackets) comparing our naive early stopping approach (Makarova), cascading early stopping

(Cascade), and SMAC’s BOHB method (HB+BO) evaluated on optimizing the Random Forest
and XGBoost hyperparameters. Runtime in seconds (capped at the mean endpoint) is plotted

vs regret. The plots portray the mean performance, error bars show the standard deviation.
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