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Abstract

The online evaluation of machine learning models is typically conducted through
A/B experiments. Sequential statistical tests are valuable tools for analysing
these experiments, as they enable researchers to stop data collection early without
increasing the risk of false discoveries. However, existing sequential tests either
limit the number of interim analyses or suffer from low statistical power. In this
paper, we introduce a novel sequential test designed for the continuous monitoring
of A/B experiments. We validate our method using semi-synthetic simulations
and demonstrate that it outperforms current state-of-the-art sequential testing
approaches. Our method is derived using a new technique that “inverts” a bound
on the probability of threshold crossing, based on a classical maximal inequality.

1 Introduction

Online A/B experiments have become a standard approach for evaluating the impact of machine
learning models on the systems and products where they are deployed. Although this approach offers
significant advantages, it also poses the risk of exposing users to harmful changes that could degrade
their experience. Unlike traditional techniques such as the Student’s t test, sequential testing supports
repeated significance checks without increasing the false positive rate. This makes it well-suited for
real-time monitoring of experiments, allowing early detection of harmful effects, which helps protect
user experience and reduce financial losses.

Sequential testing methods can be broadly divided into discrete and continuous. Discrete sequential
tests permit only a fixed number of interim checks while continuous methods impose no such limit
and allow checking for significance at the experimenter’s will - even after each new observation. In
this paper, we focus on continuous sequential tests. We find that the absence of a restriction on the
number of interim checks is useful in practice, as it avoids a situation where the experimenter and the
stakeholders observe a degradation in the metric of interest but have to wait until the next checkpoint
before assessing the statistical significance and making decisions.

In this paper, we propose a novel continuous sequential test that demonstrates a better control of
Type-I error and a greater power than current state-of-the-art methods for continuous experiment
monitoring. The theoretical technique we use to derive and (asymptotically) justify this novel test is,
to the best of our knowledge, also new.

We validate the proposed sequential test using a semi-synthetic simulation experiment based on a
public real-world data set. We share the associated code for greater reproducibility [16].

To summarise, our main contributions are as follows.
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• We propose a novel (asymptotic) sequential test. This test supports unlimited interim
significance checks.

• We present a new theoretical technique that consists of inverting the bounds obtained from
the (generalised) Levy inequalities [21, Paragraph 29.1, A].

• We conduct an empirical study and demonstrate that the proposed sequential test has better
Type-I error control and higher power than current state-of-the-art methods for continuous
experiment monitoring.

• We share the associated code [16] for greater reproducibility and to promote further research
on this topic.

The remainder of this paper is structured as follows. Section 2 reviews related work. Section 3
introduces the proposed method, explains its derivation, and then presents its formal theory. In
Section 4, we assess the correctness of the proposed method using a semi-synthetic experiment (based
on a public real-world data set). Section 5 discusses the limitations of the proposed approach and
Section 6 concludes.

2 Related Work

Our work is related to a large literature on sequential decision-making based on sequences of
hypothesis tests, confidence sequences, or sequences of "always-valid" p-values. While early work
in this field was primarily concerned with clinical trials and industrial quality control [6, 4, 2],
more recent work is typically motivated by the sequential nature of online experiments, where
users arrive sequentially and generate outcomes that are observed quickly relative to the duration
of the experiment [17, 14, 11]. Here, the goal of sequential testing is typically either to reduce the
opportunity cost of longer experiments, as in the context of best-arm identification in multi-armed
bandit problems [13, 15, 39, 12], or to manage risk by faster detection of harmful treatments [20, 10].

2.1 Martingale Methods and E-Processes

Building on the seminal work of Wald [36] and Doob [7], most modern sequential procedures are
based on maximal inequalities for appropriately constructed martingales that provide time-uniform
statistical guarantees. While Wald’s original sequential probability ratio test (SPRT) was developed
from scratch, its construction is essentially of this “martingale-type”. SPRT sequentially evaluates
the likelihood ratio test statistic at each sample size for the null hypothesis H0 : θ = θ0 against the
simple alternative H1 : θ = θ1. The test continues until the statistic crosses one of two predefined
bounds, at which point the null hypothesis is either rejected or not rejected accordingly. SPRT requires
specifying a single-point alternative, which limits its use for general-purpose experimental monitoring.
To address this limitation, likelihood ratio methods using the method of mixtures (mSPRT) have been
developed. These approaches replace the single-point alternative with a composite hypothesis and the
standard likelihood ratio — with a mixture, which remains a martingale under the null [27].

In addition to mSPRT, the class of martingale methods encompasses more sophisticated approaches
constructed using other martingales and falling under the framework of generalized always-valid
inference (GAVI) [14, 11, 10, 19, 18, 3].

Another recent branch of martingale-based methods is built upon the principle of testing by betting
(see [25] and references therein).

The martingale-based approach was generalised through the concept of e-processes [9, 30] — stochas-
tic processes characterised by a property that allows for straightforward construction of sequential
tests. The roots of this perspective can be traced back to [35], who introduced the use of test mar-
tingales within a game-theoretic framework as a foundation for statistical testing. This remains an
active area of research, with a growing literature developing new constructions and applications of
e-processes [31, 32]. See [26] for a recent overview of the topic and further references.

2.2 Group Sequential Methods

A conceptually different approach is followed by methods based on group sequential tests (GST)
[24, 23, 33, 8]. GST methods rely on (asymptotic) characterizations of the joint distribution of
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a vector of test statistics across increments of data, which permits the computation of sequential
boundaries that uniformly control the false discovery rate via multivariate (numerical) integration.
Earlier GST methods (such as [24, 23]) required a fixed number and timing of interim analyses. In
contrast, the later generalisation [8] permits flexible (in theory up to continuous) monitoring. This
flexibility is achieved using an alpha-spending function, which controls the allocation of Type I error
across analyses, based on a prespecified maximum sample size.

2.3 Simple Sequential A/B Testing

Our approach has similarities to simple sequential A/B testing [22]. However, the test from [22]
only allows monitoring count-type metrics (for example, the number of clicks or purchases), whilst
our proposed method can be used to monitor metrics of any type, including real-valued financial
metrics such as revenue. One can view our work as a generalisation of [22], yet we emphasise that
this generalisation is not at all trivial as the theory presented in [22] fundamentally supports only
count-type metrics.

3 YEAST: YEt Another Sequential Test

In this section, we present a novel, alternative sequential testing method proposed in this paper.

3.1 Problem Setup and Notation

Suppose we are conducting an A/B test and have a certain metric of interest. We want to constantly
track this metric and have a tool to check if the difference between the groups is at any point large
enough to conclude that the treatment has an impact on the metric. The tool must have good control
of the false detection rate despite the repeated checks. In other words, it must allow for peeking into
the interim results of the experiment without inflating the false detection rate.

To develop a tool satisfying the above requirement, we consider the difference S in the total value
of the metric of interest accumulated by the control (W = 0) and the treatment (W = 1) groups.
Typically, this difference S can be represented as a sum of increments over a stream of events. For
example, if the metric of interest is revenue then the tracked difference S can be decomposed into
the sum of order values over checkout events where the order value is taken with a positive sign
if it comes from the control group and with a negative sign if it comes from the treatment arm.
Mathematically, the increments can be written as

Xi = (1− 2Wi)Yi, (1)

where Yi is the value or outcome associated with the i-th event (such as the order value in the example
above) and Wi is the event assignment indicator (it equals 0 if the event was generated by a subject
from the control group and 1 if its subject belongs to the treatment group). With this notation at hand,
the difference in the metric of interest after observing n events can be written as the running sum

Sn =

n∑
i=1

Xi, n ≥ 1, (2)

as illustrated in the example data set displayed in Table 1.

Table 1: An Example of Experiment Data

i timestamp group Y X S
1 2023-08-01 12:00:00 control 175.0 175.0 175.0
2 2023-08-01 12:00:02 treatment 35.5 -35.5 139.5
3 2023-08-01 12:00:05 treatment 20.0 -20.0 119.5
4 2023-08-01 12:00:10 control 100.0 100.0 219.5

. . . . . . . . . . . . . . . . . .

So far we have used revenue monitoring as an example but one can think of examples from other
domains such as video streaming (metric: hours streamed; the events are user sessions; the event value
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is the total duration of videos streamed within the session), online advertisement (metric: number
of clicks; the events are clicks; the event value is 1), medical drug trial (metric: number of cases of
side-effects; the events are incoming patients; the event value is the indicator of side-effect presence
after taking the drug), online subscription services (metric: number of new users who convert into a
paid subscription; the events are newly acquired users; the event value is the indicator of subscribing),
banking (metric: total transaction fee; the events are transactions; the event value is fee amount), etc.

3.2 Assumptions and the Null Hypothesis

We will now state and discuss our assumptions and the null hypothesis.

Assumption 1 (Random Subject Assignment) The subjects are assigned to the control or treatment
uniformly at random and with equal probability.

We work with the following null hypothesis.

H0: the treatment does not affect either the event outcome distribution or the frequency of events, so
that

(a) the event outcomes and the assignment indicators are independent from each other, i.e.,

{Y1, Y2, . . .} ⊥⊥ {W1, W2, . . .}, (3)

(b) and the frequency of events in each group is the same, implying (under Assumption 1) that

Pr{Wi = 1} = 0.5 ∀ i ≥ 1. (4)

In the setting of this paper, it is important to distinguish between subjects (such as users) and events
generated by subjects (such as orders). Throughout the paper, we work with variables associated
with events and not subjects. For example, Yi, i ≥ 1, are event outcomes and Wi, i ≥ 1, are event
assignment indicators. One implication of this is that even though the subjects are assigned to one
of the two groups independently at random, the variables associated with individual events can be
dependent (as some of them can be generated by the same user). Therefore, in our theory (Theorems 1
and 2), we allow the event outcomes Yi, i ≥ 1, to be dependent and, likewise for the event assignment
indicators Wi, i ≥ 1. Part (a) of the null hypothesis stated above only assumes that the two sets
of variables ({Y1, Y2, . . .} and {W1, W2, . . .}) are independent from each other, but the variables
within each of the two sets are allowed to be dependent.

The null hypothesis stated above exhibits the difference between our setup and the classical testing
for a zero average treatment effect. Specifically,

• our testing procedure acts on the level of events generated by experiment subjects and not
the experiment subjects themselves (for example, orders and not customers);

• we assume that under the null hypothesis, the treatment does not affect the “event generation
process” in any way.

In the revenue monitoring example, the latter implies that both the frequency of orders and the order
value distribution stay the same in both groups under the null. We discuss the limitations of the
considered setup in Section 5.

The approach described so far allows us to derive a simple but effective sequential testing procedure
we present next.

3.3 Proposed Sequential Testing Method

The proposed monitoring method consists of tracking the difference in the metric of interest between
the experiment groups and (continuously) comparing it with a constant (alerting) boundary. Whenever
the boundary is crossed, we can conclude (with a predefined significance level α) that the treatment
has an impact on the metric.

The procedure requires setting the maximum number of events to be observed during the monitoring
period that we denote by N . In other words, the boundary is computed assuming that the monitoring
will not continue after N events have been collected. See Section 3.3.2 for how to set N in practice.
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The proposed method has only one other parameter that needs to be estimated beforehand - the (scaled)
variance of the difference in the metric of interest at the end of monitoring, VN = var(SN )/N . The
estimator of VN needs to be consistent under the null hypothesis. Given the estimate V̂N (computed
by such an estimator), the alerting boundary is set to

b∗ = z1−α/2 ·
√
NV̂N , (5)

where z1−α/2 is the quantile of the standard normal distribution of level 1 − α/2. The proposed
simple sequential test proceeds by tracking Sn and comparing it against b∗.

The necessity to fix or estimate N and to provide an estimate of VN beforehand can be perceived as a
disadvantage of the proposed approach. However, we argue that in many practical scenarios, those
parameters can be reliably set based on pre-experiment data (in fact, the underlying data distribution
has to have some level of stability or regularity in time for the A/B testing to be meaningful in the
first place).

3.3.1 Informal Derivation of the Proposed Method

The derivation of the alerting boundary (5) follows two steps. First, we use (generalised) Levy’s
inequality1 to bound the false detection rate by the probability that the tracked sum exceeds the
threshold at the end of monitoring, i.e.,

FDR = Pr
{

N
max
n=1

Sn > b
}
≤ 2Pr {SN > b} . (6)

In the second step we use the Central Limit Theorem to approximate the latter probability,

Pr {SN > b} ≈ 1− Φ

(
b√

var(SN )

)
= 1− Φ

(
b√
NVN

)
, (7)

where Φ denotes the CDF of the standard normal distribution. Then by setting the threshold b to
z1−α/2 ·

√
NVN (cf. (5)), we ensure that the false detection rate is under control, i.e., FDR ⪅ α.

This is formalised in Theorem 1 below.

The proposed testing procedure is defined in Algorithm 1 and will be referred to as YEAST (from
YEt Another Sequential Test). The estimation of VN is discussed in Section 3.3.2 below.

Algorithm 1 YEAST
Require: N , V̂N

b∗ ← z1−α/2

√
NV̂N

for n = 1, . . . , N do
if Sn > b∗ then

flag significance
end if

end for

For a two-sided test, we track |Sn| and compare it against b∗2−sided = z1−α/4 ·
√

NV̂N .

Mind that differently from the non-sequential testing, the significance level α needs to be divided
by 2 for the one-sided test and by 4 for the two-sided test. This is due to the factor of two in the
right-hand side of bound (6).

Note that while baring some resemblance in the formulas, YEAST is fundamentally different from
GST [8] methods. The latter use a statistic normalized by the observed information (i.e., the variance
of the cumulative data up to time n) and adjust the rejection threshold at each look. In contrast,
our method normalizes the partial cumulative sum Sn by the variance of the full dataset var (SN )
and compares it to a fixed threshold. As a result, the boundary of YEAST is constant (does not
change from one look to another) while this is not the case for GST. The computation of the YEAST
boundary is computationally simple and does not require numerical integration.

1We leverage a generalised version of the inequality from [21, Paragraph 29.1, A] that allows the observations
to be dependent.
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3.3.2 Setting the Input Parameters

As was described in the previous subsection, the computation of the alerting boundary of the proposed
sequential testing procedure requires two inputs: the number of events N to be observed during the
monitoring and an estimate V̂N of the (scaled) variance of the tracked metric difference at the end of
the monitoring. In this subsection, we discuss how to provide those inputs in practice.

To set N , we estimate the expected number of events to be collected over the experiment time
frame. In the simplest form, this can amount to setting N to the number of events observed in a
pre-experiment period of the same duration as the experiment we want to monitor.

For variance estimation, we suggest using pre-experiment data as well. Obtaining an accurate estimate
this way requires the pre-experiment period to be representative of the experiment time. However,
in cases where this cannot be assumed, the validity of fixed-duration randomised experiments is
questionable in principle (as the effects measured during such experiments may not generalise beyond
their time frames). So in the context of A/B testing, this is a natural assumption. Note that estimating
variance from pre-experiment data is a standard procedure performed before an A/B test because it is
used in computing the MDE (minimum detectable effect) and identifying the necessary sample size.

As noted in Section 3.2, the event outcomes Yi, i ≥ 1, can be dependent because some of the events
are generated by the same user. The same holds for the event assignment indicators Wi, i ≥ 1.
Consequently, the increments Xi, i ≥ 1, of the monitored trajectory can be serially correlated, in
which case the variance var(SN ) does not equal the sum of the variances var(Xi). The serial
correlation of the increments has a clustered nature in this case because variables corresponding to
different users are independent due to random assignment. Therefore, we propose to use an estimator
that is robust to clustered serial correlation [1] to estimate VN . Implementations of such estimators are
readily available, for example as part of the sandwich package in R [41, 40] (see function vcovCL).
The cluster variable in our case is the user identifier. As we show in our experiments with real-world
data in Section 4, the use of a robust (clustered) variance estimator can be utterly important for
effective control of the false detection rate.

Although the need to set a finite horizon N can be viewed as a disadvantage of YEAST, we have not
found it problematic in practice. When running A/B experiments it is typical to plan for a certain
duration, and the number of observations collected during the experiment time frame is usually
predictable. In addition, the decision boundary of YEAST depends on the square root of N , which
makes the method more robust to inaccuracies in the estimation of N . That said, we acknowledge that
there can be situations where it is difficult to reliably estimate N and, in that case, it may be better
to resort to other methods (e.g., [11]) that do not require setting a finite horizon. In the empirical
evaluations in Section 4, we never assume that N is known and estimate it from pre-experiment data
(as part of the method). Hence, the respective empirical results incorporate the uncertainty in the
estimation of N .

3.3.3 Formal Statements

In this subsection, we will justify the correctness of the proposed testing procedure. This includes a
statement demonstrating that the proposed method controls the false detection rate (Theorem 1), and
a statement showing that the power of the method is asymptotically one (Theorem 2).

In the formal statements below, (Ω, F , Pr) is a probability space and IR stands for the set of real
numbers. As before, Φ denotes the CDF of the standard normal distribution. The proofs of the
statements can be found in Appendix A.

The first theorem states that when the treatment has no actual impact, detections occur sufficiently
rarely.
Theorem 1 (False Detection Rate Control). Let Yi : Ω 7→ IR and Wi : Ω 7→ {0, 1}, i = 1, . . . , N ,
be random variables and let Sn, n ≥ 1, be the running sum defined by (1)–(2). Suppose that
Assumption 1 and the null hypothesis (3)–(4) hold and that a version of the Central Limit Theorem is
valid for the sequence of random variables X1, X2, . . . defined by (1). Assume that var(SN ) > 0
for all N ≥ 1 and set VN := var(SN )/N .

Then for any γ > 0 and any ε > 0 there exists Nγ, ε such that for all N ≥ Nγ, ε we have

Pr
{

N
max
n=1

Sn > γ
√

NVN

}
≤ 2 (1− Φ (γ)) + ε.
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In particular, for any significance level α ∈ (0, 1) and any ε > 0 the false detection rate
Pr
{
maxNn=1 Sn > z1−α/2

√
NVN

}
is bounded by α+ ε, provided that N is sufficiently large.

Note that we deliberately do not spell out specific conditions, ensuring that the central limit properties
hold for the sequence of increments {Xi}. Multiple sets of such conditions exist. A good overview
of them can be found in [38, Chapter V].

The above theorem not only justifies the proposed method, but also provides insight into how the
quality of the false detection rate control depends on the error in setting the input parameters of
the method (N and/or VN ). Specifically, if we overestimate or underestimate the product NVN by
a factor of r the effective threshold used during monitoring will equal z1−α/2

√
r
√
NVN and, as

follows from (1), the false detection rate will be (approximately) bound by 2
(
1− Φ

(
z1−α/2

√
r
))

instead of α. For example, if NVN is overestimated by 20% the bound becomes equal approximately
3% instead of the nominal significance level of 5%.

Our second theorem claims that, when treatment has an effect, its detection can be made as certain as
desired if we monitor for sufficiently long.

Theorem 2 (Power). Let Yi : Ω 7→ IR and Wi : Ω 7→ {0, 1}, i = 1, . . . , N , be random variables,
and let Sn, n ≥ 1, be the running sum defined by (1)–(2). Suppose that Assumption 1 holds and
a version of the Central Limit Theorem is valid for the sequence of random variables X1, X2, . . .
defined by (1). Assume that var(SN ) > 0 for all N ≥ 1 and that the set of variables VN =
var(SN )/N , N ≥ 1, is stochastically bounded. Finally, let E[Xi] = µ > 0 (implying that the null
hypothesis (3)–(4) is violated). Then Pr

{
maxNn=1 Sn > z1−α/2

√
NVN

}
→ 1 as N → ∞

4 Validation Using Real-World Data: a Semi-Synthetic Experiment

The best possible real-world validation would be using data from a very large number of A/B tests
(some with statistically significant results and some with neutral outcomes under high power). Having
those data, one could apply the compared sequential tests retrospectively and measure their false
detection rates and sensitivity (power). As we do not have access to a sufficient number of past
A/B tests, we chose a different approach and conducted a semi-synthetic study, in which we took
a public real-world data set (“Online Retail” dataset [5]), randomly assigned users in that data set
to control and test, computed the cumulative difference in the metric of interest (revenue) between
control and treatment for each assignment replication, and measured the associated detection rates.
(For power assessment, we also artificially decreased the order values considering multiple effect
sizes, see Section 4.2 below.)

The code implementing our experiments is openly available in the git repository[16].

Here are the methods we compared.

YEAST The proposed sequential method using the significance boundary (5) as presented in Sec-
tion 3.

mSPRT The mixture sequential probability ratio test [27, 20]. We set the tuning parameter of the
method to 11, 25, and 100 and denote the corresponding versions as mSRTphi11, mSRTphi25, and
mSRTphi50.

GAVI The generalization of the always valid inference, as proposed in [11]. As in [28], we set the
numerator of parameter ρ of the method to 250, 500, and 750 and denote the corresponding instances
of the method by GAVI250, GAVI500, and GAVI750, respectively. We also included GAVI with the
tuning parameter ρ set to 10,000 (the default setting used by Eppo).

LanDeMetsOBF The GST method [8] with the O’Brien-Fleming alpha-spending function [23]. For
computational reasons, we constructed the boundary using 100 interim checkpoints and then extended
it in a piecewise-constant manner to support continuous monitoring.

SeqC2ST-QDA The sequential predictive test from [25] with the online Newton step (ONS) strategy
for selecting betting fractions. We used QDA (quadratic discriminant analysis) as a classification
model for this method.

7



4.1 Type-I Error (False Detection Rate)

The public dataset [5] consists of all transactions that occurred between 2010-12-01 and 2011-12-09
on a UK-based online store. We used the data up until 2011-11-30 to have 12 complete months and
dropped orders with missing customer identifiers. The resulting dataset had 21,269 orders. We split it
into two halves: the first 6 months were used for estimating parameters (N and VN ) and the latter
6 months - for validation. Using the validation period, we randomly assigned customers to control
and treatment 100,000 times2, computed the cumulative difference in the revenue between control
and treatment for each assignment replication, applied the sequential tests to monitor the cumulative
difference, and measured the frequency of detections over the replications. Since no actual treatment
was applied to the replicated treatment groups, the null hypothesis was true, and the computed rates
were false detection rates.

It is typical of online transaction data to contain outliers (e.g., large wholesale customers that can
easily skew the monitored metric difference in favour of one of the groups). Therefore, before
replicating the assignments, we removed outliers via revenue capping at the 99.9th percentile of the
total revenue generated by a customer. The capping was applied progressively as follows: a given
customer was only monitored while his/her revenue stayed within the cap and all subsequent events
from that customer were discarded.

The measured detection rates are reported in Table 2 together with the associated confidence intervals
(computed with Bonferroni correction). Detection rates within one percentage point of the nominal
significance level (set to 5%) are shown in bold.

As mentioned in Section 3.1, we employed sequential tests with two different variance estimates.
One of the two assumed that the increments Xi of the monitored difference-in-sum are independent.
The other was an estimator robust to cluster serial correlation, that is — to the correlation between
increments coming from the same user in our case.3 The results corresponding to the use of the two
estimators are reported in columns ‘non-robust‘ and ‘robust‘ of Table 2, respectively.4

Two observations from our experiments are in order. Firstly, the proposed method (YEAST) with the
robust variance estimator was the only method to demonstrate accurate false detection rate control
(i.e., with the detection rate staying within one percentage point of the nominal significance level).
Secondly, when the non-robust estimator was used, the detection rate was considerably inflated. This
highlights the importance of accounting for the correlation in the events generated by the same user
when estimating the variance.

Table 2: False Detection Rate

1 YEAST 0.044 ± 0.002 0.167 ± 0.004
2 mSPRT100 0.028 ± 0.002 0.159 ± 0.004
3 mSPRT11 0.017 ± 0.001 0.127 ± 0.003
4 mSPRT25 0.022 ± 0.001 0.141 ± 0.003
5 GAVI250 0.024 ± 0.002 0.148 ± 0.003
6 GAVI500 0.027 ± 0.002 0.156 ± 0.004
7 GAVI750 0.029 ± 0.002 0.160 ± 0.004
8 GAVI10K 0.028 ± 0.002 0.160 ± 0.004
9 LanDeMetsOBF 0.026 ± 0.006 0.133 ± 0.011
10 SeqC2ST-QDA 0.102 ± 0.003

2We generated the assignments in parallel using 13 processes. The random seed of the i-th process was set
to i. Each process but the last made 7692 replications while the last one made 7696 so the total number of
replications was 100,000. The simulations take about 15 min to run on a laptop with an Apple M3 Pro CPU and
18 GB RAM.

3We used the vcovCL function of the sandwich R package to compute the robust variance estimate. To
reduce the sparsity in the time dimension, we summed the data (revenue increments) by user-hour before
computing the estimator. See the linked repository [16] for details.

4SeqC2ST-QDA does not take an estimate of the increment variance as input hence there is only one result
for this method.
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4.2 Type-II Error (Power) Assessment

To assess power, we conducted the same simulations as in Section 4.1 but additionally decreased the
values of order values belonging to the treatment group in each replication. The relative decrease was
equal to 5, 10, and 20%.

To evaluate the sensitivity of the tests, we included an additional baseline: the standard non-sequential
Student’s t-test, applied once at the end of each experiment replication using the full dataset. This
test serves as a benchmark because it is widely used in practice and represents the level of power
achievable when no early stopping is employed (and thus no adjustments are needed to control the
false detection rate).

The reported results are for the robust variance estimate. The detection rates can be found in Table 3.
As can be seen, the proposed method (YEAST) is the only method that was not underpowered relative
to the standard (non-sequential) Student’s t-test.

Table 3: Semi-synthetic Experiment: Power (Online Retail)

method relative decrease in the order value
0.05 0.1 0.2 0.5

Non-seq. ttest 0.115 ± 0.004 0.253 ± 0.005 0.686 ± 0.005 1.000 ± 0.000
1 YEAST 0.116 ± 0.004 0.250 ± 0.005 0.678 ± 0.005 1.000 ± 0.000
2 mSPRT100 0.006 ± 0.001 0.018 ± 0.002 0.139 ± 0.004 0.998 ± 0.001
3 mSPRT011 0.002 ± 0.001 0.007 ± 0.001 0.072 ± 0.003 0.993 ± 0.001
4 mSPRT025 0.003 ± 0.001 0.010 ± 0.001 0.093 ± 0.003 0.996 ± 0.001
5 GAVI250 0.003 ± 0.001 0.012 ± 0.001 0.107 ± 0.003 0.997 ± 0.001
6 GAVI500 0.005 ± 0.001 0.017 ± 0.001 0.131 ± 0.004 0.998 ± 0.001
7 GAVI750 0.006 ± 0.001 0.019 ± 0.002 0.146 ± 0.004 0.999 ± 0.000
8 GAVI10K 0.012 ± 0.001 0.038 ± 0.002 0.232 ± 0.005 1.000 ± 0.000
9 LanDeMetsOBF 0.076 ± 0.003 0.180 ± 0.004 0.584 ± 0.005 1.000 ± 0.000

10 SeqC2ST-QDA 0.091 ± 0.003 0.090 ± 0.003 0.094 ± 0.003 0.107 ± 0.003

5 Limitations

We saw in Section 4 that despite its simplicity, the proposed monitoring procedure demonstrated
effectiveness in controlling type-I error and a higher power relative to existing SOTA approaches. Yet
there are scenarios where the underlying null hypothesis of no effect on the data generation process
is too strong, potentially leading to some “undesirable sensitivity”. In other words, sometimes the
treatment can alter the data generation process but have a neutral average effect on the metric of
interest. We can think of (at least) two such scenarios.

Situations where the treatment brings multiple changes to the data generation process and those
changes counter-balance each other leading to a neutral average effect on the metric. For example,
the treatment can make users place fewer orders but increase the average order value at the same time
so the two effects neutralise each other and the revenue per user stays intact.

Situations where the treatment changes the variance of the event outcome, leaving the average
unaffected. For example, the treatment can increase the variability in the order values without
changing their average.

If in a given practical application, having sensitivity to one of the scenarios above is highly undesirable,
it is safer to adhere to alternative sequential testing methods (e.g., [11, 10]).

Note that none of the problematic two scenarios can materialise when the event outcome is constant
(i.e., the metric of interest simply counts events). In addition, the first scenario cannot hold when the
treatment cannot affect the number of events, for example, when the events correspond to incoming
patients in a medical study.

From a theoretical perspective, the amount of oversensitivity of the proposed method in the above
two situations would depend on how much the median of the “residual sum” (or the sum of the
remaining increments until the end of monitoring) deviates from zero. Intuitively, in the early steps
of monitoring, this should not be a problem because the number of remaining increments is large
and their sum’s distribution would be approximately symmetric due to the Central Limit Theorem.

9



Yet, closer to the end of monitoring, this deviation can be considerable. Mitigation strategies can
include stopping the monitoring early or setting the threshold as if the monitoring is to be run for
longer than in reality. The effectiveness of those mitigation strategies and the tradeoff with the power
would depend on how quickly the distribution of increment sums converges to a normal distribution.

We see studying the behaviour of our proposed method in situations mentioned in this section and
seeking mitigation strategies as a large topic for future research.

It is worth emphasising that in some situations, it can be desirable to capture all relevant potential
defects (beyond the effect on the mean) [20]. For example, an increased outcome variance can indicate
that the effect of the treatment is heterogeneous and some important subgroups of the population can
be negatively affected (even though the overall mean stays the same). In such scenarios, the extra
sensitivity mentioned in this section is not really a limitation but an advantage instead.

6 Conclusion

This paper proposes a novel sequential test for continuous experiment monitoring. The proposed
test supports both discrete and real-valued metrics. Its effectiveness is demonstrated in an empirical
study (a semi-synthetic experiment based on real-world data). We hope that the proposed method
will enable a wider use of sequential testing for online evaluation.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: the abstract and introduction state which class the proposed sequential test
belongs to (continuous monitoring, i.e., unlimited interim checks), how it differs from SOTA
methods (better Type-I error control and higher power - as established empirically); the
main contributions are explicitly enumerated; the assumptions and limitations of the method
are too technical/nuanced to be stated in the introduction and the reader is referred to the
dedicated sections, coming after an appropriate problem setting.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: the paper has a dedicated section discussing limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Each of the two theoretical results presented in the paper (Theorems 1 and 2)
has a full list of assumptions in its statement and is supplied with a complete formal proof
(moved to the appendix due to space limitations). A sketch of the proof of the main theorem
(Theorem 1) is included in the main contents of the paper (Section 3.3.1).

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper has a clear statement of the proposed algorithm and a detailed
description of the experimental setup, including a reference to the public dataset [5] and the
random seeds for the (semi-synthetic) simulations (see Section 4). In addition, we provide a
link to openly available code implementing the experiment [16].

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The dataset used in the paper is public [5] and the code used for the experiments
is made openly available too via an anonymous repository [16].

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Data preprocessing, splits, and other experimental setting details are described
in Section 4.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results are reported together with confidence intervals (cor-
rected for multiple hypothesis testing using the Bonferroni procedure).

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This is specified in a footnote in Section 4.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors are not aware of any potential harmful consequences of the
research and belive it is fully conformant to the NeurIPS Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: There is no direct societal impact of the work performed beyond making A/B
testing more efficient and less disruptive to user experience, which is mentioned in the
introduction (end of the first paragraph).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release datasets or models.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The public dataset [5] used in the experiments is licensed under CC BY 4.0
which allows its use for any purpose provided that an appropriate credit is given. We make
explicit references to the dataset when describing the experiments. We also include the
associated introductory paper for the dataset in the bibliography and cite it in the manuscript.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code released together with the paper has a README file and comments.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used solely for text editing purposes and do not impact the core
methodology, scientific rigorousness, or originality of the research in any way.
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Appendix

A Proofs and Auxiliary Statements

Lemma 1. Let Yi : Ω 7→ IR and Wi : Ω 7→ {0, 1}, i = 1, . . . , N , be random variables, and let Sn,
n ≥ 1, be the running sum defined by (1)–(2). Suppose that Assumption 1 and the null hypothesis
(3)–(4) hold.

Then for any N ≥ 1 and any k = 1, . . . , N the distribution of SN − Sk conditional on S1, . . . , Sk

is symmetric around 0.

Proof. Fix any N ≥ 2 and any k = 1, . . . , N − 1 (for N = 1 or k = N the statement is trivial).
Let T = {−1, +1}N−k be the set of all possible combinations of −1 and +1 of length N − k.
Furthermore, for any τ ∈ T , let τ̄ ∈ T be the combination obtained by negating every element of τ ,
i.e., τ̄j = −τj for all j = 1, . . . , N − k. Next, define

Aτ = {1− 2Wi = τi−k ∀ i = k + 1, . . . , N}, τ ∈ T .

Note that
Aτ ∩Aτ ′ = ∅ ∀ τ, τ ′ ∈ T and ∪τ∈T Aτ = ∪τ∈T Aτ̄ = Ω. (8)

Also, Assumption 1 together with the null hypothesis imply that

Pr(Aτ | Y1, W1, . . . , Yk, Wk) = Pr(Aτ̄ | Y1, W1, . . . , Yk, Wk) a.s. ∀ τ ∈ T . (9)

Finally, fix an arbitrary Borel set Q ⊂ IR and define

B = {SN − Sk ∈ Q}, B̄ = {Sk − SN ∈ Q}.
Denoting the conditional probability Pr(· | Y1, W1, . . . , Yk, Wk) by Prk, we will now derive the
key relationship for the proof of the lemma. Specifically, (3) and (9) imply that for any τ ∈ T we
have5

Prk(B̄ ∩Aτ ) = Prk

({
−

N∑
i=k+1

τi−kYi ∈ Q

}
∩Aτ

)

(3)
= Prk

{
−

N∑
i=k+1

τi−kYi ∈ Q

}
Prk(Aτ )

(9)
= Prk

{
−

N∑
i=k+1

τi−kYi ∈ Q

}
Prk(Aτ̄ )

= Prk

{
N∑

i=k+1

τ̄i−kYi ∈ Q

}
Prk(Aτ̄ )

(3)
= Prk

({
N∑

i=k+1

τ̄i−kYi ∈ Q

}
∩Aτ̄

)
= Prk(B ∩Aτ̄ ) a.s. (10)

From (10) and (8), it follows that

Prk(B̄)
(8)
=
∑
τ∈T

Prk(B̄ ∩Aτ )
(10)
=
∑
τ∈T

Prk(B ∩Aτ̄ )
(8)
= Prk(B) a.s.,

which by the tower property implies that

Pr(B̄ | S1, . . . , Sk) = Pr(B | S1, . . . , Sk) a.s. (11)

Since the fixed Borel set Q was arbitrary, (11) proves that conditionally on S1, . . . , Sk, the distribu-
tion of SN − Sk and Sk − SN is the same or, equivalently, the distribution of SN − Sk is symmetric
about zero.

5In the second and next to the last transitions, we leverage the fact that if two collections of random variables
are independent, they remain conditionally independent after conditioning on any subset of variables from either
or both collections.
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Lemma 2. Suppose that the assumptions of Lemma 1 hold.

Then for any N ≥ 1 and any b > 0, we have

Pr
{

N
max
n=1

Sn ≥ b
}
≤ 2Pr{SN ≥ b}, (12)

and
Pr
{

N
max
n=1

|Sn| ≥ b
}
≤ 2Pr{|SN | ≥ b}. (13)

Proof. From Lemma 1, it follows that for any k = 1, . . . , N , the distribution of SN −Sk conditional
on S1, . . . , Sk is symmetric about 0 and therefore the conditional median µ(SN − Sk | S1, . . . , Sk)
is zero. Then (12) and (13) easily follow from the generalised Levy’s inequalities [21, Paragraph 29.1,
A].

Proof of Theorem 1. This proof has two steps. First, we bound the chance of “crossing the threshold”
at any moment during the monitoring by twice the probability of crossing it at the last moment.
Secondly, we approximate the latter probability with the help of the Central Limit Theorem (noting
that the tracked difference at the end of monitoring is the sum of a large number of increments). This
allows us to construct the threshold appropriately, ensuring that the method’s false detection rate is
small enough.

Fix an arbitrary γ > 0 and ε > 0.

By the continuity of Φ, there exists a sufficiently small δ > 0 such that

|Φ (γ)− Φ (γ − δ)| ≤ ε

4
. (14)

Furthermore, the null hypothesis implies that

E[Xi] = E [(1− 2Wi)Yi]
(3)
= (1− 2Pr{Wi = 1})E[Yi]

(4)
= 0

for all i ≥ 1. Therefore, E[SN ] = 0 for all N ≥ 1 and by the Central Limit Theorem we have that∣∣∣Pr{SN/
√

var(SN ) ≤ γ − δ
}
− Φ (γ − δ)

∣∣∣ ≤ ε

4
(15)

for all sufficiently large N . (12), relations (14)–(15) give

Pr
{

N
max
n=1

Sn > γ
√
NVN

}
= Pr

{
N

max
n=1

Sn > γ
√
var(SN )

}
≤ Pr

{
N

max
n=1

Sn ≥ γ
√
var(SN )

}
(12)
≤ 2Pr

{
SN ≥ γ

√
var(SN )

}
= 2Pr

{
SN/

√
var(SN ) ≥ γ

}
≤ 2Pr

{
SN/

√
var(SN ) > γ − δ

}
= 2

(
1− Pr

{
SN/

√
var(SN ) ≤ γ − δ

})
= 2 (1− Φ (γ)) + 2 (Φ (γ)− Φ (γ − δ))

+ 2
(
Φ (γ − δ)− Pr

{
SN/

√
var(SN ) ≤ γ − δ

})
(14), (15)
≤ 2 (1− Φ(γ)) +

ε

2
+

ε

2
= 2 (1− Φ(γ)) + ε

for all large enough N . In particular, for any α ∈ (0, 1) and any ε > 0 we have that

Pr
{

N
max
n=1

Sn > z1−α/2

√
NVN

}
≤ 2

(
1− Φ

(
z1−α/2

))
+ ε = α+ ε

for all sufficiently large N . This completes the proof.
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Proof of Theorem 2. The idea of the proof is to note that the probability of detecting the effect at any
moment during the monitoring is at least as high as the probability of detecting it at the very end.
Then we leverage the Central Limit Theorem to show that (when the treatment effect exists) the latter
probability approaches 1 as the monitoring duration increases.

Let ξN stand for the centered and standardised sum (SN − Nµ)/var(SN ). By the Central Limit
Theorem ξN

d→ N (0, 1) and therefore ξN is stochastically bounded (see, for example, [34, Theo-
rem 2.4]).

Now, fix an arbitrary ε > 0. From the stochastical boundedness of ξN and VN , it follows that there
exist M1 and M2 such that for all sufficiently large N we have

Pr {|ξN | ≤ M1} ≥ 1− ε

2
(16)

and
Pr {|VN | ≤ M2} ≥ 1− ε

2
. (17)

From (16)–(17), it follows that

Pr
{
ξN + µ

√
N/
√

VN ≥ −M1 + µ
√
N/
√

M2

}
≥ 1− ε

for all large enough N . But then for any sufficiently large N , we have that

Pr
{
ξN + µ

√
N/
√
VN > z1−α/2

}
≥ 1− ε. (18)

because
(
−M1 + µ

√
N/

√
M2

)
→ ∞ as N → ∞. Then we can derive that

Pr
{

N
max
n=1

Sn > z1−α/2

√
NVN

}
≥ Pr

{
SN > z1−α/2

√
NVN

}
= Pr

{
ξN + µ

√
N/
√

VN > z1−α/2

}
(18)
≥ 1− ε

for all sufficiently large N . Since ε was arbitrary, this completes the proof.

B Experiments using synthetic data

Our simulation setup follows a recent study [28]. To the best of our knowledge, this is the only
existing comparative study of sequential tests. We extended its implementation [29] with the method
proposed in Section 3 of the paper (YEAST).

As in [29], we generate N observations from the control, Y c
i , i = 1, . . . , N , and N observations

from treatment, Y t
i , with N set to 500. Both Y c

i and Y t
i are generated as IID random variables. The

effect size (on the mean) took values 0.0, 0.1, 0.2, 0.3, and 0.4. The Xi variables (increments in the
metric difference between the two groups) were computed as Xi = Y c

i − Y t
i , i = 1, . . . , N .

We conducted two simulation experiments. The first experiment repeats the simulation study from [28]
but adds YEAST to the comparison. In the second set of simulations, we explored the behaviour of
the compared methods when the increments are non-normal.

In all experiments, the target significance level was set at 5% and the number of replications was set
to 100,000.

The simulation code for these experiments can be found in the associated git repository [16].

B.1 Simulation Results

In this experiment, observations Y c
i and Y t

i were drawn from normal distributions with parameters
(1, 1) and (1 + ξ, 1), respectively. The effect size ξ took values 0.0, 0.1, 0.2, 0.3, and 0.4. The
random generator seed was set to 8163 (as in [28, 29]).

In the following we present the list of methods we compared.
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YEAST The proposed sequential method.

YEASTnv{K} (with K = 80, 90, 110, 120) are the instances of the proposed method with the
product NVN misestimated by a factor of 0.8, 0.9, 1.1 and 1.2, respectively (ie the method is applied
with NVN set at 10% and 20% below and above the true value). Since the alerting boundary
of YEAST depends on the product of N and VN we can study the effect of inaccuracies in their
estimation together.

mSPRT The mixture sequential probability ratio test [27, 20]. We set the tuning parameter of the
method to 11, 25, and 100 and denote the corresponding versions as mSRTphi11, mSRTphi25, and
mSRTphi50.

GAVI The generalization of the always valid inference, as proposed in [11]. As in [28], we set the
numerator of parameter ρ of the method to 250, 500, and 750 and denote the corresponding instances
of the method by GAVI250, GAVI500, and GAVI750, respectively.

LanDeMetsOBF The GST method [8] with the O’Brien-Fleming alpha-spending function [23]. For
computational reasons, we constructed the boundary using 100 interim checkpoints and then extended
it in a piecewise-constant manner to support continuous monitoring.

SeqC2ST-QDA The sequential predictive test from [25] with the online Newton step (ONS) strategy
for selecting betting fractions. We used QDA (quadratic discriminant analysis) as a classification
model for this method.

Bonferroni A naive approach using Bonferroni corrections.

All of the compared methods were employed in the continuous monitoring mode meaning that the
check for significance was performed after each observation. In Appendix C we report additional
evaluation results for the case where YEAST was employed in the "discrete mode" (i.e., with a fixed
number of interim significance checks).

For each experimental setting, we conducted 100,000 replications. Each replication can result in a
detection or no-detection. A detection occurs when the respective test flags significance (at any point
of the monitoring process). We compute the share of replications where a detection occurs. When
the treatment does not have an effect this share is the so-called (empirical) false detection rate (or,
synonymously, false positive rate, type-I error, or test “size”). In settings where the treatment has
an effect, this share is the (empirical) power. Table 4 presents the measured false detection rate and
power, along with their corresponding 95% confidence intervals adjusted for multiple comparisons.

The methods that keep the false detection rate below the nominal level of 5% and have the highest
power are shown in bold.

One can see from the table that YEAST demonstrated the highest power among the continuous
monitoring approaches that did not inflate the false detection rate. It means that while it kept the false
positive rate under control when there was no treatment effect, YEAST had the highest sensitivity
among the compared approaches when the treatment had an effect on the metric of interest.

Table 4: Simulation Experiment:False Detection Rate and Power

effect size 0.0 0.1 0.2 0.3
method

1 YEAST 0.047 ± 0.002 0.448 ± 0.005 0.902 ± 0.003 0.995 ± 0.001
2 YEASTn110 0.038 ± 0.002 0.408 ± 0.005 0.883 ± 0.003 0.994 ± 0.001
3 YEASTn120 0.030 ± 0.002 0.372 ± 0.004 0.864 ± 0.003 0.992 ± 0.001
4 YEASTn80 0.075 ± 0.002 0.534 ± 0.005 0.933 ± 0.002 0.997 ± 0.000
5 YEASTn90 0.059 ± 0.002 0.490 ± 0.005 0.918 ± 0.003 0.996 ± 0.001
6 mSPRT100 0.016 ± 0.001 0.235 ± 0.004 0.751 ± 0.004 0.976 ± 0.001
7 mSPRT011 0.032 ± 0.002 0.249 ± 0.004 0.739 ± 0.004 0.972 ± 0.002
8 mSPRT025 0.028 ± 0.002 0.260 ± 0.004 0.758 ± 0.004 0.976 ± 0.001
9 GAVI250 0.025 ± 0.001 0.260 ± 0.004 0.763 ± 0.004 0.977 ± 0.001

10 GAVI500 0.019 ± 0.001 0.245 ± 0.004 0.758 ± 0.004 0.977 ± 0.001
11 GAVI750 0.014 ± 0.001 0.227 ± 0.004 0.744 ± 0.004 0.975 ± 0.001
12 Bonferroni 0.008 ± 0.001 0.067 ± 0.002 0.440 ± 0.005 0.877 ± 0.003
13 LanDeMetsOBF 0.054 ± 0.002 0.466 ± 0.005 0.927 ± 0.002 0.999 ± 0.000
14 SeqC2ST_QDA 0.022 ± 0.001 0.037 ± 0.002 0.092 ± 0.003 0.220 ± 0.004
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Figure 1: Power Curves (under non-normal increment distributions)

In Section D we additionally report sample (or, equivalently, time) savings that each of the methods
produced on average (due to the early effect detection in an interim check).

B.2 Non-Normal Data

The derivation of YEAST involves the application of the Central Limit Theorem to sums of Xi

(increments in the metric difference between the two groups). For a fixed sample size, the quality
of the normal approximation depends on the distribution of Xi. In this section, we explore the
performance of YEAST in situations where the distribution of Y c

i and Y t
i is not normal. Specifically,

we used two alternative distributions: Student’s t which has heavier tales than the normal distribution
and Gamma which is asymmetric. Student’s t distribution had 3 degrees of freedom and was shifted
by

√
3 for the control and by

√
3(1 + ξ) for the treatment. The shifting was done to maintain the

same coefficient of variation as in Section B.1). The Gamma distribution had its shape parameter
set to 1.0. The scale parameter equaled 2 for the control and 2(1 + ξ) for the treatment. The effect
size ξ took the same values as in the first simulation experiment: ξ = 0.0, 0.1, 0.2, 0.3, 0.4. The
random seed was set to 2023 for the simulations with the Student’s t distribution and to 2024 for the
simulations with the Gamma distribution. The two seeds were different to avoid dependence across
the two sets of simulations.

The results are depicted in Figure 1. The first data point on each line corresponds to the case of no
treatment effect and therefore represets the false detection rate. The remaining points represent the
power for different treatment effect sizes. Similarly to the experiment with normal data, YEAST had
a considerably higher power curve (both for the Gamma and Student’s t distribution cases) than other
methods that did not inflate the false detection rate.

C Discrete Monitoring

In this section, we report additional evaluation results for the case where YEAST was employed in
the discrete mode (i.e., with only a fixed number of interim checks). The evaluation was performed
against the same replications as in Section B.1. We again follow the protocol from [28] and perform
14, 28, 42, and 56 significance checks (spaced equally across the timeline). Since in these evaluations,
we operate in a discrete setting, we were able to include the discrete baselines from [28] in the
comparison. Namely, we compare against the following benchmark.

GST The group sequential test with alpha spending as proposed in [8]. The test performs a signifi-
cance check after the arrival of each batch of observations. To schedule a prespecified number of
checks it therefore needs an estimate of the total number of observations that would be collected
during the experiment time frame. In the evaluations, we consider three different scenarios: when
the sample size is estimated precisely (right number of checks), when the sample size is underesti-
mated (leading to more checks than planned), and when the sample size is overstimated (leading
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to making fewer checks than planned). The respective entries in the evaluation table are referred
to as GST, GSToversampled, and GSTundersampled, respectively. The actual sample size was 500
and the respective sample size estimates for the three scenarios were 500, 250, and 750. In the case
of oversampling (i.e., the sample size is underestimated), we apply the correction to the bounds
proposed in [37, pp. 78–79]. We consider quadratic and cubic alpha-spending, the latter having the
“phi3” prefix in the name.

We report the share of replications where the test detects an effect (i.e., significance is detected in
at least one of the interim checks). Table 5 (“False Positive Rate”) reports this share for the case
where no actual effect was present. All the compared methods except oversampled versions of GST
keep the false detection rate below the nominal level of 5%. Table 6 (“Power”) contains the share of
replications with a detection for the case where the treatment effect was set to 0.2 standard deviations.
Methods with an inflated false detection rate were excluded from the power comparisons. The GST
method with cubic alpha-spending demonstrated the highest power, closely followed by YEAST
and GST with quadratic alpha-spending. We find it remarkable that our proposed method, despite
supporting continuous monitoring, performed on par with the GST method in the discrete monitoring
setting.

Table 5: False Positive Rate

type 14 28 42 56
1 YEAST 0.04 0.04 0.04 0.04
2 GST 0.05 0.05 0.05 0.05
3 GSTphi3 0.05 0.05 0.05 0.05
4 GSToversampled 0.07 0.07 0.07 0.08
5 GSToversampledphi3 0.09 0.10 0.10 0.07
6 GSTundersampled 0.03 0.02 0.03 0.03
7 GSTundersampledphi3 0.01 0.01 0.01 0.01

Table 6: Power (under a treatment effect of 0.2 standard deviations)

type 14 28 42 56 stream
1 YEAST 0.90 0.91 0.91 0.91 0.92
2 GST 0.90 0.90 0.90 0.89 -
3 GSTphi3 0.93 0.92 0.93 0.93 -
4 GSTundersampled 0.83 0.82 0.82 0.82 -

D Sample/Time Savings

The main benefit of sequential testing is the ability to stop the experiment early (once significance is
flagged upon one of the interim checks). This allows saving time and, if the treatment is harmful,
reduce the negative impact. Thus, the amount of savings that is generated by a sequential test on
average is another important metric and we report the savings observed in the experiment from
Section B.1 in Table 7. The savings are measured as follows: if a method identified the effect after
the arrival of 10% of the total number of observations, the associated sample (or, equivalently, time)
savings would be 90%.
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Table 7: Simulation Experiment: Sample/Time Savings, %

effect size 0.1 0.2 0.3 0.4
method

1 YEAST 13 39 58 69
2 mSPRTphi100 9 35 62 75
3 mSPRTphi11 12 41 68 82
4 mSPRTphi25 12 41 68 81
5 GAVI250 12 40 67 80
6 GAVI500 10 37 63 77
7 GAVI750 8 34 60 74
8 Bonferroni 2 19 45 67
9 LanDeMetsOBF 14 41 60 70

10 SeqC2ST-QDA 3 6 14 27
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