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Abstract

As deep generative models have progressed, re-
cent work has shown that they are capable of mem-
orizing and reproducing training datapoints when
deployed. These findings call into question the us-
ability of generative models, especially in light of
the legal and privacy risks brought about by mem-
orization. To better understand this phenomenon,
we propose a geometric framework which lever-
ages the manifold hypothesis into a clear language
in which to reason about memorization. We pro-
pose to analyze memorization in terms of the re-
lationship between the dimensionalities of (i) the
ground truth data manifold and (ii) the manifold
learned by the model. In preliminary tests on toy
examples and Stable Diffusion (Rombach et al.,
2022), we show that our theoretical framework
accurately describes reality. Furthermore, by ana-
lyzing prior work in the context of our geometric
framework, we explain and unify assorted obser-
vations in the literature and illuminate promising
directions for future research on memorization.

1. Introduction
Suppose {xi}ni=1 is a dataset in Rd drawn independently
from a ground truth probability distribution p∗(x). A deep
generative model (DGM) is a tractable probability distribu-
tion pθ(x) designed to capture p∗(x) only from knowledge
of the dataset {xi}ni=1. DGMs, and most famously, diffu-
sion models (DMs; Sohl-Dickstein et al., 2015; Ho et al.,
2020), have featured in the “generative AI” boom with their
ability to generate realistic and diverse images from text
prompts (Karras et al., 2019; Rombach et al., 2022). They
have also been applied successfully in other domains such
as tabular data and language (Li et al., 2022; Zhang et al.,
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2023). DMs are thus likely to be deployed in an increasing
number of public-facing or safety-critical applications.

However, when sufficiently powerful, DGMs are known
to memorize their training data. Memorization occurs at
various degrees of specificity, including identities of brands,
layouts of specific scenes, or exact copies of images (Web-
ster et al., 2021; Somepalli et al., 2023a; Carlini et al., 2023).

Memorization is undesirable for myriad reasons. Simply
put, a model that reproduces its training data is no more
useful than the training data itself. Memorization is a mod-
elling failure under the DGM definition provided above;
if the underlying ground truth p∗(x) does not place posi-
tive probability mass on individual datapoints, then a pθ(x)
that memorizes must be failing to generalize (Yoon et al.,
2023). But memorization’s risks go beyond mere utility.
Training datasets may contain private information which,
if memorized, might be exposed in downstream applica-
tions. Reproduced training samples can also open up model
builders or users to legal liability; for instance, the recent
legal decision of Orrick (2023) hinged on whether generated
images were “substantially similar” to training data.

The increasing dependence of society on generative models
and resulting risks call for work to better understand memo-
rization. Recent empirical work has identified mechanistic
causes of memorization: data complexity, duplication of
training points, and highly specific labels (Somepalli et al.,
2023b; Gu et al., 2023). We group these insights under the
umbrella of “memorization phenomena”, a catch-all term
for the various interesting memorization-related observa-
tions we would like to understand better. Though useful
in practice, these memorization phenomena have yet to be
unified and interpreted under a single theoretical framework.
Meanwhile, formal treatments of memorization have led to
isolated usecases such as detecting (Meehan et al., 2020)
and preventing (Vyas et al., 2023) memorization on a model
level, but provided little explanatory power for these mem-
orization phenomena. In addition to providing theoretical
insights, a unifying framework could yield more capabilities
such as identifying whether a training image has been memo-
rized, altering the sampling process to reduce memorization,
and detecting memorized generations post hoc.

In this work, we advance a geometric framework to explain
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(a) Exact memorization with LIDθ(x) = 0. (b) Memorization with LIDθ(x) = 1. (c) No memorization with LIDθ(x) = 2.

Figure 1: An illustrative example of LID values for three models with different degrees of memorization. In these plots, the 2-dimensional
ground truth manifold M∗ is depicted in light blue, training samples {xi}ni=1 ⊂ M∗ are depicted as crosses, and the model manifolds
Mθ are depicted in red. In Figure 1a, the model assigns 0-dimensional point masses around the three leftmost datapoints, indicating that
it will reproduce them directly at test time. The model in Figure 1b still memorizes, but with an extra degree of freedom in the form of a
1-dimensional submanifold containing the three points. Only the model in Figure 1c, which has learned a 2-dimensional manifold through
its full support, has generalized well enough to avoid memorization.

Figure 2: 8 images along a relatively low-dimensional manifold
learned by Stable Diffusion v1.5. The first is a real image from
LAION (flagged as memorized by Webster (2023)), and the re-
mainder were generated by the model.

memorization. In short, we propose that memorization oc-
curs at a point x ∈ Rd when the manifold learned by the
generative model contains x but has too small a dimension-
ality in its neighbourhood. As we will see, this understudied
perspective is a natural take on memorization that leads
to practical insights and effectively explains memorization
phenomena like those mentioned above. We mainly focus
on DMs, the most notorious memorizers, but our geometric
framework applies to any DGM on a continuous data space
Rd. Pidstrigach (2022) was the first to show that DMs are
capable of learning low-dimensional structure in Rd and
that this manifold learning capability is a driver of memo-
rization; in this sense, our work extends this connection into
a general framework, grounds it in empirical findings, and
connects it to recent work on memorization.

First in this paper, we lay out our geometric framework for
memorization. After defining the key notions of the data
manifold and local intrinsic dimension (LID), we describe
how LIDs correspond directly to memorization. Second, we
provide an empirical proof-of-concept for our framework
showing that LID is strongly predictive of memorization by
Stable Diffusion (Rombach et al., 2022). Lastly, we describe
the memorization phenomena observed in past work and

situate them within our framework. We hope these insights
will inspire future work on understanding, identifying, and
preventing memorization in generative models.

2. Understanding Memorization through LID
Preliminaries Here we presume the manifold hypothesis:
that data of interest lies on a manifold M ⊂ Rd (Bengio
et al., 2013). In particular, we take a generalized defini-
tion of manifold in which M is allowed to have different
dimensionalities in different regions,1 which is appropriate
for realistic, heterogeneous data with varying degrees of
structure and complexity. In particular, we assume that both
our ground truth distribution p∗(x) and our model pθ(x)
produce samples on manifolds, which we refer to as M∗
and Mθ respectively. We direct readers to Loaiza-Ganem
et al. (2024) for a justification and formal mathematical
treatment of both of these assumptions, which are especially
valid when the data is high-dimensional and the models are
high-performing ones such as DMs and GANs (Goodfellow
et al., 2014; Karras et al., 2019).

Our framework for understanding memorization revolves
around the notion of local intrinsic dimensionality (LID).
Given a manifold M and a point x ∈ M, we define the
LID of x (LID(x)) with respect to M as the dimensionality
of M in the component containing x. In this work, we will
consider the LIDs of points x ∈ Rd with respect to two
specific manifolds: M∗ and Mθ. We will refer to these
quantities as LID∗(x) and LIDθ(x), respectively.

Intuition and the Manifold Hypothesis Before dis-
cussing our framework, we review some intuition relat-
ing the manifold hypothesis to practical datasets. Man-
ifold structure M ⊂ Rd arises from sets of constraints.

1Most authors define a manifold to have a constant dimension
over the entire set. Under this common definition, our assumption
is referred to as the union of manifolds hypothesis (Brown et al.,
2023). We use a more general definition of manifold for brevity.
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These can either be very simple, like a set of linear con-
straints (M = {x | Ax = b}), or highly complex
(M = {x | x is an image of a face}). Locally at a point
x ∈ M, each constraint determines a direction one can-
not move without leaving the manifold and violating the
structure of the dataset.2 Hence, a region governed by ℓ
independent and active constraints will have dimensionality
LID(x) = d− ℓ. The value of LID(x) represents the num-
ber of degrees of freedom – valid directions of movement in
which the characteristics of the dataset are preserved. An-
other connection is to complexity. For example, estimates
of LID from algorithms like LIDL (Tempczyk et al., 2022)
and FLIPD (Kamkari et al., 2024b) have been shown to
correspond closely with the complexity of an image; it is
reasonable to expect that images with more complex features
(i.e., more information) can endure more changes (such as
morphing, moving, or changing the colours of different
parts of the image) without losing coherence. A limiting
example of the LID-complexity connection is a constraint-
free dataset of pure random noise, wherein each datapoint
contains maximal information and changes in any direction
are valid. The notions of constraints, degrees of freedom,
and complexity and their relationship to LID will help us
understand its connection to memorization in later sections.

A Geometric Framework for Memorization As a mo-
tivating example, consider Figure 1, which depicts three
possible models pθ(x) trained on a dataset {xi}ni=1 that lies
on the ground truth manifold M∗. In the first scenario, Fig-
ure 1a, the model pθ(x) has precisely memorized some of
the training data. This is a well-understood mode of mem-
orization; training datapoints are precisely reproduced. To
achieve this, the model has learned a 0-dimensional mani-
fold around these datapoints. To our knowledge, Pidstrigach
(2022) was the first to point out that a model capable of learn-
ing 0-dimensional manifolds can memorize the training data.
From this example, we infer that x can be perfectly repro-
duced when LIDθ(x) = 0. This indicates suboptimality in
the model at the datapoints shown, for which LID∗(x) = 2.

However, memorization can be more complex than sim-
ply reproducing a datapoint. For example, Somepalli et al.
(2023a) identify instances where layouts, styles, or fore-
ground or background objects in training images are copied
without copying the entire image, a phenomenon they re-
fer to as reconstructive memory. Webster (2023) surfaces
more instances of the same phenomenon and refers to them
as template verbatims. See Figure 2 for an example. In
the region of these points x ∈ Mθ, the model is able to
generate images with degrees of freedom in some attributes
(eg. colour or texture), but is too constrained in other at-
tributes (eg. layout, style, or content). Geometrically, Mθ

2This is captured formally by the regular level set theorem of
differential geometry (Lee, 2012).

is too constrained compared to the idealized ground truth
manifold M∗; i.e., LIDθ(x) < LID∗(x). We depict this
situation in Figure 1b, wherein the model has erroneously
assigned LIDθ(x) = 1 for some of the training datapoints.

No memorization is present in Figure 1c, in which the model
manifold Mθ matches the ground truth manifold M∗.

Two Types of Memorization In light of the above frame-
work, we expect two types of memorization to be of interest.
An academic interested in designing DGMs that learn the
ground truth distribution correctly will chiefly be interested
in avoiding the memorization scenario LIDθ(x) < LID∗(x)
(as well as underfitting, wherein LIDθ(x) > LID∗(x)). We
refer to this first scenario as overfitting-driven memorization
(OD-Mem). This situation represents a modelling failure in
that pθ(x) is not generalizing correctly to p∗(x).

However, an industry practitioner deploying a consumer-
facing model might be more interested in hypothetical val-
ues of LIDθ per se, irrespective of the values of LID∗. For
any points x ∈ M∗ containing trademarked or private in-
formation, low values of LIDθ(x) will be of concern even
if LIDθ(x) = LID∗(x), as this information is likely to be
revealed in samples generated from this region. A practi-
tioner would rightly refer to this situation as memorization
despite the model generalizing correctly. We refer to this
second scenario as data-driven memorization (DD-Mem).
This certainly happens in practice; for example, condition-
ing on the title of a specific artwork (e.g. The Great Wave off
Kanagawa by Katsushika Hokusai (Somepalli et al., 2023a))
is a very strong constraint, leaving few degrees of freedom
in the ground truth manifold M∗, but reproducing specific
artworks may be undesirable in a production model.

3. Experiments
In this section we verify the geometric framework empir-
ically. In particular, we test that memorized training data
has lower LIDθ than unmemorized data on both synthetic
toy examples and real world image datasets. Multiple algo-
rithms exist to estimate LIDθ(x) for a diffusion model pθ(x)
(Stanczuk et al., 2022; Horvat & Pfister, 2024). However, to
our knowledge, only one is tractable at the scale of Stable
diffusion: FLIPD (Kamkari et al., 2024b), which we find
can provide sufficiently accurate LIDθ estimates with only
1 model evaluation. (On the other hand, LID∗(x) is hard to
ascertain without the context clues discussed in Section 4.)

Diffusion Model on a von Mises Distribution In an il-
lustrative experiment, we study a von Mises distribution
which sits on a 1-dimensional circle in the 2-dimensional
plane. Because its support is 1-dimensional, every point x
in the support has LID∗(x) = 1. From this distribution we
sample 100 training points; both the training points and the
ground truth density are depicted in Figure 3. By chance,
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(a) Ground truth manifold. (b) Model samples.

Figure 3: Training a diffusion model on a von Mises distri-
bution.

a single point x0 sits isolated in a low-density region of
the circle, on the upper-left side. Next, we train a DM on
this data. Pidstrigach (2022) shows that DMs are capable
of learning manifolds of any dimensionality, and we find
this to be precisely the case. In Figure 3b we depict 100
samples generated by the DM, colour-coded by their FLIPD
estimates (which are scalar-valued). Remarkably, the DM
reproduces the isolated sample near-exactly and assigns it
LIDθ(x0) = 0 despite assigning LIDθ(x) = 1 to nearly all
of its other generated samples. From this experiment we
infer that, at least in a simplified setting, memorization does
indeed coincide with low LIDs as measured by FLIPD.

Stable Diffusion on LAION, COCO, and Tuxemon For
this example, we set pθ(x) to Stable Diffusion v1.5 (Rom-
bach et al., 2022). Taking inspiration from the benchmark of
Wen et al. (2023), we retrieve memorized LAION (Schuh-
mann et al., 2022) training images identified by Webster
(2023). We focus on the 86 memorized images categorized
as “matching verbatim”, noting that the other categories of
Webster (2023) consist of large numbers of captions that
generate samples matching a small set of training images.
For non-memorized images, we use a mix of 2000 images
sampled from LAION Aesthetics 6.5+, 2000 sampled from
COCO (Lin et al., 2014), and all 251 images from the Tuxe-
mon dataset (Tuxemon Project, 2024; Hugging Face, 2024).

We compute FLIPD values for each of the aforementioned
images. Note that Stable Diffusion provides two model
distributions: the unconditional distribution pθ(x) and the
conditional distribution pθ(x | c). Density histograms of
FLIPD values with respect to both are depicted in Figure 4.
We compare our procedure to a variant of the classifier-free
guidance (CFG) norm used to detect memorization by Wen
et al. (2023) discussed in more detail in Appendix A.

Conditional FLIPD, unconditional FLIPD, and the CFG
norm are strong signals of memorization. When used as a
score to differentiate memorized from non-memorized sam-
ples, their AUROCs are uniformly in the high 90’s. Inter-
estingly, the unconditional LID detects memorization well
despite the lack of caption information. Detecting memo-
rized training images without the corresponding captions is
a novel capability, and notably cannot be done with the CFG

norm technique. One might reasonably be concerned that,
because LID measures complexity and simple images are
more likely to be memorized, the complexity of images may
be confounding the results. We address these concerns by
juxtaposing our memorization metrics with a quantitative
measurement of complexity: the PNG compression size.
Figure 4d shows that complexity is a comparatively poor
predictor of memorization, attenuating concerns that LIDθ

only detects memorization through complexity. This finding
is reinforced by results on the Tuxemon dataset, which is
less complex (measured both qualitatively and with PNG
compression size) but for which we measure higher LIDs.

The LID estimates provided by FLIPD are sometimes neg-
ative in value; Kamkari et al. (2024b) justify this as an
artefact of estimating the LID using a UNet. Despite under-
estimating LID in absolute terms, Kamkari et al. (2024b)
confirm that FLIPD ranks LIDθ estimates correctly, which
is sufficient for the purpose of differentiating memorized
from non-memorized examples.

4. Explaining Memorization Phenomena
In this section we explain memorization phenomenona de-
scribed in related work from the perspective of LID. For
additional related work, please see Appendix B. For formal
theorem statements and proofs, please see Appendix C.

Duplicated Data and LID It has been broadly observed
that memorization occurs when training points are dupli-
cated (Nichol et al., 2022; Carlini et al., 2022; Somepalli
et al., 2023a). In Theorem 4.1, we show that datapoint du-
plication is an example of DD-Mem; duplicated points x0

indicate LID∗(x0) = 0, so even a model with good general-
ization will have LIDθ(x0) = 0.
Theorem 4.1 (Informal). Let {xi}ni=1 be a training dataset
independently drawn from p∗(x). Under some regularity
conditions, the following hold:

1. If duplicates occur in {xi}ni=1 with positive probability,
then they occur at a point x0 such that LID∗(x0) = 0.

2. If LID∗(x0) = 0 and n is sufficiently large, then dupli-
cation will occur in {xi}ni=1 with near-certainty.

Proof. See Appendix C.

From this result, we gather that improving model general-
ization is unlikely to solve this form of memorization unless
improvements specifically add inductive biases that prevent
pθ(x) from learning 0-dimensional points.

We postulate that a similar result applies to “near-duplicated
content,” in which many similar but non-identical points
occur together in the dataset, and in this case LID∗ is low
but nonzero in the region of the duplicated content.
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(a) Unconditional LID (AUROC = 97.6%). (b) Conditional LID (AUROC = 99.2%). (c) CFG norm (AUROC = 99.3%). (d) PNG compression (AUROC = 70.3%).

Figure 4: Density histograms for each memorization metric on the different datasets.

Conditioning and LID Somepalli et al. (2023b) and
Yoon et al. (2023) observe that specific conditioning encour-
ages the generation of memorized samples. Here, we point
out that conditioning decreases LID, making models more
likely to generate memorized samples.

Proposition 4.2 (Informal). Let x0 ∈ Mθ, and let us denote
by LIDθ(x0 | c) the LID of the conditional distribution
pθ(x | c) at the point x0. We then have

LIDθ(x0 | c) ≤ LIDθ(x0). (1)

Proof. See Appendix C for the formal proof. Intuitively,
conditioning can be interpreted as adding an additional con-
straint to the manifold Mθ of generated data. For example,
one can constrain Stable Diffusion samples stylistically by
conditioning: pθ(x | “photorealistic”). Any meaningful
constraint will reduce the model manifold (Mθ|c ⊊ Mθ),
in which case LID can only decrease or stay the same.

Using LID as a heuristic notion for the complexity of a
datapoint, Proposition 4.2 can be understood as a “local”
analogue of the fact that entropy bounds conditional entropy:
H(x | c) ≤ H(x) (a distribution-level notion).

The Classifier-Free Guidance Norm and LID Classifier-
free guidance (CFG) is a way to improve the quality of
conditional generation. Whereas standard conditional gen-
eration would employ the score function sθ(x; t, c), which
refers to a neural estimate at time t of the conditional score,
CFG increases the strength of conditioning by using the
following modified score:

sCFG
θ (x; t) = sθ(x; t, ∅) +α(sθ(x; t, c)− sθ(x; t, ∅)︸ ︷︷ ︸

CFG vector

), (2)

where α is a hyperparameter for “guidance strength” and
sθ(x; t, ∅) refers to conditioning on the empty string (here
we formulate diffusion models using stochastic differential
equations (Song et al., 2021)).

Following on from Proposition 4.2, Wen et al. (2023) iden-
tify that specific conditioning inputs c generate memorized
samples when the CFG vector has a large magnitude. For
our context, it is sufficient to observe that a large CFG mag-
nitude will generally result in a large magnitude of the CFG
score sCFG

θ (x; t).

It is understood in the literature that large ∥sCFG
θ (x; t)∥, and

its explosion as t → 0, is common for high-dimensional
data (Vahdat et al., 2021) and necessary to generate sam-
ples from low-dimensional manifolds (Lu et al., 2023). It
has been empirically observed that this explosion occurs
faster as the dimensionality gap increases between Mθ and
the ambient data space, which is one reason that diffusion
modelling on lower-dimensional latent space improves per-
formance (Loaiza-Ganem et al., 2022; 2024). The largest
∥sCFG

θ (x; t)∥ values should thus generate points with the
largest dimensionality difference from Rd; i.e., points with
the smallest LID. Hence we infer that controlling the score
norm should increase LIDθ(x) and reduce memorization, a
fact confirmed empirically by Wen et al. (2023).

Complexity and LID Somepalli et al. (2023b) also high-
light image complexity as a potential factor in determining
memorization. Using the heuristic understanding that LID
corresponds to complexity as proposed in Section 2, we in-
fer that low-complexity images x ∈ M∗ have low LID∗(x).
This fact suggests that, like with duplication, memorization
of low-complexity images is an example of DD-Mem.

5. Conclusions
Throughout this work, we have drawn connections between
the geometry of a DGM and its propensity to memorize.
First, we showed that the notion of LID provides a system-
atic way of understanding different types of memorization.
Second, in experiments, LID proved to be a promising way
to detect memorization. Third, we explained how memoriza-
tion phenomena described by prior work can be understood
from the perspective of LID. We offered several connections,
including the insight that some instances of memorization
in DMs are due not to the DM’s inability to generalize
(OD-Mem), but rather to low-LID ground truth (DD-Mem).

Having demonstrated the utility of our geometric frame-
work, we expect LID to be a useful lens to direct future
research in DGMs. For example, controlling LID might
be a more effective means of preventing memorization in
DGMs than studying their generalization directly. Although
the manifold hypothesis does not apply directly to discrete
data such as language, some intuition described in this work
carries over, and generalizations or parallels to the concepts
here may offer insights for the language-modelling space.
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A. Experimental Details
A.1. Experimental Details

Here we provide additional experimental details for the Stable Diffusion experiment in Section 3. For all methods, we
“tune” the associated hyperparameters by hand to get the best AUROC performance, but anecdotally their performance is
stable (and good) across all sufficiently small timesteps (t ≤ 0.1 under the SDE framework of Song et al. (2021) wherein
t ∈ [0, 1]).

FLIPD For both conditional and unconditional FLIPD, we use a timestep t = 0.1 and a single Hutchinson sample to
estimate the trace component.

CFG Norm Note that while Wen et al. (2023) use the generation process to measure whether a synthesized image has
been memorized, we focus here on detecting whether real, training-set images have been memorized, which requires some
methodological changes. To compute a memorization score, we take k Euler steps forward using the conditional score
sθ(x; t, c) with the probability flow ODE (Song et al., 2021) until time t0 to get a point at x0 ∈ Rd. We then compute the
CFG norm ∥sθ(x0; t0, c)− sθ(x; t0, ∅)∥. We use timestep t0 = 0.01 and 3 Euler steps.

PNG Compression Size We use the maximum compression level of 9 with the cv2 package (Bradski, 2000).

B. Related Work
Here we briefly summarize some additional literature on LID and memorization in the context of diffusion models.

Detecting and Preventing Memorization for Image Models A number of authors have studied the task of surfacing
memorized training examples from generated ones, finding that (i) L2 distance in pixel space works poorly (Carlini et al.,
2023), (ii) recalibrating L2 in various ways works better for detecting images in small datasets such as CIFAR-10 (Carlini
et al., 2023; Yoon et al., 2023; Stein et al., 2023), and (iii) using retrieval techniques such as distance in SSCD feature space
(Pizzi et al., 2022) works better still (Somepalli et al., 2023a). However, retrieval techniques are generally too expensive to
be deployed in conjunction with a live model. To this end, mechanistic detection techniques as well as guidance and training
techniques have been proposed (Wen et al., 2023; Chen et al., 2024; Daras et al., 2024).

Explaining Memorization There is an active field of work attempting to explain why and how memorization occurs in
DMs. Li et al. (2024) show that memorization can occur even in the presence of generalization. This claim is superficially
similar to our definition of data-driven memorization, which we assert can occur in the presence of perfect generalization,
but our work rests on a different, geometric definition of generalization. Both DD-Mem and the assertions of Li et al. (2024)
would appear to conflict with the thesis and findings of Yoon et al. (2023) that diffusion models only generalize when they
fail to memorize. However, the latter actually focuses on what we refer to as overfitting driven memorization, in which case
their work agrees with our framework. Further work has suggested both that diffusion models do (Kadkhodaie et al., 2023;
Li et al., 2023) or do not (Yi et al., 2023) generalize well under different assumptions and contexts.

DGM-Based LID Estimation As opposed to classical LID estimators (e.g., Levina & Bickel (2004)), which are con-
structed to estimate the dimension of M∗, DGM-based LID estimation estimates the dimensionality of Mθ, the manifold
learned by a DGM. These types of estimators are available for many types of DGMs, and in addition to being useful for
memorization, have found utility in out-of-distribution detection (Kamkari et al., 2024a). In the literature, LID estimators
for normalizing flows (Dinh et al., 2014) have been proposed using the singular values of their Jacobians (Horvat & Pfister,
2022; Kamkari et al., 2024a) or their density estimates (Tempczyk et al., 2022). Dai & Wipf (2019) and Zheng et al. (2022)
proposed estimators for VAEs using the structure of their posterior distribution. Several authors have proposed estimators
for DMs as well (Stanczuk et al., 2022; Horvat & Pfister, 2024); we focus on that of Kamkari et al. (2024b) because it is the
most computationally tractable.

C. Proofs
We restate each theorem in full formality below along with their proofs.
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Throughout this section, we let P∗ and Pθ be the probability measures of the ground truth data and model, respectively. We
assume that the respective supports of P∗ and Pθ are M∗,Mθ ⊂ Rd, Riemannian submanifolds of the Euclidean space Rd

with metrics g∗ and gθ respectively. As mentioned in Section 2, we take a lax definition of manifold which allows them to
vary in dimensionality in different components. A single manifold under our definition is equivalent to a disjoint union of
manifolds under the more standard definition.

C.1. Theorem 4.1

For the purpose of this theorem, we assume that P∗ admits a continuous, real-valued probability density p∗(x) with respect
to the Riemannian measure on M∗, which we denote by µM∗ . This assumption, though standard (Loaiza-Ganem et al.,
2022; Tempczyk et al., 2022), has a strong impact on this theorem. Dropping this assumption would invalidate Theorem 4.1
by allowing, roughly speaking, for point masses belonging to higher-dimensional components M∗ on which duplication can
occur. However, even if the assumption does not hold, the theorem arguably still holds on an intuitive level because the
point mass is a “0-dimensional object” even if it belongs to a higher-dimensional subset of M∗.
Lemma C.1. Let x0 ∈ M∗. The following are equivalent:

(a) P∗ ({x0}) > 0, and

(b) LID (x0) = 0.

Proof.

(a) =⇒ (b) Assume P∗ ({x0}) > 0.

0 < P∗ ({x0}) =
∫
{x0}

p∗(x)dµM∗(x), (3)

which necessitates µM∗({x0}) > 0. If we had LID∗(x0) > 0 this would incur a contradiction: letting (U, ϕ) be a
chart around x0, then by the definition of µM∗ ,

0 < µM∗({x0}) =
∫
ϕ({x0})

√
det(g∗)dλ, (4)

where λ is the Lebesgue measure on RLID∗(x0). Due to the singleton domain of integration, this would be impossible
unless LID∗(x0) = 0, in which case µM∗ would instead be the counting measure by convention.

(b) =⇒ (a) Suppose LID (x0) = 0. This implies that {x0} is an open set in the subspace topology of M∗, meaning
there exists an open set V ⊂ Rd such that V ∩M∗ = {x0}. But since x0 ∈ suppP∗, any open set containing x0 must
have positive probability. Moreover, since V \ {x0} = V \M∗ is an open set with no intersection with the support,
P∗(V \M∗) = 0. So P∗({x0}) = P∗(V ∩M∗) = P∗(V ∩M∗) + P∗(V \M∗) = P∗(V ) > 0.

Theorem C.2 (Formal Restatement of Theorem 4.1). Let {xi}ni=1 be a training dataset drawn independently from p∗(x).

1. If duplicates occur in {xi}ni=1 with positive probability, then they will occur at a point x0 such that LID∗(x0) = 0.

2. If LID∗(x0) = 0 then the probability of duplication in {xi}ni=1 will converge to 1 as n → ∞.

Proof. 1. Due to Lemma C.1, it suffices to show that any duplicates in {xi}ni=1 must occur at a point x0 such that
P∗({x0}) > 0. Equivalently, we can show that if P∗({x0}) = 0 for every x0, then P∗(x1 = x2) = 0. Assume
that P∗({x0}) = 0 for every x0 ∈ M∗. Since x1 and x2 are independent, P∗(x1 = x2) = P∗ × P∗(D), where
D = {(x, x) ∈ M∗ ×M∗ | x ∈ M∗}. We then have:

P∗ × P∗(D) =

∫
D

dP∗ × P∗(x1, x2) =

∫
M∗

∫
{x2}

dP∗(x1)dP∗(x2) =

∫
M∗

P∗({x2})dP∗(x2) = 0, (5)

where the second equality follows from a standard result in measure theory (see e.g. Theorem 7.26 in Folland (2013)),
and the last equality follows by assumption. This finishes this part of the proof.
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2. Suppose LID∗(x0) = 0. By Lemma C.1, we have P∗ ({x0}) > 0. In this case, P∗ ({xi = x0}) > 0 for all
i ∈ {1, . . . , n}, meaning that

P∗({xi = xj for some i, j ≥ 1, i ̸= j}) ≥ P∗({xi = xj = x0 for some i, j ≥ 1, i ̸= j}) (6)
≥ 1− P∗({xi ̸= x0 for i ≥ 2) (7)
= 1− P∗({x2 ̸= x0}) · · ·P∗({xn ̸= x0}) (8)

= 1− (1− P∗({x0}))n−1 (9)
−→ 1 , (10)

where the last line depicts the limiting behaviour as n → ∞.

C.2. Proposition 4.2

Here we presume the joint distribution of model samples and k-dimensional conditioning inputs (x, y) ∈ Rd+k has support
S ⊂ Rd+k such that {x : (x, c) ∈ S for some c ∈ Rk} = Mθ. We define the conditional support of x given c to be
S(c) = {x : (x, c) ∈ S}.

Proposition C.3 (Formal). Let x0 ∈ Mθ and c ∈ Rk. Suppose that S(c) is also a submanifold of Rd and denote its LID by
LIDθ(x0 | c). We then have

LIDθ(x0 | c) ≤ LIDθ(x0). (11)

Proof. If S(c) is a submanifold of Rd, then it is also a submanifold of Mθ. The inequality follows directly.
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