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ABSTRACT

We introduce Meta-OLE, a new geometry-regularized method for fast adapta-
tion to novel tasks in few-shot image classification. The proposed method learns
to adapt for each few-shot classification task a feature space with simultaneous
inter-class orthogonality and intra-class low-rankness. Specifically, a deep feature
extractor is trained by explicitly imposing orthogonal low-rank subspace struc-
tures among features corresponding to different classes within a given task. To
adapt to novel tasks with unseen categories, we further meta-learn a light-weight
transformation to enhance the inter-class margins. As an additional benefit, this
light-weight transformation lets us exploit the query data for label propagation
from labeled to unlabeled data without any auxiliary network components. The
explicitly geometry-regularized feature subspaces allow the classifiers on novel
tasks to be inferred in a closed form, with an adaptive subspace truncation that
selectively discards non-discriminative dimensions. We perform experiments on
standard few-shot image classification tasks, and observe performance superior to
state-of-the-art meta-learning methods.

1 INTRODUCTION

Meta learning, also referred to as learning to learn, aims at acquiring knowledge from a distribution
of tasks, and learn to quickly solve novel tasks sampled from the same or similar underlying task
distribution. Meta learning is extensively studied under the context of few-shot learning (FSL), and
realized by models that adapt efficiently when given only a few labeled samples of novel tasks.
The research is mainly driven by how to design the adaptation for acquiring task-specified models
efficiently and robustly. Prototypical networks (ProtoNets) (Snell et al., 2017) adapt to new tasks by
computing the prototype of each class simply as the average of feature vectors, with all the network
parameters shared across tasks. MAML (Finn et al., 2017) adapts to new tasks by a few iterations of
gradient descent, and this approach has inspired many subsequent methods (Antoniou et al., 2018;
Finn et al., 2018; Nichol et al., 2018; Yoon et al., 2018). The adaptation of the entire network makes
it hard to be scaled to large networks, and many recent efforts focus on adapting the last classification
layer only (Gordon et al., 2019; Bertinetto et al., 2019), while assuming a universal feature extractor
that is shared across all tasks.

In this paper, we attempt to attack few-shot image classification from a new perspective of geometry
regularization of the feature space. As observed in (Lezama et al., 2018), training deep networks
with softmax and cross-entropy loss does not simultaneously enforce intra-class similarity and inter-
class margins. On the other hand, encouraging features to be in a low-rank subspace in each class as
well as orthogonal across classes can significantly improve the robustness of deep classification net-
works. While such explicit orthogonal low-rank geometry regularization has been proved successful
in classical classification tasks Lezama et al. (2018); Qiu et al. (2018); Lezama et al. (2017), it re-
mains highly non-trivial to extend this geometry regularization approach to tasks with novel classes
involved at the testing stage. In few-shot image classification, further challenges arise from the de-
mand of robust generalization to novel unseen classes. As we will show in this work, large class
margins resulting from explicit geometric regularization can potentially allow novel knowledge to
be represented by a composition of existing knowledge, and can reduce interference across classes.
An illustration is presented in Figure 1.
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(a) Feature space trained with standard softmax and
cross-entropy loss. While linear boundaries are
learned for the seen classes, the lack of enforcing
intra-class similarity and inter-class separation leaves
little space for novel classes (purple and and yellow
dots) to be well represented in the feature space with-
out interference.
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(b) Orthogonal low-rank embedding encourages
feature across classes to collapse to orthogonal sub-
spaces, each of which has minimum dimensions.
This intra-class similarity and inter-class separation
allow novel classes (purple and and yellow dots)
to be represented in the feature space with signifi-
cantly reduced interference.

Figure 1: Illustration of the advantages with explicit orthogonal low-rank geometry regularization.

Motivated by the maximal-margin feature space geometry, we introduce meta-learned orthogonal
low-rank embedding (Meta-OLE) to combine the simplicity of the prototype based methods and the
adaptivity of the parameter adaptation based methods. Specifically, we encourage an orthogonal
low-rank structure to the feature space across classes. Thus feature vectors of the same class reside
in a subspace with imposed low-rankness, while subspaces across classes are encouraged to be
as orthogonal as possible. While imposing geometry-regularization to the feature space over seen
classes has been investigated Lezama et al. (2018; 2017); Wen et al. (2016), the induced feature
extractor does not guarantee to generalize well to novel object classes that are unseen during training.
To extend an orthogonal low-rank embedding to a few-shot learning scenario, we introduce a meta-
learning framework with a light-weight adaptive orthogonal low-rank transformation that is able to
adapt efficiently to novel classes with very few examples. We then show that, given the imposed low-
rank orthogonal geometry, the final classification of query samples can be performed by subspace
projections, where the projection matrices are directly inferred from the few labeled examples in
a closed form. And we show that, to adaptively adjust the dimension of the projections based on
the compactness of the feature subspace, the robustness of the classifier to outlier examples can be
further improved. The closed-form inference of class labels allows unlabeled samples to be easily
involved in the learning of the adaptive orthogonal low-rank transformation for label propagation,
and improved performance is observed without any auxiliary parametric components to infer the
pseudo labels.

Despite being simple and geometry-motivated, the proposed method achieves on public FSL datasets
superior performance to state-of-the-art methods that often involve more sophisticated components.

In summary, our contributions are as follows:

• We propose to impose low-rank orthogonal geometry in feature space for few-shot learning.

• We introduce meta-learned adaptive orthogonal low-rank transformations for efficient
adaptations to novel tasks with unseen classes.

• Geometry-motivated classifier based on subspace projections with adaptive dimension se-
lection is introduced for fast and robust class inference.

• The effectiveness of the proposed Meta-OLE is validated with extensive experiments on
few-shot image classification.

2 METHOD

In this section, we start with the basic formulation of FSL, and then we introduce each of the com-
ponents of the proposed Meta-OLE framework in detail.
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Figure 2: An illustration of the proposed meta-learned orthogonal low-rank embedding. The input
images of both support set (blue, yellow, and green boxes) and query set (red box) are all first
mapped to feature vectors by a universal feature extractor, where an orthogonal low-rank geometry is
imposed. The features at each task then go through the adaptive orthogonal low-rank transformation,
whose parameters are adapted by samples of each task, and achieve higher intra-class similarity and
inter-class orthogonality. Finally, an adaptive subspace projection is used for each class, where the
projection matrices are inferred directly in a closed form.

2.1 PRELIMINARY

Scalars, vectors and tensors are denoted as lower-case, bold lower-case, and bold upper-case letters,
e.g., n, x, X, respectively. For example, we denote an image as a vector x, and use X = [x1,x2, . . . ]
to denote a collection of images. Xc denotes the collection of images within X with label c.

Few-shot image classification with episodic training. A few-shot learning (FSL) task is usually
defined as a K-way N -shot learning problem, where N is usually a small number, e.g., N = 5.
FSL with meta-learning is usually formulated as a series of episodic training. Typically, in each
episode, one FSL task is generated by first sampling K categories from the training data, each of
which contains N samples to form the support set St = {x1, . . . ,xK×N}. An adaptation to the
FSL model is then performed on St, by, e.g., computing prototypes (Snell et al., 2017), or updating
the network parameters (Finn et al., 2017). After adaptation, samples from the same categories of
each episodic, referred as the query set Qt = {x′1, . . . ,x′K×M}, are sampled to evaluate the updated
model, and the error is propagated back to update the parameters.

Orthogonal low-rank embedding. The idea of learning a linear transformation to recover the
orthogonal low-dimensional intrinsic structures in data is originally proposed in (Qiu & Sapiro,
2015). In (Qiu & Sapiro, 2015), a linear transformation is learned to restore a low-rank structure for
data from the same subspace, and, at the same time, force a maximally separated structure for data
from different subspaces. This idea is further generalized to deep learning in (Lezama et al., 2018),
where orthogonal low-rank embedding (OLE) is introduced as a regularization term to the training
of deep classification networks for improved performance. Given a collection of N samples in Rd
for a K-way classification task, the transformation in (Qiu & Sapiro, 2015) is computed as

min
T:Rd→Rd

K∑
c=1

||TXc||∗ − ||TX||∗, (1)

where || · ||∗ denotes the nuclear norm and serves as a convex lower bound of the rank function on
the unit ball in the operator norm, and T is a linear transformation to be learned. Specifically, the
first term in (1) encourages the transformed representations within each of the K classes to reside in
a low-rank subspace. The second term in (1) promotes orthogonality of the subspaces across classes.

Theorem 1 (Qiu & Sapiro, 2015) ||A,B||∗ ≤ ||A||∗ + ||B||∗, with equality satisfied if and only if
the column spaces of A and B are orthogonal.

According to Theorem 1, the cost value of (1) is always nonnegative. Moreover, it achieves the
minimum at zero if and only if different classes become orthogonal after the transform. See (Qiu &
Sapiro, 2015) for more details of this formulation.
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Based on (1), (Lezama et al., 2018) introduces a generalization to the training of deep neural net-
works, where an orthogonal low-rank embedding (OLE) loss is proposed as a regularization term to
facilitate the learning of typical image classification networks with the cross-entropy loss. Specifi-
cally, the OLE loss is defined as

LOLE =

K∑
c=1

||Zc||∗ − ||Z||∗ =
K∑
c=1

||Φ(Xc)||∗ − ||Φ(X)||∗, (2)

where Φ denotes the nonlinear transformation associated with a deep network. When Φ is a net-
work that ends with a ReLU activation, training with the OLE loss leads to orthogonal inter-class
subspaces, which is equivalent to explicitly pushing feature from different classes to the maximum
cosine distance (Lezama et al., 2018).

2.2 ADAPTIVE ORTHOGONAL LOW-RANK SUBSPACE PROJECTIONS

In the proposed method, samples within a FSL task is first mapped by a universal feature extractor,
parametrized by a deep CNN in our setting, to a feature space, where we explicitly encourage low-
rank subspace for each class as well as orthogonality among different classes. To adaptively promote
higher intra-class compactness and inter-class orthogonality in each task, we then meta-learn a light-
weight orthogonal low-rank transformation, that learns on the samples of each task and adapts the
parameters for task-specific feature transformations. After learning the task-specific transforma-
tions for better low-rank orthogonal embeddings, the classification of unlabeled samples in query
set is accomplished by adaptive subspace projections, with the projection matrices inferred directly
from feature vectors of the support set in a closed form. We further introduce adaptive subspace
projections by selecting principal dimensions for projections, and truncating non-discriminative di-
mensions for improved robustness. All components are detailed next.

Universal feature extractor. Following standard practice, we train a universal feature extractor
Φ, which is typically a CNN that is shared across tasks. Specifically, given an image x, the feature
extractor maps it to a d-dimensional feature vector z ∈ Rd = Φ(x). Different from the common
practice that the feature extractor Φ is solely learned using the gradient propagated back from the
error at tasks, we explicitly encourage orthogonal low-rank feature geometry across classes in each
training episode. This is achieved by supervising the parameters in Φ with an OLE loss as:

LOLE =

K∑
c=1

||Φ(Xc)||∗ − ||Φ(X)||∗. (3)

The same feature extraction is applied to both support set and query set to obtain the respective
features Z = {zi}K×Ni=1 , Z′ = {z′j}

K×M
j=1 .

Meta-learned adaptive transformation. Training a universal feature extractor Φ on limited train-
ing classes can hardly guarantee that the orthogonal low-rank feature geometry to be perfectly gen-
eralized to novel tasks in practice. To fully exploit the support set samples, we therefore propose to
meta-learn a light weight adaptive transformation Ψ, parametrized by a tiny network with param-
eters θ, to adaptively transform the feature vectors of novel tasks for more compact intra-class and
orthogonal inter-space subspaces. The parameters θ in Ψ is adapted to the new task given features
from the support set iteratively, and an initialization is learned across the episodic training.

Specifically, given a collection of the features from the support set Zt, we perform P iterations
of parameter updating to θ, in order to project the features to a space that better presents the low-
rank orthogonal geometry. At each iteration p, the transformed features are computed as Zp =
Ψ(Z, θp−1), and the parameters θ are then updated by

θp = θp−1 − β∇θ(LOLE(Zp)), p = 1, . . . , P , (4)

where θ0 = θ, which serves as the universal parameter initialization for all tasks and to be optimized
by tasks in episodic training. The updated parameters at the last iteration θP are returned as the final
parameter of Ψ for a specific task, and transform both the support set and query set features,

Z̃ = {z̃i = Ψ(zi; θP )}K×Ni=1 , Z̃′ = {z̃′i = Ψ(z′i; θP )}K×Mi=1 . (5)
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Adaptive subspace projections as classifiers. The imposed geometry-regularization of the or-
thogonal low-rank subspaces naturally leads to a subspace projection-based classifier that fully
utilizes the obtained feature geometry. Since now the desirable features of each class reside in a
low-rank subspace, the inference of class labels of query samples can then be effectively computed
by projecting the feature vectors to each subspace of classes, and observing the norm of the pro-
jected vectors. Specifically, in K-way N -shot FSL, given a collection of support set feature vectors
of a class Zc ∈ RK×d, the subspace, i.e. span(Zc), can be directly inferred in a closed-form. Let
Zc = UcΣcVc be the singular value decomposition of the Zc, the rows of Uc = [b1, . . . ,bN ]
form an orthogonal bases of Zc. Then any feature vector z in the query set can be projected onto the
subspace span(Zc) by projc(z) = UcU

>
c z. In practice, based on the rank of the features, there can

be non-discriminative dimensions contained in U (in the most optimal case, only a single dimension
is sufficient to represent the subspace of a class). Given the singular values Σc = [s1, . . . , sN ],
the non-discriminative dimensions are bases in Uc that correspond to low singular values. When
the singular values Σc are sorted in a descending order, we can easily truncate non-discriminative
dimensions by discarding bases in Uc whose associated singular values are lower than a threshold.
In practice, we introduce a non-negative hyperparameter τ < 1.0, and truncate bases in Uc with
singular values lower than τ × s1. Formally, we obtain the projections

projc(z) = Uc[1 : r]Uc[1 : r]>z, (6)

where sr ≥ τ × s1, and sr+1 < τ × s1. Ideally, each query sample will lie in the subspace of
its class, thus the projection will mostly preserve the norm of the feature vector. For each zj , we
then define the norm of the projected vector of zj to the subspace of class c as the unnormalized
probability of sample xj belonging to class c, i.e.,

ŷc(z̃j) = P (z̃j ∈ c) =
exp(||projc(z̃j)||2)∑K

c′=1 exp(||projc′(z̃j)||2)
, (7)

and standard cross-entropy loss is then used for computing and back-propagating errors. The advan-
tages are further validated with real-world experiments in Section 3.

Leveraging query samples. While meta-learning the adaptive orthogonal low-rank transforma-
tion Ψ, we can further leverage the query samples with no labels. In each iteration of updating θ
in Ψ, we can augment the data by assigning a pseudo label to each query sample. This can be effi-
ciently implemented by projecting each query sample to each subspace inferred from the support set
as in (6), and finding the label maximum probability as in (7). This achieves transductive learning in
FSL without introducing any auxiliary components to the network. And we introduce a non-negative
hyperparameter α < 1.0 as the weight of the contribution from the query set with pseudo labels. In
this transductive setting, the updating to θ in Ψ becomes:

θp = θp−1 − β∇θ
(
LOLE(Zp)+αLOLE([Zp,Z

′
p])
)
,

(8)

for p = 1, . . . , P , and [Zp,Z
′
p] here denotes concatenation of the transformed support and query

features.

In summary, the proposed method consists of a universal feature extractor Φ for projecting high-
dimensional image inputs to feature vectors. Iterative updating to the adaptive orthogonal low-rank
transformation Ψ adapts the model to the task at hand. The final classification is performed by

subspace projections obtained in a closed form. x
Φ−→ z

Ψ(·;θ)−−−−→ z̃
projc−−−→ yc. All the parameters are

jointly updated by the loss

L = Lsoftmax(ŷ, y) + λLOLE([Z,Z
′]), (9)

with ŷ being the inferred label from (7) and y the true label.

We summarize the overall training of our method in Appendix Algorithm 1.

3 EXPERIMENTS

Datasets. We perform experiments on FSL benchmarks including miniImageNet, tieredImageNet,
and Caltech-UCSD Birds dataset (Welinder et al., 2010) (CUB). In miniImageNet (Vinyals et al.,
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Table 1: 5-way few-shot image classification comparisons on miniImageNet and tieredImageNet
with 95% confidence intervals. We conduct experiments with both shallow (Conv-4) and deep
(ResNet-12) networks and compare the performance with various state-of-the-art methods. † de-
notes performance obtained with leveraging query samples.

Methods Backbone miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

ABML Conv-4 37.65 ± 0.22 56.08 ± 0.29 - -
MatchingNets (Vaswani et al., 2017) Conv-4 43.56 ± 0.84 55.31 ± 0.73 - -
MAML (Finn et al., 2017) Conv-4 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 1.75
Reptile (Nichol et al., 2018) Conv-4 49.97 ± 0.32 65.99 ± 0.58
ProtoNets (Snell et al., 2017) Conv-4 44.53 ± 0.76 65.77 ± 0.66 53.31 ± 0.89 72.69 ± 0.74
R2-D2 (Bertinetto et al., 2019) Conv-4 48.70 ± 0.60 65.50 ± 0.60 - -
VERSA (Gordon et al., 2019) Conv-4 53.31 ± 1.80 67.30 ± 0.91 - -
RelationNets (Sung et al., 2018) Conv-4 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 65.32 ± 0.70
Bayesian MAML (Yoon et al., 2018) Conv-4 44.46 ± 0.30 62.60 ± 0.25
DKT (Patacchiola et al., 2020) Conv-4 49.73 ± 0.07 64.00 ± 0.09 - -
OVE PG GP + Cosine (ML) (Snell & Zemel, 2021) Conv-4 50.02 ± 0.35 64.58 ± 0.31 - -
OVE PG GP + Cosine (PL) (Snell & Zemel, 2021) Conv-4 48.00 ± 0.24 67.14 ± 0.23 - -
Meta-OLE Conv-4 53.82 ± 0.84 71.23 ± 0.72 57.87 ± 0.90 74.97 ± 0.85

Meta-Nets (Munkhdalai & Yu, 2017) ResNet-12 57.10 ± 0.70 70.04 ± 0.63 - -
SNAIL (Mishra et al., 2018) ResNet-12 55.71 ± 0.99 68.88 ± 0.92 - -
ProtoNets (Snell et al., 2017) ResNet-12 59.25 ± 0.64 75.60 ± 0.48 61.74 ± 0.77 80.00 ± 0.55
AdaResNet (Munkhdalai et al., 2018) ResNet-12 56.88 ± 0.62 71.94 ± 0.57 - -
TADAM (Oreshkin et al., 2018) ResNet-12 58.50 ± 0.30 76.70 ± 0.30 - -
Meta-OLE ResNet-12 65.28 ± 0.64 81.96 ± 0.62 67.72 ± 0.72 84.20 ± 0.56

Meta-OLE† ResNet-12 67.04 ± 0.72 83.21 ± 0.67 68.82 ± 0.71 85.51 ± 0.59

2016), there are 100 image classes from a subset of ImageNet (Deng et al., 2009), with 600 images
for each class. We follow the standard practice (Finn et al., 2017) to split the training, validation,
and testing sets with 64, 16, and 20 classes, respectively. tieredImageNet (Ren et al., 2018) is a
large subset of ImageNet that contains 608 classes with 1,300 samples in each class. Specifically,
in tieredImageNet, there are 351 classes from 20 categories for training, 97 classes from 6 cat-
egories for validation, and 160 classes from 8 different categories for testing. Samples for both
miniImageNet and tieredImageNet are randomly cropped and resized to 84 × 84 for training, and
standard center cropping is performed to the testing images. The 200 classes in the CUB dataset
is divided into 100, 50, and 50 classes, for training, validation, and testing, respectively. Following
standard practice, we report results with both 5-way 1-shot and 5-way 5-shot. Note that in the case
of 5-way 1-shot learning, the inference of the projection of each class projc(·) is reduced to using
the normalized feature vector of the single support sample only without adaptations based on the
intra-class similarity.

Implementation details. All experiments are conducted on a server with 8 Nvidia RTX 3090
graphic cards, and each has 24GB memory. Every experiment we report can be trained and tested
on a single card. The machine is also equipped with 512GB memory and two AMD EPYC 7502
CPUs. We use PyTorch for the implementations of all experiments. We train the networks using
stochastic gradient descent with a Nesterov momentum (Sutskever et al., 2013) of 0.9, for a total of
80 epochs and 1000 random sampled tasks within each epoch. The initial learning rate is set to be
0.025, which decays by a factor of 0.1 at epoch 50 and epoch 60. Following common practice, we
use random resized crop and random horizontal flip as the data augmentation transformations.

For the hyperparameters, we set the weight of the OLE loss in (9) to λ = 0.1. We use P = 10 to
adapt the adaptive orthogonal low-rank transformation for 10 iterations. The weight of the transduc-
tive OLE loss is set to α = 0.25. The truncation threshold of the adaptive subspace projection τ is
set to 0.9. All hyperparameters selections will be discussed later in Section 3.1.

Following the common practice, two network structures are included in the discussion of perfor-
mance. Conv-4 is constructed by stacking 4 Conv-BN-ReLU-pooling block, with 64 channels in
each layer, and the output feature is flattened into a feature vector that is fed to the adaptive orthog-
onal low-rank transformation. ResNet-10 and ResNet-12 are 10-layer and 12-layer deep residual
networks (He et al., 2016), with 4 residual blocks, and each block has 64, 128, 256, and 512 chan-
nels, respectively. We use a global average pooling to convert the 3D feature maps for each sample
into a 512-dim feature vector. We use a small scale network with 3-layer fully connected (FC) lay-
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Table 2: Results on cross-domain few-shot image classification with the Conv-4 backbone, and 5-
way few-shot image classification on the CUB dataset with both shallow and deep backbones. †
denotes performance obtained with leveraging query samples.

Methods miniImageNet → CUB CUB (Conv-4) CUB (ResNet-10)
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Feature Transfer 32.77 ± 0.35 50.34 ± 0.27 46.19 ± 0.64 68.40 ± 0.79 63.64 ± 0.91 81.27 ± 0.57
ABML 29.35 ± 0.26 45.74 ± 0.33 49.57 ± 0.42 68.94 ± 0.16 - -
Baseline ++ (Chen et al., 2019) 39.19 ± 0.12 57.31 ± 0.11 61.75 ± 0.95 78.51 ± 0.59 69.55 ± 0.89 85.17 ± 0.50
MatchingNet (Vaswani et al., 2017) 36.98 ± 0.06 50.72 ± 0.36 60.19 ± 1.02 75.11 ± 0.35 71.29 ± 0.87 83.47 ± 0.58
ProtoNets (Snell et al., 2017) 33.27 ± 1.09 52.16 ± 0.17 52.52 ± 1.90 75.93 ± 0.46 73.22 ± 0.92 85.01 ± 0.52
RelationNet (Sung et al., 2018) 37.13 ± 0.20 51.76 ± 1.48 62.52 ± 0.34 78.22 ± 0.07 70.47 ± 0.99 83.70 ± 0.55
MAML (Finn et al., 2017) 34.01 ± 1.25 48.83 ± 0.62 56.11 ± 0.69 74.84 ± 0.62 70.32 ± 0.99 80.93 ± 0.71
Bayesian MAML (Yoon et al., 2018) 33.52 ± 0.36 51.35 ± 0.16 55.93 ± 0.71 72.87 ± 0.26 - -
DKT (Patacchiola et al., 2020) 40.14 ± 0.18 56.40 ± 1.34 62.96 ± 0.62 77.76 ± 0.62 72.27 ± 0.30 85.64 ± 0.29
OVE (ML) (Snell & Zemel, 2021) 39.66 ± 0.18 55.71 ± 0.31 63.98 ± 0.43 77.44 ± 0.18 - -
OVE (PL) (Snell & Zemel, 2021) 37.49 ± 0.11 57.23 ± 0.31 60.11 ± 0.26 79.07 ± 0.05 - -
Meta-OLE 40.66 ± 0.21 58.23 ± 0.26 68.75 ± 0.31 84.74 ± 0.21 79.76 ± 0.40 88.82 ± 0.32

Meta-OLE† 41.40 ± 0.20 60.82 ± 0.28 71.32 ± 0.32 86.11 ± 0.23 81.10 ± 0.42 90.04 ± 0.36

ers as the adaptive orthogonal low-rank transformation Ψ. Batch normalization (BN) and ReLU
activation are adopted after each FC layer. All parameters in Ψ are allowed to adapt at each task,
including the parameters in BN layers.

Few-Shot Image Classification Following the common practice, we first report standard 5-way
1-shot and 5-way 5-shot experiments on all three datasets. The results on miniImageNet and
tieredImageNet are presented in Table 1. Two standard backbones, Conv-4 and ResNet-12 are
included for comprehensive comparisons. The comparison results on CUB are presented in Ta-
ble 2. We adopt two backbones, Conv-4 and ResNet-10 for comprehensive comparisons following
common practice. The proposed method achieves significant improvements over state-of-the-art
methods on all datasets.

Cross-Domain Generalization The proposed orthogonal low-rank adaptation allows the model
to fit to novel tasks rapidly and effectively, even in the presence of domain shifts between tasks. To
validate this, we include the Caltech-UCSD Birds dataset (Welinder et al., 2010) (CUB) and present
cross-domain generalization experiments on mimiImageNet → CUB. As a dataset specialized for
bird species, CUB poses significant challenge to the few-shot learners due to its weak intra-class
discrepancy. We follow the standard practice (Chen et al., 2019) and perform experiments with the
Conv-4 backbone and both 5-way 1-shot and 5-way 5-shot experiments. The quantitative results
and comparisons are presented in Table 2. Our method achieves high performance for cross-domain
few-shot classification, which surpasses counterparts considerably.

3.1 DISCUSSIONS

In this section, we perform ablation study to verify the hyperparameter selections, and provide fur-
ther visualizations to show the effectiveness of the proposed components. All experiments are per-
formed on the 5-way 5-shot task with the CUB dataset and Conv-4 as feature extractor.

Feature extractor. The only hyperparameter introduced in the feature extractor is the weight of
the OLE loss λ in (9). We present in Table 3 comparisons of performance with different λ. Imposing
orthogonal low-rank geometry to the feature extractor can remarkably improve the generalization.
Higher values of λ consistently improve the accuracy on training categories, while the testing ac-
curacy saturates at λ = 0.1. This observation is consistent with our intuition shown in Figure 1:
Enforcing an orthogonal low-rank geometry promotes better generalization to novel unseen classes,
as the improved intra-class compactness preserves more “open” space so that novel classes can be
added to the feature space without causing significant interference with previously seen classes.

Meta-learned orthogonal low-rank transformation. We show in Figure 3 the accuracy of the
model when performing task-specific adaptations to θ in Ψ. We perform 10 steps of inner-loop
adaptation and visualize the moving accuracy at step 1, step 5, and step 10. The network perfor-
mance is improving substantially w.r.t. the steps of inner-loop adaptation. We further visualize the
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Figure 3: Moving average of the accuracy
at different p when updating the adaptive
orthogonal low-rank transformation.

Table 3: Comparisons with different values of λ.

λ = 0.00 0.01 0.05 0.1 0.2 0.5

Training 85.13 86.24 86.50 86.89 87.21 87.33
Testing 82.25 84.10 85.45 86.11 86.12 86.11

Table 4: Comparisons with different values of τ . We
present both test accuracy and the average numbers
of dimensions that are preserved after truncation.

τ = 0 0.1 0.3 0.5 0.7 0.9

Accuracy 85.33 85.46 85.62 85.88 86.07 86.11
Dimension 3.14 2.43 1.73 1.30 1.12 1.08

Table 5: Comparisons with different values of α.

α = 0.05 0.15 0.25 0.35 0.45 0.55

Accuracy 84.81 85.25 86.11 86.02 85.42 83.25

feature space in Figure 4, showing how the features in a task are progressively refined to orthogonal
low-rank geometry when θ is being updated iteratively. It is clearly shown that this task-specific
adaptation plays crucial role when learning novel tasks.

Adaptive subspace projections. The adaptive subspace projection allows extra flexibility by ad-
justing τ , the threshold that controls the truncation of non-discriminative dimensions in the projec-
tions. We show in Table 4 how the values of τ affect the results. It is shown that high τ values like
τ = 0.9 result in truncating nearly all but the first basis after the singular value decomposition for
projection. The compactness of the transformed intra-class features allow a single basis to well rep-
resent the subspace of a class, and achieve the best performance by removing all other dimensions
that potentially contain noise.

Leveraging unlabeled samples. Our framework of meta-learned orthogonal low-rank transfor-
mations allows unlabeled query samples to be easily leveraged without introducing any auxiliary
network components. The only additional hyperparameter introduced is α that controls the weight
of the inner-loop learning with pseudo labeled query samples. We perform additional experiments
shown in Table 5. Leveraging unlabeled samples in the inner-loop adaptation is able to improve the
performance. However, imposing a large value of α close to 1 can decrease final accuracy, as higher
values of α might cause the wrong assignments of the pseudo labels to overwhelm the inner-loop
adaptation. We therefore use consistently α = 0.25 across all experiments.

4 RELATED WORK

Feature geometry in deep learning. The idea of explicitly imposing intra-class similarity and
intra-class separation is extensively studied in metric learning (Wang et al., 2017; Chen et al., 2017;
Hadsell et al., 2006; Schroff et al., 2015; Sun et al., 2014; Wen et al., 2016; Oh Song et al., 2016). As
in the most representative loss functions for metric learning, pairwise loss (Hadsell et al., 2006) and
triplet loss (Schroff et al., 2015), effective training of metric learning requires careful sampling of
samples, especially negative ones for the most informative training. The basic assumption of metric
learning is that a common metric space is shared across related tasks. Such idea has also been
extended to few-shot learning as in Matching Networks (Vinyals et al., 2016) and PrototypeNets
(Snell et al., 2017), where the networks remain shared across all tasks. Relational Networks (Sung
et al., 2018) further extend to a learnable metric, parametrized by a network trained across tasks.

Meta-learning. Meta learning, also referred to as learning to learn (Thrun & Pratt, 2012), trains
the models to leverage shared knowledge among tasks within a distribution to solve novel task ef-
ficiently and effectively (Andrychowicz et al., 2016; Rusu et al., 2019; Finn et al., 2017; Gordon
et al., 2019; Andrychowicz et al., 2016; Ravi & Larochelle, 2016; Rusu et al., 2019). It has attracted
increasing attention in recent years, and recent advantages are driving the development of meta
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Iteration 1
OLE: 26.18 Acc: 78.0%

Iteration 2
OLE: 18.17 Acc: 80.4%

Iteration 3
OLE: 13.82 Acc: 81.6%

Iteration 4
OLE: 12.20 Acc: 83.2%

Iteration 5
OLE: 10.50 Acc: 85.2%

Iteration 10
OLE: 4.35 Acc: 92.0%

Iteration 9
OLE: 5.60 Acc: 91.6%

Iteration 8
OLE: 6.48 Acc: 91.2%

Iteration 7
OLE: 9.27 Acc: 90.4%

Iteration 6
OLE: 8.93 Acc: 87.6%

Figure 4: Visualization of the feature space of zp while updating θ in Ψ for 10 iterations. Feature
vectors from three classes in a 5-way FSL task are embedded with PCA, and visualized in three
colors. Viewing angles are adjusted for better visualizations. The value of the OLE loss and the
accuracy at each iteration are noted in the figure.

learning with different directions. Early efforts focus on training a feature extractor that is compat-
ible with certain metric, in massive training episodes. ProtoNets (Snell et al., 2017) learn feature
projection that is robust to feature comparisons in Euclidean space. DSN (Simon et al., 2020) al-
lows high-order statistics of the subspace for each class to be considered. And R2-D2 (Bertinetto
et al., 2019) learns the feature extractor that adapts well to closed-formed linear classifiers. Gradient-
descent based methods (Finn et al., 2017; Rusu et al., 2019; Finn et al., 2018; Yoon et al., 2018) learn
an initialization that allows the network to adapt efficiently to new tasks given supervisions from a
few samples. Parameter prediction based models (Gordon et al., 2019; Qiao et al., 2018; Gidaris
& Komodakis, 2019) generate task-dependent network parameters, typically linear classifiers, given
observations on novel tasks. Recently, leveraging unlabeled samples in query sets further boosts the
performance of FSL, where the pseudo labels of the query samples are inferred either directly from
comparing features (Simon et al., 2020), or by a labeling network (Kye et al., 2020). Finally, in
addition to its successful application in few-shot learning, the idea of meta-learning has also been
proved to be effective at diverse tasks such as memory (Bartunov et al., 2020) and reinforcement
learning (Schweighofer & Doya, 2003; Gupta et al., 2018; Sæmundsson et al., 2018).

5 CONCLUSION

In this paper, we introduced meta-learned orthogonal low-rank embedding (Meta-OLE) for effective
generalization to novel few-shot classification tasks by meta-learning with geometry regularization
to feature space. We imposed orthogonal low-rank geometry in feature space across categories to
promote maximum intra-class similarity and inter-class separation simultaneously. To further al-
low effective generalization to novels tasks with unseen categories, we meta-learned an orthogonal
low-rank transformation that can fully utilize both labeled support set and the unlabeled query set to
update the task-specific transformations. This explicit geometry regularization allowed us to formu-
late the final classification layer as class projections, with projection matrices directly obtained from
the feature vectors in closed-form. Determined by the intra-class similarity of each class, an adap-
tive dimension truncation is further introduced to selectively discard non-discriminative dimensions
in the subspace projections for improved robustness. The idea of orthogonal low-rank geometric
regulation is a central theme that motivates every component in the proposed Meta-OLE. We per-
formed both comparisons against state-of-the-art methods and ablation study, to fully validate the
effectiveness of each proposed component.
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APPENDIX

We summarize the training of the proposed meta-learned adaptive orthogonal low-rank subspace
transformations in Algorithm 1

Algorithm 1 Meta-learned adaptive orthogonal low-rank subspace transformations.

1: Given: A description of the tasks as K-way S-shot with M query samples in each class.
2: Given: β for truncating subspace dimensions, λ for the weight of OLE loss, α for transductive

weight if applicable.
3: Initialize Φ and θ in Ψ.
4: repeat
5: Sample task with support set S = {xi}K×Si=1 and query set Q = {x′j}

K×M
j=1 in each task.

6: Extract feature vectors for both S and Q, zi = Φ(xi), zj = Φ(xj).
7: for Inner iterations p do
8: Compute adapted features z̃ = Ψ(z, θp)
9: Compute OLE loss LOLE(z̃).

10: Update θ with (4) for inductive setting, or with (8) for transductive setting with pseudo
labels inferred by (6).

11: end for
12: Obtain transformed features z̃ = Ψ(z; θP ) for both support and query samples.
13: Obtain adaptive subspace projection for each class as in (6).
14: Compute class probability of query sample as in (7).
15: Update parameters with the loss in (9).
16: until Converge
17: Return Φ, Ψ with parameter θ.
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