
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VOXELKP: A VOXEL-BASED NETWORK ARCHITEC-
TURE FOR HUMAN KEYPOINT ESTIMATION IN LIDAR
DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

We present VoxelKP, a novel fully sparse network architecture tailored for human
keypoint estimation in LiDAR data. The key challenge is that objects are dis-
tributed sparsely in 3D space, while human keypoint detection requires detailed
local information wherever humans are present. First, we introduce a dual-branch
fully sparse spatial-context block where the spatial branch focuses on learning the
local spatial correlations between keypoints within each human instance, while
the context branch aims to retain the global spatial information. Second, we use
a spatially aware multi-scale BEV fusion technique to leverage absolute 3D co-
ordinates when projecting 3D voxels to a 2D grid encoding a bird’s eye view for
better preservation of the global context of each human instance. We evaluate our
method on the Waymo dataset and achieve an improvement of 27% on the MPJPE
metric compared to the state-of-the-art, HUM3DIL, trained on the same data, and
12% against the state-of-the-art, GC-KPL, pretrained on a 25× larger dataset. To
the best of our knowledge, VoxelKP is the first single-staged, fully sparse network
that is specifically designed for addressing the challenging task of 3D keypoint
estimation from LiDAR data, achieving state-of-the-art performance. Our code is
available at https://.

1 INTRODUCTION

Human pose estimation is a critical area of research with applications spanning computer vision,
robotics, human-computer interaction, and augmented/virtual reality. Previous works (Toshev &
Szegedy, 2014; Newell et al., 2016; Sun et al., 2019) are mostly based on 2D images and videos.
Compared to regular RGB input, LiDAR sensors provide detailed 3D structural information by
measuring the distance to objects using laser light. Apart from its robustness under occlusion and
illumination changes, LiDAR also offers privacy protection as it can not retain facial details. In
recent years, significant progress has been made in 3D object detection from LiDAR point clouds,
with methods like PointRCNN (Shi et al., 2019a), Part-A2 (Shi et al., 2019b), and PV-RCNN (Shi
et al., 2020) achieving impressive results, while human pose estimation from LiDAR is still an open
research problem with much room for improvement. Typically, object detection methods focus on
capturing objects scattered sparsely across the 3D space while the keypoints tend to be distributed
densely within localized regions around the human body. This fundamental discrepancy in the con-
text captured by existing detectors limits their suitability for precise 3D keypoint prediction due to
the lack of fine-grained spatial information. To address this gap, we aim to extend the success of 3D
object detection to 3D keypoint estimation for Lidar point cloud data by introducing novel compo-
nents to preserve fine-grained spatial information. As shown in Figure 1, our method significantly
improves the precision of the estimated keypoints.

This work identifies the importance of learning from spatial information of varying densities to
capture the intricate spatial relationships between keypoints for precise human pose estimation. For
this purpose, we introduce the VoxelKP architecture. VoxelKP is a novel, fully sparse neural network
tailored specifically for human keypoint estimation within LiDAR point clouds. We first introduce
a dual-branch fully sparse spatial-context block that integrates local dense features with the global
spatial context from the sparse representations of LiDAR scans. More precisely, the spatial branch
is used to extract local spatial correlation between keypoints whilst the context branch is used to
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Matched False PositiveMultiple Matched Without GT

Figure 1: A visual demonstration of our baseline model (top) and the proposed VoxelKP (bottom).
Our VoxelKP offers improved keypoint estimation with precise locations and fewer false positives.
The insets are color-coded according to the legend in the figure. In the green-colored insets, a
comparison with the ground truth is shown, with ground truth in red and predictions in blue. Our
baseline model is VoxelNeXt with additional keypoint estimation outputs.

preserve the global spatial details. Second, we propose a spatially aware multi-scale BEV fusion
module that aims to effectively encode absolute 3D coordinates to BEV representations, to be better
aware of the 3D spatial relationship within 2D BEVs. To the best of our knowledge, VoxelKP is the
first single-staged, fully sparse network that is specifically designed for addressing the challenging
task of 3D keypoint estimation from LiDAR data, achieving 27% on the MPJPE metric compared
to the current state-of-the-art trained on the same data.

2 RELATED WORK

2.1 DEEP LEARNING ON POINT CLOUDS

Many neural network architectures have been adapted for processing point clouds. Earlier methods
like VoxNet (Maturana & Scherer, 2015) applied 3D CNNs to voxel grids for object classification.
PointNet (Qi et al., 2017a) was one of the first works to operate directly on point clouds using MLPs
and max pooling to extract global features of entire scenes represented by point clouds. Follow-
up works like PointNet++ (Qi et al., 2017b) introduced hierarchical and localized feature learning.
Meanwhile, another branch of works such as PointCNN (Li et al., 2018) and KPConv (Thomas et al.,
2019) introduced novel convolutional operators for learning features on the unordered point clouds,
overcoming the limitations of typical convolutions for this irregular data type.

Typical LiDAR-generated point clouds contain more than 100, 000 points, making point-by-point
computations overwhelming due to the massive data scale. VoxelNet (Zhou & Tuzel, 2018) pro-
posed a voxel feature encoding (VFE) layer as a workaround for the high computational and memory
issues brought by point-by-point computations. Meanwhile, sparse and submanifold sparse convo-
lution operations (Graham et al., 2018) exploit sparsity in the voxel grid to reduce computations.
SECOND (Yan et al., 2018) introduced an efficient sparse convolutional approach that benefits from
the sparse operations. Following SECOND, subsequent works like PointPillars (Lang et al., 2019),
3DSSD (Yang et al., 2020), PV-RCNN Shi et al. (2020), CenterPoint (Yin et al., 2021) further ad-
vanced sparse convolutional detection on point clouds, introducing ideas like pillar encoding for
faster detection, multi-scale detection stacks with anchor boxes, shared voxel encoders, and detect-
ing small objects by center points. VoxelNeXt (Chen et al., 2023) further demonstrates a fully sparse
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voxel-based method without sparse-to-dense conversion or NMS post-processing. However, these
approaches are targeted at improving bounding box localization accuracy, which does not require
fine-grained spatial features for precise keypoint estimation tasks. Instead, We propose VoxelKP, a
novel sparse convolutional architecture tailored for learning discriminative local features from sparse
LiDAR data for accurate human pose estimation.

2.2 HUMAN POSE ESTIMATION ON POINT CLOUDS

Human pose estimation has been extensively studied in images, with methods like DeepPose (Toshev
& Szegedy, 2014), Stacked Hourglass (Newell et al., 2016), and HRNet (Sun et al., 2019) achieving
high accuracy on benchmarks like COCO-wholebody (Jin et al., 2020). However, compared to
RGB images, point clouds provide explicit 3D structural information about the shape and depth of
objects. Shotton et al. (2011) pioneered point cloud human pose estimation from a single depth
image. Recent works such as Zhou et al. (2020); Ma et al. (2021) proposed a deep learning-based
3D human pose estimation from depth images. Waymo (Sun et al., 2020) has released keypoint
annotations for LiDAR-collected point cloud scenes, while only 3% of the frames are annotated with
keypoint human poses. Due to the scarcity of the keypoint annotations within LiDAR point cloud
data, many works have taken semi-supervised or weak-supervised approaches to compensate for the
limited availability of labeled 3D pose data. For example, Zanfir et al. (2023); Zheng et al. (2022)
took a multi-modal approach to utilize the enriched image annotations to assist the recognition from
point clouds. Weng et al. (2023) proposed an unsupervised approach that generates pseudo ground
truth without using annotated keypoint data, along with a fine-tuning approach that pretrains the
model with synthetic data and then fine-tunes on the training set. A concurrent work (Ye et al.,
2023) adopted a fine-tuning strategy that used a frozen backbone pretrained on a large-scale dataset
as a feature extractor, achieving plausible performance. In general, multi-person pose estimation
from sorely point clouds remains relatively unexplored due to the lack of ground-truth 3D human
pose annotations. This work proposes a single-staged keypoint estimation method with only LiDAR
point clouds, achieving comparable performance without extra training data.

3 METHOD

LiDAR point clouds typically contain sparsely distributed objects that occupy only small regions of
the full 3D space. While the distribution of humans in space is sparse, in contrast, human keypoints
require dense information wherever a human is present. To handle this density variation, we aim
to improve the learning of spatial details in the regions where keypoints need to be located and
detailed information is required. As illustrated in Figure 2, our VoxelKP framework contains two key
components: 1) fully sparse spatial-context blocks, and 2) spatially aware multi-scale BEV fusion.
In this section, we first present the formulation of the task, then introduce the key components
proposed in our network, and finally elaborate on the details of the network architecture.

3.1 PROBLEM FORMULATION

Given a 3D point cloud scanned by LiDAR sensors, our goal is to estimate the 3D locations of K
keypoints that represent the human pose. Let the input point cloud P be RN×C where N is the
number of points and C is the number of features (e.g. x, y, z, intensity, elongation). We use a
sparse voxel representation to represent point clouds, which consists of two separate tensors: one
feature tensor RV×C and one index tensor RV×4 where V is the number of non-empty voxels and
4 dimensions are used for batch sample index and the three coordinates of each voxel. We define
the ground truth pose for the ith human as a set of 3D keypoint locations Gi = {g1i , g2i , ..., gKi }
where gki ∈ R3 is the location of the kth keypoint in the global coordinate frame. The set of K
keypoints corresponds to anatomical joints of interest such as shoulders, elbows, wrists, hips, knees,
and ankles. Our objective is to predict the 3D keypoint locations from the input point cloud, i.e. to
learn a function F such that Ĝ = F (P ), where Ĝ ∈ RM×K×3 is the tensor of predicted 3D keypoint
locations of M humans.
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Figure 2: The overall architecture of VoxelKP. The model begins with voxelizing a point cloud scene,
followed by feature extraction using a stem module (Appendix A.1). Subsequently, the extracted fea-
tures are processed through four fully sparse spatial-context blocks (Section 3.2) for capturing local
and global spatial information. Lastly, we utilize a spatially-aware multi-scale BEV representation
(Section 3.3) for accurate human keypoint estimation.

3.2 FULLY SPARSE SPATIAL-CONTEXT BLOCK

Our approach is designed with specialized building blocks to process spatial information of varying
densities effectively. Each building block starts with a basic sparse 3D block, subsequently branch-
ing into two distinct pathways for local and global spatial feature learning. Spatial branches are used
for learning local spatial correlations between keypoints, incorporating sparse selective kernel mod-
ules and sparse box-attention modules to improve the representational power to encode and localize
the intricate keypoint features. Meanwhile, global spatial feature learning is achieved through con-
text branches, where a straightforward MLP is employed to maintain detailed per-voxel information,
ensuring the retention of spatial details. Our proposed hybrid feature learning strategy captures the
nuanced local details with an understanding of the global context.

3.2.1 SPARSE SELECTIVE KERNEL MODULE

s
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N x C
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Figure 3: Sparse selective kernel module with one sam-
ple input. The SSK module selects the best kernels from
different receptive fields with a softmax-based channel-
wise attention mechanism.

Inspired by Li et al. (2019), we propose
the sparse selective kernel (SSK) mod-
ule that selectively aggregates multi-
scale features to improve spatial context.
By selectively combining semantic in-
formation from different scales, the net-
work learns better local dense features of
the spatial locations of keypoints. The
SSK modules perform spatial attention
on a 3D sparse voxel space, where the
attention specializes the receptive field
at each position using a data-driven ker-
nel selection. As demonstrated in Fig. 3,
we first use two sparse 3D submanifold
convolution branches with varied recep-
tive field sizes of 3×3×3 and 5×5×5. A
submanifold convolution computes out-
put values only if the convolution kernel
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is centered on a non-empty voxel, i.e., the number of non-empty voxels remains the same. These
operations are applied to sparsely sampled voxel locations, extracting multi-scale features while re-
maining efficient. Next, the features from each branch are summed up and then fed into a selection
module that compresses the spatial dimension by a sparse global average pooling (GAP) to compute
the average feature of all non-empty voxels, then a feature squeeze and expansion are applied (Hu
et al., 2018). The squeeze and expansion process compresses a feature map from C channels to Z
channels, then expands it back to C channels, where Z is 25% of C in our implementation. This
produces channel-wise attention weights after a softmax activation, allowing the network to empha-
size or suppress the features from each branch selectively. In the end, the multi-scale local features
can then be obtained by combining the weighted features from all branches through averaging.

3.2.2 SPARSE BOX-ATTENTION MODULE

(       )

Q

K

V

q(x)

k(x)

v(x)

j(x)

in-partition

features

Softmax

Figure 4: Sparse box-attention. This attention
mechanism selects the voxel features that corre-
spond to one box partition referring to the index
tensor and then performs self-attention on the se-
lected voxels. The functions q, k, v, and j are
linear layers.

To better capture local dense features, we ap-
ply box-based self-attention. Intuitively, the
keypoint location is only relevant to its local
surrounding regions, of which the global con-
text can barely help. In fact, as demonstrated
in Section 5.2, the integration of global features
can even harm the estimation accuracy. Thus,
unlike the previous works that tried to cap-
ture a wider range of global features with self-
attention methods for segmentation tasks (Lai
et al., 2022; 2023), we focus on localized fea-
ture attention to resolve the densely distributed
keypoints in local regions.

The key idea is to partition the sparse 3D voxel space into non-overlapping boxes. Within each
local box, we apply self-attention to capture dependencies between the voxels inside the box. The
features in each box go through a linear layer for the queries Q, keys K, and values V , where
Q,K, V ∈ Rnb×h×d and nb, h, d are the number of valid voxels in the b-th box, attention heads,
and feature dimensions. Since we are using sparse tensor representations, each box partition may
contain a varying number of voxels. Referring to Lai et al. (2022); Zhang et al. (2022), we then
compute the attention map by the following equation:

attni,j,h = Qi,h ·Kj,h, ˆattni,.,h = softmax(attni,.,h), yi,h =

nb∑
j=1

ˆattni,j,h × Vj,h. (1)

The output is then obtained by applying a projection layer and a residual connection, as shown
in Fig. 4.

3.2.3 HYBRID FEATURE LEARNING

The convolutional operations focus on understanding spatial hierarchies and local geometric struc-
tures to extract local neighborhood information. Concurrently, inspired by the previous point-voxel
networks (Liu et al., 2019; Shi et al., 2020; Zhang et al., 2022), we include an MLP branch for each
stage. The integration of an MLP branch alongside a convolutional branch is a strategic approach to
capture both fine-grained per-voxel details and relatively coarse-grained local neighborhood infor-
mation. Each MLP branch is composed of three sequential blocks, each consisting of a linear layer,
batch normalization, and a ReLU activation function. The number of channels in each linear layer
is set to match the channels of the incoming tensor. We then merge the output features from the
MLP and convolutional branches through element-wise summation to create hybrid features of the
per-voxel and per-neighborhood information. This hybrid feature learning approach is deployed to
retain and process fine details across the voxel space, which is critical for the accurate localization
of keypoints.

3.3 SPATIALLY AWARE MULTI-SCALE BEV FUSION

Compressing features into bird’s eye view (BEV) maps is a common practice for object detec-
tion Chen et al. (2017); Yan et al. (2018) to collapse the point cloud to 2D for efficiency. For a
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sparse 3D voxel grid of size C ×X × Y ×Z, we use C to denote the number of features per voxel,
X and Y as the spatial extent in the ground plane, and Z as the up axis. Starting with a sparse
3D voxel grid, previous works such as Chen et al. (2023) simply ignore the height information by
summing the features of all voxels that share the same position on the ground plane (the same x
and y coordinates). As shown in Table 2, by employing the spatially aware fusion technique, the
performance can be significantly improved over the naive fusion approach. However, different from
object detection tasks, height information is essential for keypoint estimation tasks to precisely lo-
cate each keypoint. A reasonable approach is to directly deploy 3D feature maps. Unfortunately,
this direct 3D approach does not lead to a decent performance as training does not converge well,
as shown in Table 3. We, therefore, propose a spatially aware multi-scale BEV fusion approach for
fusing features from multiple encoder layers in a way that retains spatial information, as illustrated
in Fig. 5. Specifically, we use height encoding and scale-wise feature alignment to compensate for
the loss of spatial information during the 2D projection.

Height Encoding
(w/ increased channels)

Feature Alignment
(w/ scale-offset)

Multi-Scale
Feature Fusion

Multi-Scale Sparse
feature maps

Figure 5: Spatially aware multi-scale BEV Fusion.
Note that we use a dense representation for a better
visual illustration of the method.

Height Encoding Transforming 3D data
into BEV is often used in 3D object detec-
tion and segmentation tasks, for reducing
the dimensionality of point clouds and mak-
ing them more manageable for processing.
An object detection method may project the
3D voxel grid to a 2D BEV representation
by adding features from voxels that share
the same x and y position, losing the in-
formation about which height a feature was
taken from. Instead, we use a height encod-
ing method. Specifically, we compress the
height dimension to 1 using convolution ker-
nels of size (1, 1, h) where h is the height
of each 3D voxel grid. Meanwhile, we in-
crease the number of resulting channels to
retain more spatial details and features from
the 3D representation. This provides a richer
representation for the 2D regression heads to
work with.

Multi-scale Feature Alignment After obtaining z multi-scale height-encoded BEV maps from the
last few stages of the network, we then fuse those feature maps to create a feature map that contains
multi-scale features. Unlike working with dense tensors, the direct interpolation of the feature maps
in the sparse case is computationally complex, as it requires specialized algorithms to efficiently
navigate through the predominantly empty voxels to find and interpolate the adjacent non-empty
voxels. Instead, we directly modify the feature position of the sparse tensor by multiplying the voxel
position by its scale r. To avoid overlapping feature positions of (xp ∗ 2r, yp ∗ 2r) r ∈ {0, 1, 2...}
during the scale multiplication, we align the xy-plane positions (xp, yp) using scale offsets (xp ∗
2r + r, yp ∗ 2r + r), where p is the position of a voxel in a voxel grid.

By stacking the r-scaled feature maps together, we obtain a multi-scale 3D feature map with a height
of r. To obtain a BEV feature map, instead of collapsing with 1 × 1 × r convolutions, we simply
apply an intuitive scaling for each scale of the feature map. The scaling factor r̂p is proportional
to the height (scale) of the 3D feature map for each feature fp at position p, then we obtain scaled
feature f̄p = fp ·r̂p. Given P̄ as the set of the 2D xy-plane positions in the voxel grid, the compressed
sparse features F̄ and their positions P̄ are obtained as:

P̄ = {(xp, yp)|p ∈ P}, F̄ = {
∑
p∈Sp̄

f̄p |p̄ ∈ P̄}, (2)

where Sp̄ = {p|xp = xp̄, yp = yp̄, p ∈ P} contains voxels that are put onto the same 2D xy-plane
position p̄.
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3.4 NETWORK ARCHITECTURE

We propose a single-stage, fully sparse neural network, designed for human pose estimation within
LiDAR point clouds. The architecture is demonstrated in Figure 2. The input is a point cloud RN×C

where N is the number of points and C is the number of features (e.g. x, y, z, intensity). We voxelize
the point cloud into a sparse voxel representation. Our method consists of an input stem network
and four stages with gradually decreased feature map size, where each stage reduces the spatial
shape of the sparse voxel space by a factor of two. The input stem network is a simple stack of
convolution layers, as shown in Appendix A.1, to extract low-level features from the voxelized point
cloud. Next, four fully sparse spatial-context blocks are used for each subsequent stage for capturing
features for accurate keypoint localization. The sparse box-attention modules are only applied for
our last two blocks to emphasize local-region features. Note that we do not increase the number of
channels for the last three stages. We then convert the resulting 3D feature maps from the last three
blocks to 2D spatial-encoded BEV representations. Note that we increase the number of channels
for the BEV representation to compensate for the information loss of the BEV conversion. These
2D features are further refined with 2D convolutions to aggregate spatial context. In the end, we
obtain the estimated keypoints Ykp ∈ RK×3 and the corresponding predicted visibilities Ykp ∈ RK ,
where K is the number of keypoints.

3.5 RELATIONSHIP TO PRIOR WORKS

Our VoxelKP fundamentally differs from the traditional LiDAR-based methods that predominantly
focus on object detection or semantic segmentation tasks. Majorly, we implement the training
pipeline for keypoint estimation on top of OpenPCDet (Team, 2020), and we use sparse convo-
lution operators from spconv (Contributors, 2022). We choose VoxelNeXt Chen et al. (2023), a fully
sparse network for 3D object detection, as the baseline architecture. To enhance the keypoint lo-
calization accuracy, our approach differs from VoxelNeXt from two perspectives: 1) we employ a
dual-branch solution where an additional context branch is used to preserve the global spatial de-
tails, and 2) we enhance spatial awareness by projecting absolute 3D coordinates to 2D BEVs. The
effectiveness of the proposed modules is supported by the ablation results in Table 2. Notably, unlike
previous point-voxel blocks such as PVCNN (Liu et al., 2019) and PVT (Zhang et al., 2022), our
spatial-context blocks are fully based on sparse voxels, without the need for voxelization and devox-
elization within each building block. Essentially, the context branch captures per-voxel features to
mitigate the loss of global context during successive convolutional blocks to ensure that each voxel
retains a comprehensive understanding of its surroundings, thereby enhancing the accuracy and
robustness of keypoint detection. In contrast to PVT’s box-attention strategy, which inefficiently
handles dense tensors by repeatably converting between dense tensors and sparse representations,
we take advantage of the fully sparse architecture for a more efficient implementation.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Dataset We use the Waymo v1.4.2 dataset (Sun et al., 2020). During the training, we merged “Pedes-
trian” and “Cyclist” classes together as a “Human” class. Note that there are only 8, 125 human
examples with keypoint annotations whilst over 1 million bounding box annotations. We, therefore,
removed the points inside those bounding boxes without keypoint annotations. Each human object is
labeled with 14 3D keypoints (nose, left/right shoulders, left/right elbows, left/right wrists, left/right
hips, left/right knees, and left/right ankles, head).

Network The architecture of the network is composed of a stem module followed by four stages,
with output channels set to 64, 128, 256, 256, and 256, respectively. Given the high resolution (e.g.
1504× 1504× 61) of the voxelized point cloud input, we employ larger sparse convolution kernels
(kernel size k = 5) for the downsampling block in both the stem module and the initial stage. For
the subsequent three stages, we revert to a smaller kernel size (k = 3). To compensate for the
information loss in the BEV projection, we increased the channels from 256 to 384.

Training We use the point cloud range of (150.4m, 150.4m, 6m) for the Waymo dataset and we
transform them into voxel representations by a voxel size of (0.1m, 0.1m, 0.1m). We directly use
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the global keypoint locations without any encoding. Due to the limited number of training samples,
we first apply a ground truth sampling technique (Yan et al., 2018; Chen et al., 2022) to concatenate
target objects from other frames into the sampled frames. Next, we apply global augmentations on
the whole point cloud, including random flips on the x and y axes, random scale of the range of
[0.95, 1.05], and random rotation ranged from [−π/4, π/4]. Additionally, we apply local augmen-
tations on each annotated object, including the random scale of the range of [0.95, 1.05], random
rotation ranged from [−π/20, π/20], random frustum dropout (Hu & Waslander, 2021) with an
intensity range from [0., 0.2], and random noise around the object. Our model is trained using
AdamW (Loshchilov & Hutter, 2017) optimizer plus OneCycle (Smith & Topin, 2019) learning
rate scheduler to mitigate overfitting (Smith, 2018). Specifically, we use a learning rate of 0.003,
weight decay of 0.01, and 0.9 momentum. Aside from the regular regression loss and heatmap loss,
we include a skeleton regularization loss to make the model aware of the spatial relationships of
keypoints. The details of the used loss functions can be found in Appendix A.2.

4.2 BENCHMARK METHODS

There is a limited number of relevant research for this task. Most of the prior works utilize additional
training data beyond the 3D keypoint data within the Waymo dataset. To provide a fair comparison,
we need to consider approaches that use extra data and those that rely solely on Waymo ground
truth separately. Zheng et al. (2022) adopted a pseudo-label generation approach to provide stronger
supervision. It utilizes an internal dataset as training data and uses the Waymo dataset for evalua-
tion. GC-KPL (Weng et al., 2023) pre-trains its backbone model with extra synthetic or real-world
data, then fine-tunes the model with the full Waymo training set. Given the reliance on extra data in
these methods, we consider the LiDAR-only version of HUM3DIL (Zanfir et al., 2023) as our pri-
mary competitor. HUM3DIL shares the exact same training data as our approach, allowing a direct
comparison of techniques.

4.3 RESULTS

Previous methods like GC-KPL use a subset of the validation data for evaluation, while we evaluate
our method with the full validation set for better reproducibility. We report MPJPE on matched
keypoints for our benchmark, following prior works. As shown in Table 1, we outperform the
baseline HUM3DIL by approximately 27% in MPJPE. Our approach achieves state-of-the-art results
among methods trained solely on Waymo ground truth. We also surpass the approaches leveraging
extra synthetic data, beating Zheng et al. with synthetic pseudo labels by around 18% and GC-
KPL with synthetic point clouds by about 21%. We achieve better performances as the SOTA GC-
KPL approach which is pre-trained on 200, 000 real-world samples by about 12%. Overall, we
demonstrate significant improvements over both the baseline solely using Waymo 3D keypoint data,
as well as other techniques relying on extra data. Notably, our method can even achieve better results
than previous multi-modal methods, e.g. (Zheng et al., 2022)’s multi-modal approach obtained

Method Dataset Description MPJPE
cm.

With Extra Training Data

Zheng et al. (Zheng et al., 2022) (CVPR 22) Internal dataset +
Waymo v.?

Trained on 155, 182 objects from internal
data. Generated pseudo labels from 2D im-
age labels.

10.80 (-18%)

GC-KPL (Weng et al., 2023) (CVPR 23) Waymo v.? Pre-trained on synthetic data. Fine-tuned on
ground truth

11.27 (-21%)

Waymo v.? Pre-trained on 200, 000 Waymo objects.
Fine-tuned on ground truth

10.10 (-12%)

Without Extra Training Data

HUM3DIL (Zanfir et al., 2023) (CoRL 22) Waymo v.1.3.2 Randomly initialized 12.21 (-27%)
VoxelKP Waymo v.1.4.2 Randomly initialized 8.87

Table 1: Benchmark results. The numbers in the table are taken from their corresponding papers
aside from HUM3DIL, which is taken from GC-KPL paper. It is unclear about the exact training
dataset used for Zheng et al. and GC-KPL. Waymo v1.3.2 and Waymo v1.4.2 share the same data
for keypoint estimation task.
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10.32 MPJPE with both LiDAR and RGB data while we achieved 8.87 with LiDAR only. A visual
demonstration is presented in Fig. 1. Please find the accompanying video in the supplementary for a
visualization of the results. In addition, we report the full spectrum of the evaluation in Appendix B,
including keypoint-wise MPJPE, OKS@AP, and PEM.

5 ABLATIONS

We demonstrate the effectiveness of each proposed component in Table 2. We use the architecture
of VoxelNext Chen et al. (2023) as the baseline model, then gradually update the baseline model with
the proposed components. We start with VoxelNeXt for two reasons: 1) it is one of the state-of-the-art
point cloud object detection models with a fully sparse architecture design, and 2) it provides a good
balance between computational costs and performance. We report the MPJPE for our ablations. The
results indicate that all the individual components can contribute to improving keypoint estimation.
Compared to the baseline architecture, our proposed VoxelKP framework improves MPJPE by 36%
and PEM by 14%. Next, we further present the ablation studies to show the alternative design
choices of the individual component.

Components MPJPE PEM

Spatial BEV SSK Attention Hybrid Feat. head shoulders elbows wrists hips knees ankles all all

0.0659 0.1127 0.1693 0.2020 0.0961 0.1343 0.1982 0.1394 ( 0%) 0.1973 ( 0%)
✓ 0.0737 0.1026 0.1457 0.2013 0.0878 0.1285 0.1954 0.1332 (+ 4%) 0.1953 (+ 1%)
✓ ✓ 0.0603 0.0848 0.1232 0.1715 0.0759 0.1084 0.1608 0.1118 (+20%) 0.1889 (+ 4%)
✓ ✓ ✓ 0.0558 0.0604 0.0903 0.1679 0.0620 0.1091 0.1834 0.1039 (+25%) 0.1791 (+ 9%)

✓ ✓ ✓ ✓ 0.0570 0.0669 0.0948 0.1467 0.0670 0.0820 0.1084 0.0887 (+36%) 0.1695 (+14%)

Table 2: Overall ablation for the effectiveness of each component. The first and last row represent
the baseline VoxelNeXt and our proposed VoxelKP architecture, respectively.

5.1 SPATIALLY AWARE BEV

The use of the BEV representation significantly simplifies the detection problem by collapsing the
3D voxel grid into a 2D feature map. This ablation evaluates the effectiveness of the proposed spa-
tially aware BEV module. We first evaluate the direct use of a naı̈ve 3D representations, followed
by experiments with the spatially aware BEV. The findings, as shown in Table 3, indicate that our
spatially aware BEV yields superior performance. The direct deployment of the 3D representation
results in severe overfitting and, therefore, low performance. In addition, we also show that increas-
ing the number of channels during the BEV projection can effectively improve the model perfor-
mance, by compensating for information loss during projection. Overall, our spatially aware BEV
strikes a balance that retains spatial acuity beyond basic BEV for resolving keypoint relationships
while avoiding the complexity of full 3D convolutions.

cp. head shoulders elbows wrists hips knees ankles all

3D - 2.4620 2.4559 2.4492 2.4449 2.4394 2.4264 2.419 2.4422
Ours ✗ 0.0688 0.0714 0.0982 0.1657 0.0723 0.1029 0.1595 0.1053
Ours ✓ 0.0570 0.0669 0.0948 0.1467 0.0670 0.0820 0.1084 0.0887

Table 3: Ablation study for the spatially aware BEV module. Cp. denotes if to expand the number
of channels to compensate for the information loss during the 2D projection.

5.2 DIFFERENT ATTENTION MECHANISM

This ablation study assesses the effectiveness of the box-attention mechanism within point cloud
processing. Recent advancements, such as the stratified self-attention (Lai et al., 2022), focus on
aggregating long-range contextual information, particularly beneficial for segmentation tasks. How-
ever, for keypoint estimation tasks, capturing global dependencies is less crucial. Instead, our ap-
proach utilizes local box-attention, which concentrates on adjacent local regions. The results, as
presented in Table 4, demonstrate that local box-attention outperforms other methods. Interestingly,
we found that the stratified attention mechanism could slightly impair performance. We suspect that
the box-based approach concentrates on areas most relevant to each keypoint location, whereas long-
range attention may cause the network to overlook local, dense details. As a result, the box-based
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attention mechanism allows efficient modeling of local keypoint distributions, without excessive
computation or over-smoothing from global aggregation.

head shoulders elbows wrists hips knees ankles all

w/o 0.0659 0.0956 0.1405 0.1855 0.0831 0.1077 0.1515 0.1181
stratified 0.0650 0.0911 0.1347 0.1995 0.0819 0.1245 0.1919 0.1266
box 0.0570 0.0669 0.0948 0.1467 0.0670 0.0820 0.1084 0.0887

Table 4: Different self-attention methods. w/o denotes no attention applied.

5.3 KEYPOINT ESTIMATION & DETECTION TRADE-OFF

Our proposed VoxelKP is a single-stage method that simultaneously performs both bounding box
detection and keypoint estimation. Although the PEM metric accounts for penalties in both box
and keypoint mismatches, to provide a clearer understanding of the performance, we report both
detection metrics and keypoint estimation metrics in Table 5 under different NMS thresholds.

We reported the best MPJPE score in the main paper at an NMS threshold of 0.3, while using a
threshold of 0.1 improves detection performance with a slight sacrifice in MPJPE. Compared to the
VoxelNeXt architecture, our method achieves similar detection performance (less than 1% decrease)
at an NMS threshold of 0.1, while significantly improving MPJPE performance (approximately 35%
increase). At an NMS threshold of 0.3, the MPJPE performance of VoxelKP can be further enhanced,
although it results in a more substantial loss in detection performance.

Model NMS Threshold MPJPE PEM AP/L1 AP/L2 Recall@0.3 Recall@0.5

VoxelNeXt 0.1 0.1410 0.2120 0.7147 0.7096 0.9722 0.9375
VoxelKP 0.1 0.0908 0.1900 0.7083 0.7049 0.9658 0.9354

VoxelNeXt 0.3 0.1394 0.1973 0.6665 0.6586 0.8671 0.8404
VoxelKP 0.3 0.0887 0.1694 0.6060 0.5998 0.7816 0.7565

Table 5: Keypoint estimation and object detection performances under different NMS thresholds.

6 CONCLUSION

In this work, we identify the challenge of learning locally dense features within a sparse environ-
ment for human keypoint estimation. We proposed a new 3D fully sparse neural network for esti-
mating dense human poses from point clouds. We present a comprehensive solution to the intricate
challenges posed by spatial information of varying densities in the context of human keypoint es-
timation. Our method combines several novel components including sparse selective kernel layers,
box-attention layers, spatially aware multi-scale BEV fusion, and hybrid feature learning to accu-
rately predict human body keypoints. By combining components that enhance local feature capture
with those that safeguard global contextual information, our method ensures effective estimation of
human keypoints. Experiments on the Waymo dataset demonstrate the advantages of our approach
compared to prior art and we demonstrate improved performance compared to other approaches
trained on the same data as well as other approaches trained with additional data. Through the iden-
tified challenge and the innovative framework, we pave the way for more nuanced and adaptable
systems in this area.

Despite these advancements, we further identify certain areas for future exploration and improve-
ment. As mentioned above, this work used a small volume of training data, but it could benefit
from a larger-scale dataset. While we focus on single-frame point clouds, future work could lever-
age temporal information across sequences of LiDAR point clouds. Additionally, instead of the
straightforward estimation of keypoints, future work may adopt inverse kinematics to include phys-
ical constraints on human body movement. Aside from refining estimated keypoint locations, this
may especially be useful to handle real-world challenges such as occlusion within motion.
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