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Figure 1. Our Model on In-the-Wild COCO [35] Images. We display 3D predictions overlaid on the images and the top-down views
with a base grid of 1 m x 1m tiles. For single-object images, only front-views are displayed. Results are shown for both base and novel
categories, demonstrating that our proposed method exhibits zero-shot generalization capability on real-world images.

Abstract

We propose and study open-vocabulary monocular 3D
detection, a novel task that aims to detect objects of any
categories in metric 3D space from a single RGB image.
Existing 3D object detectors either rely on costly sensors
such as LiDAR or multi-view setups, or remain confined
to closed vocabularies settings with limited categories, re-
stricting their applicability. We identify two key challenges
in this new setting. First, the scarcity of 3D bounding box
annotations limits the ability to train generalizable mod-
els. To reduce dependence on 3D supervision, we propose a
framework that effectively integrates pretrained 2D and 3D
vision foundation models. Second, missing labels and se-
mantic ambiguities (e.g., table vs. desk) in existing datasets
hinder reliable evaluation. To address this, we design a
novel metric that captures model performance while miti-

gating annotation issues. Our approach achieves state-of-
the-art results in zero-shot 3D detection of novel categories
as well as in-domain detection on seen classes. We hope our
method provides a strong baseline and our evaluation pro-
tocol establishes a reliable benchmark for future research.

1. Introduction

Recognizing objects from a single image has been a long-
standing task in computer vision, with broad applications in
robotics and AR/VR. Over recent decades, 2D object detec-
tion — identifying and localizing objects within a 2D image
plane — has achieved substantial progress, driven by ad-
vancements in deep learning techniques [7, 16, 20, 52] and
large annotated datasets [19, 35, 57]. However, recognizing
only a fixed set of objects is limiting, given the vast diversity
of objects in real-world settings; detecting objects solely in
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(c) Closed-vocabulary 3D detection (d) Open-vocabulary 3D detection

Figure 2. Given (a) a single image, we illustrate examples of (b)
open-vocabulary 2D detection, which localizes objects of any cate-
gory within the 2D image plane, covering both §88R categories and
novel categories not seen during training; (c) closed-vocabulary
3D detection, which detects objects from a predefined set of cate-
gories in 3D space; and (d) open-vocabulary 3D object detection,
which identifies objects of any category in 3D.

2D space is also insufficient for most practical tasks, as the
world and its objects exist in 3D space.

To address these limitations, one line of recent re-
search has focused on open-vocabulary 2D object detec-
tion [10, 36, 63, 64, 76] (Fig. 2b) to identify objects beyond
a fixed set of categories. Another line explores the monoc-
ular 3D detection task [3, 42, 55, 61] (Fig. 2¢), which ex-
tends detection capabilities from 2D to 3D space. Despite
the vast research in these two lines of research, the intersec-
tion of these two areas — open-vocabulary monocular 3D
detection, referred to as OVMONO3D (Fig. 2d) — remains
largely unexplored. In this work, we aim to fill this gap. The
OVMoNO03D task involves detecting and localizing objects
of any categories in the metric 3D space, including novel
categories unseen during training.

One of the central challenges in OVMONO3D lies in
generalizable model training, as large-scale 3D datasets
with high-quality annotations are scarce. Unlike open-
vocabulary 2D detection, where abundant training data ex-
ists, 3D datasets are limited in scale (Fig. 3). To ad-
dress this, we adopt a decoupled strategy that separates 2D
recognition and localization from 3D bounding box esti-
mation. Specifically, we explore two complementary ap-
proaches: (1) OVMONO3D-GEO, a simple training-free
baseline that unprojects 2D detections from off-the-shelf
open-vocabulary detectors [10, 36] into 3D using geomet-
ric principles (Fig. 4a). While requiring no 3D annota-
tions and achieving reasonable performance, this approach
is sensitive to occlusion and degrades in cluttered scenes;
(2) OVMONO3D-LIFT, a data-driven method that inte-
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Figure 3. 2D vs. 3D Detection Datasets in terms of #Images.
Publicly available 3D datasets with 3D annotations are signifi-
cantly smaller than 2D detection datasets.

grates multiple vision foundation models (e.g., depth esti-
mation [47], 2D open-vocabulary detection [10, 36], and
general image encoder [43]) and learns to lift 2D detec-
tions into 3D (Fig. 4b). We systematically analyze its design
space, including backbone architectures, 2D base detectors,
and other critical choices (Sec. 5.3). Our results highlight
the importance of 3D-aware image representations and ac-
curate depth estimation for robust performance. Compared
to the geometric baseline, OVMONO3D-LIFT shows sig-
nificantly greater resilience to occlusion and achieves supe-
rior results across diverse, real-world scenarios.

Another central challenge is reliable model evaluation,
hindered by missing annotations and semantic ambiguity.
The task requires detecting all visible objects in 2D images,
yet existing 3D datasets generally provide only partial an-
notations due to the high cost of labeling. For example, in
SUN RGB-D [59], a chair visible in the RGB image may
be unannotated in 3D if it was partially occluded in the
depth scan, leading to false negatives in evaluation. Simi-
larly, inconsistencies in naming conventions across datasets,
such as predicting desk when the ground truth label is table,
cause correct detections to be miscounted as false positives
under standard metrics. To address these issues, we pro-
pose a simple evaluation protocol that reduces the impact
of missing labels and semantic variation (Sec. 4). The re-
sulting metric enables reliable assessment without exhaus-
tive annotations and is particularly suited for in-the-wild im-
ages, where complete labeling is infeasible and error-prone.

Finally, we conduct extensive experiments and abla-
tions to validate both our proposed approaches and eval-
vation metric on standard benchmarks. Our method not
only surpasses concurrent open-vocabulary 3D detectors
(e.g., DetAny3D [71]) by a large margin (Tab. 1), but also
outperforms closed-vocabulary counterparts (e.g., Cube R-
CNN[3], UniMODE [34]) on in-domain categories (Tab. 2),
under both standard and proposed metrics. Qualitative re-
sults further highlight strong generalization to in-the-wild



images (Fig. 1). We hope these insights inspire further ex-
ploration of advanced architectures for this task. Code will
be released to support future research.

2. Related Work

Open-Vocabulary 2D Object Detection. The goal of this
task is to recognize and localize objects in 2D images be-
yond a fixed set of predefined categories. Leveraging large-
scale 2D datasets [28, 44, 57], this field has seen consid-
erable advancement. Some approaches [18, 40, 41, 67]
employ pre-trained vision-language models [27, 49], us-
ing frozen text features to detect novel categories. Other
methods [10, 32, 36, 70] are pre-trained on extensive de-
tection, grounding, and caption data to align region-text
features. For example, Grounding DINO [36] incorpo-
rates grounded pre-training with cross-modal feature fu-
sion, while YOLO-World [10] uses region-text contrastive
loss and re-parameterization to enhance both accuracy and
efficiency. However, such large-scale annotations are costly
in 3D detection; thus, we investigate methods to adapt ex-
isting open-vocabulary 2D detectors for 3D detection.

Open-Vocabulary 3D Object Detection. This task seeks
to identify objects from any category in 3D, including those
unseen during training. Prior research [5, 6, 13, 38, 39,
45, 46, 66, 68, 72, 74, 80] primarily focuses on 3D detec-
tion tasks with 3D point clouds as input. [38] first pro-
poses an open-vocabulary 3D detector using image-level
class supervision from ImageNet1K [56]. [39] utilizes 2D
bounding boxes from a pre-trained 2D detector [79] to build
pseudo-3D label. [68] leverages various 2D foundation
models to enhance the performance of 3D open-vocabulary
detection. OV-Uni3DETR [62] proposes a multi-modal
open-vocabulary 3D detector that accommodates both point
clouds and images as the input. In contrast, our work fo-
cuses on the monocular 3D detection task that only requires
RGB images as input and does not assume the availability
of point cloud data at training or inference phase.

Monocular 3D Object Detection refers to the task of
identifying and localizing objects within a scene using 3D
bounding boxes derived from single-view images. Early re-
search in this domain primarily targeted either outdoor [8,
9,23,60,61,75,77,78] orindoor [11, 25, 31, 42, 54] envi-
ronments, focusing on specialized applications such as au-
tonomous driving and room layout estimation. The exten-
sive Omni3D [3] dataset enabled Cube R-CNN [3] and Uni-
MODE [34] to perform unified monocular 3D object detec-
tion across multiple scene types. Recent works also explore
pseudo annotation generation to expand detector vocabu-
laries. OVM3D-Det [24] generates pseudo labels enabling
detection of novel categories without human annotations.

V-MIND [26] converts large-scale 2D datasets into pseudo
3D training data to expand detection vocabulary.

However, most of these approaches suffer from limited
generalizability, and even advanced models [3, 34] are con-
strained by a closed vocabulary, restricting their ability to
recognize or detect object classes that were not included
during training. To address this limitation, our work focuses
on exploring the potential of monocular open-vocabulary
3D detection.

Concurrent to our work, DetAny3D [71] develops a
promptable 3D detection model using large-scale data and
foundation models. This work addresses similar problems
to ours through different methodologies. We compare with
DetAny3D in our experiments quantitatively with extensive
experiments.

3. Methodology

Our approach builds on two frameworks: Cube R-CNN [3]
for closed-vocabulary monocular 3D detection and Ground-
ing DINO [36] for open-vocabulary (OV) 2D detection. In
this section, we first provide an overview of these frame-
works (Sec. 3.1); we then introduce our proposed methods
for addressing OVMONO3D (Sec. 3.2 - 3.3, Fig. 4).

3.1. Preliminaries

Cube R-CNN [3] is a state-of-the-art monocular 3D de-
tection model trained on a large-scale 3D dataset (i.e.,
Omni3D). It extends Faster R-CNN [52] with a 3D cube
head. Using 2D region proposals as input, the cube head
employs ROI poolers to extract local image features and
then predicts 3D bounding boxes with MLPs. The training
objective of Cube R-CNN is defined as:

L = Lop + V2 exp(—p) Lap + 1, (D

where £;p includes the classification and bounding box re-
gression losses from the 2D detection head [52], Lsp is the
loss from the 3D cube head, and p denotes the uncertainty
score. The 3D loss L3p consists of disentangled losses for
each 3D attribute [58]:

Lip = Z Eg%) + L3, ()

where @ € {(z2p,%2p), 2, (w,h,l), r} represents vari-
able groups for the 2D center shift, depth, 3D dimensions
(i.e., width, height, and length in meters), and 3D poses.
Cg‘ll)) isolates the error of a specific group by substituting
other predicted variables with ground-truth values when
constructing the predicted 3D bounding box Bsp, while Eg'llj
compares the vertices of predicted 3D bounding box with
the ground truth using Chamfer distance.

Grounding DINO [36] is a leading framework for OV 2D
detection, which combines the Transformer-based DINO
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Figure 4. Proposed Methods. (a) OVMONO3D-GEO is a
training-free method that predicts 3D detections from 2D via
geometric unprojection using off-the-shelf depth estimation (i.e.
UniDepthv2 [48]), segmentation (i.e. SAM [29]), and OV 2D de-
tector [36]. (b) OVMONO3D-LIFT is a learning-based approach
that trains a class-agnostic neural network to lift 2D detections
and geometric information to 3D. Both approaches decouple 2D
recognition and localization from 3D bounding box estimation.

detector [69] with grounded pretraining. We adopt a pre-
trained Grounding DINO as our default OV 2D detection
model due to its superior performance and strong zero-shot
generalization capabilities. An ablation study of different
base 2D detectors on our approach is provided in Sec. 5.

3.2. Training-free OVMoN03D-GEO

We first establish a training-free baseline that unprojects
2D detections into 3D using geometric principles (Fig. 4a).
Given an input image I, a text prompt 7", and 2D bound-
ing boxes with category labels {(b;, c;)}¥ ; predicted by
an OV 2D detector [36], the method proceeds as follows.
3D Geometric Prediction. For each detected object
(b;, ¢;), an instance segmentation mask .S; is obtained us-
ing a segmentation model (e.g., SAM [29]), and a metric
depth estimation model (e.g., UniDepthv2 [48]) generates
the depth map D € RH*W . Pixels within S; are un-
projected into 3D space using the camera intrinsic matrix
K € R**3 to form a point cloud P;. Here, v and v de-
note the pixel coordinates in the image, and each 3D point
p=[z,y,2]" € P;is computed as:
p=D(u,v) - K '[u v I]T.

3D Bounding Box Generation. To estimate the 3D bound-
ing box parameters B; = (t;, d;, r;) from the point cloud
P;, we first apply Principal Component Analysis (PCA) on

P; to estimate the object orientation r; from the principal
component direction. PCA determines the object’s main
orientation by identifying the directions of maximum vari-
ance, enabling tight bounding box fitting. DBSCAN clus-
tering [12] is then applied to remove outliers from noisy
depth predictions and imperfect segmentation masks, ensur-
ing robust parameter estimation. Finally, the centroid ¢; and
dimensions d; are computed from the cleaned point cloud
along the estimated orientation 7;.

While this method does not require 3D supervision, its
accuracy relies heavily on the quality of depth estimation
and segmentation, and it is particularly sensitive to occlu-
sions, where incomplete point clouds often lead to inaccu-
rate bounding box reconstruction (see Fig. 11 in the supple-
mentary). This approach also shares similarities with the
3D bounding box generation pipeline in OVM3D-Det [24].
However, their work employs the generated 3D boxes as
pseudo labels to expand the vocabulary of training data,
without directly evaluating the accuracy of the 3D box gen-
eration itself as a OVMONO3D method.

3.3. Data-driven OVMoNo03D-LIFT

To overcome the limitations of the geometric-based ap-
proach, we propose OVMONO3D-LIFT (Fig. 4b), which
learns to estimate 3D bounding boxes from large-scale 3D
annotations. This framework decouples OVMONO3D into
two stages: (1) recognizing and localizing objects in 2D
with off-the-shelf open-vocabulary detectors, and (2) class-
agnostically lifting the 2D bounding boxes into 3D cuboids.
We detail the key components below.

Image Encoder. OVMONO3D-LIFT employs a pretrained
DINOV2 [43] to extract image features, and a Feature Pyra-
mid module [33] to generates multi-scale hierarchical fea-
ture pyramid. The predicted 2D bounding boxes are used as
regions of interest for ROI pooling, extracting local object
features of size 7 x 7. These features are fed into a cube
head, as described in Sec. 3.1, to predict 3D attributes.
Depth Estimator. Similar to OVMONO03D-GEO, the
method first obtain the predicted depth map D € RH*W,
then unproject it to a point map P € R3*H>*W ysing the
camera intrinsic matrix K € R3*3. ROI pooling is then
performed on the point map using the 2D bounding boxes
to extract local geometric information of size 3 x 7 x 7.
This geometric information is concatenated with the visual
ROI features to form geometry-informed features, which
are input into the 3D cube head to predict 3D box attributes.
During both training and inference, the method uses pseudo
depth maps obtained from a pretrained metric depth esti-
mator—no ground truth depth maps are required. By fus-
ing geometric information into the model, the network can
better infer object depth and dimensions, producing more
accurate predictions.

Class-agnostic 3D Lifting head. Unlike Cube R-CNN [3],



Novel Categories in Omni3D

Novel Dataset

Methods :
AP3pt AP T APRT APRT AP APt AP 1
OVM3D-Det [24] 6.74/1830 11.35/29.69 5.95/15.87 0.73/231 9.70/22.99 5.05/15.63  0.04/0.05
DetAny3D [71] 9.22/21.44 - - - - - 11.05/15.71
OVMONO3D-GEO  8.48/20.63 14.07/3526 822/1826 0.49/1.01 9.71/2120 7.78/2030  0.73/0.90
OVMONO3D-LIFT* 7.31/18.61 11.47/27.95 7.06/17.62 0.93/3.48 11.39/26.14 497/1431 6.57/10.21
OVMONO3D-LIFT  9.61/24.08 15.00/37.45 9.39/2324 1.41/4.00 14.71/30.13 6.7/20.62 12.88/16.76

Table 1. Performance on Novel Categories and Datasets. We report AP3p on Omni3D novel categories and novel datasets, including
results under IoUsp thresholds of 0.15, 0.25, and 0.5, and across easy and hard categories splits for novel categories in Omni3D (Sec. 5.1 ).
All metrics are reported in the format of standard metric / target-aware metric (Sec. 4). We notice that with UniDepthv2 [48], performance
drops significantly on CityScapes3D [14]; therefore, we use Metric3Dv2 [22] for all methods requiring pseudo depth input on this dataset
only. Bold indicates best results and “-” denotes unreported results in previous works.

Method | APt APIST  APSIT  APRTT  APIAT AP | APRT APRT AP APIYT APt | APY

Closed-vocabulary methods
SMOKE [37] - - - - - - - - - - - 9.60
FCOS3D [60] - - - - - - - - - - - 9.80
PGD [61] - - - - - - - - - - - | 1120
ImVoxelNet [55] - - - - - - - - - - - 9.40
Cube R-CNN [3] 3247 2998 15.23 739 4172 5385 | 2551 9.59 28.32 12.05 8.50 | 23.68
UniMODE [34] 2920  36.00  23.00 810 48.00 66.10 | 30.20 10.60 31.10 14.90 8.70 | 28.20

Open-vocabulary methods
OVM3D-Det [24] 759 1425  11.82 534 2523 193 | 933 136 10.51 482 371 9.49
DetAny3D [71] 31.61 30.97 18.96 7.17  46.13  54.42 - - - - - 2492
OVMONO03D-GEO 1.22 3.23 9.99 398  21.03 9.22 5.98 0.23 9.94 1.59 0.15 6.64
OVMONO3D-LIFT* 25.58 30.56 19.52 9.92 4934 6272 | 29.04 1191 33.96 12.20 7.21 | 27.09
OVMONO3D-LIFT 3144 3247 23.24 11.89 5421 6348 | 3223 1290 37.51 13.35 8.96 | 29.63

Table 2. Performance on Base Categories. We report the AP3p on six subsets of the Omni3D test set, including results under IoUsp

all

thresholds of 0.25 and 0.5, and across different distances (near, medium, far). AP3p denotes the overall score averaged across all subsets.
For open-vocabulary methods without 2D heads, we use 2D box predictions from Cube R-CNN as input. All the metrics are in standard
evaluation. Bold indicates best results, underlined indicates second best, and “-”” denotes unreported results in previous works.

our 3D cube prediction head is class-agnostic, while their
method employs class-specific layers and per-class aver-
age size statistics, which limit generalization to novel cat-
egories. The model trains only on base categories with the
training objective identical to Cube R-CNN, as described
in Sec. 3.1. Since the method also train a 2D head on base
categories, the model preserves detection ability on these
categories. During inference, for novel categories, an OV
2D detector (e.g., Grounding DINO [36]) is used to obtain
2D boxes, which serve as input to the ROI pooling module.

OVMONO3D-LIFT*. We include a model variant as a
baseline. It removes the depth estimation module from
the full OVMONO3D-LIFT framework, relying solely on
visual features from the image encoder and Feature Pyra-
mid Network for 3D bounding box prediction. This variant
serves to evaluate the contribution of geometric depth infor-
mation by comparing performance against the full model
that incorporates both visual and geometric features.

4. Evaluation Metrics

Standard Metrics. Mean Average Precision (AP;p)
based on Intersection over Union (IoU) is the widely used
standard metric for closed-vocabulary 3D object detection
tasks [3, 34]. However, directly applying traditional evalu-
ation protocols to OVMONO3D presents challenges due to
common issues in 3D dataset annotations:

Missing annotations: Comprehensive 3D annotation is of-
ten impractical due to high costs. Fig. 5a illustrates an ex-
ample of this issue, where the book is not labeled.

Naming ambiguity: Objects may be labeled with different
naming conventions or annotation policies during annota-
tion (e.g., table vs. desk). Standard open-vocabulary 2D
detection methods typically prompt 2D detectors with ex-
haustive lists of possible categories, which can lead to cor-
rect predictions with class names that do not align with the
dataset annotations, especially for vaguely defined or over-
lapping categories, as shown in Fig. 5 (chair vs. sofa, vase
vs. potted plant).
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(c) Target-aware Evaluation

Figure 5. By prompting only categories that exist in the annota-
tions, our target-aware evaluation mitigates the negative impact of
missing annotations (e.g., “book” in (a) ) and naming ambiguity
(e.g., “vase” vs. “potted plant” and “chair” vs. “sofa”.)

Target-Aware Metrics. To address these issues, we pro-
pose a simple evaluation approach that considers only the
categories with ground-truth labeled instances in each im-
age. Specifically, instead of providing the 2D detector with
an exhaustive list of possible categories, we only prompt it
with category names that exist in the annotations for each
image. Since human annotators typically label all instances
of the same category within a single image, categories with
ground-truth annotations are likely to be fully annotated.
Fig. 5 illustrates our approach enables more accurate model
assessment despite annotation issues. For instance, the ex-
ample highlights missing annotations for “books,” and nam-
ing ambiguities between “chair” and “sofa.” This validates
the practicability of our evaluation under annotation issues.

5. Experiments
5.1. Experimental Setup

Datasets. The experiments are conducted using the
Omni3D [3] dataset, the largest dataset for monocular 3D
object detection across both indoor and outdoor scenes.
Omni3D is repurposed and combined from six established
sources including SUN RGB-D [59], ARKitScenes [2], Ob-
jectron [ 1], Hypersim [53], nuScenes [4], and KITTI[15]. It
comprises a substantial 234k images, 3 million labeled 3D
bounding boxes, and covers 98 distinct object categories.
During training, we use the 50 categories Cube R-
CNN [3] trained on as the base categories. For evaluation,
we select 22 categories from the remaining classes as novel
categories. These categories are chosen based on two cri-
teria: the number of test instances and the precision of cat-
egory naming. To facilitate a detailed assessment of zero-
shot generalization capabilities, we further divide these cat-

egories into easy and hard subsets according to object visi-
bility. See Appendix B for detailed splits.

Besides evaluating novel categories in Omni3D [3], we
perform zero-shot evaluation on a novel dataset with novel
camera models. CityScapes3D [14] includes base cate-
gories from the self-driving domain. We use the same eval-
uation split as DetAny3D [71].

Baselines. For novel categories, we compare against
OVM3D-Det [24], which generates pseudo 3D la-
bels by combining Grounding DINO [36], SAM [29],
UniDepth [47], and LLM-generated size priors. We eval-
uate their labeling pipeline as a baseline detector against
ground truth annotations. We also include comparisons
with DetAny3D [71]. For base categories, we compare
against closed-vocabulary methods including SMOKE [37],
FCOS3D [60], PGD [61], ImVoxelNet [55], Cube R-
CNN [3], and UniMODE [34], as well as open-vocabulary
methods including OVM3D-Det [24] and DetAny3D [71].

Evaluation Metrics. We report the mean Average Pre-
cision in 3D (APs;p) computed across all evaluated cate-
gories. Following the Omni3D [3] evaluation protocol, pre-
dictions are matched to ground truth using 3D Intersection
over Union (IoUsp), which measures the volumetric over-
lap between predicted and ground truth 3D bounding boxes.
The evaluation is conducted across IoUsp thresholds 7 €
[0.05,0.10, ...,0.50], with the final AP;p representing the
mean average precision across all thresholds and categories.
For evaluation on novel categories and novel datasets, we
additionally report target-aware metrics (see Sec. 4).

Implementation Details. Our implementation is based
on PyTorch3D [51] and Detectron2 [65]. We initialize
the image feature encoder with pre-trained DINOv2 base
weights [43]. The model is trained on eight NVIDIA A100
GPUs for five days. For reference, DetAny3D [71] is
trained on 64 A100 GPUs for two weeks. The models are
trained for 116k steps with a batch size of 64 using SGD
optimizer with an initial learning rate of 0.0012, which de-
cays by a factor of 10 at 60% and 80% of training. We apply
standard image augmentations including random horizontal
flipping and resizing during training.

Due to computational constraints, models trained in the
analysis section ( Sec. 5.3) employ a resource-efficient set-
ting where the pre-trained image encoder is kept frozen
during training and the depth estimator is excluded. Un-
less explicitly stated otherwise, all methods use Grounding
DINO [36] for 2D detection on novel categories, and all
methods requiring pseudo depth input use UniDepthv?2 [48].

5.2. Model Performance

Fig. 6 shows qualitative results on the Omni3D test set. In
comparison with Cube R-CNN [3], OVMONO3D-LIFT de-
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Figure 6. Qualitative Visualizations on the Omni3D Test Set. For each example, we present the ground truth annotations, the predictions
of Cube R-CNN and OVMONO3D-LIFT, displaying the 3D predictions overlaid on the image. For OVMONO3D-LIFT, we also present a

top-down view with a base grid of 1 m x 1m tiles. Base categories are depicted with

cubes, while novel categories are represented

in other colors. Zoom in for best viewing. See Appendix C for more visualizations.

tects not only objects of base categories, but also novel cat-
egories that are unseen at the training time.

Novel Category and Dataset Performance. Tab. 1
shows that OVMONO3D-LIFT achieves state-of-the-art
performance on novel categories and novel datasets.
Geometry-based methods OVM3D-Det [24] and OV-
MoNO03D-GEO show lower performance, particularly on
Cityscapes3D [14], due to their sensitivity to occlusions
and noisy depth estimation. The performance improvement
from LIFT* to LIFT underscores the importance of incor-
porating additional geometric information from foundation
depth estimators into the model. This enhanced perfor-
mance demonstrates that our geometry-informed 2D lifting
design effectively exploits 2D data-driven priors, including
OV 2D detectors, self-supervised features, and metric depth
estimators. By decomposing the task into OV 2D detection
and 2D-to-3D lifting, our approach addresses challenges as-
sociated with low-quality and limited 3D annotations.

Base Category Performance. Tab. 2 compares OV-
MOoNO3D-LIFT with baselines on base categories. OV-
MoNO3D-LIFT achieves the best performance among both
closed-vocabulary and open-vocabulary methods, with an
overall AP;p of 29.63. It surpasses Cube R-CNN [3] by
5.95 points and UniMODE [34] by 1.43 points, while addi-
tionally providing generalization to novel categories. Com-
pared to the open-vocabulary baseline DetAny3D [71], it
achieves a 4.71-point improvement, demonstrating strong
performance on base categories. Notably, OVMONO3D-
LIFT* also achieves competitive results with 27.09 over-

Methods IoU3;pT  XYT Deptht Sizef Posef

OVMONO03D-GEO 18.69 4796 3097 18.68 37.84
OVMONO3D-LIFT*  18.11 4939 2723  48.10 72.44
OVMONO3D-LIFT  22.03 5291 3259 49.64 73.57

Table 3. Disentangled Metrics on Novel Categories. We report
the overall and disentangled IoUsp (%) for different attribute pre-
dictions on Omni3D’s novel categories. For fair comparison, same
2D ground truth box inputs are applied for all methods.

all AP3p, ranking second among open-vocabulary methods.
These results validate the effectiveness of our approach.

5.3. Analysis

Disentangled Metrics. To analyze the contributions of
different predicted attributes to 3D bounding box errors, we
report disentangled IoUs;p for position (XY), depth, dimen-
sions, and pose. For each attribute, we compute the IoU;p
of a modified 3D bounding box where only that attribute is
predicted, while all others are set to their ground-truth val-
ues. The IoUsp is then computed against the ground-truth
cube. To facilitate the comparison, for all methods we use
ground truth 2D box as input.

Tab. 3 exhibits the overall and disentangled IoUsp for
different attribute predictions. For LIFT* and LIFT meth-
ods, object depth prediction consistently contributes the
most error to the overall prediction. This indicates that ob-
ject depth estimation is the primary bottleneck of our task.
Furthermore, the size and pose predictions in GEO method
exhibit larger errors, indicating that geometry-based meth-
ods are not effective for these predictions. This underscores



2D Box Input APt APipt  APRT  APRT  AP3)

YOLO-World [10] 1999 2031 3150 1942 2.85
Grounding DINO [36] 21.44 24.08 3745 23.24 4.00

Table 4. Ablation on 2D Bounding Box Input. Evaluation of
open-vocabulary 2D detectors and their impact on 2D and 3D de-
tection performance for novel categories in Omni3D.
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Figure 7. The performance of OVMONO3D-LIFT as a function of
training data amount. We report the AP3p (%) on novel categories
as the evaluation metric.

the necessity of developing learning-based methods.

2D Bounding Box Input. Tab. 4 evaluates the impact of
2D detectors on both 2D and 3D detection performance for
novel categories. We test two state-of-the-art 2D detectors:
YOLO-World [10] and Grounding DINO [36]. Ground-
ing DINO consistently outperforms YOLO-World across all
evaluation metrics, demonstrating that Grounding DINO is
a preferable off-the-shelf 2D detector for OVMONO3D.

Training Data Scaling Law. Fig. 7 reports our model’s
AP;3p score as a function of the training data size. This
underscores the critical importance of dataset size in OV-
MoNO03D tasks and suggests that our model may achieve
even better performance with more extensive training data.

Pre-trained feature extractor Selection.  Tab. 5 shows
the impact of pretrained feature extractors on 3D detection
performance for novel categories. DINOv2 achieves the
best performance across all evaluation metrics. This result
underscores the effectiveness of DINOv2’s representations
for the 3D detection task. Our findings align with recent
studies that highlight DINOv2’s strong zero-shot capabil-
ities in understanding depth, multi-view correspondences,
and relative pose [17, 30, 73], indicating that DINOv2’s 3D-
aware image features are highly suitable for this task.

For a more detailed analysis on the role of synthetic data
and quantitative evaluation of naming ambiguity issues in
current benchmarks, refer to Appendix E.

5.4. Zero-Shot Generalization Performance

Fig. 1 presents OVMONO3D-LIFT prediction on in-the-
wild images from COCO [35]. The results show 2D pro-
jections of our predictions are well-aligned with the ob-
jects, and their top-down views closely match the visual

Feat. Extractor ~ Supervision AP;pT APRT  APR1 AP

MAE [21] SSL 7.72 11.95 6.43 0.80
CLIP [49] VLM 9.02 14.19 8.44 0.50
MiDas [50] Depth 10.65 17.42 9.87 0.69
DINOV2 [43] SSL 16.04 24.57 1497 2.21
Table 5. Ablation Study on Feature Extractors for OV-

MONO3D-LIFT in 3D Detection on Novel Categories. We re-
port AP3p for various feature extractors with frozen parameters
during training.

scene layout. Even on completely out-of-distribution cat-
egories such as elephant and apple, our method produces
promising results. This suggests that our model demon-
strates zero-shot generalization ability on real-world im-
ages. See Fig. 10 in Supplementary Material for more qual-
itative results on COCO.

6. Discussion

We investigate OVMONO3D, an under-explored task of
recognizing and localizing objects from any categories in
3D using a single image. We identify unique challenges,
notably data scarcity and limitations of standard evaluation
metrics. We propose simple yet effective approaches, in-
cluding geometry-based OVMONO3D-GEO and learning-
based OVMONO3D-LIFT — both decouple 2D detection
from 3D bounding box prediction. Such design enables the
full utilization of off-the-shelf open-vocabulary 2D detec-
tors pre-trained on large-scale datasets. Our analysis pin-
points the key components in the framework, including 3D-
aware image features, base 2D detectors, and the impact of
dataset scaling. We further demonstrate the zero-shot gener-
alizability of our approach on in-the-wild images. Our find-
ings suggest that dataset scale and accurate depth percep-
tion remain the major bottlenecks in this task. One promis-
ing direction may be to develop unsupervised learning that
harness the abundance of unlabeled images. We hope this
work inspires future research toward advancing this task.
See Supplementary Material A for limitations.
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